JP5132887B2 - Shaft member for hydrodynamic bearing device - Google Patents

Shaft member for hydrodynamic bearing device Download PDF

Info

Publication number
JP5132887B2
JP5132887B2 JP2006013977A JP2006013977A JP5132887B2 JP 5132887 B2 JP5132887 B2 JP 5132887B2 JP 2006013977 A JP2006013977 A JP 2006013977A JP 2006013977 A JP2006013977 A JP 2006013977A JP 5132887 B2 JP5132887 B2 JP 5132887B2
Authority
JP
Japan
Prior art keywords
shaft member
bearing
layer
dynamic pressure
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006013977A
Other languages
Japanese (ja)
Other versions
JP2007198400A (en
Inventor
建治 日比
康裕 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2006013977A priority Critical patent/JP5132887B2/en
Priority to CN2006800507363A priority patent/CN101356382B/en
Priority to US12/160,654 priority patent/US8104963B2/en
Priority to PCT/JP2006/325894 priority patent/WO2007083491A1/en
Publication of JP2007198400A publication Critical patent/JP2007198400A/en
Priority to US13/281,011 priority patent/US8366322B2/en
Application granted granted Critical
Publication of JP5132887B2 publication Critical patent/JP5132887B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、動圧軸受装置用軸部材に関する。   The present invention relates to a shaft member for a hydrodynamic bearing device.

動圧軸受装置は、軸受隙間に生じる流体の動圧作用で軸部材を相対回転自在に非接触支持するものである。最近では、動圧軸受装置は、その優れた回転精度、高速回転性、静粛性等を活かして、例えば、HDD等の磁気ディスク装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置、MD、MO等の光磁気ディスク装置等の情報機器に搭載されるスピンドルモータ用の軸受装置をはじめとして、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、プロジェクタのカラーホイールモータ、あるいはファンモータなどの小型モータ用の軸受装置として使用されている。   The dynamic pressure bearing device supports a shaft member in a non-contact manner so as to be relatively rotatable by a dynamic pressure action of a fluid generated in a bearing gap. Recently, a hydrodynamic bearing device, for example, a magnetic disk device such as an HDD, a CD-ROM, a CD-R / RW, a DVD-ROM / RAM, taking advantage of its excellent rotational accuracy, high-speed rotation, quietness, etc. In addition to a spindle motor bearing device mounted on an information device such as an optical disk device such as a magneto-optical disk device such as MD or MO, a polygon scanner motor of a laser beam printer (LBP), a color wheel motor of a projector, or It is used as a bearing device for small motors such as fan motors.

例えば、HDD用スピンドルモータに組み込まれる動圧軸受装置においては、軸部材をラジアル方向に支持するラジアル軸受部又はスラスト方向に支持するスラスト軸受部の双方を動圧軸受で構成したものが知られている。この場合、軸受スリーブの内周面と、これに対向する軸部材の外周面との何れか一方に動圧発生部としての動圧溝が形成されると共に、両面間のラジアル軸受隙間にラジアル軸受部が形成されることが多い。また、軸部材に設けたフランジ部の一端面と、これに対向する軸受スリーブの端面との何れか一方に動圧溝が形成されると共に、両面間のスラスト軸受隙間にスラスト軸受部が形成されることが多い(例えば、特許文献1を参照)。   For example, in a hydrodynamic bearing device incorporated in a spindle motor for HDD, it is known that both a radial bearing portion that supports a shaft member in a radial direction or a thrust bearing portion that supports a shaft direction in a thrust direction are configured by hydrodynamic bearings. Yes. In this case, a dynamic pressure groove as a dynamic pressure generating portion is formed on either the inner peripheral surface of the bearing sleeve or the outer peripheral surface of the shaft member facing the bearing sleeve, and the radial bearing is disposed in the radial bearing gap between both surfaces. The part is often formed. In addition, a dynamic pressure groove is formed on one end surface of the flange portion provided on the shaft member and an end surface of the bearing sleeve facing the flange portion, and a thrust bearing portion is formed in the thrust bearing gap between both surfaces. (See, for example, Patent Document 1).

上記動圧溝は、例えば軸部材の外周面にへリングボーン形状やスパイラル形状等に配列した状態で形成される。この種の動圧溝を形成するための方法として、例えば切削加工(例えば、特許文献2を参照)や、エッチング(例えば、特許文献3を参照)などが知られている。   The dynamic pressure grooves are formed, for example, in a state of being arranged in a herringbone shape, a spiral shape, or the like on the outer peripheral surface of the shaft member. As a method for forming this type of dynamic pressure groove, for example, cutting (see, for example, Patent Document 2), etching (see, for example, Patent Document 3), and the like are known.

また、上記切削加工やエッチングに比べて材料コストや加工コストの低減化が可能な動圧溝の形成方法として、例えば転造加工が知られている。この場合、転造加工後に所定の熱処理を施すことで、素材の表面硬度を向上させることが多い(例えば、特許文献4を参照)。
特開2003−239951号公報 特開平08−196056号公報 特開平06−158357号公報 特開平07−114766号公報
Further, as a method for forming a dynamic pressure groove capable of reducing material costs and processing costs as compared with the above-described cutting and etching, for example, rolling processing is known. In this case, the surface hardness of the material is often improved by performing a predetermined heat treatment after the rolling process (see, for example, Patent Document 4).
JP 2003-239951 A Japanese Patent Laid-Open No. 08-196056 Japanese Patent Laid-Open No. 06-158357 Japanese Patent Laid-Open No. 07-114766

しかしながら、熱処理は通常高温下で行われるため、軸自体の変形が避けられず、外周面精度を狂わす可能性がある。特に、動圧溝のように微小サイズで高精度のものが形成されている場合、軸の熱処理時の変形が動圧溝の形状精度に悪影響を及ぼす可能性は高い。これにより、例えば動圧溝の深さや形状にばらつきが生じ、十分な動圧作用を発揮できない可能性がある。上記文献に開示の手段は、単に軸部材の表面硬度を高めることだけを目的になされたものであり、熱処理時の変形による外周面精度の低下を考慮したものではない。   However, since the heat treatment is usually performed at a high temperature, deformation of the shaft itself is unavoidable, and there is a possibility that the outer peripheral surface accuracy may be distorted. In particular, when a micro-sized and high-precision groove such as a dynamic pressure groove is formed, there is a high possibility that deformation during heat treatment of the shaft will adversely affect the shape accuracy of the dynamic pressure groove. As a result, for example, the depth and shape of the dynamic pressure grooves vary, and there is a possibility that sufficient dynamic pressure action cannot be exhibited. The means disclosed in the above document is merely for the purpose of increasing the surface hardness of the shaft member, and does not take into consideration a decrease in outer peripheral surface accuracy due to deformation during heat treatment.

本発明の課題は、耐摩耗性に優れ、かつ高い動圧作用を発揮し得る動圧軸受装置用の軸部材を提供することである。   An object of the present invention is to provide a shaft member for a hydrodynamic bearing device that has excellent wear resistance and can exhibit a high dynamic pressure action.

前記課題を解決するため、本発明は、軸受隙間に流体の動圧作用を生じるための凹部が転造で形成された動圧軸受装置用軸部材において、転造で形成された凹部の表層部及び凹部の周囲領域における表層部に、転造後の窒化処理により軸部材の素材中の窒素が拡散浸透してなる窒化層が形成され、軸部材の外径に対する窒化層の厚みの比が0.05以下に設定されると共に、凹部の周囲領域における窒化層の最表層部分に、窒化処理後のバレル加工により加工硬化を生じた層である加工硬化層が窒化層と重複して形成されていることを特徴とする動圧軸受装置用の軸部材を提供する。また、ここでいう凹部は、軸受隙間に流体の動圧作用を生じるためのものを意味し、例えば軸方向溝状、円周方向溝状、傾斜溝状、交差溝状、軸方向又は円周方向の断続的な溝形状、くぼみ状(ディンプル状)等を含む。 In order to solve the above-mentioned problems, the present invention provides a shaft member for a hydrodynamic bearing device in which a concave portion for producing a fluid dynamic pressure action in a bearing gap is formed by rolling, and a surface layer portion of the concave portion formed by rolling. And a nitride layer formed by diffusing and penetrating nitrogen in the shaft member material by nitriding after the rolling is formed in the surface layer portion in the peripheral region of the recess, and the ratio of the thickness of the nitride layer to the outer diameter of the shaft member is 0 .05 set below Rutotomoni, the uppermost layer of the nitride layer in the peripheral region of the recess, the work hardening layer is a layer produced work hardening by barreling after the nitriding treatment is formed by overlapping the nitride layer A shaft member for a hydrodynamic bearing device is provided. Further, the concave portion here means a portion for generating a fluid dynamic pressure action in the bearing gap, for example, an axial groove shape, a circumferential groove shape, an inclined groove shape, a cross groove shape, an axial direction or a circumferential direction. Includes intermittent groove shapes in the direction, depressions (dimples), and the like.

窒化処理は、素材中への窒素の拡散浸透を図るものであるから、その際の熱処理温度を例えば焼入れ、浸炭など他の熱処理時の温度と比べて低く(例えば500〜600℃程度に)設定することができる。従って、熱処理時の変形、具体的には、素材金属の変態点を超える加熱および冷却による変形や、金属組織の変化に伴う体積の変化等を最小限に留めて、凹部あるいは周囲領域の形状精度を高く保つことができる。   The nitriding treatment is intended to diffuse and penetrate nitrogen into the material, so the heat treatment temperature at that time is set lower (for example, about 500 to 600 ° C.) than the temperature at the other heat treatment such as quenching and carburizing. can do. Therefore, deformation during heat treatment, specifically deformation due to heating and cooling exceeding the transformation point of the material metal, volume change accompanying changes in the metal structure, etc. is minimized, and the shape accuracy of the recess or surrounding area is minimized. Can be kept high.

また、熱処理により形成される硬化層の深さおよびその硬さは、素材のサイズに関係なく、処理温度や処理時間に依存して定まる傾向にある。そのため、素材の小型化を図りつつ、所要の表面硬さを保持しようとすると、どうしても未硬化層に対して硬化層の占める割合が増加する。これでは、素材(軸部材)自体が変形に対して脆くなり、耐久性の低下につながる恐れがある。これに対して、本発明では、窒化処理による窒化層を表層部に形成するようにした。窒化処理であれば、他の熱処理と比べて非常に薄い硬化層(窒化層)を形成することができるため、軸部材の靭性(変形に対する耐久性)を確保しつつも、表層部の硬度のみを向上させることができる。   Further, the depth and hardness of the hardened layer formed by the heat treatment tend to be determined depending on the processing temperature and the processing time regardless of the size of the material. Therefore, if the required surface hardness is maintained while reducing the size of the material, the ratio of the cured layer to the uncured layer inevitably increases. In this case, the material (shaft member) itself becomes fragile to deformation, which may lead to a decrease in durability. On the other hand, in the present invention, a nitride layer by nitriding is formed on the surface layer portion. With nitriding treatment, a very thin hardened layer (nitriding layer) can be formed compared to other heat treatments, so that only the hardness of the surface layer portion is ensured while ensuring the toughness of the shaft member (durability against deformation). Can be improved.

また、この種の窒化処理においては、熱処理温度が低くなるにつれて窒化層深さが小さくなると共に、その硬度が高まる傾向にある。そのため、本発明に係る窒化処理は、上述のように、小型部品としての軸部材の表層部のみを硬化させる場合には非常に好適な手段といえる。   Further, in this type of nitriding treatment, the nitrided layer depth tends to decrease as the heat treatment temperature decreases, and the hardness tends to increase. Therefore, the nitriding treatment according to the present invention can be said to be a very suitable means when only the surface layer portion of the shaft member as a small component is cured as described above.

また、凹部の転造後、上記窒化処理に加えて、バレル加工を施すこともできる。この場合、窒化層で構成される表層部の表面の少なくとも一部の領域が、バレル加工による加工面を有する。   Moreover, in addition to the said nitriding process, barrel processing can also be given after rolling of a recessed part. In this case, at least a part of the surface of the surface layer portion formed of the nitride layer has a processed surface by barrel processing.

このように、凹部の転造後、窒化処理とバレル加工を施すことで、熱処理により生じる変形を避けて、凹部やその周辺領域の形状精度の低下を最小限に抑えることができると共に、転造加工により凹部の周囲に形成される盛り上がり部(隆起部)をバレル加工により縮小あるいは除去することができる。従って、凹部あるいは軸受面となる周囲領域表面の形状精度をより一層高めて、さらなる軸受性能の向上を図ることができる。   In this way, by performing nitriding treatment and barrel processing after rolling of the recesses, it is possible to avoid deformation caused by heat treatment, and to minimize the deterioration of the shape accuracy of the recesses and the surrounding area, and to perform rolling. A raised portion (a raised portion) formed around the concave portion by processing can be reduced or removed by barrel processing. Accordingly, it is possible to further improve the shape accuracy of the surface of the surrounding region that becomes the concave portion or the bearing surface, and further improve the bearing performance.

周囲領域の表層部が、転造後の窒化処理による窒化層で構成されている場合において、前記表層部の下層領域の硬度は400Hv以下であることが好ましい。この程度の硬度であれば、凹部の転造加工性を高めることができ、また、転造時の変形抵抗も小さいため、転造型(ダイス)の使用寿命を延ばすこともできる。   In the case where the surface layer portion of the surrounding region is composed of a nitrided layer obtained by nitriding after rolling, the hardness of the lower layer region of the surface layer portion is preferably 400 Hv or less. With this degree of hardness, it is possible to improve the rolling processability of the recesses, and since the deformation resistance during rolling is small, the service life of the rolling die (die) can be extended.

上記構成の動圧軸受装置用軸部材は、例えばこの軸部材を備えた動圧軸受装置として好適に提供可能である。   The shaft member for a fluid dynamic bearing device having the above-described configuration can be suitably provided as, for example, a fluid dynamic bearing device including the shaft member.

以上のように、本発明によれば耐摩耗性に優れ、かつ高い動圧作用を発揮し得る動圧軸受装置用の軸部材を提供することができる。   As described above, according to the present invention, it is possible to provide a shaft member for a hydrodynamic bearing device that has excellent wear resistance and can exhibit a high dynamic pressure action.

以下、本発明の一実施形態を図1〜図4に基づいて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS.

図1は、本発明の一実施形態に係る動圧軸受装置1の断面図を示す。同図において、動圧軸受装置1は、軸部材2と、軸部材2を内周に挿入可能な軸受部材3とを備える。   FIG. 1 is a sectional view of a fluid dynamic bearing device 1 according to an embodiment of the present invention. In the figure, a hydrodynamic bearing device 1 includes a shaft member 2 and a bearing member 3 capable of inserting the shaft member 2 into the inner periphery.

軸受部材3は、この実施形態では、電鋳部4と成形部5とからなる有底筒体で、マスターと一体又は別体の電鋳部4をインサート部品として樹脂で一体に射出成形される。軸部材2の外周面2aと対向する電鋳部4の内周面4aは真円形状をなしている。   In this embodiment, the bearing member 3 is a bottomed cylindrical body composed of an electroformed part 4 and a molded part 5, and is integrally injection-molded with resin using the electroformed part 4 that is integral with the master or a separate part as an insert part. . The inner peripheral surface 4a of the electroformed portion 4 facing the outer peripheral surface 2a of the shaft member 2 has a perfect circle shape.

軸部材2は径一定の軸状をなすもので、例えば各種炭素鋼,クロム鋼,ステンレス鋼や銅合金など、比較的加工性の高い金属材料(硬度でいえば、200Hv〜400Hv程度)から製作される。   The shaft member 2 has a shaft shape with a constant diameter, and is manufactured from a metal material having relatively high workability (for example, about 200 Hv to 400 Hv in terms of hardness) such as various types of carbon steel, chromium steel, stainless steel, and copper alloy. Is done.

軸部材2の外周面2aの全面あるいは一部領域には、外周面2aと電鋳部4の内周面4aとの間のラジアル軸受隙間6に潤滑油の動圧作用を生じるための複数の凹部7が形成されている。この実施形態では、凹部7は、円周方向一端側で連続あるいは近接し、かつ円周方向他端側で互いに離隔する方向に傾斜した傾斜溝9aと傾斜溝9bとからなる。かかる形状をなす複数の凹部7は、いわゆるへリングボーン形状となるように、円周方向に所定の間隔を置いて配列されている。この場合、各凹部7(傾斜溝9a、9b)とこれらの周囲領域8とで、ラジアル軸受隙間6に潤滑油の動圧作用を生じる動圧発生部10が構成される。また、上記構成の動圧発生部10は、この実施形態では、軸方向上下に離隔して2箇所設けられている。   On the entire or partial region of the outer peripheral surface 2 a of the shaft member 2, a plurality of lubricating oil dynamic pressure effects are generated in the radial bearing gap 6 between the outer peripheral surface 2 a and the inner peripheral surface 4 a of the electroformed part 4. A recess 7 is formed. In this embodiment, the concave portion 7 is composed of an inclined groove 9a and an inclined groove 9b that are continuous or close to each other on one end side in the circumferential direction and are inclined in directions away from each other on the other end side in the circumferential direction. The plurality of recesses 7 having such a shape are arranged at predetermined intervals in the circumferential direction so as to form a so-called herringbone shape. In this case, each concave portion 7 (inclined grooves 9a, 9b) and their surrounding region 8 constitute a dynamic pressure generating portion 10 that generates a dynamic pressure action of the lubricating oil in the radial bearing gap 6. Further, in this embodiment, the dynamic pressure generating section 10 having the above-described configuration is provided at two locations separated vertically in the axial direction.

軸部材2の一端面2bは略球面状をなし、軸部材2を軸受部材3の内周に挿入した状態では、対向する電鋳部4の底部4bの上端面4b1に当接する。   One end surface 2b of the shaft member 2 has a substantially spherical shape, and abuts against the upper end surface 4b1 of the bottom 4b of the opposing electroformed portion 4 when the shaft member 2 is inserted into the inner periphery of the bearing member 3.

軸受部材3と軸部材2との間のラジアル軸受隙間6の大気解放側から潤滑油が注油される。これにより、ラジアル軸受隙間6を含む軸受内部空間を潤滑油で充満した動圧軸受装置1が完成する。   Lubricating oil is injected from the air release side of the radial bearing gap 6 between the bearing member 3 and the shaft member 2. Thereby, the hydrodynamic bearing device 1 in which the bearing internal space including the radial bearing gap 6 is filled with the lubricating oil is completed.

上記構成の動圧軸受装置1において、軸部材2の相対回転時、軸部材2の外周面2aに設けられた動圧発生部10、10と、これらに対向する電鋳部4の内周面4aとの間のラジアル軸受隙間6に潤滑油の動圧作用が生じる。これにより、軸部材2をラジアル方向に相対回転自在に支持する第1ラジアル軸受部R1と第2ラジアル軸受部R2とがそれぞれ形成される。   In the hydrodynamic bearing device 1 having the above-described configuration, when the shaft member 2 is relatively rotated, the dynamic pressure generating portions 10 and 10 provided on the outer peripheral surface 2a of the shaft member 2 and the inner peripheral surface of the electroformed portion 4 facing them. The dynamic pressure action of the lubricating oil is generated in the radial bearing gap 6 between 4a and 4a. Thereby, the first radial bearing portion R1 and the second radial bearing portion R2 that support the shaft member 2 so as to be relatively rotatable in the radial direction are formed.

また、軸部材2の相対回転時、軸部材2の一端面2bが底部4bの上端面4b1に接触支持(ピボット支持)される。これにより、軸部材2をスラスト方向に相対回転自在に支持するスラスト軸受部T1が形成される。   Further, at the time of relative rotation of the shaft member 2, one end surface 2b of the shaft member 2 is contact-supported (pivot supported) to the upper end surface 4b1 of the bottom portion 4b. Thereby, the thrust bearing portion T1 that supports the shaft member 2 so as to be relatively rotatable in the thrust direction is formed.

以下、軸部材2の製造工程の一例を、図2〜図4に基づいて説明する。   Hereinafter, an example of the manufacturing process of the shaft member 2 will be described with reference to FIGS.

この実施形態において、軸部材2は、凹部7を転造で形成する転造工程(a)と、転造工程(a)で形成された凹部7の少なくとも周囲領域8に窒化処理を施す窒化処理工程(b)と、周囲領域8にバレル加工を施すバレル加工工程(c)とを経て形成される。   In this embodiment, the shaft member 2 includes a rolling process (a) in which the recess 7 is formed by rolling, and a nitriding process in which at least the peripheral region 8 of the recess 7 formed in the rolling process (a) is nitrided. It is formed through the step (b) and the barrel processing step (c) in which the peripheral region 8 is subjected to barrel processing.

(a)転造工程
図2は、上記材料からなる軸素材11の外周面11aに、図1に示す形状の凹部7を転造で形成する工程を概念的に示したものである。一対の転造ダイス12、13(この図示例では平ダイス)のうち、第1の転造ダイス12の対向面12aには、軸素材11に転写形成すべき凹部7に対応した形状の凸部型(図示は省略)が設けられている。図3(a)に示すように、転造前の状態では、軸素材11の外周面11aは平滑である。
(A) Rolling Step FIG. 2 conceptually shows a step of forming the concave portion 7 having the shape shown in FIG. 1 on the outer peripheral surface 11a of the shaft material 11 made of the above material by rolling. Of the pair of rolling dies 12, 13 (in this example, a flat die), a convex portion having a shape corresponding to the concave portion 7 to be transferred and formed on the shaft material 11 is formed on the opposing surface 12a of the first rolling die 12. A mold (not shown) is provided. As shown to Fig.3 (a), in the state before rolling, the outer peripheral surface 11a of the shaft raw material 11 is smooth.

軸素材11を、転造ダイス12、13で挟持した状態から、第2の転造ダイス13を第1の転造ダイス12に対して相対摺動させることで、軸素材11が第1の転造ダイス12の凸部形成領域上を押圧転動する。これにより、第1の転造ダイス12側から、軸素材11に例えば図1に示す形状の凹部7(動圧発生部10)が転造形成される。   The shaft material 11 is slid relative to the first rolling die 12 from the state in which the shaft material 11 is held between the rolling dies 12 and 13, so that the shaft material 11 is moved to the first rolling die 12. Press and roll on the convex forming area of the die 12. Thereby, from the 1st rolling die 12 side, the recessed part 7 (dynamic pressure generation part 10) of the shape shown, for example in FIG.

この際、軸素材11の外周面11aに形成される凹部7の表層部14には、図3(b)に示すように、転造による第1の加工硬化層14aが形成される。この実施形態では、同時に、凹部7の周囲領域8の表層部15の一部領域にも、転造による第1の加工硬化層15aが形成される。   At this time, as shown in FIG. 3B, a first work-hardened layer 14 a is formed by rolling on the surface layer portion 14 of the recess 7 formed on the outer peripheral surface 11 a of the shaft material 11. In this embodiment, at the same time, a first work-hardened layer 15 a is formed by rolling in a partial region of the surface layer portion 15 in the peripheral region 8 of the recess 7.

また、転造に伴い、元々凹部7にあった肉が周囲に押し出される。その結果、図3(b)に示すように、周囲領域8の凹部7寄りの箇所に盛り上がり(隆起部16)が生じる。   Moreover, the meat which was originally in the recessed part 7 is extruded to circumference | surroundings with rolling. As a result, as shown in FIG. 3 (b), a bulge (bump 16) occurs at a location near the recess 7 in the surrounding region 8.

(b)窒化処理工程
軸素材11に転造で凹部7を形成した後、かかる軸素材11に窒化処理を施す。このようにして、凹部7の表層部14、および周囲領域8の表層部15の内部に窒素を拡散浸透させることで、各表層部14、15中に、素材金属と窒素との窒化物が形成される。これにより、例えば図3(c)に示すように、第1の加工硬化層14aを含む凹部7の表層部14に窒化層14bが形成される。また、第1の加工硬化層15aを含む周囲領域8の表層部15に窒化層15bが形成される。なお、上記窒化処理(軟窒化処理も含む)の具体的手段として、例えばガス窒化やプラズマ窒化が、また、軟窒化処理の具体的手段として、例えばガス軟窒化や塩浴軟窒化などが使用可能である。
(B) Nitriding process step After forming the recess 7 on the shaft material 11 by rolling, the shaft material 11 is subjected to nitriding treatment. In this way, nitrogen is diffused and permeated into the surface layer portion 14 of the recess 7 and the surface layer portion 15 of the surrounding region 8, thereby forming a nitride of the material metal and nitrogen in each surface layer portion 14, 15. Is done. Thereby, for example, as shown in FIG. 3C, a nitride layer 14b is formed in the surface layer portion 14 of the recess 7 including the first work hardened layer 14a. Further, a nitride layer 15b is formed on the surface layer portion 15 of the peripheral region 8 including the first work hardened layer 15a. As specific means for the nitriding treatment (including soft nitriding treatment), for example, gas nitriding or plasma nitriding can be used, and as specific means for soft nitriding treatment, for example, gas soft nitriding or salt bath soft nitriding can be used. It is.

この場合、表層部15を構成する窒化層15bの厚みは、数μm〜十数μmと非常に薄い。また、その硬度(ここでは、表面硬度)は、600Hv〜1000Hvである。窒化層14bについても同様である。   In this case, the thickness of the nitride layer 15b constituting the surface layer portion 15 is very thin, from several μm to several tens of μm. Moreover, the hardness (here surface hardness) is 600Hv-1000Hv. The same applies to the nitride layer 14b.

また、ここでいう「窒化層厚み」は、窒化物が主に存在する化合物層と、窒素が生地金属中に拡散浸透している状態の拡散層のうち、比較的容易に他層との区別が可能な化合物層の深さ(厚み)をいう。   In addition, the “nitride layer thickness” here is a relatively easy distinction between the compound layer in which nitrides are mainly present and the diffusion layer in which nitrogen diffuses and penetrates into the base metal. Means the depth (thickness) of the compound layer.

窒化処理は、通常500℃〜600℃の温度下で行われるため、例えば焼入れや浸炭等の熱処理と比べて、熱処理時における軸素材11(軸部材2)の変形がはるかに小さい。そのため、熱処理時の変形や、仕上げ研削により生じる凹部7(傾斜溝9a、9b)の形状的なばらつきを最小限に抑えて、高い寸法精度を有する凹部7(動圧発生部10)を軸部材2に設けることができる。従って、かかる軸部材2を、図1に示す動圧軸受装置1に組み込んで使用する場合、ラジアル軸受隙間6に生じる潤滑油の動圧作用を高めることができる。また、外周面11aの仕上げ研削等が不要となるので、かかる工程を省略して低コスト化を図ることができる。   Since the nitriding treatment is usually performed at a temperature of 500 ° C. to 600 ° C., for example, deformation of the shaft material 11 (shaft member 2) during the heat treatment is much smaller than heat treatment such as quenching or carburizing. Therefore, deformation during heat treatment and the shape variation of the recesses 7 (inclined grooves 9a and 9b) caused by finish grinding are minimized, and the recesses 7 (dynamic pressure generating unit 10) having high dimensional accuracy are made shaft members. 2 can be provided. Therefore, when the shaft member 2 is used by being incorporated in the dynamic pressure bearing device 1 shown in FIG. 1, the dynamic pressure action of the lubricating oil generated in the radial bearing gap 6 can be enhanced. Moreover, since the finish grinding of the outer peripheral surface 11a etc. becomes unnecessary, this process can be skipped and cost reduction can be achieved.

また、軸部材2の回転時、特に起動停止時、凹部7の周囲領域8の表面8aは、対向する電鋳部4の内周面4aと摺動接触する場合があるが、上述のように、周囲領域8の表層部15を窒化層15bで構成することで、かかる軸受面(表面8a)を含む表層部15の硬度を高めることができる。これにより、軸部材2の摺動摩耗を低減して、換言すると、凹部7の磨り減りを抑えて、高い動圧作用を長期に亘って安定的に発揮することができる。   Further, when the shaft member 2 is rotated, particularly when starting and stopping, the surface 8a of the peripheral region 8 of the recess 7 may be in sliding contact with the inner peripheral surface 4a of the opposing electroformed part 4 as described above. By configuring the surface layer portion 15 of the surrounding region 8 with the nitride layer 15b, the hardness of the surface layer portion 15 including the bearing surface (surface 8a) can be increased. Thereby, the sliding wear of the shaft member 2 can be reduced, in other words, the wear of the concave portion 7 can be suppressed, and a high dynamic pressure action can be stably exhibited over a long period of time.

また、本発明は、動圧発生用の凹部7を軸部材2の側に設けることを特徴とするものであるから、最近の情報機器の小型化に伴う動圧軸受装置1の小サイズ化への要求に対しても、凹部7の加工性を低下させることなく対応することができる。現状で数mm程度の軸径を有する軸部材2についても、動圧軸受装置1の小サイズ化に伴い更なる小径化が考えられるが、上述のように、非常に薄肉の窒化層15bが形成可能であれば、軸部材2全体の未硬化層に対する硬化層(ここでは窒化層15b)の割合を最小限に抑えて、軸部材2自体の靭性(耐疲労特性)を高く保つことができる。具体的には、軸部材2の軸径dに対する窒化層15bの厚みtの比t/dを0.05以下とすることで、軸受面となる周囲領域8の表面8aの硬度を高めつつも、軸部材2の靭性を高く保つことができる。   Further, the present invention is characterized in that the concave portion 7 for generating dynamic pressure is provided on the shaft member 2 side, so that the size of the dynamic pressure bearing device 1 is reduced with the recent miniaturization of information equipment. It is possible to meet this requirement without reducing the workability of the recess 7. As for the shaft member 2 having a shaft diameter of about several millimeters at present, the diameter of the hydrodynamic bearing device 1 can be further reduced. However, as described above, a very thin nitride layer 15b is formed. If possible, the toughness (fatigue resistance) of the shaft member 2 itself can be kept high by minimizing the ratio of the hardened layer (here, the nitrided layer 15b) to the uncured layer of the entire shaft member 2. Specifically, by setting the ratio t / d of the thickness t of the nitride layer 15b to the shaft diameter d of the shaft member 2 to 0.05 or less, the hardness of the surface 8a of the surrounding region 8 serving as the bearing surface is increased. The toughness of the shaft member 2 can be kept high.

また、この実施形態では、軸素材11(軸部材2)が、硬度400Hv以下の金属材料で形成されているので、転造時、凹部7の加工性を高めることができる。また、転造時の変形抵抗も小さいので、転造ダイス12、13の継続使用に伴う摩耗を最小限に抑えて、かかるダイス12、13の使用寿命を延ばすことができる。   Moreover, in this embodiment, since the shaft raw material 11 (shaft member 2) is formed with the metal material of hardness 400Hv or less, the workability of the recessed part 7 can be improved at the time of rolling. Moreover, since the deformation resistance at the time of rolling is small, the wear accompanying continuous use of the rolling dies 12 and 13 can be minimized, and the service life of the dies 12 and 13 can be extended.

(c)バレル加工工程
この実施形態では、軸素材11に窒化処理を施した後、かかる軸素材11にバレル加工(例えば、遠心バレルや流動バレル、あるいはこれらを組合わせたバレル加工など)を施す。これにより、周囲領域8に形成された隆起部16が押し潰されながら除去され、周囲領域8の表面8aが、例えば図4に示すように平滑な状態に均される。また、この際、周囲領域8の表面8aのうち、少なくとも一部の領域(例えば隆起部16の形成領域)には、バレル加工による加工面(研磨面)が形成される。
(C) Barrel processing step In this embodiment, after the shaft material 11 is subjected to nitriding treatment, the shaft material 11 is subjected to barrel processing (for example, a centrifugal barrel, a fluid barrel, or a barrel processing combining these). . As a result, the raised portions 16 formed in the surrounding area 8 are removed while being crushed, and the surface 8a of the surrounding area 8 is smoothed, for example, as shown in FIG. At this time, a processed surface (polished surface) by barrel processing is formed in at least a part of the surface 8a of the surrounding region 8 (for example, a region where the raised portion 16 is formed).

この際、使用されるメディアとしては、バレル加工の実効性の観点から、軸部材2のサイズに対してある程度の大きさを有するものが使用される。そのため、凹部7の表面7a(底面7a1や内側面7a2)にはメディアの衝突はなく、周囲領域8の表面8aにメディアが衝突する。これにより、メディアとの衝突による加工硬化が周囲領域8の表層部15で生じ、かかる領域に、バレル加工による第2の加工硬化層15cが形成される(図4を参照)。この実施形態では、周囲領域8の表層部15が、窒化処理により形成される窒化層15bと、バレル加工により形成される第2の加工硬化層15cとで構成される。第2の加工硬化層15cは、先に形成される窒化層15bの最表層部分に重複して形成されている。   At this time, a medium having a certain size with respect to the size of the shaft member 2 is used from the viewpoint of the effectiveness of barrel processing. Therefore, there is no medium collision on the surface 7a (the bottom surface 7a1 and the inner surface 7a2) of the recess 7, and the medium collides with the surface 8a of the surrounding area 8. As a result, work hardening due to collision with the media occurs in the surface layer portion 15 of the peripheral region 8, and a second work hardened layer 15c by barrel processing is formed in this region (see FIG. 4). In this embodiment, the surface layer portion 15 in the peripheral region 8 is composed of a nitride layer 15b formed by nitriding treatment and a second work hardened layer 15c formed by barrel processing. The second work hardened layer 15c is formed so as to overlap with the outermost layer portion of the nitride layer 15b formed earlier.

上述のように、凹部7を転造形成した軸素材11(軸部材2)の窒化処理後、軸素材11にバレル加工を施すことで、周囲領域8の表層部15に窒化層15b、および第2の加工硬化層15cを形成した軸部材2が得られる。これにより、軸受面となる周囲領域8の表面8aの硬度向上はもちろん、表面8aの平滑性(平面度)や凹部7の形状精度を高めることができる。特に、この実施形態のように、窒化処理の後にバレル加工を施すことによって、軸素材11への衝突痕や変形を極力抑えつつ隆起部16を除去して、軸受面(表面8a)の仕上げ精度をさらに高めることができる。   As described above, after nitriding the shaft material 11 (shaft member 2) formed by rolling the recesses 7, the shaft material 11 is subjected to barrel processing, so that the surface layer portion 15 of the surrounding region 8 has the nitride layer 15b and the first layer. Thus, the shaft member 2 having the two work-hardened layers 15c is obtained. Thereby, not only the hardness of the surface 8a of the surrounding area 8 which becomes a bearing surface can be improved, but also the smoothness (flatness) of the surface 8a and the shape accuracy of the recess 7 can be improved. In particular, as in this embodiment, by performing barrel processing after nitriding, the raised portion 16 is removed while minimizing collision marks and deformation on the shaft material 11 and finishing accuracy of the bearing surface (surface 8a). Can be further enhanced.

また、この実施形態のように、硬度400Hv以下の材料からなる軸素材11(表層部14、15の下層領域の硬さが400Hv以下である軸部材2)であれば、凹部7の転造時、周囲領域8に形成される隆起部16のサイズが小さくなり、かつバレル加工で容易に除去可能な形状となり易い。従って、このことによっても、軸受面(表面8a)の仕上げ精度を高めることができる。   Further, as in this embodiment, if the shaft material 11 (the shaft member 2 whose hardness of the lower layer regions of the surface layer portions 14 and 15 is 400 Hv or less) made of a material having a hardness of 400 Hv or less is used, when the recess 7 is rolled. The size of the raised portion 16 formed in the surrounding region 8 is small, and it is easy to form a shape that can be easily removed by barrel processing. Therefore, the finishing accuracy of the bearing surface (surface 8a) can be increased also by this.

また、この実施形態のように、溝状の凹部7(傾斜溝9a、9b)を転造で形成すると、凹部7の周縁部17にバリが発生することもあるが、適当な大きさのメディアを用いてバレル加工を施すことで、かかるバリを除去して、あるいは凹部7の周縁部17を適度に面取りすることができる。これにより、軸部材2の相対回転時、摺動相手面となる電鋳部4の内周面4aの摩耗を極力避け、あるいはかじり等の損傷を避けて、軸受の耐久性を向上させることができる。   In addition, when the groove-like recess 7 (inclined grooves 9a, 9b) is formed by rolling as in this embodiment, burrs may be generated at the peripheral edge 17 of the recess 7, but a medium having an appropriate size. By performing barrel processing using this, such burrs can be removed, or the peripheral edge 17 of the recess 7 can be appropriately chamfered. Thereby, at the time of relative rotation of the shaft member 2, it is possible to avoid wear of the inner peripheral surface 4a of the electroformed portion 4 serving as a sliding mating surface as much as possible, or avoid damage such as galling, and improve the durability of the bearing. it can.

バレル加工に使用されるメディアとしては、金属をはじめ、セラミックや樹脂など種々の材質からなるものが使用可能であるが、バレル加工による第2の加工硬化層15cを形成する観点から、比較的硬度の高い金属製やセラミックス柔のメディアを使用するのがよい。また、凹部7の形状を高精度に保つ観点から、凹部7の底面7a1に接触しない程度のサイズのメディアが好ましい。また、球状メディアの他にも、例えば多角形状や棒状のものなど、種々の形状を有するメディアが使用可能である。   As media used for the barrel processing, media made of various materials such as metals, ceramics, and resins can be used. From the viewpoint of forming the second work hardened layer 15c by barrel processing, it is relatively hard. It is recommended to use high-quality metal or ceramic soft media. Further, from the viewpoint of keeping the shape of the concave portion 7 with high accuracy, a medium having a size that does not contact the bottom surface 7a1 of the concave portion 7 is preferable. In addition to spherical media, media having various shapes such as a polygonal shape or a rod shape can be used.

また、この実施形態では、軸部材2に転造で形成された凹部7(傾斜溝9a、9b)との間にラジアル軸受隙間6を形成する軸受部材3の内周面を、電鋳部4の内周面4aで形成したので、かかる内周面4aを高精度に形成でき、これにより、ラジアル軸受隙間6をより狭小に設定することができる。むしろ、必要とされる軸受性能にもよるが、ラジアル軸受隙間6の幅を小さくかつ高精度に管理できるのであれば、複数の凹部7を複雑な形状(へリングボーン形状など)に配列させる必要はない。例えば後述する軸方向溝22や、ディンプル32のようなシンプルな形状の(より加工が容易な形状の)凹部7で構成される動圧発生部であっても、ラジアル軸受隙間に高い動圧作用をもたらすことが可能となる。   Moreover, in this embodiment, the inner peripheral surface of the bearing member 3 that forms the radial bearing gap 6 between the shaft member 2 and the recess 7 (the inclined grooves 9a and 9b) formed by rolling is formed on the electroformed portion 4. Since the inner peripheral surface 4a is formed, the inner peripheral surface 4a can be formed with high accuracy, whereby the radial bearing gap 6 can be set to be narrower. Rather, depending on the required bearing performance, if the width of the radial bearing gap 6 is small and can be managed with high accuracy, it is necessary to arrange a plurality of recesses 7 in a complicated shape (herringbone shape, etc.). There is no. For example, even in a dynamic pressure generating portion constituted by a recess 7 having a simple shape (a shape that can be more easily processed) such as an axial groove 22 to be described later and a dimple 32, a high dynamic pressure action is applied to the radial bearing gap. It becomes possible to bring

以上、本発明の一実施形態を説明したが、本発明は、この実施形態に限定されることなく、他の構成を採ることもできる。以下、本発明の他構成を、図5〜図8に基づいて説明する。   As mentioned above, although one embodiment of the present invention was described, the present invention is not limited to this embodiment and can adopt other configurations. Hereinafter, the other structure of this invention is demonstrated based on FIGS.

上記実施形態では、凹部7を傾斜溝9aと傾斜溝9bとで構成し、かかる形状の凹部7をへリングボーン状に配列形成した場合を例示したが、例えば図5(a)に示すように、軸部材21の外周面21aに、凹部7としての軸方向溝22を形成することもできる。この場合、複数の軸方向溝22は、図5(b)に示すように、円周方向に所定間隔おきに形成される。これら軸方向溝22と、その周囲領域23とで動圧発生部24が構成される。従って、図示は省略するが、この軸部材21を、図1に示す軸受部材3の内周に挿入し、軸部材21を軸受部材3に対して相対回転させた状態では、潤滑油で満たされたラジアル軸受隙間に、動圧発生部24による潤滑油の動圧作用が生じ、これにより軸部材21を軸受部材3に対してラジアル方向に非接触支持するラジアル軸受部が形成される。   In the above embodiment, the concave portion 7 is constituted by the inclined groove 9a and the inclined groove 9b, and the case where the concave portions 7 having such a shape are arranged in a herringbone shape is exemplified. For example, as shown in FIG. The axial groove 22 as the recess 7 can also be formed on the outer peripheral surface 21 a of the shaft member 21. In this case, the plurality of axial grooves 22 are formed at predetermined intervals in the circumferential direction as shown in FIG. These axial grooves 22 and the surrounding area 23 constitute a dynamic pressure generating portion 24. Therefore, although not shown, the shaft member 21 is inserted into the inner periphery of the bearing member 3 shown in FIG. 1 and the shaft member 21 is rotated relative to the bearing member 3 so that it is filled with lubricating oil. The dynamic pressure of the lubricating oil is generated by the dynamic pressure generating portion 24 in the radial bearing gap, thereby forming a radial bearing portion that supports the shaft member 21 in a non-contact manner in the radial direction with respect to the bearing member 3.

軸方向溝22を有する軸部材21は、上記実施形態と同様に(a)転造工程、(b)窒化処理工程および(c)バレル加工工程を経て形成される。これにより、例えば図6(a)に示すように、軸方向溝22の表層部25に、窒化処理による窒化層25bが形成される。また、軸方向溝22の周囲領域23の表層部26に、窒化処理による窒化層26bが形成されると共に、表面23aを含む表層部26の最表層部分に、バレル加工による第2の加工硬化層26cが形成される。表面23aには、バレル加工による加工面が形成される。   The shaft member 21 having the axial groove 22 is formed through (a) rolling process, (b) nitriding process, and (c) barrel processing process, as in the above embodiment. As a result, for example, as shown in FIG. 6A, a nitride layer 25b is formed on the surface layer portion 25 of the axial groove 22 by nitriding. Further, a nitride layer 26b is formed by nitriding treatment on the surface layer portion 26 of the peripheral region 23 of the axial groove 22, and a second work hardened layer by barrel processing is formed on the outermost layer portion of the surface layer portion 26 including the surface 23a. 26c is formed. A processed surface by barrel processing is formed on the surface 23a.

この実施形態においても、転造で形成された軸方向溝22の表層部25と、軸方向溝22の周囲領域23の表層部26にそれぞれ窒化処理による窒化層25b、26bを設けることにより、軸受面となる周囲領域23の表面23aの硬度向上を図ることができる。また、窒化処理に加えてバレル処理を施すことで、周囲領域23の表面23aの面精度を高めることができる。従って、高い軸受性能と耐摩耗性とを兼ね備えた動圧軸受装置用の軸部材21を得ることができる。   Also in this embodiment, bearing layers are provided by providing nitrided layers 25b and 26b by nitriding treatment on the surface layer portion 25 of the axial groove 22 formed by rolling and the surface layer portion 26 of the peripheral region 23 of the axial groove 22, respectively. It is possible to improve the hardness of the surface 23a of the surrounding region 23 to be a surface. Further, by performing barrel treatment in addition to nitriding treatment, the surface accuracy of the surface 23a of the surrounding region 23 can be improved. Accordingly, it is possible to obtain the shaft member 21 for a hydrodynamic bearing device having both high bearing performance and wear resistance.

形成可能な軸方向溝22としては、図6(a)に示すように、断面形状が軸方向中心に向けて凸となる断面円弧状の曲面22aの他、例えば図6(b)に示すように、断面形状が外周面21aの円弧に対して弦となる平面22bで構成される軸方向溝22が考えられる。あるいは、図6(c)に示すように、平面22bと外周面21aとの間に段差が形成されるように、平面22bの円周方向両端に立ち上がり部22cを設けた構成の軸方向溝22や、図6(d)に示すように、溝深さが軸方向および円周方向に一定で、外径側に向けて凸となる断面形状の曲面22dで構成される軸方向溝22などが形成可能である。   As the axial groove 22 that can be formed, as shown in FIG. 6A, in addition to the curved surface 22a having a cross-sectional arc shape that protrudes toward the center in the axial direction, for example, as shown in FIG. 6B. In addition, an axial groove 22 configured by a plane 22b whose cross-sectional shape is a chord with respect to the arc of the outer peripheral surface 21a is conceivable. Alternatively, as shown in FIG. 6C, an axial groove 22 having a configuration in which rising portions 22c are provided at both ends in the circumferential direction of the flat surface 22b so that a step is formed between the flat surface 22b and the outer peripheral surface 21a. Alternatively, as shown in FIG. 6 (d), there is an axial groove 22 composed of a curved surface 22d having a constant groove depth in the axial direction and the circumferential direction and a convex shape toward the outer diameter side. It can be formed.

軸部材21の外周に形成される軸方向溝22の本数は、潤滑油の動圧作用を考慮すると、3本以上が好ましい。同様の理由で、軸方向溝22の円周方向幅を示す円周角αは10°以上60°以下、軸方向溝22の溝深さh1は2μm〜20μmとするのが好ましい。また、低トルク化と高剛性化の両面から見た場合、周囲領域23の表面23aの全面積に対する、軸方向溝22の全面積の比(軸方向溝22の軸方向長さが均一とすると、上記面積比は{α/(360°−α)}となる。)は15%〜70%とするのが好ましい。   The number of the axial grooves 22 formed on the outer periphery of the shaft member 21 is preferably 3 or more in consideration of the dynamic pressure action of the lubricating oil. For the same reason, the circumferential angle α indicating the circumferential width of the axial groove 22 is preferably 10 ° to 60 °, and the groove depth h1 of the axial groove 22 is preferably 2 μm to 20 μm. Further, when viewed from both sides of low torque and high rigidity, the ratio of the total area of the axial groove 22 to the total area of the surface 23a of the peripheral region 23 (if the axial length of the axial groove 22 is uniform) The area ratio is {α / (360 ° −α)}.) Is preferably 15% to 70%.

また、図5では、ラジアル軸受部を形成すべき領域(動圧発生部24)全体に亘って軸方向に延びた複数の軸方向溝22を円周方向に並列配置した構成を例示したが、この他にも、例えば図7に示すように、軸方向溝22を軸方向に断続的に設けた構成を採ることもできる。この他の構成は、動圧発生部24の軸方向全長に亘って延びる軸方向溝22を設ける場合に準じるので説明を省略する。   FIG. 5 illustrates a configuration in which a plurality of axial grooves 22 extending in the axial direction over the entire region where the radial bearing portion is to be formed (dynamic pressure generating portion 24) are arranged in parallel in the circumferential direction. In addition to this, for example, as shown in FIG. 7, a configuration in which the axial grooves 22 are intermittently provided in the axial direction can be adopted. The other configuration is the same as that in the case where the axial groove 22 extending over the entire axial length of the dynamic pressure generating portion 24 is provided, and the description thereof is omitted.

上記実施形態では、凹部7として傾斜溝9a、9bや軸方向溝22を例示したが、もちろん溝以外の形状をなす凹部7を形成することも可能である。図8(a)は、その一例を示すもので、軸部材31の外周面31aの一部領域に、凹部7としての複数のディンプル32が分散して配列されている。この場合、複数のディンプル32とそれらの周囲領域33とで動圧発生部34が構成される。従って、図示は省略するが、この軸部材31を、図1に示す軸受部材3の内周に挿入し、軸部材31を軸受部材3に対して相対回転させた状態では、潤滑油で満たされたラジアル軸受隙間に、動圧発生部34による潤滑油の動圧作用が生じ、これにより軸部材31を軸受部材3に対してラジアル方向に非接触支持するラジアル軸受部が形成される。   In the above-described embodiment, the inclined grooves 9a and 9b and the axial groove 22 are exemplified as the concave portion 7, but it is of course possible to form the concave portion 7 having a shape other than the groove. FIG. 8A shows an example thereof, and a plurality of dimples 32 as the recesses 7 are dispersed and arranged in a partial region of the outer peripheral surface 31 a of the shaft member 31. In this case, the dynamic pressure generating portion 34 is configured by the plurality of dimples 32 and their surrounding regions 33. Therefore, although not shown, the shaft member 31 is inserted into the inner periphery of the bearing member 3 shown in FIG. 1 and the shaft member 31 is rotated relative to the bearing member 3 to be filled with lubricating oil. Thus, a dynamic pressure action of the lubricating oil by the dynamic pressure generating portion 34 occurs in the radial bearing gap, thereby forming a radial bearing portion that supports the shaft member 31 in a non-contact manner in the radial direction with respect to the bearing member 3.

ディンプル32を有する軸部材31は、上記実施形態と同様に(a)転造工程、(b)窒化処理工程および(c)バレル加工工程を経て形成される。これにより、例えば図8(b)に示すように、ディンプル32の表層部35に、窒化処理による窒化層35bが形成される。また、ディンプル32の周囲領域33の表層部36に、窒化処理による窒化層36bが形成されると共に、表面33aを含む表層部36の最表層部分に、バレル加工による第2の加工硬化層36cが形成される。表面33aには、バレル加工による加工面が形成される。   The shaft member 31 having the dimples 32 is formed through (a) rolling process, (b) nitriding process, and (c) barrel processing process, as in the above embodiment. As a result, for example, as shown in FIG. 8B, a nitride layer 35b is formed on the surface layer portion 35 of the dimple 32 by nitriding. Further, a nitride layer 36b by nitriding is formed on the surface layer portion 36 of the peripheral region 33 of the dimple 32, and a second work hardened layer 36c by barrel processing is formed on the outermost layer portion of the surface layer portion 36 including the surface 33a. It is formed. A processed surface by barrel processing is formed on the surface 33a.

この実施形態においても、転造で形成されたディンプル32の表層部35と、ディンプル32の周囲領域33の表層部36にそれぞれ窒化処理による窒化層35b、36bを設けることにより、軸受面となる周囲領域33の表面33aの硬度向上を図ることができる。また、窒化処理に加えてバレル加工を施すことで、周囲領域33の表面33aの面精度を高めることができる。従って、高い軸受性能と耐摩耗性とを兼ね備えた動圧軸受装置用の軸部材31を得ることができる。   Also in this embodiment, the surface layer portion 35 of the dimple 32 formed by rolling and the surface layer portion 36 of the peripheral region 33 of the dimple 32 are provided with nitrided layers 35b and 36b by nitriding treatment, respectively, so that the periphery serving as the bearing surface is obtained. The hardness of the surface 33a of the region 33 can be improved. Further, by performing barrel processing in addition to nitriding treatment, the surface accuracy of the surface 33a of the surrounding region 33 can be increased. Therefore, it is possible to obtain the shaft member 31 for a hydrodynamic bearing device having both high bearing performance and wear resistance.

ディンプル32の大きさとしては、例えば図8(c)に示すように、ディンプル32の長軸方向の幅aの、軸径dに対する比a/dを0.1以上0.4以下とするのが好ましい。また、ディンプル32の深さh2は、例えば軸部材31の外周面31aが臨むラジアル軸受隙間の幅の1〜10倍程度であることが好ましい。このサイズのディンプル32であれば、従来、軸部材に設けられる類のディンプルとは異なり、高い動圧作用を生じる動圧発生部34を構成可能であり、かつラジアル軸受隙間の幅が小さい場合でも、油溜りとして有効に作用する。また、低トルク化と高剛性化との観点から、周囲領域33の表面33aの全面積に対する、ディンプル32形成領域の総面積の比は10%〜70%とするのが好ましい。また、ディンプル32の形状として、例えば短軸幅bに対する長軸幅aの比a/bは、1.0(真円形状)以上2.0以下の範囲内であるのが実用上好ましいが、特に上記範囲外の形状をなすディンプル32であっても問題なく形成可能である。   As the size of the dimple 32, for example, as shown in FIG. 8C, the ratio a / d of the width a in the major axis direction of the dimple 32 to the shaft diameter d is 0.1 or more and 0.4 or less. Is preferred. Moreover, it is preferable that the depth h2 of the dimple 32 is, for example, about 1 to 10 times the width of the radial bearing gap that the outer peripheral surface 31a of the shaft member 31 faces. With dimples 32 of this size, unlike the conventional dimples provided on the shaft member, it is possible to configure a dynamic pressure generating portion 34 that generates a high dynamic pressure action, and even when the radial bearing gap width is small. It works effectively as an oil sump. Further, from the viewpoint of lowering the torque and increasing the rigidity, the ratio of the total area of the dimple 32 forming region to the total area of the surface 33a of the peripheral region 33 is preferably 10% to 70%. Further, as the shape of the dimple 32, for example, the ratio a / b of the major axis width a to the minor axis width b is preferably in the range of 1.0 (perfect circle shape) to 2.0, In particular, even the dimple 32 having a shape outside the above range can be formed without any problem.

上記実施形態では、凹部7として、傾斜溝9a、9bや軸方向溝22、ディンプル32などを例示したが、本発明は、ラジアル軸受隙間6などの軸受隙間に、潤滑油の動圧作用を生じるための凹部である限り、上記以外の形状をなす凹部7についても同様に適用することができる。   In the above embodiment, the inclined grooves 9a and 9b, the axial grooves 22, the dimples 32, and the like are exemplified as the recesses 7. However, the present invention produces a dynamic pressure action of lubricating oil in the bearing gap such as the radial bearing gap 6. Therefore, the present invention can be applied to the concave portion 7 having a shape other than the above as long as it is a concave portion.

また、上記実施形態では、凹部7の具体的形状に関わらず、転造後の軸素材11に(b)窒化処理を施し、その後に(c)バレル加工を施す場合を例示したが、この順序に限る必要はない。例えば凹部7を転造で形成した後、(c)バレル加工、(b)窒化処理の順に処理を施すことも可能である。また、使用する軸素材11(軸部材2)の材料によっては、(a)転造工程時に生じる隆起部16が除去を必要とするほどの大きさ(高さ)とならない場合がある。このような場合には、(c)バレル加工工程を省略することも可能である。   Moreover, in the said embodiment, irrespective of the specific shape of the recessed part 7, although the case where (b) nitriding treatment was performed to the shaft raw material 11 after rolling and (c) barrel processing was performed after that was illustrated, this order It is not necessary to be limited to. For example, after forming the concave portion 7 by rolling, it is possible to perform processing in the order of (c) barrel processing and (b) nitriding treatment. In addition, depending on the material of the shaft material 11 (shaft member 2) to be used, (a) the raised portion 16 generated during the rolling process may not have a size (height) that requires removal. In such a case, it is possible to omit the (c) barrel processing step.

以上説明した動圧軸受装置用軸部材およびこれを備えた動圧軸受装置は、例えば情報機器用のスピンドルモータに組み込んで使用可能である。以下、動圧軸受装置用軸部材31を上記モータ用のスピンドルに適用した構成例を、図9に基づいて説明する。なお、図1〜図8に示す実施形態と構成・作用を同一にする部位および部材については、同一の参照番号を付し、重複説明を省略する。   The shaft member for a hydrodynamic bearing device and the hydrodynamic bearing device including the shaft member described above can be used by being incorporated in a spindle motor for information equipment, for example. A configuration example in which the dynamic pressure bearing device shaft member 31 is applied to the motor spindle will be described below with reference to FIG. In addition, about the site | part and member which make the structure and effect | action same as embodiment shown in FIGS. 1-8, the same reference number is attached | subjected and duplication description is abbreviate | omitted.

図9は、動圧軸受装置41を組み込んだモータ40の断面図を示している。このモータ40は、例えばHDD等のディスク駆動装置用のスピンドルモータとして使用されるものであって、軸部材31を回転自在に非接触支持する動圧軸受装置41と、軸部材31に装着されたロータ(ディスクハブ)42と、例えば半径方向のギャップを介して対向させたステータコイル43およびロータマグネット44と、ブラケット45とを備えている。ステータコイル43は、ブラケット45の外周に取付けられ、ロータマグネット44はディスクハブ42の内周に取付けられている。ディスクハブ42には、磁気ディスク等のディスクDが一又は複数枚(図9では2枚)保持されている。ステータコイル43に通電すると、ステータコイル43とロータマグネット44との間の電磁力でロータマグネット44が回転し、それによって、ディスクハブ42及びディスクハブ42に保持されたディスクDが軸部材31と一体に回転する。   FIG. 9 shows a cross-sectional view of the motor 40 incorporating the dynamic pressure bearing device 41. The motor 40 is used as a spindle motor for a disk drive device such as an HDD, and is mounted on the shaft member 31 and a dynamic pressure bearing device 41 that rotatably supports the shaft member 31 in a non-contact manner. A rotor (disk hub) 42, a stator coil 43 and a rotor magnet 44 that are opposed to each other with a gap in the radial direction, for example, and a bracket 45 are provided. The stator coil 43 is attached to the outer periphery of the bracket 45, and the rotor magnet 44 is attached to the inner periphery of the disk hub 42. The disk hub 42 holds one or a plurality of disks D such as magnetic disks (two in FIG. 9). When the stator coil 43 is energized, the rotor magnet 44 is rotated by electromagnetic force between the stator coil 43 and the rotor magnet 44, whereby the disc D held by the disc hub 42 and the disc hub 42 is integrated with the shaft member 31. Rotate to.

この実施形態において、動圧軸受装置41は、軸受部材46と、軸受部材46の内周に挿入される軸部材31とを備えている。軸受部材46は、一端を開口した有底筒状の電鋳部47と、電鋳部47と一体に形成される成形部48とからなる。軸受部材46は、例えばマスターと一体又は別体の電鋳部47をインサート部品として樹脂で成形部48と一体に射出成形される。   In this embodiment, the hydrodynamic bearing device 41 includes a bearing member 46 and a shaft member 31 inserted into the inner periphery of the bearing member 46. The bearing member 46 includes a bottomed cylindrical electroformed portion 47 having one end opened, and a molded portion 48 formed integrally with the electroformed portion 47. The bearing member 46 is injection-molded integrally with the molding part 48 with resin using, for example, an electroformed part 47 that is integral with or separate from the master as an insert part.

軸部材31の外周面31aには、図9に示すように、凹部7としての複数のディンプル32が形成されている。また、軸部材31の一端面31bは球面状をなし、軸部材31を軸受部材46の内周に挿入した状態では、対向する電鋳部47の底部47bの上端面47b1に当接する。また、軸部材31の外周面31aのうち、ディスクハブ42の固定領域となる端部領域には円環溝31cが形成される。円環溝31cを有する軸部材31は、例えば軸部材31をインサート部品とする型成形によりディスクハブ42と一体に形成される。この場合、円環溝31cは、ディスクハブ42の軸部材31に対する抜止めとして作用する。これ以外の構成は、上記実施形態における記載に準じるので説明を省略する。   As shown in FIG. 9, a plurality of dimples 32 as the recesses 7 are formed on the outer peripheral surface 31 a of the shaft member 31. Further, the one end surface 31b of the shaft member 31 has a spherical shape, and abuts against the upper end surface 47b1 of the bottom 47b of the electroformed portion 47 facing the shaft member 31 when the shaft member 31 is inserted into the inner periphery of the bearing member 46. An annular groove 31c is formed in an end region of the outer peripheral surface 31a of the shaft member 31 which is a fixed region of the disk hub 42. The shaft member 31 having the annular groove 31c is formed integrally with the disc hub 42 by, for example, molding using the shaft member 31 as an insert part. In this case, the annular groove 31 c acts as a retaining for the shaft member 31 of the disk hub 42. Since the other configuration conforms to the description in the above embodiment, the description is omitted.

上記構成の軸部材31を軸受部材46の内周に挿入し、軸受部材46の内部空間に潤滑油を注油する。これにより、電鋳部47の内周面47aや底部47bの上端面47b1と、これらに対向する軸部材31の外周面31aとの間の隙間空間、および軸部材31に形成されたディンプル32を含む軸受内部空間を潤滑油で充満した動圧軸受装置41が完成する。   The shaft member 31 configured as described above is inserted into the inner periphery of the bearing member 46, and lubricating oil is injected into the internal space of the bearing member 46. Thereby, the dimple 32 formed in the gap space between the inner peripheral surface 47a of the electroformed portion 47 and the upper end surface 47b1 of the bottom portion 47b and the outer peripheral surface 31a of the shaft member 31 opposed thereto is formed. The hydrodynamic bearing device 41 in which the bearing internal space is filled with lubricating oil is completed.

上記構成の動圧軸受装置41において、軸部材31の回転時、軸部材31の外周面31aに形成された動圧発生部34は、対向する軸受部材46の内周面(電鋳部47の真円内周面47a)との間にラジアル軸受隙間49を形成する。そして、軸部材31の回転に伴い、ラジアル軸受隙間49の潤滑油が動圧発生部34による動圧作用を生じ、その圧力が上昇する。これにより、軸部材31をラジアル方向に回転自在に支持するラジアル軸受部R11が形成される。同時に、軸部材31の一端面31bと、これに対向する電鋳部47の上端面47b1との間に、軸部材31をスラスト方向に回転自在に支持するスラスト軸受部T11が形成される。   In the dynamic pressure bearing device 41 configured as described above, when the shaft member 31 rotates, the dynamic pressure generating portion 34 formed on the outer peripheral surface 31 a of the shaft member 31 is connected to the inner peripheral surface (the electroformed portion 47 of the electroformed portion 47). A radial bearing gap 49 is formed between the inner circumference 47a). As the shaft member 31 rotates, the lubricating oil in the radial bearing gap 49 produces a dynamic pressure action by the dynamic pressure generating portion 34, and the pressure rises. Thus, a radial bearing portion R11 that supports the shaft member 31 so as to be rotatable in the radial direction is formed. At the same time, a thrust bearing portion T11 that supports the shaft member 31 rotatably in the thrust direction is formed between the one end surface 31b of the shaft member 31 and the upper end surface 47b1 of the electroformed portion 47 opposed thereto.

以上より、この実施形態に係る動圧軸受装置1であれば、軸部材31と軸受部材46との間の摺動摩耗を低減することができる。従って、軸部材31に設けられたディンプル32あるいはその周囲領域33の摩耗によりラジアル軸受隙間49に生じる動圧作用が減少するといった事態を極力避けて、安定した軸受性能を長期に亘って発揮することが可能となる。   As described above, in the hydrodynamic bearing device 1 according to this embodiment, sliding wear between the shaft member 31 and the bearing member 46 can be reduced. Accordingly, it is possible to avoid the situation where the dynamic pressure action generated in the radial bearing gap 49 due to wear of the dimple 32 provided on the shaft member 31 or the surrounding area 33 is reduced as much as possible, and to exhibit stable bearing performance over a long period of time. Is possible.

また、軸部材31の側に動圧発生部34(動圧作用を生じるための凹部7)を設けることで、かかる動圧発生部34を軸受部材46の側に設ける場合と比べ加工(特に、窒化処理やバレル加工)が容易である。そのため、上記モータの小サイズ化に対する要求にも容易に対応することができる。   In addition, by providing the dynamic pressure generating portion 34 (the concave portion 7 for generating the dynamic pressure action) on the shaft member 31 side, machining (particularly, compared to the case where the dynamic pressure generating portion 34 is provided on the bearing member 46 side) Nitriding or barrel processing) is easy. For this reason, it is possible to easily meet the demand for downsizing the motor.

なお、上記実施形態では、軸受部材3、46を、電鋳部4、47と樹脂製の成形部5、48とで構成した場合を例示したが、特にこの構成に限る必要はない。例えば、電鋳部4、47の代わりに、焼結金属製のスリーブ体を使用して軸受部材を構成することもできる。また、金属材料で軸受部材3、47を一体に形成したり、摺動性や耐摩耗性を高めた樹脂組成物で軸受部材3、47を一体に形成することも可能である。あるいは、モータ40側の部材であるブラケット45を、軸受部材46と同一の材料(金属又は樹脂など)で一体に形成することも可能である。   In the above embodiment, the case where the bearing members 3 and 46 are constituted by the electroformed parts 4 and 47 and the resin molded parts 5 and 48 is exemplified, but it is not particularly limited to this structure. For example, instead of the electroformed parts 4 and 47, a sleeve member made of sintered metal can be used to constitute the bearing member. Further, it is possible to integrally form the bearing members 3 and 47 with a metal material, or to integrally form the bearing members 3 and 47 with a resin composition having improved slidability and wear resistance. Alternatively, the bracket 45, which is a member on the motor 40 side, can be integrally formed of the same material (metal or resin) as the bearing member 46.

なお、図1や図9では、スラスト軸受部T1、T11をいわゆるピボット軸受で構成した場合を例示しているが、本発明は、動圧溝等の凹部とその周囲領域とで構成される動圧発生部で軸部材2をスラスト方向に非接触支持する動圧軸受にも適用可能である。この場合、軸部材2に、図示は省略するが、例えば軸部材2の外径側に張り出すフランジ部を設け、フランジ部の端面に、傾斜溝やディンプル等の動圧発生用の凹部を転造で形成し、次いで窒化処理を施すことで、スラスト軸受面となる面(凹部の周囲領域の表面)の硬度を高めることができる。   1 and FIG. 9 exemplify the case where the thrust bearing portions T1 and T11 are so-called pivot bearings, the present invention is a dynamic structure constituted by a concave portion such as a dynamic pressure groove and its surrounding region. The present invention can also be applied to a dynamic pressure bearing that supports the shaft member 2 in a thrust direction in a non-contact manner at the pressure generating portion. In this case, although not shown in the drawing, the shaft member 2 is provided with a flange portion that projects to the outer diameter side of the shaft member 2, for example, and a dynamic pressure generating recess such as an inclined groove or dimple is rolled on the end surface of the flange portion. The hardness of the surface (surface of the peripheral area of the recess) that becomes the thrust bearing surface can be increased by forming and then performing nitriding.

また、以上の実施形態では、動圧軸受装置1、41の内部に充満し、ラジアル軸受隙間等に動圧作用を発生させる流体として、潤滑油を例示したが、それ以外にも軸受隙間に動圧作用を生じ得る流体、例えば空気等の気体や、磁性流体等の流動性を有する潤滑剤、あるいは潤滑グリース等を使用することもできる。   In the above embodiment, the lubricating oil is exemplified as the fluid that fills the inside of the hydrodynamic bearing devices 1 and 41 and generates the hydrodynamic action in the radial bearing gap or the like. A fluid capable of generating a pressure action, for example, a gas such as air, a fluid lubricant such as a magnetic fluid, or a lubricating grease may be used.

本発明の一実施形態に係る動圧軸受装置の断面図である。1 is a cross-sectional view of a fluid dynamic bearing device according to an embodiment of the present invention. 動圧軸受装置用軸部材に凹部を転造する工程を概念的に示す図である。It is a figure which shows notionally the process of rolling a recessed part in the shaft member for dynamic-pressure bearing apparatuses. (a)は転造前の軸部材の外周面表層部付近の断面図、(b)は転造後の凹部およびその周辺領域の表層部付近の断面図、(c)は窒化処理後の凹部およびその周辺領域の表層部付近の断面図である。(A) is a cross-sectional view of the surface layer near the outer peripheral surface of the shaft member before rolling, (b) is a cross-sectional view of the surface of the concave portion after rolling and its peripheral region, (c) is a concave portion after nitriding treatment FIG. 6 is a cross-sectional view of the vicinity of the surface layer portion of the surrounding area. バレル加工後の凹部およびその周辺領域の表層部付近の断面図である。It is sectional drawing of the surface layer part vicinity of the recessed part after a barrel process, and its peripheral region. (a)は本発明の他実施形態に係る軸部材の側面図、(b)は軸部材の軸直交断面図である。(A) is a side view of the shaft member which concerns on other embodiment of this invention, (b) is an axis orthogonal sectional view of a shaft member. (a)は軸部材に形成された軸方向溝の一形状を示す拡大断面図、(b)〜(d)は何れも軸方向溝の他形状を示す拡大断面図である。(A) is an expanded sectional view which shows one shape of the axial direction groove | channel formed in the shaft member, (b)-(d) is an expanded sectional view in which all show the other shape of an axial direction groove | channel. 本発明の他実施形態に係る軸部材の側面図である。It is a side view of the shaft member concerning other embodiments of the present invention. (a)は他実施形態に係る軸部材の側面図、(b)は軸部材に形成されたディンプルの断面形状を示す拡大図、(c)はディンプルの平面形状を示す拡大図である。(A) is a side view of the shaft member which concerns on other embodiment, (b) is an enlarged view which shows the cross-sectional shape of the dimple formed in the shaft member, (c) is an enlarged view which shows the planar shape of a dimple. 本発明に係る動圧軸受装置を組込んだ情報機器用モータの一構成例を概念的に示す断面図である。It is sectional drawing which shows notionally the example of 1 structure of the motor for information devices incorporating the hydrodynamic bearing apparatus which concerns on this invention.

符号の説明Explanation of symbols

1 動圧軸受装置
2 軸部材
3 軸受部材
4 電鋳部
5 成形部
6 ラジアル軸受隙間
7 凹部
8 周囲領域
8a 表面
9a、9b 傾斜溝
10 動圧発生部
11 軸素材
12、13 転造ダイス
14 表層部(凹部)
14b 窒化層(凹部)
15 表層部(周囲領域)
15b 窒化層(周囲領域)
15c 第2の加工硬化層(周囲領域)
21、31 軸部材
22 軸方向溝
32 ディンプル
23、33 周囲領域
24、34 動圧発生部
25、35 表層部
25b 窒化層
26、36 表層部
26b、36b 窒化層
26c、36c 第2の加工硬化層
40 モータ
41 動圧軸受装置
42 ディスクハブ
43 ステータコイル
44 ロータマグネット
46 軸受部材
49 ラジアル軸受隙間
R1、R2、R11 ラジアル軸受部
T1、T11 スラスト軸受部
DESCRIPTION OF SYMBOLS 1 Dynamic pressure bearing apparatus 2 Shaft member 3 Bearing member 4 Electroformed part 5 Molding part 6 Radial bearing gap 7 Recess 8 Surrounding area 8a Surface 9a, 9b Inclined groove 10 Dynamic pressure generating part 11 Shaft material 12, 13 Rolling die 14 Surface layer Part (concave)
14b Nitrided layer (concave)
15 Surface layer (surrounding area)
15b Nitride layer (surrounding area)
15c 2nd work hardening layer (surrounding area)
21, 31 Shaft member 22 Axial groove 32 Dimple 23, 33 Surrounding region 24, 34 Dynamic pressure generating portion 25, 35 Surface layer portion 25b Nitride layer 26, 36 Surface layer portion 26b, 36b Nitride layer 26c, 36c Second work hardening layer 40 Motor 41 Dynamic pressure bearing device 42 Disc hub 43 Stator coil 44 Rotor magnet 46 Bearing member 49 Radial bearing gaps R1, R2, R11 Radial bearing portion T1, T11 Thrust bearing portion

Claims (4)

軸受隙間に流体の動圧作用を生じるための凹部が転造で形成された動圧軸受装置用軸部材において、
前記転造で形成された凹部の表層部及び前記凹部の周囲領域における表層部に、前記転造後の窒化処理により前記軸部材の素材中に窒素が拡散浸透してなる窒化層が形成され、前記軸部材の外径に対する窒化層の厚みの比が0.05以下に設定されると共に、
前記凹部の周囲領域における前記窒化層の最表層部分に、窒化処理後のバレル加工により加工硬化を生じた層である加工硬化層が窒化層と重複して形成されていることを特徴とする動圧軸受装置用軸部材。
In the shaft member for the hydrodynamic bearing device in which the concave portion for generating the hydrodynamic action of the fluid in the bearing gap is formed by rolling,
In the surface layer portion of the concave portion formed by the rolling and the surface layer portion in the peripheral region of the concave portion, a nitride layer formed by diffusing and penetrating nitrogen into the material of the shaft member is formed by the nitriding treatment after the rolling , Rutotomoni set to the ratio of the thickness of the nitride layer is 0.05 or less with respect to the outer diameter of said shaft member,
A motion hardened layer, which is a layer that has undergone work hardening by barrel processing after nitriding treatment , is formed on the outermost layer portion of the nitride layer in the peripheral region of the recess so as to overlap the nitride layer. Shaft member for pressure bearing devices.
前記表層部の少なくとも一部の領域が、バレル加工による加工面を有している請求項1記載の動圧軸受装置用軸部材。   The shaft member for a hydrodynamic bearing device according to claim 1, wherein at least a part of the surface layer portion has a processed surface by barrel processing. 前記凹部の表層部および前記凹部の周囲領域における表層部の下層領域の硬度が400Hv以下である請求項1記載の動圧軸受装置用軸部材。   2. The shaft member for a hydrodynamic bearing device according to claim 1, wherein the hardness of the lower layer region of the surface layer portion in the surface layer portion of the recess and the peripheral region of the recess is 400 Hv or less. 請求項1〜3の何れかに記載の動圧軸受装置用軸部材を備えた動圧軸受装置。   A fluid dynamic bearing device comprising the shaft member for a fluid dynamic bearing device according to claim 1.
JP2006013977A 2006-01-19 2006-01-23 Shaft member for hydrodynamic bearing device Expired - Fee Related JP5132887B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006013977A JP5132887B2 (en) 2006-01-23 2006-01-23 Shaft member for hydrodynamic bearing device
CN2006800507363A CN101356382B (en) 2006-01-19 2006-12-26 Shaft member for dynamic pressure bearing device
US12/160,654 US8104963B2 (en) 2006-01-19 2006-12-26 Shaft member for fluid dynamic bearing device
PCT/JP2006/325894 WO2007083491A1 (en) 2006-01-19 2006-12-26 Shaft member for dynamic pressure bearing device
US13/281,011 US8366322B2 (en) 2006-01-19 2011-10-25 Shaft member for fluid dynamic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006013977A JP5132887B2 (en) 2006-01-23 2006-01-23 Shaft member for hydrodynamic bearing device

Publications (2)

Publication Number Publication Date
JP2007198400A JP2007198400A (en) 2007-08-09
JP5132887B2 true JP5132887B2 (en) 2013-01-30

Family

ID=38453202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006013977A Expired - Fee Related JP5132887B2 (en) 2006-01-19 2006-01-23 Shaft member for hydrodynamic bearing device

Country Status (1)

Country Link
JP (1) JP5132887B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5935520B2 (en) * 2012-06-06 2016-06-15 株式会社ジェイテクト Method of manufacturing rolling bearing race
KR101867906B1 (en) * 2017-02-13 2018-06-18 (주)코리아인코어테크놀러지 Brush-less direct current motor and method for preventing electric corrosion thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3282306B2 (en) * 1993-05-06 2002-05-13 日本精工株式会社 Rotary drive
JPH07114766A (en) * 1993-10-18 1995-05-02 Sankyo Seiki Mfg Co Ltd Dynamic pressure bearing device
JPH07156060A (en) * 1993-11-30 1995-06-20 Ntn Corp Machining method of hydrostatic bearing
JP2002048132A (en) * 2000-08-07 2002-02-15 Nsk Ltd Fluid bearing
JP2005095998A (en) * 2003-09-22 2005-04-14 Riraiaru:Kk Method of manufacturing parts for dynamic bearing

Also Published As

Publication number Publication date
JP2007198400A (en) 2007-08-09

Similar Documents

Publication Publication Date Title
US8366322B2 (en) Shaft member for fluid dynamic bearing device
JP2004003582A (en) Dynamic-pressure bearing device
JP3893021B2 (en) Hydrodynamic bearing unit
US7284908B2 (en) Hydrodynamic bearing device and motor
JP4979950B2 (en) Shaft member for hydrodynamic bearing device
JP5132887B2 (en) Shaft member for hydrodynamic bearing device
JP2007263311A (en) Dynamic pressure bearing device
US20080037916A1 (en) Dynamic Bearing Device
US7789565B2 (en) Fluid dynamic bearing apparatus
JP5819077B2 (en) Method for manufacturing fluid dynamic bearing device
JP2007218379A (en) Shaft member for hydrodynamic bearing device and its manufacturing method
JP6275369B2 (en) Material for fluid dynamic pressure bearing, shaft member using the same material and fluid dynamic pressure bearing using coaxial member
JP2006207787A (en) Housing for dynamic pressure bearing device and manufacturing method therefor
JP4937644B2 (en) Hydrodynamic bearing device
JP2005127524A (en) Dynamic-pressure bearing device
JP5901979B2 (en) Method for manufacturing fluid dynamic bearing device
JP2005265180A (en) Dynamic pressure bearing device
JP2004316924A (en) Dynamic pressure-type oil-impregnated sintered bearing unit
JP4832736B2 (en) Hydrodynamic bearing unit
JP2004301338A (en) Dynamic pressure type sintering oil impregnation bearing unit
JP2004316925A (en) Dynamic pressure-type oil-impregnated sintered bearing unit
JP2005180707A (en) Dynamic pressure type sintered oil-impregnated bearing unit
JP2007285414A (en) Dynamic pressure bearing device
JP4739247B2 (en) Hydrodynamic bearing device
JP4738835B2 (en) Hydrodynamic bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081205

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120810

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121022

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5132887

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees