JP2005095998A - Method of manufacturing parts for dynamic bearing - Google Patents

Method of manufacturing parts for dynamic bearing Download PDF

Info

Publication number
JP2005095998A
JP2005095998A JP2003330333A JP2003330333A JP2005095998A JP 2005095998 A JP2005095998 A JP 2005095998A JP 2003330333 A JP2003330333 A JP 2003330333A JP 2003330333 A JP2003330333 A JP 2003330333A JP 2005095998 A JP2005095998 A JP 2005095998A
Authority
JP
Japan
Prior art keywords
magnetic
dynamic pressure
bearing
polishing
dynamic bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003330333A
Other languages
Japanese (ja)
Inventor
Kimio Sato
公男 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIRAIARU KK
Original Assignee
RIRAIARU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIRAIARU KK filed Critical RIRAIARU KK
Priority to JP2003330333A priority Critical patent/JP2005095998A/en
Priority to EP04022548A priority patent/EP1517057A3/en
Priority to US10/946,118 priority patent/US20050094906A1/en
Publication of JP2005095998A publication Critical patent/JP2005095998A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture parts for a dynamic bearing with remarkable durability at a low cost while ensuring miniaturization and high performance. <P>SOLUTION: This method of manufacturing the parts for the dynamic bearing has a machining process for machining a dynamic bearing part material into predetermined shape, and a surface treating process for forming the surface of the dynamic bearing part material machined into the predetermined shape in the machining process, into a predetermined surface state. The surface treating process has magnetic barrel polishing treatment wherein a fluid 300, magnetic media 400 serving as polishing media, and the dynamic bearing parts 33 which are polished bodies, are put in a container 100, and the magnetic media 400 are moved by the external moving magnetic field with magnets 201 fixed to a turntable 200, to polish the polished bodies. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、表面部に動圧発生用の凹凸パターンが形成された動圧軸受用部品を製造する動圧軸受用部品の製造方法に係り、例えば、ハードディスク・ドライブ(HDD)やデジタル・バーサタイル・ディスク(DVD)の駆動装置のようなディスク回転型記憶装置の他、ポリゴンミラー等の回転部の軸受として用いられる動圧軸受装置の動圧発生部を構成する動圧軸受用部品の製造に利用できる。   The present invention relates to a method for manufacturing a dynamic pressure bearing component in which a concave / convex pattern for generating dynamic pressure is formed on a surface portion, for example, a hard disk drive (HDD), a digital versatile tile, In addition to disk rotating storage devices such as disk (DVD) drive devices, it is used for the manufacture of dynamic pressure bearing components that make up the dynamic pressure generating part of dynamic pressure bearing devices used as bearings for rotating parts such as polygon mirrors. it can.

一般に、動圧軸受装置は、回転軸を含む回転部と固定部との隙間に充填された作動油に、回転軸の回転力を利用して動圧を与え、この動圧によって回転部を固定部に対して浮かせるような状態とすることにより、回転軸を回転自在に支持するものである。この動圧軸受装置には、回転に伴って作動油に所定の物理力を作用させて動圧を発生させるために、表面部に凹凸パターンが形成された動圧発生軸受部材と、この動圧発生軸受部材に対向配置されて軸受隙間を形成する相手部品としての動圧軸受部材とを有する動圧軸用受部品が用いられる。   In general, a hydrodynamic bearing device applies dynamic pressure to hydraulic oil filled in a gap between a rotating portion including a rotating shaft and a fixed portion using the rotational force of the rotating shaft, and the rotating portion is fixed by the dynamic pressure. The rotating shaft is supported rotatably by setting it in a state of floating with respect to the part. The dynamic pressure bearing device includes a dynamic pressure generating bearing member having a concavo-convex pattern formed on a surface portion to generate a dynamic pressure by causing a predetermined physical force to act on the hydraulic oil as it rotates, and the dynamic pressure A dynamic pressure shaft receiving component having a dynamic pressure bearing member as a counterpart component that is disposed to face the generating bearing member to form a bearing gap is used.

ところで、例えば、HDD用のスピンドルモータ等の小型モータにおける動圧軸受装置では、回転軸の回転に伴って発生する動圧により固定部に対して回転部が浮上支持される際に回転部と固定部との間に形成される隙間の幅寸法は、その対抗面積、負荷容量、流体の粘度等を勘案し、2〜3μm±0.5μmの程度という、非常に小さい隙間に設定されるのが一般的である。また、この場合に用いられる動圧軸受装置に用いる動圧発生軸受部材の表面部に形成される凹凸パターンの高さも5〜20μm程度に設定されている。   By the way, for example, in a hydrodynamic bearing device in a small motor such as a spindle motor for HDD, the rotating portion is fixed to the rotating portion when the rotating portion is levitated and supported with respect to the fixed portion by the dynamic pressure generated with the rotation of the rotating shaft. The width dimension of the gap formed with the part is set to a very small gap of about 2 to 3 μm ± 0.5 μm in consideration of the facing area, load capacity, fluid viscosity, etc. It is common. Further, the height of the uneven pattern formed on the surface portion of the dynamic pressure generating bearing member used in the dynamic pressure bearing device used in this case is also set to about 5 to 20 μm.

それゆえ、動圧発生軸受部材とこの相手部品としての動圧軸受部材とを有する動圧軸受用部品の製造には、非常に高い加工精度が要求される。このため、例えば、動圧発生軸受部材の製造は、旋盤等で所定形状に加工された動圧軸受用部品素材の所定の表面部にいわゆるフォトリソグラフィー法等を適用して動圧発生用の凹凸パターンを形成し、しかる後に、この凹凸パターンが形成された表面部に研磨砥粒を用いた精密研磨等を施して、表面部の平坦度や表面粗さを極めて精密に仕上げることがなされている。また、この動圧軸受用部品の相手部材たる動圧軸受部材は、動圧発生軸受部材に対向配置されたときに所定の軸受隙間を形成するような形状に加工した後に、同様に表面部に研磨砥粒を用いた精密研磨等を施して、表面部の平坦度や表面粗さを極めて精密に仕上げることがなされる。   Therefore, a very high machining accuracy is required for the production of a dynamic pressure bearing part having a dynamic pressure generating bearing member and a dynamic pressure bearing member as a counterpart part. For this reason, for example, the manufacture of a dynamic pressure generating bearing member is performed by applying a so-called photolithography method or the like to a predetermined surface portion of a dynamic pressure bearing component material processed into a predetermined shape by a lathe or the like. A pattern is formed, and then the surface portion on which the uneven pattern is formed is subjected to precision polishing using abrasive grains to finish the flatness and surface roughness of the surface portion extremely precisely. . In addition, the dynamic pressure bearing member, which is a counterpart member of this dynamic pressure bearing component, is processed into a shape that forms a predetermined bearing gap when it is disposed opposite to the dynamic pressure generating bearing member, and then is similarly formed on the surface portion. Precision polishing using abrasive grains is performed to finish the flatness and surface roughness of the surface portion extremely precisely.

ところで、HDDの改良や新たな展開が進む中、HDD用のスピンドルモータの軸受装置にも種々のますます厳しい要請がなされてきている。すなわち、例えば、ハードディスクの小型化に伴う小型化への要請、さらなる耐久性向上への要請、低コスト化及び生産性向上への要請、等々である。動圧軸受装置は、これらの要請に対して、従来のボールベアリング式等の他の方式の軸受装置に比較すると、原理的に非常に有利であると考えられているが、近年の要請に対して必ずしも十分に応えられない場合もあることが判明してきた。   By the way, as HDDs are improved and newly developed, various stricter demands have been made for spindle motor bearing devices for HDDs. That is, for example, there is a request for downsizing due to downsizing of a hard disk, a request for further durability improvement, a request for cost reduction and productivity improvement, and the like. The hydrodynamic bearing device is considered to be very advantageous in principle compared with other types of bearing devices such as a conventional ball bearing type in response to these requests. It has been found that there are cases where it is not always sufficient.

すなわち、HDDは、ハードディスク上を磁気ヘッドを浮上走行させて情報の読み書きを行なうが、その動作は、いわゆるCSS(コンタクト・スタート・ストップ)方式が主流である。このCSS方式は、ハードディスクの回転・停止の動作を常時繰り返し行なうものであるので、スピンドルモータの軸受装置もその回転・停止の繰り返し動作に対して十分な耐久性を有することが要請される。   That is, the HDD reads and writes information by flying the magnetic head over the hard disk, and the operation is mainly performed by a so-called CSS (contact start / stop) system. Since this CSS system always repeats the rotation / stop operation of the hard disk, the spindle motor bearing device is also required to have sufficient durability against the repeated rotation / stop operation.

上述の従来の動圧軸受用部品を用いた動圧軸受装置では、一定の耐久性を有する(40万回程度の繰り返し耐久性)ものの、それ以上の耐久性を得ることは困難であることが判明してきた。また、極めてまれではあるが、かなりの耐久試験後に、CSSの際に軸が軸受に密着して起動できないことが生ずる場合もあることが判明した。   Although the conventional hydrodynamic bearing device using the conventional hydrodynamic bearing component has a certain durability (repeated durability of about 400,000 times), it may be difficult to obtain a higher durability. It turns out. In addition, it has been found that, after a considerable endurance test, the shaft may come into close contact with the bearing and fail to start after a considerable durability test.

本発明の目的は、小型・高性能を確保しつつ著しい耐久性を有する動圧軸受用部品を安価に製造することを可能にする動圧軸受用部品の製造方法を提供することである。   SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a dynamic pressure bearing part that makes it possible to manufacture a dynamic pressure bearing part having remarkable durability while ensuring small size and high performance at low cost.

上述の課題を解決するための手段として、第1の手段は、
動圧軸受用部品を製造する動圧軸受用部品の製造方法であって、
動圧軸受用部品素材を所定の形状に加工する加工工程と、
前記加工工程で所定形状に加工された動圧軸受用部品素材の表面を所定の表面状態にする表面処理工程とを有し、
前記表面処理工程は、容器に流体と研磨媒体である磁性メディアと被研磨体とを入れて外部の運動磁場によって磁性メディアを運動させることにより前記被研磨体を研磨するようにした磁気バレル研磨処理を有することを特徴とする動圧軸受用部品の製造方法である。
第2の手段は、
第1の手段にかかる動圧軸受用部品の製造方法において、前記研磨工程は、研磨砥粒を用いて精密研磨した後、前記磁気バレル研磨処理を施すものであることを特徴とする動圧軸受用部品の製造方法である。
第3の手段は、
第1又は第2の手段にかかる動圧軸受用部品の製造方法において、前記磁気バレル研磨処理に用いる磁性メディアは、磁性ステンレス線材を所定の長さにしたものであることを特徴とする動圧軸受用部品の製造方法である。
As means for solving the above-mentioned problem, the first means is:
A method for producing a hydrodynamic bearing part for producing a hydrodynamic bearing part, comprising:
A processing step of processing a fluid pressure bearing component material into a predetermined shape;
A surface treatment step of bringing the surface of the dynamic pressure bearing component material processed into a predetermined shape in the processing step into a predetermined surface state,
In the surface treatment step, a magnetic barrel polishing process is performed in which a fluid, a magnetic medium as a polishing medium, and an object to be polished are placed in a container, and the object to be polished is polished by moving the magnetic medium by an external kinetic magnetic field. It is a manufacturing method of the components for dynamic pressure bearings characterized by having.
The second means is
In the method of manufacturing a hydrodynamic bearing component according to the first means, the polishing step is performed by performing the magnetic barrel polishing process after performing precise polishing using abrasive grains. This is a manufacturing method for parts.
The third means is
In the method of manufacturing a hydrodynamic bearing component according to the first or second means, the magnetic medium used for the magnetic barrel polishing is a magnetic stainless steel wire having a predetermined length. This is a method for manufacturing a bearing component.

上述の手段において、研磨工程で、磁気バレル研磨処理を施すことにより、著しい耐久性を有するとともに、CSSの際に軸が軸受に密着して起動できないということも全くなく、しかも、製造も極めて容易であるという作用効果が得られることが分かった。磁気バレル研磨を施すことにより、上述の効果が得られることは、本願発明者が、試行錯誤的にさまざまな表面処理を試みた結果はじめて見いだすことができたものである。   In the above-mentioned means, the magnetic barrel polishing process is performed in the polishing process, so that it has a remarkable durability, the shaft does not come into close contact with the bearing at the time of CSS, and the manufacturing is extremely easy. It turned out that the effect of being is obtained. It is the first time that the inventor of the present application has tried to perform various surface treatments by trial and error to obtain the above-mentioned effects by performing magnetic barrel polishing.

このような作用効果が得られるメカニズムは理論的に解明されていないが、以下の理由によるものと推定される。すなわち、従来の研磨砥粒を用いた精密研磨等を施して表面部の平坦度や表面粗さを精密に仕上げる方法は、数値的には平坦度や表面粗さを非常に高い値にすることができる。したがって、その限りにおいては、耐久性等に優れるはずであると考えられる。しかし、上述の通り、実際には必ずしも良い結果が得られていない。   The mechanism by which such effects are obtained has not been clarified theoretically, but is presumed to be due to the following reason. In other words, the conventional method of precision polishing using abrasive grains and the like to precisely finish the flatness and surface roughness of the surface part numerically makes the flatness and surface roughness very high. Can do. Therefore, it is considered that durability should be excellent as long as it is. However, as described above, in practice, good results are not always obtained.

これは、研磨砥粒等を用いた研磨では、金属表面に剥離しやすい毟れ(ムシレ)や毛羽(ケバ)もしくはかえり(カエリ)が多く生じ、これらが剥がれて異物となり、軸受を破損させる原因になるためと考えられる。また、シャープな凹凸が多いので、作動中に摩耗がおきやすいと考えられる。さらには、これらを防止するために表面粗さを良くすると、こんどはCSS時の密着という問題が発生するものと考えられる。   This is because when polishing with abrasive grains, etc., the metal surface tends to be easily peeled (fluffy), fluffed (fluffed), or burred (flickered), causing these to peel and become foreign matter, which can damage the bearing. It is thought to become. Moreover, since there are many sharp unevenness | corrugations, it is thought that wear tends to occur during operation. Furthermore, if the surface roughness is improved in order to prevent these problems, it is considered that the problem of close contact during CSS occurs.

これに対して、磁気バレルを施すことにより、金属表面の剥離しやすい毟れ(ムシレ)や毛羽(ケバ)もしくはかえり(カエリ)が除去され、金属表面が滑らかにされ、しかも、緩やかで適度に大きい粗さを有する凹凸が形成され、さらには、金属表面が鍛えられて、加工硬化すると共に剥離等のおそれもなくなるものと考えられる。その結果、著しい耐久性の向上、密着現象発生の防止等の効果が得られるものと考えられる。   On the other hand, by applying a magnetic barrel, the metal surface is easily peeled away (fluffy), fuzz (fluff) or burr (fuzzy), the metal surface is smoothed, and it is gentle and moderate. Concavities and convexities having a large roughness are formed, and further, the metal surface is trained to work harden and eliminate the risk of peeling and the like. As a result, it is considered that effects such as remarkable improvement in durability and prevention of adhesion phenomenon are obtained.

図1は本発明の実施例にかかる動圧軸受用部品の製造方法における磁気バレル研磨処理の説明図、図2は本発明の実施例にかかる動圧軸受用部品たる第二環状部材33の断面図、図3は第二環状部材33の平明図、図4は本発明の実施例にかかる動圧軸受用部品たる回転部材31の側面図、図5は回転部材31の表面部に形成された凹凸パターン31Bの展開図、図6は研磨砥粒を用いた精密研磨処理後の凹凸パターンの表面の表面粗さを測定した結果を示すグラフ、図7は磁気バレル研磨処理後の凹凸パターンの表面の表面粗さを測定した結果を示すグラフ、図8は本発明の実施例にかかる動圧軸受用部品をHDD回転駆動部10に組み込んだ例を示す断面図であり、図9は動圧軸受装置20の拡大断面図である。以下、これらの図面を参照にしながら実施例にかかる動圧軸受用部品の製造方法を説明する。   FIG. 1 is an explanatory view of a magnetic barrel polishing process in a method of manufacturing a dynamic pressure bearing part according to an embodiment of the present invention, and FIG. 2 is a cross section of a second annular member 33 which is a dynamic pressure bearing part according to an embodiment of the present invention. 3 is a plain view of the second annular member 33, FIG. 4 is a side view of the rotating member 31 as a fluid dynamic bearing component according to an embodiment of the present invention, and FIG. 5 is formed on the surface portion of the rotating member 31. FIG. 6 is a developed view of the concavo-convex pattern 31B, FIG. 6 is a graph showing the result of measuring the surface roughness of the concavo-convex pattern surface after precision polishing using abrasive grains, and FIG. 7 is the surface of the concavo-convex pattern after magnetic barrel polishing treatment. FIG. 8 is a cross-sectional view showing an example in which a component for a hydrodynamic bearing according to an embodiment of the present invention is incorporated in an HDD rotation drive unit 10, and FIG. 9 is a hydrodynamic bearing. 3 is an enlarged cross-sectional view of the device 20. FIG. Hereinafter, a method for manufacturing a fluid dynamic bearing component according to the embodiment will be described with reference to these drawings.

まず、動圧軸受用部品を所定の手段により所定の形状に加工し、動圧発生軸受部材を製造する場合には表面部に動圧発生用の凹凸パターンを形成する。次いで、その表面に所定の研磨処理等の表面処理を施して、所定の平坦度及び表面粗さを有する表面状態に仕上げる。動圧発生軸受部材の相手部材である動圧軸受部材を製造するときには、凹凸パターンを形成しないこと以外は上記動圧発生軸受部材の製造と同様の工程を行って仕上げる。したがって、以下の説明では、動圧発生軸受部材を例に挙げて説明し、その相手部材である動圧軸受部材に関する説明は省略する。図2及び図3に示される第二環状部材33は、動圧発生軸受部材の一種であり、スラスト軸受の一種である。また、図4及び図5に示される回転部材31も動圧発生軸受部材の一種であり、ジャーナル軸受の一種である。   First, a dynamic pressure bearing component is processed into a predetermined shape by a predetermined means, and when a dynamic pressure generating bearing member is manufactured, an uneven pattern for generating dynamic pressure is formed on the surface portion. Next, the surface is subjected to a surface treatment such as a predetermined polishing process to finish a surface state having a predetermined flatness and surface roughness. When manufacturing a dynamic pressure bearing member that is a counterpart member of the dynamic pressure generating bearing member, the same process as the manufacturing of the dynamic pressure generating bearing member is performed except that the uneven pattern is not formed. Therefore, in the following description, a dynamic pressure generating bearing member will be described as an example, and description regarding the dynamic pressure bearing member which is the counterpart member will be omitted. The second annular member 33 shown in FIGS. 2 and 3 is a kind of dynamic pressure generating bearing member, and is a kind of thrust bearing. 4 and FIG. 5 is also a kind of dynamic pressure generating bearing member and a kind of journal bearing.

第二環状部材33を製造する場合には、所定寸法の環状部材を切削加工等で得、次いで、一方の表面33Bに周知のフォトリソグラフィー法や電解加工法等を用いて凸状部33Bpと凹状部33Bnとからなる動圧発生用凹凸パターンを形成する。回転部材31を製造する場合には、所定寸法の円柱状部材を切削加工等で得、次いで、同様に、表面31Aに周知のフォトリソグラフィー法や電解加工法等を用いて凸状部31Bpと凹状部31Bnとからなる動圧発生用凹凸パターンを形成する。   When the second annular member 33 is manufactured, an annular member having a predetermined size is obtained by cutting or the like, and then the convex portion 33Bp and the concave shape are formed on one surface 33B by using a well-known photolithography method, electrolytic processing method, or the like. A concave / convex pattern for generating dynamic pressure composed of the portion 33Bn is formed. When the rotating member 31 is manufactured, a cylindrical member having a predetermined size is obtained by cutting or the like, and then similarly, the convex portion 31Bp and the concave shape are formed on the surface 31A by using a well-known photolithography method, electrolytic processing method, or the like. A concave / convex pattern for generating dynamic pressure composed of the portion 31Bn is formed.

次に、上記凹凸パターン形成工程で動圧発生用凹凸パターンが形成された動圧軸受用部品素材の表面部に精密研磨処理を施す。この研磨工程は、具体的には、平面研磨盤(ラップ研磨盤又はポリッシング研磨盤)による研磨もしくは円筒研削加工によるもので、平均粗さRa=0.04μm程度に仕上げる。図6は研磨砥粒を用いた精密研磨処理後の凹凸パターンの表面の表面粗さを測定した結果を示すグラフである。なお、表面粗さの測定は、テーラーホブソン社の触針式表面粗さ計を用いた。   Next, the surface portion of the dynamic pressure bearing component material on which the dynamic pressure generating uneven pattern is formed in the uneven pattern forming step is subjected to a precision polishing process. Specifically, this polishing step is performed by polishing with a flat polishing machine (lap polishing machine or polishing polishing machine) or cylindrical grinding, and the average roughness Ra is about 0.04 μm. FIG. 6 is a graph showing the results of measuring the surface roughness of the surface of the concavo-convex pattern after precision polishing using polishing abrasive grains. The surface roughness was measured using a stylus type surface roughness meter manufactured by Taylor Hobson.

次に、上記研磨を施した表面にさらに磁気バレル研磨処理を施す。図1に示されるように、この磁気バレル研磨処理は、固定台110に置いた容器100に流体300と研磨媒体である磁性メディア400と被研磨体である動圧軸受用部品33とを入れて蓋101をし、回転台200に磁石201を固定した外部の運動磁場によって磁性メディア400を運動させることにより、前記被研磨体を研磨するものである。   Next, a magnetic barrel polishing process is further performed on the polished surface. As shown in FIG. 1, in this magnetic barrel polishing process, a fluid 300, a magnetic medium 400 that is a polishing medium, and a hydrodynamic bearing component 33 that is an object to be polished are placed in a container 100 placed on a fixed base 110. The object to be polished is polished by moving the magnetic medium 400 by an external kinetic magnetic field with the lid 101 and the magnet 201 fixed to the turntable 200.

この場合、流体300としては、例えば、水350〜400ccに対し、コンパウンドを約5cc(全体の1〜2%)、クエン酸を約0.1g添加したものを用いる。また、磁性メディア400としては、例えば、直径0.5mmで長さが5mmの磁性ステンレスピンを、上記流体に対して、150〜180g入れて用いる。そして、回転台200を約600rpmで回転させ、約30分間研磨する。図7は磁気バレル研磨処理後の凹凸パターンの表面の表面粗さを測定した結果を示すグラフである。なお、表面粗さの測定は、テーラーホブソン社の触針式表面粗さ計を用いた。   In this case, as the fluid 300, for example, about 5cc (1 to 2% of the total) of compound and about 0.1g of citric acid are added to 350 to 400cc of water. In addition, as the magnetic medium 400, for example, a magnetic stainless steel pin having a diameter of 0.5 mm and a length of 5 mm is used by putting 150 to 180 g with respect to the fluid. Then, the turntable 200 is rotated at about 600 rpm and polished for about 30 minutes. FIG. 7 is a graph showing the results of measuring the surface roughness of the surface of the concavo-convex pattern after the magnetic barrel polishing treatment. The surface roughness was measured using a stylus type surface roughness meter manufactured by Taylor Hobson.

図6に示されるように、研磨砥粒を用いた精密研磨処理後の凹凸パターンの表面の表面粗さは、平均粗さRa=0.04μmであり、極めて高い精度に仕上がっている。これに対して、図7に示されるように、磁気バレル研磨を施した後の表面は数値的にはむしろ精度が低下したようにみえる。しかしながら、図6に示される表面状態を分析すると、シャープな凹凸が多く、金属表面に剥離しやすい毟れ(ムシレ)や毛羽(ケバ)もしくはかえり(カエリ)が多く生じているものと推測される。それゆえ、作動中に摩耗がおきやすくなったり、毟れ(ムシレ)や毛羽(ケバ)もしくはかえり(カエリ)が剥がれて異物となり、軸受を破損させる原因にもなるおそれがあるものと考えられる。   As shown in FIG. 6, the surface roughness of the surface of the concavo-convex pattern after precision polishing using polishing abrasive grains is an average roughness Ra = 0.04 μm, and is finished with extremely high accuracy. On the other hand, as shown in FIG. 7, the surface after the magnetic barrel polishing seems to be numerically rather degraded. However, when the surface state shown in FIG. 6 is analyzed, it is estimated that there are many sharp irregularities, and there are many wrinkles, fluff or burr that are easily peeled off the metal surface. . For this reason, it is considered that wear may easily occur during operation, and stuffiness, fluff, or burr may peel off and become foreign matter, which may cause damage to the bearing.

これに対して、磁気バレル研磨を施した後の表面は数値的にはむしろ精度が低下したようにみえるが、金属表面の剥離しやすい毟れ(ムシレ)や毛羽(ケバ)もしくはかえり(カエリ)が除去され、金属表面が滑らかにされ、しかも、緩やかで適度に大きい粗さを有する凹凸が形成され、さらには、金属表面が鍛えられて、加工硬化すると共に剥離等のおそれもなくなるものと考えられる。その結果、著しい耐久性の向上、密着現象発生の防止等の効果が得られるものと考えられる。   On the other hand, the surface after magnetic barrel polishing seems numerically rather less accurate, but the metal surface is prone to peeling, fluff, fluff or burr. It is considered that the metal surface is smoothed, and unevenness having a moderately large roughness is formed, and further, the metal surface is forged and work hardened and there is no possibility of peeling. It is done. As a result, it is considered that effects such as remarkable improvement in durability and prevention of adhesion phenomenon are obtained.

以下、上述の動圧軸受用部品をHDD回転駆動部に用いた例を説明する。図8において、HDD回転駆動部10の中心部には、動圧軸受装置20が配置されている。この動圧軸受装置20の回転中心に配置された回転軸部材31の上部には、図示されない記憶用ディスクを搭載するハブ11が嵌合固定され、回転軸部材31とともに回転するようになっている。また、ハブ11の内周面には、モータ駆動用磁石部材12が嵌合固着され、このモータ駆動用磁石部材12の内側には、ステータ支持部材14に固定されたモータステータ部13が設けられている。モータ駆動用磁石部材12は、モータステータ部13に与えられた交番電流により発生する交番磁界により回転駆動され、これによりハブ11とともに記憶用ディスクが回転するようになっている。   Hereinafter, an example in which the above-described dynamic pressure bearing component is used in the HDD rotation drive unit will be described. In FIG. 8, a hydrodynamic bearing device 20 is disposed at the center of the HDD rotation drive unit 10. A hub 11 on which a storage disk (not shown) is mounted is fitted and fixed to the upper portion of the rotary shaft member 31 disposed at the rotation center of the dynamic pressure bearing device 20, and rotates together with the rotary shaft member 31. . A motor driving magnet member 12 is fitted and fixed to the inner peripheral surface of the hub 11, and a motor stator portion 13 fixed to the stator support member 14 is provided inside the motor driving magnet member 12. ing. The motor driving magnet member 12 is rotationally driven by an alternating magnetic field generated by an alternating current applied to the motor stator portion 13, whereby the storage disk rotates together with the hub 11.

HDD回転駆動部10の大きさは、例えば、ハブ11の外径(直径)が20mm程度、動圧軸受装置20の全体の厚さ(高さ寸法)がモータステータ部13の構造等にもよるが1.5〜5.8mm程度、回転軸部材31の軸径(直径)が2mm程度のものである。図9において、動圧軸受装置20は、回転部30と固定部40とを備えている。また、回転部30と固定部40との間には、動圧軸受部50が形成され、回転部30は、この動圧軸受部50を介して固定部40により回転自在に支持されている。   The size of the HDD rotation drive unit 10 depends on, for example, the outer diameter (diameter) of the hub 11 of about 20 mm, and the overall thickness (height dimension) of the hydrodynamic bearing device 20 depends on the structure of the motor stator unit 13. Is about 1.5 to 5.8 mm, and the shaft diameter (diameter) of the rotary shaft member 31 is about 2 mm. In FIG. 9, the hydrodynamic bearing device 20 includes a rotating part 30 and a fixed part 40. In addition, a dynamic pressure bearing portion 50 is formed between the rotating portion 30 and the fixed portion 40, and the rotating portion 30 is rotatably supported by the fixed portion 40 through the dynamic pressure bearing portion 50.

回転部30は、円柱状の回転軸部材31と、この回転軸部材31の外周面に嵌合固定された円環状の第一環状部材32および第二環状部材33とを備えて構成されている。これらの第一環状部材32および第二環状部材33は、回転軸部材31の外周面31Aとの嵌合面である内周面32A,33Aのみに接着剤が塗布され、上下の各端面には、接着剤は塗布されていない。   The rotating unit 30 includes a cylindrical rotating shaft member 31, and an annular first annular member 32 and a second annular member 33 that are fitted and fixed to the outer peripheral surface of the rotating shaft member 31. . The first annular member 32 and the second annular member 33 are coated with an adhesive only on the inner peripheral surfaces 32A and 33A, which are fitting surfaces with the outer peripheral surface 31A of the rotary shaft member 31, and on the upper and lower end surfaces. The adhesive is not applied.

固定部40は、回転軸部材31の下端側に配置される受け皿状の下部支持部材41と、この下部支持部材41の上部に嵌合固着されて第一環状部材32と第二環状部材33との間に配置された円環状の中間部材42と、この中間部材42の外周側に配置された円環状の磁石部材43と、この磁石部材43の上側に配置されて中間部材42の外周面に嵌合固着された略フランジ状の上部ヨーク44とを備えて構成されている。なお、下部支持部材41の底板は、何の荷重もかからず、液体を封入できればよいので、例えば0.05mm程度の厚さがあればよく、高さ方向には殆どスペースをとらない。   The fixed portion 40 is a saucer-like lower support member 41 disposed on the lower end side of the rotary shaft member 31, and is fitted and fixed to the upper portion of the lower support member 41, so that the first annular member 32 and the second annular member 33 An annular intermediate member 42 disposed between the annular member 42, an annular magnet member 43 disposed on the outer peripheral side of the intermediate member 42, and an outer peripheral surface of the intermediate member 42 disposed on the upper side of the magnet member 43. A substantially flange-like upper yoke 44 fitted and fixed is provided. Note that the bottom plate of the lower support member 41 does not apply any load and needs only to be able to enclose a liquid. For example, it may have a thickness of about 0.05 mm and takes up little space in the height direction.

動圧軸受部50は、回転部30に作用するスラスト方向の荷重を受けるスラスト軸受部51と、回転部30に作用するラジアル方向の荷重を受けるジャーナル軸受部52とにより構成されている。また、スラスト軸受部51は、上側スラスト軸受部51Aと、下側スラスト軸受部51Bとの二層により形成されている。上側スラスト軸受部51Aは、第一環状部材32の下端面32Bと、この下端面32Bに対向する中間部材42の上端面42Aと、これらの対向面32B,42A間に形成された第一の隙間54に充填された動圧発生用の作動油53とにより構成されている。   The hydrodynamic bearing portion 50 includes a thrust bearing portion 51 that receives a thrust load acting on the rotating portion 30 and a journal bearing portion 52 that receives a radial load acting on the rotating portion 30. The thrust bearing portion 51 is formed of two layers of an upper thrust bearing portion 51A and a lower thrust bearing portion 51B. The upper thrust bearing portion 51A includes a lower end surface 32B of the first annular member 32, an upper end surface 42A of the intermediate member 42 facing the lower end surface 32B, and a first gap formed between the opposing surfaces 32B and 42A. And hydraulic oil 53 for generating dynamic pressure filled in 54.

下側スラスト軸受部51Bは、第二環状部材33の上端面33Bと、この上端面33Bに対向する中間部材42の下端面42Bと、これらの対向面33B,42B間に形成された第二の隙間55に充填された動圧発生用の作動油53とにより構成されている。 ジャーナル軸受部52は、回転軸部材31の外周面31Aと、この外周面31Aに対向する中間部材42の内周面42Cと、これらの対向面31A,42C間に形成された第三の隙間56に充填された動圧発生用の作動油53とにより構成されている。   The lower thrust bearing portion 51B includes an upper end surface 33B of the second annular member 33, a lower end surface 42B of the intermediate member 42 opposed to the upper end surface 33B, and a second portion formed between the opposed surfaces 33B and 42B. It is comprised with the hydraulic oil 53 for dynamic pressure generation with which the clearance gap 55 was filled. The journal bearing portion 52 includes an outer peripheral surface 31A of the rotary shaft member 31, an inner peripheral surface 42C of the intermediate member 42 facing the outer peripheral surface 31A, and a third gap 56 formed between the opposing surfaces 31A and 42C. And hydraulic oil 53 for generating a dynamic pressure filled in.

上側スラスト軸受部51Aを構成する各対向面32B,42Aのいずれか一方の面、および下側スラスト軸受部51Bを構成する各対向面33B,42Bのいずれか一方の面には、図示されない動圧発生用の凹凸パターンがそれぞれ形成されている。これらの凹凸パターンの形状や深さは任意であり、動圧発生に適した一般的なものとすればよい。また、ジャーナル軸受部52を構成する回転軸部材31の外周面31Aにも、この外周面31Aを一周する帯状領域に動圧発生用の凹凸パターン31Bが形成されている。但し、凹凸パターン31Bの形状や深さは任意であり、動圧発生に適した一般的なものとすればよく、図示の形状に限定されるものではない。また、第一の隙間54、第二の隙間55、第三の隙間56、および回転軸部材31および第二環状部材33の下端面と下部支持部材41の底面との間に形成された隙間57は、全て連通されている。   On one surface of each of the opposing surfaces 32B and 42A constituting the upper thrust bearing portion 51A and on one surface of each of the opposing surfaces 33B and 42B constituting the lower thrust bearing portion 51B, a dynamic pressure (not shown) is provided. An uneven pattern for generation is formed. The shape and depth of these concavo-convex patterns are arbitrary, and may be a general one suitable for generating dynamic pressure. In addition, a concavo-convex pattern 31B for generating dynamic pressure is also formed on the outer peripheral surface 31A of the rotary shaft member 31 constituting the journal bearing portion 52 in a belt-like region that goes around the outer peripheral surface 31A. However, the shape and depth of the concavo-convex pattern 31B are arbitrary, and may be a general one suitable for generating dynamic pressure, and are not limited to the illustrated shape. Further, the first gap 54, the second gap 55, the third gap 56, and the gap 57 formed between the lower end surface of the rotary shaft member 31 and the second annular member 33 and the bottom surface of the lower support member 41. Are all in communication.

作動油53と外部空間60との境界面53Aの近傍に配置される構成部材である第一環状部材32および上部ヨーク44の表面のうち、少なくとも図中一点鎖線で示された部分には、作動油53の滲み出し防止用の撥油剤が塗布されている。なお、撥油剤は、図中一点鎖線で示された部分以外の部分に塗布されていてもよい。例えば、後述するように、第一環状部材32および上部ヨーク44の機械加工を行う際に、撥油剤を切削剤の代わりに用いる場合には、これらの部材32,44の全体が撥油剤で覆われることになるが、膜厚が微少であるため問題にはならない。また、第一環状部材32の表面のうち、図中一点鎖線で示された部分は、テーパ面32Cとなっている。   Of the surfaces of the first annular member 32 and the upper yoke 44, which are constituent members disposed in the vicinity of the boundary surface 53A between the hydraulic oil 53 and the external space 60, at least the portion indicated by the alternate long and short dash line in FIG. An oil repellent for preventing the oil 53 from bleeding is applied. The oil repellent may be applied to a portion other than the portion indicated by the alternate long and short dash line in the figure. For example, as will be described later, when the oil repellent is used instead of the cutting agent when machining the first annular member 32 and the upper yoke 44, the whole of the members 32 and 44 are covered with the oil repellent. However, it is not a problem because the film thickness is very small. Moreover, the part shown with the dashed-dotted line in the figure among the surfaces of the 1st annular member 32 is the taper surface 32C.

作動油53には磁性流体が用いられ、このうち境界面53Aの近傍部分には、第一磁性流体53Bが配置され、境界面53Aの近傍部分以外の部分、すなわち、隙間54〜57には、第一磁性流体53Bの濃度よりも低い濃度を有する第二磁性流体53Cが配置されている。ここで、第一磁性流体53Bとしては、例えば、強磁場で保持されるに十分な100〜200ガウス程度の磁性流体を好適に用いることができ、第二磁性流体53Cとしては、例えば、限りなく一般の潤滑油に近い飽和磁化10〜30ガウス程度の濃度の低い磁性流体(飽和磁化200ガウスの磁性流体に比較し、金属微粒子の含有量は約1/4程度)を好適に用いることができる。   A magnetic fluid is used for the hydraulic oil 53. Among these, the first magnetic fluid 53B is disposed in the vicinity of the boundary surface 53A, and the portions other than the vicinity of the boundary surface 53A, that is, the gaps 54 to 57, A second magnetic fluid 53C having a concentration lower than that of the first magnetic fluid 53B is disposed. Here, as the first magnetic fluid 53B, for example, a magnetic fluid of about 100 to 200 gauss sufficient to be held in a strong magnetic field can be suitably used. As the second magnetic fluid 53C, for example, there is no limit. A magnetic fluid having a low concentration of about 10 to 30 gauss, which is close to that of a general lubricating oil (the content of metal fine particles is about ¼ compared with a magnetic fluid having a saturation magnetization of 200 gauss) can be suitably used. .

磁石部材43は、回転軸部材31の軸芯に沿う方向(図中上下方向)に着磁され、これにより磁石部材43−上部ヨーク44−第一環状部材32−回転軸部材31−第二環状部材33−下部支持部材41−磁石部材43という経路による磁気閉回路が形成されている。従って、境界面53Aの近傍部分、すなわち第一環状部材32の外周面とこれに対向する上部ヨーク44の内周面との間には、強磁場が形成され、これにより第一磁性流体53Bが保持されている。磁石部材43には、例えばサマリウムと鉄と窒素とを配合して形成された磁石部材(Sm−Fe−Nマグネット)を好適に用いることができる。これは、粒子径が例えば5μm程度のボンド磁石である。   The magnet member 43 is magnetized in a direction (vertical direction in the drawing) along the axis of the rotary shaft member 31, thereby causing the magnet member 43 -the upper yoke 44 -the first annular member 32 -the rotary shaft member 31 -the second annular shape. A magnetic closed circuit is formed by a path of member 33-lower support member 41-magnet member 43. Accordingly, a strong magnetic field is formed in the vicinity of the boundary surface 53A, that is, between the outer peripheral surface of the first annular member 32 and the inner peripheral surface of the upper yoke 44 opposed thereto, whereby the first magnetic fluid 53B is Is retained. As the magnet member 43, for example, a magnet member (Sm—Fe—N magnet) formed by blending samarium, iron, and nitrogen can be suitably used. This is a bonded magnet having a particle diameter of, for example, about 5 μm.

上述の構成のHDD回転駆動部の耐久性をテストしたところ、130万回以上のCSSテストに耐えることが解った。   When the durability of the HDD rotational drive unit having the above-described configuration was tested, it was found that it could withstand a CSS test of 1.3 million times or more.

本発明は、例えば、ハードディスク・ドライブ(HDD)やデジタル・バーサタイル・ディスク(DVD)の駆動装置のようなディスク回転型記憶装置の他、ポリゴンミラー等の回転部の軸受として用いられる動圧軸受装置の動圧発生部を構成する動圧軸受用部品の製造に利用できる。   The present invention relates to a hydrodynamic bearing device used as a bearing of a rotating part of a polygon mirror or the like in addition to a disk rotating storage device such as a hard disk drive (HDD) or digital versatile disk (DVD) drive device. It can utilize for manufacture of the components for dynamic-pressure bearings which comprise this dynamic pressure generation part.

本発明の実施例にかかる動圧軸受用部品の製造方法における磁気バレル研磨処理の説明図である。It is explanatory drawing of the magnetic barrel grinding | polishing process in the manufacturing method of the components for dynamic pressure bearings concerning the Example of this invention. 本発明の実施例にかかる動圧軸受用部品たる第二環状部材33の断面図である。It is sectional drawing of the 2nd annular member 33 which is the components for dynamic pressure bearings concerning the Example of this invention. 第二環状部材33の平明図である。4 is a plan view of a second annular member 33. FIG. 本発明の実施例にかかる動圧軸受用部品たる回転部材31の側面図である。It is a side view of the rotation member 31 which is the components for dynamic pressure bearings concerning the Example of this invention. 回転部材31の表面部に形成された凹凸パターン31Bの展開図である。4 is a development view of a concavo-convex pattern 31B formed on the surface portion of the rotating member 31. FIG. 研磨砥粒を用いた精密研磨処理後の凹凸パターンの表面の表面粗さを測定した結果を示すグラフである。It is a graph which shows the result of having measured the surface roughness of the surface of the uneven | corrugated pattern after the precision polishing process using an abrasive grain. 磁気バレル研磨処理後の凹凸パターンの表面の表面粗さを測定した結果を示すグラフである。It is a graph which shows the result of having measured the surface roughness of the surface of the uneven | corrugated pattern after a magnetic barrel grinding | polishing process. 本発明の実施例にかかる動圧軸受用部品をHDD回転駆動部10に組み込んだ例を示す断面図である。1 is a cross-sectional view showing an example in which a component for a hydrodynamic bearing according to an embodiment of the present invention is incorporated in an HDD rotation drive unit 10. 動圧軸受装置20の拡大断面図である。3 is an enlarged cross-sectional view of a fluid dynamic bearing device 20. FIG.

符号の説明Explanation of symbols

33 動圧軸受用部品
200 回転台
201 磁石
300 研磨流体
400 磁性メディア
33 Hydrodynamic bearing component 200 Turntable 201 Magnet 300 Abrasive fluid 400 Magnetic media

Claims (3)

動圧軸受用部品を製造する動圧軸受用部品の製造方法であって、
動圧軸受用部品素材を所定の形状に加工する加工工程と、
前記加工工程で所定形状に加工された動圧軸受用部品素材の表面を所定の表面状態にする表面処理工程とを有し、
前記表面処理工程は、容器に流体と研磨媒体である磁性メディアと被研磨体とを入れて外部の運動磁場によって磁性メディアを運動させることにより前記被研磨体を研磨するようにした磁気バレル研磨処理を有することを特徴とする動圧軸受用部品の製造方法。
A method for producing a hydrodynamic bearing part for producing a hydrodynamic bearing part, comprising:
A processing step of processing a fluid pressure bearing component material into a predetermined shape;
A surface treatment step of bringing the surface of the dynamic pressure bearing component material processed into a predetermined shape in the processing step into a predetermined surface state,
In the surface treatment step, a magnetic barrel polishing process is performed in which a fluid, a magnetic medium as a polishing medium, and an object to be polished are placed in a container, and the object to be polished is polished by moving the magnetic medium by an external kinetic magnetic field. A method for producing a component for a hydrodynamic bearing, comprising:
請求項1に記載の動圧軸受用部品の製造方法において、前記表面処理工程は、研磨砥粒を用いて精密研磨した後、前記磁気バレル研磨処理を施すものであることを特徴とする動圧軸受用部品の製造方法。   2. The method of manufacturing a hydrodynamic bearing part according to claim 1, wherein the surface treatment step is performed by performing the magnetic barrel polishing after the fine polishing using polishing abrasive grains. Manufacturing method of bearing parts. 請求項1又は2に記載の動圧軸受用部品の製造方法において、前記磁気バレル研磨処理に用いる磁性メディアは、磁性ステンレス線材を所定の長さにしたものであることを特徴とする動圧軸受用部品の製造方法。   3. The method of manufacturing a fluid dynamic bearing part according to claim 1, wherein the magnetic medium used for the magnetic barrel polishing is a magnetic stainless steel wire having a predetermined length. Method of manufacturing parts.
JP2003330333A 2003-09-22 2003-09-22 Method of manufacturing parts for dynamic bearing Withdrawn JP2005095998A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003330333A JP2005095998A (en) 2003-09-22 2003-09-22 Method of manufacturing parts for dynamic bearing
EP04022548A EP1517057A3 (en) 2003-09-22 2004-09-22 Dynamic pressure thrust bearing part and method of manufacturing dynamic pressure thrust bearing part
US10/946,118 US20050094906A1 (en) 2003-09-22 2004-09-22 Dynamic pressure thrust bearing part and method of manufacturing dynamic pressure thrust bearing part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003330333A JP2005095998A (en) 2003-09-22 2003-09-22 Method of manufacturing parts for dynamic bearing

Publications (1)

Publication Number Publication Date
JP2005095998A true JP2005095998A (en) 2005-04-14

Family

ID=34459333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003330333A Withdrawn JP2005095998A (en) 2003-09-22 2003-09-22 Method of manufacturing parts for dynamic bearing

Country Status (1)

Country Link
JP (1) JP2005095998A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007083491A1 (en) * 2006-01-19 2007-07-26 Ntn Corporation Shaft member for dynamic pressure bearing device
JP2007192320A (en) * 2006-01-19 2007-08-02 Ntn Corp Shaft member for hydrodynamic bearing unit
JP2007198400A (en) * 2006-01-23 2007-08-09 Ntn Corp Shaft member for dynamic pressure bearing device
JP2007321861A (en) * 2006-05-31 2007-12-13 Nissan Motor Co Ltd Low-friction sliding member
JP2011148023A (en) * 2010-01-20 2011-08-04 Sintokogio Ltd Method for smoothly polishing hard metallic material
JP2015075020A (en) * 2013-10-08 2015-04-20 学校法人明治大学 Cylinder outer sensor for monitoring combustion, and method of adjusting output of cylinder outer sensor for monitoring combustion
KR101643279B1 (en) * 2015-03-09 2016-07-28 인하대학교 산학협력단 Apparatus for deburring by using Magneto-rheological fluids
US11561314B2 (en) 2015-10-30 2023-01-24 TGS-NOPEC Geophysical Corporation Multi-axis, single mass accelerometer

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007083491A1 (en) * 2006-01-19 2007-07-26 Ntn Corporation Shaft member for dynamic pressure bearing device
JP2007192320A (en) * 2006-01-19 2007-08-02 Ntn Corp Shaft member for hydrodynamic bearing unit
US8104963B2 (en) 2006-01-19 2012-01-31 Ntn Corporation Shaft member for fluid dynamic bearing device
US8366322B2 (en) 2006-01-19 2013-02-05 Ntn Corporation Shaft member for fluid dynamic bearing device
JP2007198400A (en) * 2006-01-23 2007-08-09 Ntn Corp Shaft member for dynamic pressure bearing device
JP2007321861A (en) * 2006-05-31 2007-12-13 Nissan Motor Co Ltd Low-friction sliding member
JP4702186B2 (en) * 2006-05-31 2011-06-15 日産自動車株式会社 Low friction sliding member
JP2011148023A (en) * 2010-01-20 2011-08-04 Sintokogio Ltd Method for smoothly polishing hard metallic material
JP2015075020A (en) * 2013-10-08 2015-04-20 学校法人明治大学 Cylinder outer sensor for monitoring combustion, and method of adjusting output of cylinder outer sensor for monitoring combustion
KR101643279B1 (en) * 2015-03-09 2016-07-28 인하대학교 산학협력단 Apparatus for deburring by using Magneto-rheological fluids
US11561314B2 (en) 2015-10-30 2023-01-24 TGS-NOPEC Geophysical Corporation Multi-axis, single mass accelerometer

Similar Documents

Publication Publication Date Title
KR100570132B1 (en) Edge finishing process for glass or ceramic disks used in disk drive data storage devices
US7186028B2 (en) Hydrodynamic bearing device
JP2006002937A (en) Fluid dynamic pressure bearing device, its manufacturing method, spindle motor and recording disk drive
US20050094906A1 (en) Dynamic pressure thrust bearing part and method of manufacturing dynamic pressure thrust bearing part
JP2005095998A (en) Method of manufacturing parts for dynamic bearing
JP2008202642A (en) Fluid bearing device, spindle motor with it, recording and reproducing device and manufacturing method of bearing component
JP2007278313A (en) Thrust plate manufacturing method, thrust plate, motor, and recording disc drive mechanism
JP3990181B2 (en) Manufacturing method of hydrodynamic bearing device
JP2010053914A (en) Hydrodynamic bearing device, spindle motor, and information device
US7708465B2 (en) Hydrodynamic bearing device, spindle motor, and method for manufacturing hydrodynamic bearing device
JP2002339956A (en) Dynamic pressure bearing device, and manufacturing method therefor
JPH07310733A (en) Dynamic pressure bearing device
JP4610973B2 (en) Method for manufacturing shaft member for hydrodynamic bearing device
US20090108691A1 (en) Hydrodynamic bearing device, motor and information recording and reproducing apparatus in which same is used, and method for manufacturing shaft used in hydrodynamic bearing device
JP4504391B2 (en) Manufacturing method of hydrodynamic bearing device
US20030117906A1 (en) Apparatus and method for optimizing hydrodynamic groove shape
JP2002048132A (en) Fluid bearing
JP5000382B2 (en) Method for manufacturing shaft member for hydrodynamic bearing device
JP3984756B2 (en) Air dynamic pressure bearing device
JP4078628B2 (en) Pump-in pump-out judgment method
US8699181B2 (en) Spindle motor for driving a hard disk drive
JP2005127525A (en) Hydrodynamic bearing device
JP3611182B2 (en) Drive apparatus for disk type recording / reproducing apparatus
JP3859486B2 (en) Hydrodynamic bearing unit and manufacturing method thereof
JP2008215490A (en) Fluid bearing type rotary device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060921

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20080521

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20080527

Free format text: JAPANESE INTERMEDIATE CODE: A131

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080527