JP2002048132A - Fluid bearing - Google Patents

Fluid bearing

Info

Publication number
JP2002048132A
JP2002048132A JP2000237850A JP2000237850A JP2002048132A JP 2002048132 A JP2002048132 A JP 2002048132A JP 2000237850 A JP2000237850 A JP 2000237850A JP 2000237850 A JP2000237850 A JP 2000237850A JP 2002048132 A JP2002048132 A JP 2002048132A
Authority
JP
Japan
Prior art keywords
fluid bearing
peripheral surface
shaft
dynamic pressure
sleeve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000237850A
Other languages
Japanese (ja)
Inventor
Ikunori Sakatani
郁紀 坂谷
Kazuhiro Kamimura
和宏 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2000237850A priority Critical patent/JP2002048132A/en
Publication of JP2002048132A publication Critical patent/JP2002048132A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fluid bearing in which a fluctuation phenomenon of NRRO during rotation can hardly occur and which has excellent durability in repeated start and stop operation. SOLUTION: In a spindle motor comprising a shaft 3 and a sleeve 2 facing with the shaft 3 by way of a fluid bearing clearance Cr of a radial fluid bearing R, a surface roughness Rpm of at least one of the outer periphery 3f of the shaft 3 and the internal circumference 2f of the sleeve is selected as 15% or smaller of the fluid bearing clearance Cr.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、情報機器,音響・
映像機器,事務機器用の流体軸受に係り、特に、磁気デ
ィスク装置(HDD),光ディスク装置等に最適な流体
軸受に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an information device,
The present invention relates to a fluid bearing for video equipment and office equipment, and more particularly to a fluid bearing which is optimal for a magnetic disk drive (HDD), an optical disc drive, and the like.

【0002】[0002]

【従来の技術】従来のこの種の流体軸受を用いた装置と
しては、例えば、HDD用スピンドルモータがある。そ
の構造を、図1を参照しながら説明する。このスピンド
ルモータは、底板2aを有する円筒体状のスリーブ2が
ベース1に立設した円筒部1aの内側に内挿され、これ
らが一体的に固着されて構成されている。そして、この
ようなスリーブ2に軸3が回転自在に挿通されていて、
軸3とスリーブ2との間には動圧流体軸受部が介在して
いる。また、軸3の上端には、逆カップ状のハブ4が一
体的に取り付けられている。
2. Description of the Related Art As a conventional apparatus using such a fluid bearing, there is, for example, a spindle motor for an HDD. The structure will be described with reference to FIG. This spindle motor is configured such that a cylindrical sleeve 2 having a bottom plate 2a is inserted inside a cylindrical portion 1a erected on a base 1, and these are integrally fixed. The shaft 3 is rotatably inserted into such a sleeve 2,
A hydrodynamic bearing is interposed between the shaft 3 and the sleeve 2. An inverted cup-shaped hub 4 is integrally attached to the upper end of the shaft 3.

【0003】すなわち、軸3の下端面は、スラスト流体
軸受Sのスラスト受面3sとされている。そして、この
スラスト受面3sには、相手部材であるスリーブ2の底
板2aの上面がスラスト流体軸受すきまを介して対向
し、この上面がスラスト流体軸受Sのスラスト軸受面2
sとされている。そして、上記スラスト受面3s及びス
ラスト軸受面2sのうち少なくとも一方に、エッチング
等により形成されたヘリングボーン状又はスパイラル状
の動圧発生用溝(図示せず)を備えて、スラスト流体軸
受Sが構成されている。
That is, the lower end surface of the shaft 3 is a thrust receiving surface 3s of the thrust fluid bearing S. The upper surface of the bottom plate 2a of the sleeve 2, which is a mating member, is opposed to the thrust receiving surface 3s via a thrust fluid bearing clearance, and this upper surface is opposed to the thrust bearing surface 2 of the thrust fluid bearing S.
s. Further, at least one of the thrust receiving surface 3s and the thrust bearing surface 2s is provided with a herringbone-shaped or spiral-shaped groove for dynamic pressure generation (not shown) formed by etching or the like, so that the thrust fluid bearing S is formed. It is configured.

【0004】さらに、軸3の外周面3fには、上下に間
隔をおいて一対のラジアル受面3r,3rが形成されて
いる。また、スリーブ2の内周面2fには、ラジアル受
面3r,3rにラジアル流体軸受すきまを介して対向し
てラジアル軸受面2r,2rが形成されている。そし
て、ラジアル受面3rとラジアル軸受面2rとの少なく
とも一方に、ヘリングボーン状又はスパイラル状の動圧
発生用溝7,7を備えて、ラジアル流体軸受R,Rが構
成されている。
[0004] Further, a pair of radial receiving surfaces 3r, 3r are formed on the outer peripheral surface 3f of the shaft 3 at an interval vertically. Further, radial bearing surfaces 2r, 2r are formed on the inner peripheral surface 2f of the sleeve 2 so as to face the radial receiving surfaces 3r, 3r via a radial fluid bearing clearance. Further, at least one of the radial receiving surface 3r and the radial bearing surface 2r is provided with a herringbone-shaped or spiral-shaped groove for generating dynamic pressure 7, 7 to constitute a radial fluid bearing R, R.

【0005】そして、円筒部1aの外周面にはステータ
8が固定され、ハブ4の内周面下側に固定されているロ
ータ磁石9とギャップを介して周面対向して駆動モータ
Mを形成しており、この駆動モータMにより軸3とハブ
4とが一体的に回転駆動するようになっている。軸3が
回転すると、スラスト流体軸受S及びラジアル流体軸受
Rの各動圧発生用溝のポンピング作用により、各流体軸
受S,Rの流体軸受すきまに充填された微量の潤滑剤に
動圧が発生して、軸3はスリーブ2の内周面2f及び底
板2aの上面と非接触となり支承される。
A stator 8 is fixed to the outer peripheral surface of the cylindrical portion 1a, and a drive motor M is formed facing the rotor magnet 9 fixed below the inner peripheral surface of the hub 4 via a gap. The shaft 3 and the hub 4 are integrally rotated by the drive motor M. When the shaft 3 rotates, a dynamic pressure is generated in a small amount of lubricant filled in the fluid bearing clearances of the fluid bearings S and R by the pumping action of the dynamic pressure generating grooves of the thrust fluid bearing S and the radial fluid bearing R. Thus, the shaft 3 is not contacted with the inner peripheral surface 2f of the sleeve 2 and the upper surface of the bottom plate 2a and is supported.

【0006】このようなスピンドルモータにおいて、動
圧発生用溝7は、図3の模式図(軸3及びスリーブ2の
縦断面拡大図)に示すように長方形状の断面形状を有し
ている。そして、動圧発生用溝7の縁部10、すなわ
ち、動圧発生用溝7の側面7aと軸3の外周面3fとが
交差する稜部分(以降は、縁部又は肩部と記す)は、尖
鋭な角状で、丸みのない形状となっている。
In such a spindle motor, the dynamic pressure generating groove 7 has a rectangular cross-sectional shape as shown in the schematic view of FIG. 3 (enlarged vertical cross-sectional view of the shaft 3 and the sleeve 2). An edge 10 of the groove 7 for generating dynamic pressure, that is, a ridge portion where the side surface 7a of the groove 7 for generating dynamic pressure and the outer peripheral surface 3f of the shaft 3 intersect (hereinafter referred to as an edge or a shoulder) It has a sharp angular shape and no roundness.

【0007】これは、焼入れにより表面の硬さを高くし
た軸3の外周面3fに、エッチングや電解加工等により
動圧発生用溝7を加工すると、動圧発生用溝7の縁部1
0がシャープエッジになるからである。また、軸3はス
テンレス鋼製であり、ラジアル流体軸受Rの流体軸受す
きまCrを介して軸3に対向するスリーブ2は、ステン
レス鋼よりも表面硬さが低い銅合金製である。そして、
軸3の外周面3f及びスリーブ2の内周面2fは、ラジ
アル流体軸受Rの流体軸受すきまCrの大きさの16.
7%程度の表面粗さRpmに加工されて、流体軸受に用
いられていた。
[0007] This is because when the groove 7 for generating dynamic pressure is formed on the outer peripheral surface 3f of the shaft 3 whose surface hardness is increased by quenching by etching or electrolytic processing, the edge 1 of the groove 7 for generating dynamic pressure is formed.
This is because 0 becomes a sharp edge. The shaft 3 is made of stainless steel, and the sleeve 2 facing the shaft 3 via the fluid bearing clearance Cr of the radial fluid bearing R is made of a copper alloy having a lower surface hardness than stainless steel. And
The outer peripheral surface 3f of the shaft 3 and the inner peripheral surface 2f of the sleeve 2 have the size of the fluid bearing clearance Cr of the radial fluid bearing R.
It was processed to a surface roughness Rpm of about 7% and used for a fluid bearing.

【0008】[0008]

【発明が解決しようとする課題】ノート型パソコンのよ
うな携帯機器に搭載されるHDDにおいては、記憶容量
の向上がめざましく、記録面密度を高めるために、スピ
ンドルモータの回転非同期成分の振れ(NRRO)が小
さいことが求められている。そこで、NRROを小さく
するために、スピンドルモータに流体軸受を採用するこ
とが検討されている。
In a HDD mounted on a portable device such as a notebook personal computer, the storage capacity is remarkably improved, and in order to increase a recording surface density, a fluctuation (NRRO) of a rotation asynchronous component of a spindle motor is required. ) Is required to be small. Therefore, adoption of a fluid bearing for the spindle motor has been studied in order to reduce NRRO.

【0009】しかしながら、流体軸受を用いたとして
も、回転中のNRROが瞬間的に大きくなり、ふらつく
現象が現れる場合があった。そこで、軸3の外周面3f
とスリーブ2の内周面2f(ラジアル受面3rとラジア
ル軸受面2r)との間の電気的な導通を、スピンドルモ
ータを回転させながら観察したところ、導通とNRRO
のふらつき現象とに相関があることが判明した。このこ
とから、NRROのふらつき現象は、前記両面3f,2
fの微細な突起部分(表面の粗さを構成する突起)が、
回転中にわずかに接触することにより発生すると推測さ
れる。
However, even if a fluid bearing is used, the NRRO during rotation may increase instantaneously, causing a wobble phenomenon. Therefore, the outer peripheral surface 3f of the shaft 3
When the electrical conduction between the inner peripheral surface 2f of the sleeve 2 (the radial receiving surface 3r and the radial bearing surface 2r) was observed while rotating the spindle motor, the conduction and the NRRO were observed.
It was found that there was a correlation with the wobble phenomenon. From this, the wobble phenomenon of NRRO is caused by the above-mentioned two sides 3f, 2
f fine protrusions (protrusions that make up the surface roughness)
It is presumed to occur due to slight contact during rotation.

【0010】一方、最近のノート型パソコン用のHDD
においては、電池寿命を長くするため低消費電力である
ことが求められている。そのため、HDDが動作しない
ときはスピンドルモータをこまめに停止させて、データ
を出し入れするときのみスピンドルモータを回転させる
ような方式になってきている。したがって、最近のHD
D用スピンドルモータには、優れた起動停止耐久性が要
求されるようになってきている。
On the other hand, recent HDDs for notebook PCs
, Low power consumption is required to prolong the battery life. Therefore, when the HDD does not operate, the spindle motor is frequently stopped, and the spindle motor is rotated only when data is transferred. Therefore, recent HD
The D spindle motor is required to have excellent start / stop durability.

【0011】流体軸受の場合には、起動停止時に前記両
面3f,2fが互いに接触することは避けらず、また、
前記両面3f,2fの表面粗さが大きい(粗い)ため、
起動停止時に初期摩耗が起こりやすい。また、軸3の外
周面3fに設けた動圧発生用溝7の両縁部10がシャー
プエッジとなっているので、軟らかい銅合金で構成され
ているスリーブ2に外周面3fが接触した際に、スリー
ブ2の内周面2fが損傷しやすく、起動停止耐久性に問
題があった。
In the case of a fluid bearing, it is inevitable that the two surfaces 3f and 2f come into contact with each other when starting and stopping.
Since the surface roughness of both surfaces 3f and 2f is large (rough),
Initial wear is likely to occur when starting and stopping. Since both edges 10 of the dynamic pressure generating groove 7 provided on the outer peripheral surface 3f of the shaft 3 have sharp edges, when the outer peripheral surface 3f comes into contact with the sleeve 2 made of a soft copper alloy. In addition, the inner peripheral surface 2f of the sleeve 2 is easily damaged, and there is a problem in the start / stop durability.

【0012】そこで本発明は、上記のような従来の流体
軸受が有する問題点を解決し、回転中にNRROのふら
つき現象が起こり難く、起動停止耐久性に優れた流体軸
受を提供することを課題とする。
It is an object of the present invention to provide a fluid bearing which solves the above-mentioned problems of the conventional fluid bearing and which is less likely to cause NRRO wobble during rotation and has excellent start / stop durability. And

【0013】[0013]

【課題を解決するための手段】上記課題を解決するた
め、本発明は次のような構成からなる。すなわち、本発
明の流体軸受装置は、軸と、該軸に流体軸受すきまを介
して対向する相手部材と、を備えた流体軸受において、
前記軸の外周面及び前記相手部材の内周面のうち少なく
とも一方の表面粗さRpmを、前記流体軸受すきまの大
きさの15%以下としたことを特徴とする。
In order to solve the above-mentioned problems, the present invention has the following arrangement. That is, the hydrodynamic bearing device of the present invention is a hydrodynamic bearing comprising a shaft and a mating member opposed to the shaft via a hydrodynamic bearing clearance,
The surface roughness Rpm of at least one of the outer peripheral surface of the shaft and the inner peripheral surface of the mating member is set to 15% or less of the size of the fluid bearing clearance.

【0014】このように前記軸の外周面や前記相手部材
の内周面の表面粗さRpmが良好であれば、流体軸受の
回転中に前記両面が接触し難いので、NRROのふらつ
き現象が起こり難く、さらに、起動停止時の初期摩耗も
起こり難い。前記表面粗さRpmが前記流体軸受すきま
の大きさの15%超過であると、NRROのふらつき現
象が起こりやすくなる。
As described above, if the surface roughness Rpm of the outer peripheral surface of the shaft or the inner peripheral surface of the mating member is good, the two surfaces do not easily come into contact during rotation of the fluid bearing, so that the NRRO wobble phenomenon occurs. It is hard to cause initial wear when starting and stopping. If the surface roughness Rpm exceeds 15% of the size of the fluid bearing clearance, the NRRO wobble phenomenon is likely to occur.

【0015】さらに、前記流体軸受においては、前記軸
の外周面及び前記相手部材の内周面のうち少なくとも一
方に動圧発生用溝を設けるとともに、前記動圧発生用溝
の縁部を、尖鋭な角状ではなく曲面状とすることが好ま
しい。そうすれば、前記流体軸受すきまを介して対向す
る前記軸の外周面と前記相手部材の内周面とが、流体軸
受の回転時に接触したとしても、前記縁部が尖鋭な角状
ではなく曲面状であるので、前記両面が損傷し難い。よ
って、流体軸受の起動停止耐久性が良好となる。
Further, in the fluid bearing, a dynamic pressure generating groove is provided on at least one of an outer peripheral surface of the shaft and an inner peripheral surface of the mating member, and an edge of the dynamic pressure generating groove is sharpened. It is preferable to use a curved surface instead of a square shape. Then, even if the outer peripheral surface of the shaft and the inner peripheral surface of the mating member that are opposed to each other via the fluid bearing clearance are in contact with each other when the fluid bearing rotates, the edge is not a sharp corner but a curved surface. , The two sides are hardly damaged. Therefore, the start / stop durability of the fluid bearing is improved.

【0016】なお、前記縁部とは、前記動圧発生用溝を
設けた前記外周面又は前記内周面と前記動圧発生用溝の
内面とが交差する稜部分のことを言う。ただし、前記縁
部のうちあまりに広い部分を曲面状とすると、前記動圧
発生用溝の断面形状が大きく変化するため前記動圧発生
用溝の機能が失われて、前記動圧発生用溝による十分な
動圧の発生が妨げられる恐れがある。したがって、前記
縁部のうちの、前記動圧発生用溝を設けた前記外周面又
は前記内周面と前記動圧発生用溝の内面とが交差する頂
点から所定の範囲内の部分を、曲面状とする必要があ
る。
The edge means a ridge portion at which the outer peripheral surface or the inner peripheral surface provided with the dynamic pressure generating groove and the inner surface of the dynamic pressure generating groove intersect. However, if an excessively wide portion of the edge portion is formed into a curved shape, the function of the dynamic pressure generating groove is lost because the cross-sectional shape of the dynamic pressure generating groove changes greatly, and the dynamic pressure generating groove is not used. The generation of sufficient dynamic pressure may be hindered. Therefore, a portion of the edge portion within a predetermined range from a vertex at which the outer peripheral surface or the inner peripheral surface provided with the dynamic pressure generating groove and the inner surface of the dynamic pressure generating groove intersect with each other is a curved surface. Need to be in a state.

【0017】この範囲とは以下の通りである。まず、前
記動圧発生用溝の深さ方向の範囲は、前記頂点から前記
動圧発生用溝の深さの1/3以下の長さ範囲である。ま
た、前記動圧発生用溝の幅方向の範囲は、前記頂点から
隣接する動圧発生用溝の間隔(リッジ幅)の1/3以下
の長さ範囲である。また、前記相手部材の材質には、前
記軸よりも硬さの低いものを使用する場合が多いので、
前記動圧発生用溝は前記相手部材の内周面に設ける方
が、溝加工が容易となり好ましい。しかも、前記軸の外
周面に前記動圧発生用溝が備えられていないので、前記
動圧発生用溝の縁部によって硬さの低い前記相手部材の
内周面が傷つけられる恐れがない。
This range is as follows. First, the range in the depth direction of the groove for generating dynamic pressure is a length range from the top to 1/3 or less of the depth of the groove for generating dynamic pressure. The range in the width direction of the dynamic pressure generation groove is a length range of not more than 1/3 of the distance (ridge width) between the apex and the adjacent dynamic pressure generation groove. Also, since the material of the mating member is often a material having a lower hardness than the shaft,
It is preferable to provide the dynamic pressure generating groove on the inner peripheral surface of the mating member because the groove processing is facilitated. Moreover, since the dynamic pressure generating groove is not provided on the outer peripheral surface of the shaft, there is no possibility that the inner peripheral surface of the mating member having low hardness is damaged by the edge of the dynamic pressure generating groove.

【0018】なお、本発明における表面粗さRpmと
は、前記軸の外周面や前記相手部材の内周面に動圧発生
用溝が設けられている場合は、前記外周面や前記内周面
のうち前記動圧発生用溝の部分を除いた部分の表面粗さ
Rpmを意味する。
The surface roughness Rpm in the present invention means the outer peripheral surface or the inner peripheral surface when a dynamic pressure generating groove is provided on the outer peripheral surface of the shaft or the inner peripheral surface of the mating member. Means the surface roughness Rpm of the portion excluding the dynamic pressure generating groove.

【0019】[0019]

【発明の実施の形態】本発明に係る流体軸受の実施の形
態を、図面を参照しながら詳細に説明する。図1は、本
発明に係る流体軸受の一実施形態であるスピンドルモー
タの縦断面図である。また、図2は、図1のスピンドル
モータの動圧発生用溝7の部分を拡大して示した拡大断
面図である。なお、本実施形態のスピンドルモータの構
成は、前述の従来のスピンドルモータとほぼ同様である
ので、同様の部分の説明は省略し、異なる部分のみ説明
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a fluid bearing according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a longitudinal sectional view of a spindle motor which is one embodiment of a fluid bearing according to the present invention. FIG. 2 is an enlarged sectional view showing an enlarged portion of the groove 7 for generating dynamic pressure of the spindle motor of FIG. The configuration of the spindle motor according to the present embodiment is substantially the same as that of the above-described conventional spindle motor. Therefore, the description of the same parts will be omitted, and only different parts will be described.

【0020】軸3の外周面3f及びスリーブ2の内周面
2fの表面粗さRpmは、ラジアル流体軸受Rの流体軸
受すきまCrの大きさの15.0%以下としている。特
に、硬さの高い軸3の外周面3fの表面粗さRpmを、
硬さの低いスリーブ2の内周面2fと比べて等しいか小
さくすると、起動停止時の前記両面3f,2f同士の接
触によるなじみが早く、回転中のNRROのふらつき現
象を低減できることが判明した。
The surface roughness Rpm of the outer peripheral surface 3f of the shaft 3 and the inner peripheral surface 2f of the sleeve 2 is set to 15.0% or less of the size of the fluid bearing clearance Cr of the radial fluid bearing R. In particular, the surface roughness Rpm of the outer peripheral surface 3f of the shaft 3 having high hardness is
It has been found that if the inner peripheral surface 2f of the sleeve 2 having low hardness is equal to or smaller than the inner peripheral surface 2f, the adaptation due to the contact between the two surfaces 3f and 2f at the time of starting and stopping is quick, and the fluctuation phenomenon of the NRRO during rotation can be reduced.

【0021】なお、表面粗さには種々の種類があり、中
心線平均粗さRaが現在広く使われている。しかしなが
ら、流体軸受の場合は、起動停止時に接触するのは表面
のうち最も粗い部分であるから、中心線平均粗さRaを
用いて表面粗さを評価することは不適当であることが分
かった。そこで、粗さの中心線からの最大山高さの平均
値を示す粗さ表示である表面粗さRpm(平均山高さ)
を用いて表面粗さを評価した。参考までに、表面粗さR
pmの定義を説明する説明図を図4に示す。
There are various types of surface roughness, and the center line average roughness Ra is widely used at present. However, in the case of the fluid bearing, since the portion that comes into contact at the time of starting and stopping is the roughest portion of the surface, it has been found that it is inappropriate to evaluate the surface roughness using the center line average roughness Ra. . Therefore, the surface roughness Rpm (average peak height) which is a roughness display indicating the average value of the maximum peak height from the center line of the roughness.
Was used to evaluate the surface roughness. For reference, the surface roughness R
FIG. 4 is an explanatory diagram for explaining the definition of pm.

【0022】また、スリーブ2の内周面2fに設けられ
た動圧発生用溝7は、図2に示すように半円状の断面形
状を有している。さらに、動圧発生用溝7の縁部10、
すなわち、動圧発生用溝7の内面7aとスリーブ2の内
周面2fとが交差する稜部分は、尖鋭な角状ではなく、
曲面状となっている。この縁部10の形状についてさら
に詳述すると、縁部10のうち曲面状とした部分は、内
周面2fと動圧発生用溝7の内面7aとが交差する頂点
Vから所定の範囲内の部分である。
The dynamic pressure generating groove 7 provided on the inner peripheral surface 2f of the sleeve 2 has a semicircular cross-sectional shape as shown in FIG. Further, the edge portion 10 of the groove 7 for generating dynamic pressure,
That is, the ridge at which the inner surface 7a of the dynamic pressure generating groove 7 and the inner peripheral surface 2f of the sleeve 2 intersect is not a sharp corner, but
It has a curved shape. The shape of the edge 10 will be described in more detail. The curved portion of the edge 10 is within a predetermined range from the vertex V where the inner peripheral surface 2f and the inner surface 7a of the groove 7 for generating dynamic pressure intersect. Part.

【0023】この範囲とは以下の通りである。まず、動
圧発生用溝7の深さ方向の範囲Aは、頂点Vから動圧発
生用溝7の深さDの1/3以下の長さ範囲である。ま
た、動圧発生用溝7の幅方向の範囲Bは、頂点Vから隣
接する動圧発生用溝の間隔L(リッジ幅)の1/3以下
の長さ範囲である。なお、本実施形態においては、深さ
方向の範囲Aは、頂点Vから動圧発生用溝7の深さDの
1/3の長さ範囲とし、幅方向の範囲Bは、頂点Vから
隣接する動圧発生用溝の間隔L(リッジ幅)の1/3の
長さ範囲とした。
This range is as follows. First, the range A in the depth direction of the dynamic pressure generating groove 7 is a length range from the vertex V to 1/3 or less of the depth D of the dynamic pressure generating groove 7. Further, the range B in the width direction of the dynamic pressure generating groove 7 is a length range equal to or less than 3 of the distance L (ridge width) between the apex V and the adjacent dynamic pressure generating groove. In the present embodiment, the range A in the depth direction is a length range from the vertex V to 1/3 of the depth D of the groove 7 for generating dynamic pressure, and the range B in the width direction is adjacent to the vertex V. Of the groove L (ridge width) of the dynamic pressure generating grooves to be formed.

【0024】動圧発生用溝7の加工は、銅合金,ステン
レス鋼等からなるスリーブ2の内周面2fに、ボール転
造等の塑性加工やバイトによる切削加工を施すことによ
り行っている。なお、動圧発生用溝7の断面が半円状で
あるので、塑性加工や切削加工の適用が容易である。す
なわち、軸外周に複数個のボールを保持した転造治具を
用いてボール転造を施したり、先端を半円弧状に加工し
た切削バイトを用いて旋削加工することにより、スリー
ブ2の内周面2fに容易に溝加工を施すことができる。
エッジのある切削バイトを用いると刃先が損傷しやすい
ので、動圧発生用溝7の断面は半円状とすることが好ま
しい。
The groove 7 for generating dynamic pressure is formed by subjecting the inner peripheral surface 2f of the sleeve 2 made of a copper alloy, stainless steel or the like to plastic working such as ball rolling or cutting with a cutting tool. Since the cross section of the groove 7 for generating dynamic pressure is semicircular, it is easy to apply plastic working or cutting. That is, the inner periphery of the sleeve 2 is formed by performing ball rolling using a rolling jig holding a plurality of balls on the outer periphery of the shaft, or by turning using a cutting tool having a semicircular tip. Groove processing can be easily performed on the surface 2f.
If a cutting bit having an edge is used, the cutting edge is likely to be damaged. Therefore, it is preferable that the cross section of the groove 7 for generating dynamic pressure be semicircular.

【0025】また、動圧発生用溝7を硬さの低いスリー
ブ2の内周面2fに設けたので、溝加工が容易であると
ともに、軸3の外周面3fとスリーブ2の内周面2fと
が起動停止時に接触しても、動圧発生用溝7の縁部10
によりスリーブ2の内周面2fが傷つけられることがな
く好ましい。なお、動圧発生用溝7の縁部10を曲面状
とする方法としては、溝加工が施された直後の尖鋭な縁
部10に、ボール通し,ブラシ等によるブラッシング,
電解研磨,化学研磨,バレル加工,バニッシュ加工等を
施して、尖鋭な角状部分を取り除く方法等があげられ、
加工精度や加工コストなどを考慮して適宜選択可能であ
る。
Further, since the dynamic pressure generating groove 7 is provided on the inner peripheral surface 2f of the sleeve 2 having a low hardness, the groove processing is easy, and the outer peripheral surface 3f of the shaft 3 and the inner peripheral surface 2f of the sleeve 2 are easily formed. Of the dynamic pressure generating groove 7 even if the
This is preferable because the inner peripheral surface 2f of the sleeve 2 is not damaged. In addition, as a method of making the edge 10 of the groove 7 for generating dynamic pressure into a curved surface, ball cutting, brushing with a brush or the like is applied to the sharp edge 10 immediately after the groove processing.
Electrolytic polishing, chemical polishing, barrel processing, burnishing, etc. to remove sharp corners, etc.
It can be appropriately selected in consideration of processing accuracy, processing cost, and the like.

【0026】同様に、軸3の外周面3f及びスリーブ2
の内周面2fの表面粗さRpmを良化させる方法として
は、スリーブ2の内周面2fの場合は、ボール通し,ホ
ーニング加工,ラップ加工等があげられ、軸3の外周面
3fの場合は、超仕上加工,テーピング加工,バフ研磨
等があげられ、量産性,加工コストなどを考慮して適宜
選択可能である。
Similarly, the outer peripheral surface 3f of the shaft 3 and the sleeve 2
As a method for improving the surface roughness Rpm of the inner peripheral surface 2f of the sleeve 2, in the case of the inner peripheral surface 2f of the sleeve 2, ball passing, honing, lapping and the like can be mentioned, and in the case of the outer peripheral surface 3f of the shaft 3, Super finishing, taping, buffing and the like can be used, and can be appropriately selected in consideration of mass productivity, processing cost, and the like.

【0027】なお、本実施形態は、本発明の一例を示し
たものであって、本発明は本実施形態に限定されるもの
ではない。例えば、動圧発生用溝7は、本実施形態にお
いてはスリーブ2の内周面2fに設けたが、軸3の外周
面3fに設けてもよいし、双方に設けてもよい。また、
動圧発生用溝7の断面形状は、加工が容易で、洗浄の際
に異物が残留しにくく洗浄容易な半円状が好ましいが、
三角形状,正方形状,長方形状等の多角形状であっても
よい。
The present embodiment is an example of the present invention, and the present invention is not limited to the present embodiment. For example, the dynamic pressure generating groove 7 is provided on the inner peripheral surface 2f of the sleeve 2 in the present embodiment, but may be provided on the outer peripheral surface 3f of the shaft 3 or both. Also,
The cross-sectional shape of the dynamic pressure generating groove 7 is preferably a semicircular shape which is easy to process, hardly contains foreign matter during cleaning, and is easy to clean.
A polygonal shape such as a triangular shape, a square shape, and a rectangular shape may be used.

【0028】また、軸3,スリーブ2等のスピンドルモ
ータを構成する部材の材質は、特に限定されるものでは
なく、スピンドルモータを構成する部材に通常使用され
るステンレス鋼,銅合金,焼結金属,焼結含油金属,プ
ラスチック,セラミック等の材料であれば問題なく使用
できる。さらに、スピンドルモータは、本実施形態のよ
うなスリーブ固定−軸回転タイプでもよいし、軸固定−
スリーブ回転タイプでも差し支えない。また、流体軸受
の構造,動圧発生用溝7のパターン,スピンドルモータ
の細部の構造等に関しては、本実施形態に限定されるも
のではなく、必要に応じて適宜変更することが可能であ
る。
The material of the members constituting the spindle motor such as the shaft 3 and the sleeve 2 is not particularly limited, and may be stainless steel, copper alloy, sintered metal or the like generally used for the members constituting the spindle motor. Any material, such as sintered oil-impregnated metal, plastic, and ceramic, can be used without any problem. Further, the spindle motor may be a sleeve fixed-shaft rotating type as in the present embodiment, or a shaft fixed-
The sleeve rotation type can be used. Further, the structure of the fluid bearing, the pattern of the grooves 7 for generating dynamic pressure, the detailed structure of the spindle motor, and the like are not limited to the present embodiment, and can be appropriately changed as necessary.

【0029】さらに、本実施形態においては、流体軸受
を用いた装置としてスピンドルモータを例示して説明し
たが、本発明は他の種々の流体軸受装置に対して適用す
ることができる。次に、上記のようなスピンドルモータ
について、NRROのふらつき現象と起動停止耐久性を
評価した。
Furthermore, in the present embodiment, the spindle motor has been described as an example of a device using a fluid bearing, but the present invention can be applied to various other fluid bearing devices. Next, with respect to the spindle motor as described above, the wobble phenomenon of NRRO and the start / stop durability were evaluated.

【0030】まず、軸3の外周面3f及びスリーブ2の
内周面2fの表面粗さRpmとラジアル流体軸受すきま
Crとの比率が、NRROのふらつき現象に及ぼす影響
を調査した。試験条件は、スピンドルモータの回転数が
4200rpmで、ラジアル流体軸受すきまCrは2〜
4μmである。また、流体軸受すきまには潤滑剤A(添
加剤を含有するジエステル油)を充填した。
First, the influence of the ratio between the surface roughness Rpm of the outer peripheral surface 3f of the shaft 3 and the inner peripheral surface 2f of the sleeve 2 and the radial fluid bearing clearance Cr on the fluctuation phenomenon of NRRO was examined. The test conditions were as follows: the rotational speed of the spindle motor was 4200 rpm, and the radial fluid bearing clearance Cr was 2 to 2.
4 μm. The lubricant A was filled with a lubricant A (a diester oil containing an additive).

【0031】表1に実施例1〜3及び比較例1,2のス
ピンドルモータについて、外周面3f及び内周面2fの
表面粗さRpm,表面粗さRpmとラジアル流体軸受す
きまCrとの比率(表面粗さRpm/ラジアル流体軸受
すきまCr),外周面3fと内周面2fとの導通の有
無,及びNRROのふらつき現象の有無を示す。
Table 1 shows the surface roughness Rpm of the outer peripheral surface 3f and the inner peripheral surface 2f of the spindle motors of Examples 1 to 3 and Comparative Examples 1 and 2, and the ratio of the surface roughness Rpm to the radial fluid bearing clearance Cr ( It shows the surface roughness Rpm / the radial fluid bearing clearance Cr), the presence or absence of conduction between the outer peripheral surface 3f and the inner peripheral surface 2f, and the presence or absence of the NRRO wobble phenomenon.

【0032】[0032]

【表1】 [Table 1]

【0033】この結果から、軸3の外周面3f及びスリ
ーブ2の内周面2fの表面粗さRpmがラジアル流体軸
受すきまCrの15%以下であれば、NRROのふらつ
き現象が起きていないことが分かる。また、比較例2か
ら、前記両面3f,2fの表面粗さRpmを良くして
も、ラジアル流体軸受すきまCrに対する比率が大きい
と、両面3f,2fの接触が回避できず、NRROのふ
らつき現象が起きることが分かる。さらに、硬さの高い
軸3の外周面3fの表面粗さRpmを、硬さの低いスリ
ーブ2の内周面2fの表面粗さRpmと、同じか小さく
しておくことが好ましいことが分かる。
From these results, it can be seen that if the surface roughness Rpm of the outer peripheral surface 3f of the shaft 3 and the inner peripheral surface 2f of the sleeve 2 is 15% or less of the radial fluid bearing clearance Cr, the NRRO wobble phenomenon does not occur. I understand. Further, from Comparative Example 2, even if the surface roughness Rpm of the two surfaces 3f and 2f is improved, if the ratio to the radial fluid bearing clearance Cr is large, contact between the two surfaces 3f and 2f cannot be avoided, and the NRRO wobble phenomenon occurs. I know what happens. Further, it is understood that it is preferable that the surface roughness Rpm of the outer peripheral surface 3f of the shaft 3 having high hardness is equal to or smaller than the surface roughness Rpm of the inner peripheral surface 2f of the sleeve 2 having low hardness.

【0034】次に、スピンドルモータの起動停止耐久性
を、回転の起動停止を繰り返すオンオフ試験により評価
した結果について説明する。試験条件は、スピンドルモ
ータの回転数が4200rpmで、起動停止回数が10
000回である。また、軸3の材質はステンレス鋼、ス
リーブ2の材質は銅合金で、流体軸受すきまには潤滑剤
A(添加剤を含有するジエステル油)を充填した。
Next, a description will be given of the result of evaluating the start / stop durability of the spindle motor by an on / off test in which the start / stop of rotation is repeated. The test conditions were as follows: the number of rotations of the spindle motor was 4200 rpm, and the number of start / stop times was 10
000 times. The material of the shaft 3 was stainless steel, the material of the sleeve 2 was a copper alloy, and the fluid bearing clearance was filled with a lubricant A (diester oil containing an additive).

【0035】その結果を表2に示す。Table 2 shows the results.

【0036】[0036]

【表2】 [Table 2]

【0037】この結果から、動圧発生用溝7の縁部10
(肩部)を曲面状とすれば、前記両面3f,2fが損傷
し難くなって、起動停止耐久性が向上することが分か
る。
From these results, it can be seen that the edge 10 of the dynamic pressure generating groove 7
It can be seen that if the (shoulder) is curved, the both surfaces 3f, 2f are less likely to be damaged, and the start / stop durability is improved.

【0038】[0038]

【発明の効果】以上のように、本発明の流体軸受は、軸
の外周面や相手部材の内周面の表面粗さRpmが流体軸
受すきまの大きさの15%以下であるので、流体軸受の
回転中に前記両面が接触し難い。よって、NRROのふ
らつき現象が起こり難く、さらに、起動停止時の初期摩
耗も起こり難い。
As described above, in the fluid bearing of the present invention, the surface roughness Rpm of the outer peripheral surface of the shaft and the inner peripheral surface of the mating member is 15% or less of the size of the fluid bearing clearance. It is difficult for the two surfaces to come into contact during rotation. Therefore, the NRRO wobble phenomenon is unlikely to occur, and the initial wear at the time of starting and stopping is also unlikely to occur.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る流体軸受の一実施形態であるスピ
ンドルモータを示す断面図である。
FIG. 1 is a sectional view showing a spindle motor which is an embodiment of a fluid bearing according to the present invention.

【図2】図1のスピンドルモータの動圧発生用溝の部分
拡大断面図である。
2 is a partially enlarged sectional view of a groove for generating dynamic pressure of the spindle motor of FIG. 1;

【図3】従来のスピンドルモータの動圧発生用溝の断面
形状を示す模式図である。
FIG. 3 is a schematic diagram illustrating a cross-sectional shape of a groove for generating dynamic pressure of a conventional spindle motor.

【図4】表面粗さRpmの定義を説明する説明図であ
る。
FIG. 4 is an explanatory diagram for explaining the definition of surface roughness Rpm.

【符号の説明】[Explanation of symbols]

2 スリーブ 2f 内周面 3 軸 3f 外周面 7 動圧発生用溝 10 縁部 Cr ラジアル流体軸受すきま R ラジアル流体軸受 S スラスト流体軸受 2 Sleeve 2f Inner peripheral surface 3 Shaft 3f Outer peripheral surface 7 Groove for generating dynamic pressure 10 Edge Cr Radial fluid bearing clearance R Radial fluid bearing S Thrust fluid bearing

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3J011 AA20 BA04 DA02 JA02 KA02 KA03 5H607 AA04 BB01 BB14 BB17 BB25 CC01 DD03 DD16 GG01 GG09 GG12  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 3J011 AA20 BA04 DA02 JA02 KA02 KA03 5H607 AA04 BB01 BB14 BB17 BB25 CC01 DD03 DD16 GG01 GG09 GG12

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 軸と、該軸に流体軸受すきまを介して対
向する相手部材と、を備えた流体軸受において、前記軸
の外周面及び前記相手部材の内周面のうち少なくとも一
方の表面粗さRpmを、前記流体軸受すきまの大きさの
15%以下としたことを特徴とする流体軸受。
1. A fluid bearing comprising a shaft and a mating member opposed to the shaft via a fluid bearing clearance, wherein at least one of an outer peripheral surface of the shaft and an inner peripheral surface of the mating member has a rough surface. A fluid bearing, wherein Rpm is 15% or less of the size of the fluid bearing clearance.
JP2000237850A 2000-08-07 2000-08-07 Fluid bearing Pending JP2002048132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000237850A JP2002048132A (en) 2000-08-07 2000-08-07 Fluid bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000237850A JP2002048132A (en) 2000-08-07 2000-08-07 Fluid bearing

Publications (1)

Publication Number Publication Date
JP2002048132A true JP2002048132A (en) 2002-02-15

Family

ID=18729637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000237850A Pending JP2002048132A (en) 2000-08-07 2000-08-07 Fluid bearing

Country Status (1)

Country Link
JP (1) JP2002048132A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006002937A (en) * 2004-05-20 2006-01-05 Minebea Co Ltd Fluid dynamic pressure bearing device, its manufacturing method, spindle motor and recording disk drive
WO2007083491A1 (en) * 2006-01-19 2007-07-26 Ntn Corporation Shaft member for dynamic pressure bearing device
JP2007192320A (en) * 2006-01-19 2007-08-02 Ntn Corp Shaft member for hydrodynamic bearing unit
JP2007198400A (en) * 2006-01-23 2007-08-09 Ntn Corp Shaft member for dynamic pressure bearing device
JP2016502042A (en) * 2012-11-26 2016-01-21 フェデラル−モーグル ヴィースバーデン ゲーエムベーハーFederal−Mogul Wiesbaden Gmbh Method and apparatus for manufacturing a friction bearing or part thereof, and friction bearing or part thereof
JP2016194374A (en) * 2016-08-12 2016-11-17 ポーライト株式会社 Manufacturing method of sintered bearing

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006002937A (en) * 2004-05-20 2006-01-05 Minebea Co Ltd Fluid dynamic pressure bearing device, its manufacturing method, spindle motor and recording disk drive
US7764463B2 (en) 2004-05-20 2010-07-27 Minebea Co., Ltd. Fluid dynamic pressure bearing for spindle motors and storage disk drive devices and having ridge portions between grooves in the fluid dynamic pressure bearing
WO2007083491A1 (en) * 2006-01-19 2007-07-26 Ntn Corporation Shaft member for dynamic pressure bearing device
JP2007192320A (en) * 2006-01-19 2007-08-02 Ntn Corp Shaft member for hydrodynamic bearing unit
US8104963B2 (en) 2006-01-19 2012-01-31 Ntn Corporation Shaft member for fluid dynamic bearing device
US8366322B2 (en) 2006-01-19 2013-02-05 Ntn Corporation Shaft member for fluid dynamic bearing device
JP2007198400A (en) * 2006-01-23 2007-08-09 Ntn Corp Shaft member for dynamic pressure bearing device
JP2016502042A (en) * 2012-11-26 2016-01-21 フェデラル−モーグル ヴィースバーデン ゲーエムベーハーFederal−Mogul Wiesbaden Gmbh Method and apparatus for manufacturing a friction bearing or part thereof, and friction bearing or part thereof
US9937564B2 (en) 2012-11-26 2018-04-10 Federal-Mogul Wiesbaden Gmbh Method and device for producing a friction bearing or a part thereof
JP2016194374A (en) * 2016-08-12 2016-11-17 ポーライト株式会社 Manufacturing method of sintered bearing

Similar Documents

Publication Publication Date Title
JP2006002937A (en) Fluid dynamic pressure bearing device, its manufacturing method, spindle motor and recording disk drive
US20060002642A1 (en) Fluid dynamic pressure bearing apparatus
JP3894648B2 (en) Hydrodynamic bearing device
JP3987745B2 (en) Thrust plate manufacturing method, dynamic pressure bearing shaft manufacturing method, dynamic pressure bearing, spindle motor, and recording disk drive device
JPH099568A (en) Disc drive
US6981797B2 (en) Hydrodynamic bearing unit
KR100952627B1 (en) Method for manufacturing hydro dynamic bearing device
JP2002048132A (en) Fluid bearing
EP1517057A2 (en) Dynamic pressure thrust bearing part and method of manufacturing dynamic pressure thrust bearing part
WO2004038240A1 (en) Hydrodynamic bearing device
JPH07229518A (en) Ball for ball bearing
JP4504391B2 (en) Manufacturing method of hydrodynamic bearing device
JP2005095998A (en) Method of manufacturing parts for dynamic bearing
JP2009030780A (en) Method of manufacturing bearing part and hydraulic dynamic-pressure bearing mechanism, hydraulic dynamic-pressure bearing mechanism, and motor
JP6757219B2 (en) Shaft members for fluid bearing equipment, their manufacturing methods, and fluid bearing equipment
JP2001254732A (en) Dynamic pressure bearing, and manufacturing method thereof
JP2002013534A (en) Fluid bearing apparatus
JP2001208069A (en) Spindle motor with liquid bearing
JP3859486B2 (en) Hydrodynamic bearing unit and manufacturing method thereof
JP2005127525A (en) Hydrodynamic bearing device
JP2002238228A (en) Fluid bearing unit
JPH11191945A (en) Spindle motor and rotary shaft support device of hard disc drive
JPH11344027A (en) Fluid bearing device and its machining method
JP2001298899A (en) Dynamic pressure bearing motor and disk driving device using the same
KR960005184B1 (en) Combination fluid bearing apparatus