JP2001298899A - Dynamic pressure bearing motor and disk driving device using the same - Google Patents

Dynamic pressure bearing motor and disk driving device using the same

Info

Publication number
JP2001298899A
JP2001298899A JP2000109101A JP2000109101A JP2001298899A JP 2001298899 A JP2001298899 A JP 2001298899A JP 2000109101 A JP2000109101 A JP 2000109101A JP 2000109101 A JP2000109101 A JP 2000109101A JP 2001298899 A JP2001298899 A JP 2001298899A
Authority
JP
Japan
Prior art keywords
dynamic pressure
bearing
free
stainless steel
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000109101A
Other languages
Japanese (ja)
Inventor
Keiji Matsumoto
啓司 松本
Hiromi Iida
広美 飯田
Mihoko Hirao
美保子 平尾
Hiromi Ishii
弘美 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Corp
Original Assignee
Nidec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Corp filed Critical Nidec Corp
Priority to JP2000109101A priority Critical patent/JP2001298899A/en
Publication of JP2001298899A publication Critical patent/JP2001298899A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/107Grooves for generating pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/14Special methods of manufacture; Running-in

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Sliding-Contact Bearings (AREA)
  • Rotational Drive Of Disk (AREA)
  • Motor Or Generator Frames (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To use free cutting stainless steel which is easy of cutting work as bearing material of a dynamic pressure bearing, form trenches in the bearing material by electromechanical machining, and obtain a superior bearing surface free from protrusions of cutting component. SOLUTION: Dynamic pressure trenches are formed on one out of a fixed bearing surface formed on a fixed member side and a rotary bearing surface formed on a rotating member side or on both of them, and the dynamic pressure bearing is constituted. The rotating member is supported rotatably to the fixed member by the dynamic pressure bearing. One or both of the fixed bearing surface and the rotary bearing surface are constituted of the free cutting stainless steal. The dynamic pressure trenches are formed by performing electromechanicai machining to the stainless steel, and acid treatment is performed to the forming surface of the trenches.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固定部材に対して
回転部材を動圧軸受を用いて回転自在に支持する動圧軸
受モータ及びこれを用いて記録ディスクを回転駆動する
ハードディスク駆動装置や高容量フロッピーディスク駆
動装置等のディスク駆動装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dynamic pressure bearing motor for rotatably supporting a rotating member with respect to a fixed member by using a dynamic pressure bearing, a hard disk drive device for rotating a recording disk using the motor, and a high-performance hard disk drive. The present invention relates to a disk drive such as a capacity floppy disk drive.

【0002】[0002]

【従来の技術】通常、ハードディスク駆動装置や高容量
フロッピーディスク駆動装置等のディスク駆動装置は、
ベース部材とカバー部材とでクリーンチャンバーを構成
し、クリーンチャンバー内の清浄空間内に記録ディスク
を収容し、ヘッドアームにより支持された磁気ヘッドに
より記録ディスクに対するアクセスを行うよう構成され
ている。
2. Description of the Related Art Usually, disk drives such as a hard disk drive and a high-capacity floppy disk drive,
A clean chamber is constituted by a base member and a cover member, a recording disk is accommodated in a clean space in the clean chamber, and access to the recording disk is performed by a magnetic head supported by a head arm.

【0003】より具体的には、クリーンチャンバー内
に、スピンドルモータの少なくともロータハブを回転自
在に収容し、これに1枚或いは複数枚の記録ディスクを
装着している。また、クリーンチャンバー内に、ボイス
コイルモータを含むヘッドアッセンブリが収容され、ボ
イスコイルモータにより回動されるアームの先端の磁気
ヘッドを記録ディスク表面に対してトレースすることに
よりデータの読み書きを可能にしている。
[0003] More specifically, at least a rotor hub of a spindle motor is rotatably accommodated in a clean chamber, and one or a plurality of recording disks are mounted in the rotatable hub. A head assembly including a voice coil motor is housed in a clean chamber, and the magnetic head at the tip of an arm rotated by the voice coil motor can be read and written by tracing the magnetic head to the recording disk surface. I have.

【0004】この種ディスク駆動装置においては、ヘッ
ドとディスク表面間への塵埃粒子の噛み込みに起因する
クラッシュを防止する必要上、クリーンチャンバー内に
おける空気の清浄度を高いレベルに保持する必要があ
り、大気と遮蔽して塵埃の流入を阻止するだけでなく、
チャンバー内における塵埃粒子いわゆるコンタミネーシ
ョンの発生を抑制する必要がある。クリーンチャンバー
内の構成部品,例えばスピンドルモータにおけるシャフ
トやロータハブ等の部品として、一般的な鉄や構造用鋼
に比べて錆びにくいステンレス鋼が多用されるようにな
っているのもこのような理由によるところが大きい。
In this type of disk drive, it is necessary to prevent a crash caused by dust particles being caught between the head and the disk surface, and it is necessary to maintain a high level of cleanliness of the air in the clean chamber. , Not only to block the air from blocking the air,
It is necessary to suppress the generation of dust particles, so-called contamination, in the chamber. For this reason, stainless steel, which is less likely to rust than general steel or structural steel, is often used as a component in a clean chamber, for example, a shaft or a rotor hub of a spindle motor. But big.

【0005】ハードディスク等のディスク駆動装置のよ
うな精密機械に使用される部品には、高い寸法精度が要
求されることから、材料自体が優れた成形加工性を有す
ることが求められる。中でも切削加工は最もよく利用さ
れる加工法であり、材料の被切削性を改善する為に種々
快削元素を添加した快削鋼が多用されている。上述した
ステンレス鋼は比較的削りにくい材料であるが、快削元
素としてイオウ(S)や、テルル(Te)、セレン(S
e)等を添加することにより被削性を改善している。快
削性成分としてイオウを0.25%以上含有するステン
レス鋼はコストが安くて良好な切削性が得られることか
ら一般によく使用されている。このイオウは主にマンガ
ンサルファイド(MnS)、クロムサルファイド(Cr
S)として鋼中に存在している。
[0005] Since parts used in precision machines such as disk drives such as hard disks are required to have high dimensional accuracy, the materials themselves are required to have excellent moldability. Above all, cutting is the most frequently used processing method, and free-cutting steel to which various free-cutting elements are added is often used in order to improve the machinability of the material. The above-mentioned stainless steel is a material that is relatively hard to cut, but sulfur (S), tellurium (Te), selenium (S)
The machinability is improved by adding e) and the like. Stainless steel containing 0.25% or more of sulfur as a free-cutting component is commonly used because it is inexpensive and can provide good machinability. This sulfur is mainly composed of manganese sulfide (MnS) and chromium sulfide (Cr
As present in steel as S).

【0006】一方、近年では、スピンドルモータ等に用
いられる軸受装置として、高速回転の軸受特性に優れた
動圧軸受が注目されている。この動圧軸受は、相対的に
回転自在に配置された固定側と回転側との間に所定の軸
受流体を介在させると共に、固定側と回転側との一方も
しくは両方に設けた動圧溝のポンピング作用によって軸
受流体に動圧を発生させ、その動圧力によって回転部材
を固定部材に対して回転自在に支持する構成になってい
る。
On the other hand, in recent years, dynamic bearings having excellent high-speed rotation bearing characteristics have been attracting attention as bearing devices used for spindle motors and the like. In this dynamic pressure bearing, a predetermined bearing fluid is interposed between a fixed side and a rotation side which are relatively rotatably disposed, and a dynamic pressure groove provided on one or both of the fixed side and the rotation side is provided. A dynamic pressure is generated in the bearing fluid by the pumping action, and the rotary member is rotatably supported on the fixed member by the dynamic pressure.

【0007】このような動圧軸受における動圧溝は、固
定側または回転側の軸受面にヘリングボーン状、スパイ
ラル状等の所定の溝形状に加工されるが、その加工手段
として、電解加工法がある。電解加工法は、動圧溝が電
解加工される非加工物と動圧溝に対応した溝形状の電極
露出部を有する電極工具とを互いに対向して配置し、非
加工物及び電極工具を電解加工用電源の正極及び負極に
それぞれ接続し、電極工具と非加工物との間に電解液を
流動させながら通電することにより非加工物を前記溝形
状に対応させて溶出させ、動圧溝を得るようになってい
る。
The dynamic pressure groove in such a dynamic pressure bearing is formed into a predetermined groove shape such as a herringbone shape or a spiral shape on a fixed or rotating bearing surface. There is. In the electrolytic machining method, a non-workpiece whose dynamic pressure groove is electrolytically machined and an electrode tool having a groove-shaped electrode exposed portion corresponding to the dynamic pressure groove are arranged to face each other, and the non-workpiece and the electrode tool are electrolyzed. Connected to the positive electrode and the negative electrode of the power source for processing, respectively, by applying electricity while flowing the electrolytic solution between the electrode tool and the non-processed object, the non-processed object is eluted according to the groove shape, and the dynamic pressure groove is formed. I am getting it.

【0008】[0008]

【発明が解決しようとする課題】ところで、動圧軸受の
構成部材に動圧溝を形成する場合、転造加工や切削加工
により溝加工を行うと、加工表面にバリやケバが生じ、
これらを除去するのが非常に困難であり、多くの工数が
必要とされる。これに対して、電解加工による溝加工で
は通常のステンレス鋼などでは加工表面にバリやケバの
発生はない。
By the way, when forming a dynamic pressure groove in a component of a dynamic pressure bearing, when the groove processing is performed by rolling or cutting, burrs or fluffs occur on the processed surface.
It is very difficult to remove them, and many man-hours are required. On the other hand, in the groove machining by electrolytic machining, no burr or fluff is generated on the machined surface of ordinary stainless steel or the like.

【0009】しかしながら、前述した切削加工の容易な
快削性ステンレス鋼を使用した場合には、快削性ステン
レス鋼表面の快削成分は電解加工されずに数ミクロンか
ら数十ミクロンの突起物として残る。そして、このまま
使用すると突起物がパーティクルとなり、軸受の摺動部
に入り込み、潤滑上での大きな問題を引き起こすことが
ある。
However, when the above-described easy-cuttable stainless steel, which is easy to cut, is used, the free-cutting component on the surface of the free-cuttable stainless steel is not electrolytically processed, but becomes a projection of several microns to several tens of microns. Remains. If used as it is, the projections become particles and may enter the sliding portion of the bearing, causing a serious problem in lubrication.

【0010】本発明は、従来の技術の有するこのような
問題点に留意して成されたものであり、その目的とする
ところは、切削加工が容易な快削性ステンレス鋼を動圧
軸受の軸受材料として用いた上で、この軸受材料に電解
加工による溝加工を施すと共に、快削成分の突起物のな
い良好な軸受面を得ることができる動圧軸受モータ及び
それを用いたディスク駆動装置を提供することにある。
The present invention has been made in consideration of such problems of the prior art, and an object of the present invention is to provide a free-cutting stainless steel which is easy to cut by a dynamic pressure bearing. A hydrodynamic bearing motor and a disk drive device using the same, which can be used as a bearing material, subjected to groove processing by electrolytic processing on the bearing material, and can obtain a good bearing surface free of protrusions of free-cutting components. Is to provide.

【0011】[0011]

【課題を解決するための手段】前記目的を達成するため
に、本発明の動圧軸受モータにあっては、固定部材側に
設けられた固定軸受面と回転部材側に設けられた回転軸
受面との一方もしくは両方に動圧溝を形成して動圧軸受
を構成し、この動圧軸受により固定部材に対して回転部
材を回転自在に支持してなる動圧軸受モータにおいて、
前記動圧溝が形成される前記固定軸受面と回転軸受面と
の一方もしくは両方は快削性ステンレス鋼により構成さ
れ、この快削性ステンレス鋼に電解加工を施して前記動
圧溝を形成し、当該動圧溝の形成面に酸処理を行ったこ
とを特徴とするものである(請求項1)。
In order to achieve the above object, in a dynamic bearing motor according to the present invention, a fixed bearing surface provided on a fixed member side and a rotary bearing surface provided on a rotating member side are provided. A dynamic pressure bearing is formed by forming a dynamic pressure groove in one or both of the above, and a dynamic pressure bearing motor which rotatably supports a rotating member with respect to a fixed member by the dynamic pressure bearing.
One or both of the fixed bearing surface and the rotating bearing surface on which the dynamic pressure grooves are formed are made of free-cutting stainless steel, and the free-cutting stainless steel is subjected to electrolytic processing to form the dynamic pressure grooves. An acid treatment is performed on the surface on which the dynamic pressure grooves are formed (claim 1).

【0012】動圧軸受を構成する固定軸受面と回転軸受
面との一方もしくは両方は快削性ステンレス鋼により構
成され、その快削性を利用して所望形状になるよう切削
加工が施された後、固定軸受面と回転軸受面との一方も
しくは両方に動圧溝が電解加工により形成される。動圧
溝を有する軸受面は電解加工後において快削成分が溶解
せずに突起状に残存するが、この動圧溝の形成面を酸処
理することにより、快削成分が優先的に溶解して除去さ
れ、またステンレス鋼表面が洗浄されて加工時に生じる
種々のスケール汚れが除去される。これにより、本ステ
ンレス鋼材に特有の高耐食性が発揮され、また併せて快
削成分からなるパーティクルによるコンタミネーション
の発生が防止される。
One or both of the fixed bearing surface and the rotary bearing surface constituting the dynamic pressure bearing are made of a free-cutting stainless steel, and are machined to a desired shape by utilizing the free-cutting property. Thereafter, a dynamic pressure groove is formed by electrolytic machining on one or both of the fixed bearing surface and the rotating bearing surface. Although the free-cutting component does not dissolve after electrolytic machining and remains in a projecting shape on the bearing surface with the dynamic pressure groove, the free-cutting component is preferentially dissolved by acid-treating the surface on which the dynamic pressure groove is formed. And the stainless steel surface is cleaned to remove various scale stains generated during processing. Thereby, high corrosion resistance peculiar to the stainless steel material is exhibited, and at the same time, occurrence of contamination due to particles composed of free-cutting components is prevented.

【0013】この場合、酸処理は、快削性ステンレス鋼
の表面に残存する汚れ,錆,スケールを除去することの
可能な酸水溶液により行うことが望ましく、主に硝酸溶
液により行うのがよい。
In this case, the acid treatment is desirably performed with an aqueous acid solution capable of removing dirt, rust and scale remaining on the surface of the free-cutting stainless steel, and is preferably performed mainly with a nitric acid solution.

【0014】酸洗いが施されたステンレス鋼は、耐食性
が向上し、快削成分が完全に除去できてパーティクルに
よるコンタミネーションを防止することができるが、イ
オウを主成分とする快削成分を酸処理すると腐食性の強
い硫化水素(H2S)やイオウそのものが発生し部材に
付着或いは残留することがある。これらのガスはディス
ク駆動装置内のヘッドやメディアに重大な影響を及ぼす
ことがあるので、酸処理後に中和処理もしくはベーキン
グ処理することが望ましい(請求項2,3)。
[0014] The pickled stainless steel has improved corrosion resistance and can completely remove free-cutting components to prevent contamination due to particles. When treated, highly corrosive hydrogen sulfide (H2S) or sulfur itself is generated and may adhere to or remain on members. Since these gases may have a significant effect on the head and media in the disk drive, it is desirable to carry out a neutralization treatment or a baking treatment after the acid treatment.

【0015】また、酸洗いが施されたステンレス鋼に対
して、その直後(中和処理或いはベーキング処理する場
合はその前)にクロメート処理することが良く(請求項
4)、さらに耐食性を向上させることができる。
[0015] The pickled stainless steel is preferably subjected to a chromate treatment immediately after the neutralization treatment (or before the neutralization treatment or the baking treatment, if any) (claim 4), and the corrosion resistance is further improved. be able to.

【0016】上記動圧溝の形成面の酸処理の前に、この
形成面を酸化処理してもよい(請求項4)。電解加工に
より生じた快削成分の突起物は、この酸処理の前処理と
しての酸化処理により酸化されることから、その後の酸
処理に際し突起物を除去しやすくなり、突起物のない良
好な動圧溝の加工面を得ることができる。
Prior to the acid treatment of the surface on which the dynamic pressure grooves are formed, the surface may be oxidized. Since the protrusions of the free-cutting component generated by the electrolytic processing are oxidized by the oxidation treatment as a pre-treatment of the acid treatment, the protrusions are easily removed in the subsequent acid treatment, and a good movement without the protrusions is obtained. A processed surface of the press groove can be obtained.

【0017】ディスク駆動装置におけるクリーンチャン
バー内に収容される記録ディスクを上述した動圧軸受モ
ータにより回転する構成とすれば(請求項5)、軸受部
分からのパーティクルコンタミネーションが効果的に抑
制されることに伴って、クリーンチャンバー内の清浄環
境が維持され、記録ディスクに対する読み書きエラーを
可及的になくすことができる。
If the recording disk accommodated in the clean chamber of the disk drive device is configured to be rotated by the above-mentioned dynamic pressure bearing motor (claim 5), particle contamination from the bearing portion is effectively suppressed. Accordingly, the clean environment in the clean chamber is maintained, and read / write errors on the recording disk can be minimized.

【0018】[0018]

【発明の実施の形態】本発明の実施の形態を、図面を参
照しつつ説明する。図1は本発明の動圧軸受モータ(ス
ピンドルモータ1)を搭載したディスク駆動装置の実施
形態の概略要部構成を模式的に示す縦断面図、図2は図
1のスピンドルモータ1のラジアル軸受部に形成された
動圧溝を示す断面図、図3はラジアル軸受部に動圧溝を
形成する電解加工装置を模式的に示す概略構成図であ
る。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view schematically showing a configuration of a main part of a disk drive device equipped with a dynamic pressure bearing motor (spindle motor 1) of the present invention. FIG. 2 is a radial bearing of the spindle motor 1 of FIG. FIG. 3 is a cross-sectional view showing a dynamic pressure groove formed in a portion, and FIG. 3 is a schematic configuration diagram schematically showing an electrolytic processing apparatus for forming a dynamic pressure groove in a radial bearing portion.

【0019】図1に示すディスク駆動装置としてのハー
ドディスク駆動装置は、ベース2とこのベース2の上面
を覆うカバー部材4とで外部から密閉された清浄空間を
6を形成するクリーンチャンバー8を構成し、この清浄
空間6にスピンドルモータ10により回転される記録デ
ィスク12を収容すると共に、この記録ディスク12に
対してデータの読み書きを行う磁気ヘッド及びボイスコ
イルモータを含むヘッドアッセンブリが収容されてい
る。
The hard disk drive as a disk drive shown in FIG. 1 constitutes a clean chamber 8 which forms a clean space 6 sealed from the outside by a base 2 and a cover member 4 which covers the upper surface of the base 2. In the clean space 6, a recording disk 12 rotated by a spindle motor 10 is accommodated, and a head assembly including a magnetic head for reading and writing data from and to the recording disk 12 and a voice coil motor are accommodated.

【0020】上記スピンドルモータ10は動圧軸受モー
タであり、ベース部材2に設けられた支持筒14と、こ
の支持筒14に内嵌固定された円筒状スリーブ部材16
と、支持筒14の下面開口を閉塞するカバー18と、支
持筒14に外嵌固定されたステータ20とにより、モー
タの固定部材が構成されている。モータの回転部材とし
てのロータハブ22は、記録ディスク12が装着される
ハブ部材24、このハブ部材24の回転中心部に一体的
に固着されたシャフト26、ステータ20に径方向に対
向するようハブ部材24の外周壁内面に装着された円筒
状のロータマグネット28等から構成され、ハブ部材2
4の外周壁外側面に装着された複数枚の記録ディスク1
2(図では2枚)がシャフト26にねじ止めされたクラ
ンプ部材30によりハブ部材24に固定され、ロータハ
ブ22と一体的に回転するようになっている。
The spindle motor 10 is a dynamic pressure bearing motor, and includes a support cylinder 14 provided on the base member 2 and a cylindrical sleeve member 16 fitted and fixed to the support cylinder 14.
The cover 18, which closes the lower surface opening of the support cylinder 14, and the stator 20, which is externally fitted and fixed to the support cylinder 14, constitute a motor fixing member. A rotor hub 22 as a rotating member of the motor includes a hub member 24 on which the recording disk 12 is mounted, a shaft 26 integrally fixed to the center of rotation of the hub member 24, and a hub member which is radially opposed to the stator 20. The hub member 2 is composed of a cylindrical rotor magnet 28 and the like mounted on the inner surface of the outer peripheral wall of the hub member 2.
4, a plurality of recording disks 1 mounted on the outer surface of the outer peripheral wall
2 (two sheets in the figure) are fixed to the hub member 24 by the clamp member 30 screwed to the shaft 26, and rotate integrally with the rotor hub 22.

【0021】上記回転部材は固定部材に対してラジアル
動圧軸受32及びスラスト動圧軸受34を介して回転自
在に支持されている。ラジアル動圧軸受32は、支持部
材16の内周面とシャフト26の外周面とをラジアル軸
受隙間を介して対向させ、このラジアル軸受隙間にオイ
ル等の潤滑流体36を充填すると共に、ラジアル軸受隙
間を構成する軸受面の一方もしくは両方(図では固定側
軸受面である支持部材16の内周面)にラジアル荷重支
持圧を発生させる動圧溝32aを形成することにより構
成されている。この動圧溝32aは、図2に示すような
ヘリングボーン状に形成され、ロータハブ22の回転時
に図1に矢印Aで示すようにスラスト動圧軸受34側に
潤滑流体36を移動する動圧が発生するよう軸線方向に
アンバランスになっている。支持部材16における動圧
溝32aの形成は、後述する電解加工により行われてい
る。
The rotating member is rotatably supported by a fixed member via a radial dynamic pressure bearing 32 and a thrust dynamic pressure bearing 34. In the radial dynamic pressure bearing 32, the inner peripheral surface of the support member 16 and the outer peripheral surface of the shaft 26 are opposed to each other via a radial bearing gap, and the radial bearing gap is filled with a lubricating fluid 36 such as oil. Is formed by forming a dynamic pressure groove 32a for generating a radial load supporting pressure on one or both of the bearing surfaces (the inner peripheral surface of the support member 16 which is a fixed-side bearing surface in the figure). The dynamic pressure groove 32a is formed in a herringbone shape as shown in FIG. 2, and the dynamic pressure for moving the lubricating fluid 36 toward the thrust dynamic pressure bearing 34 as shown by an arrow A in FIG. It is unbalanced in the axial direction to occur. The formation of the dynamic pressure groove 32a in the support member 16 is performed by electrolytic processing described later.

【0022】スラスト軸受34は、支持部材16の上面
とこれに軸方向に対向するハブ部材の内天井面との間の
スラスト軸受間隙に潤滑流体36を充填すると共に、ス
ラスト軸受間隙を構成する軸受面の一方もしくは両方
(図では回転側軸受面であるハブ部材24の内天井面)
にスラスト荷重支持圧を発生させる動圧溝34aを形成
することにより構成されている。この動圧溝34aはス
パイラル状に形成され、ロータハブ22の回転時に図1
の矢印Bに示すように径方向内方に潤滑流体36を移動
させる動圧が発生する。
The thrust bearing 34 fills the thrust bearing gap between the upper surface of the support member 16 and the inner ceiling surface of the hub member axially facing the support member 16 with the lubricating fluid 36 and forms a thrust bearing gap. One or both of the surfaces (in the figure, the inner ceiling surface of the hub member 24 that is the rotation-side bearing surface)
Is formed by forming a dynamic pressure groove 34a for generating a thrust load supporting pressure. This dynamic pressure groove 34a is formed in a spiral shape, and rotates when the rotor hub 22 rotates as shown in FIG.
As shown by the arrow B, a dynamic pressure for moving the lubricating fluid 36 inward in the radial direction is generated.

【0023】ラジアル動圧軸受32のラジアル軸受隙間
とスラスト動圧軸受34のスラスト軸受隙間とは連続
し、これに潤滑流体36が連続的に充填されており、ラ
ジアル動圧溝32aにより生じる動圧とスラスト動圧溝
34aにより生じる動圧とにより、ラジアル動圧軸受3
2の軸方向中央よりスラスト動圧軸受34寄りの位置で
圧力が最も高くなり、この最高圧力点よりラジアル動圧
軸受32のスラスト動圧軸受34との反対側に行くに従
い徐々に圧力が低くなる一方、上記最高圧力点からスラ
スト動圧軸受34に近づくにつれ圧力が低くなると共に
スラスト動圧軸受34において内周部から外周部にかけ
て徐々に圧力が低くなるような潤滑流体36の圧力分布
が得られ、ラジアル荷重及びスラスト荷重が支持され
る。
The radial bearing gap of the radial dynamic pressure bearing 32 and the thrust bearing gap of the thrust dynamic pressure bearing 34 are continuous, and are continuously filled with the lubricating fluid 36. The dynamic pressure generated by the radial dynamic pressure groove 32a And the dynamic pressure generated by the thrust dynamic pressure groove 34a, the radial dynamic pressure bearing 3
The pressure is highest at a position closer to the thrust dynamic pressure bearing 34 than the center in the axial direction of No. 2, and the pressure gradually decreases from the maximum pressure point toward the opposite side of the radial dynamic pressure bearing 32 from the thrust dynamic pressure bearing 34. On the other hand, the pressure distribution of the lubricating fluid 36 is obtained such that the pressure decreases as the position approaches the thrust dynamic pressure bearing 34 from the maximum pressure point and the pressure gradually decreases from the inner peripheral portion to the outer peripheral portion in the thrust dynamic pressure bearing 34. , Radial loads and thrust loads.

【0024】前記シャフト26の下端には、ラジアル動
圧軸受32の軸受面を構成する支持部材16の内周面よ
り大径の抜け止め部材38が固着され、シャフト26の
支持部材16からの抜けを防止している。また、ロータ
ハブ22には、磁気力等により常に軸方向下方への背圧
が付与されており、ハブ部材24の内天井面が支持部材
16の上面に当接する方向に付勢されている。
At the lower end of the shaft 26, a retaining member 38 having a diameter larger than the inner peripheral surface of the support member 16 constituting the bearing surface of the radial dynamic pressure bearing 32 is fixed, and the shaft 26 is detached from the support member 16. Has been prevented. A back pressure is always applied to the rotor hub 22 in the axially downward direction by a magnetic force or the like, and the inner ceiling surface of the hub member 24 is urged in a direction in which it contacts the upper surface of the support member 16.

【0025】ハブ部材24や支持部材16は、切削の良
好な快削性ステンレス鋼から形成され、所望形状に切削
加工された後、それぞれの軸受面にラジアル動圧溝32
a及びスラスト動圧溝34aが電解加工により形成され
る。
The hub member 24 and the support member 16 are formed of a free-cutting stainless steel having good cutting properties, and after being cut into a desired shape, the radial dynamic pressure grooves 32 are formed on the respective bearing surfaces.
a and the thrust dynamic pressure groove 34a are formed by electrolytic processing.

【0026】図3は、支持部材16にラジアル動圧溝3
2aを形成する電解加工装置の全体構成を示したもので
ある。
FIG. 3 shows that the radial dynamic pressure grooves 3
2 shows an overall configuration of an electrolytic processing apparatus for forming 2a.

【0027】加工すべき被加工物つまり図1で説明した
スピンドルモータ10の支持部材16は、加工装置ハウ
ジング40の加工室42内において、工具電極44の露
出電極44aが支持部材16の内周面に対向するよう取
り付けられ、この支持部材16に対して所定の加工条件
で電解加工が行われる。電解加工の加工条件として、例
えば、加工電圧10V、加工電流10A、加工時間(ス
イッチ手段46をオンとする時間)3秒、支持部材16
の加工面と工具電極44の電極面との間隙0.1mmに
設定され、このような加工条件で深さ10μmの所望形
状の動圧溝が形成される。
The workpiece to be machined, that is, the support member 16 of the spindle motor 10 described with reference to FIG. The supporting member 16 is subjected to electrolytic processing under predetermined processing conditions. As the processing conditions of the electrolytic processing, for example, a processing voltage of 10 V, a processing current of 10 A, a processing time (time for turning on the switch means 46) of 3 seconds, the support member 16
The gap between the machining surface of the tool electrode 44 and the electrode surface of the tool electrode 44 is set to 0.1 mm, and a dynamic pressure groove having a desired shape with a depth of 10 μm is formed under such machining conditions.

【0028】電解加工時、循環ポンプ48が作動され、
電解液タンク50内の電解液52が加工室42に供給さ
れ、この電解液52が支持部材16と工具電極44との
間を流れ、さらに加工室42より電解液タンク50内に
戻され、このようにして電解液52が循環される。前記
スイッチ手段46が所定時間(加工時間)オンになる
と、加工用電源54から直流電源(パルス電源)が支持
部材16と工具電極44巻に印加され、支持部材16,
工具電極44間に電流が流れ、工具電極44の露出電極
に対向する支持部材16の表面が電解液52中に溶出
し、露出電極に対応する形状の動圧溝が形成される。
During electrolytic processing, the circulation pump 48 is operated,
The electrolyte 52 in the electrolyte tank 50 is supplied to the processing chamber 42, the electrolyte 52 flows between the support member 16 and the tool electrode 44, and is returned from the processing chamber 42 into the electrolyte tank 50. Thus, the electrolyte 52 is circulated. When the switch means 46 is turned on for a predetermined time (processing time), a DC power supply (pulse power supply) is applied from the processing power supply 54 to the supporting member 16 and the tool electrode 44, and the supporting member 16,
A current flows between the tool electrodes 44, and the surface of the support member 16 facing the exposed electrode of the tool electrode 44 elutes into the electrolytic solution 52, and a dynamic pressure groove having a shape corresponding to the exposed electrode is formed.

【0029】スイッチ手段46は通電制御回路56によ
りそのオンオフが制御され、前記加工時、支持部材16
と工具電極44との間に流れる電流が電流検出手段58
により検出され、この検出値に応じて通電制御回路56
によりスイッチ手段46のオン時間が微調整され、電解
液52中に混入する溶出物の量や電解液52の加工位置
における流速の変化、他の種々の加工条件の変化などに
よっても常に安定した品質の溝加工が行えるようになっ
ている。なお、60及び62の図番で示すものは加工用
電源54の正電源端子及び負電源端子に接続された切片
であり、それぞれ支持部材16及び工具電極44に電気
的に接続される。
The on / off of the switch means 46 is controlled by an energization control circuit 56.
The current flowing between the tool electrode 44 and the
And the energization control circuit 56 according to the detected value.
As a result, the ON time of the switch means 46 is finely adjusted, and the quality is always stable even when the amount of eluted material mixed into the electrolytic solution 52, the change in the flow rate at the processing position of the electrolytic solution 52, the change in various other processing conditions, and the like. Groove processing can be performed. The reference numerals 60 and 62 denote sections connected to the positive power supply terminal and the negative power supply terminal of the processing power supply 54, which are electrically connected to the support member 16 and the tool electrode 44, respectively.

【0030】快削性ステンレス鋼により構成された支持
部材16は、所定形状に加工された後、上述した電解加
工装置により動圧溝32aが形成されるが、この加工表
面には快削成分からなる突起物が完全には溶解せずに残
存する。このため、電解加工により溝加工された支持部
材16は、その内周面(動圧軸受面)を中心に酸処理が
施される。
The support member 16 made of free-cutting stainless steel is formed into a predetermined shape, and then a dynamic pressure groove 32a is formed by the above-described electrolytic processing apparatus. The protrusions remain without completely dissolving. For this reason, the support member 16 grooved by electrolytic processing is subjected to an acid treatment centering on the inner peripheral surface (dynamic pressure bearing surface).

【0031】すなわち、電解加工により溝加工された支
持部材16は、硝酸水溶液を用いて酸洗いされ、電解加
工の際に加工されにくいマンガンサルファイド等の快削
成分からなる突起物が除去される。これにより、本ステ
ンレス鋼に特有の高耐食性が発揮され、並びにパーティ
クルによるコンタミネーションの発生が防止される。
That is, the supporting member 16 which has been grooved by the electrolytic processing is pickled with a nitric acid aqueous solution to remove projections made of free-cutting components such as manganese sulfide which are difficult to be processed in the electrolytic processing. Thereby, high corrosion resistance peculiar to the present stainless steel is exhibited, and generation of contamination due to particles is prevented.

【0032】なお、前記酸処理は、硝酸濃度が5%〜2
0%と比較的低い濃度で行うのが良好であるが、これに
限られるものではない。すなわち、快削性ステンレス鋼
表面の快削成分を除去できるものであれば他の溶液を使
用することもでき、例えば硫酸,塩酸,フッ化水素酸の
水溶液等を用いることもできる。
In the acid treatment, the concentration of nitric acid is 5% to 2%.
It is good to carry out at a relatively low concentration of 0%, but it is not limited to this. That is, any other solution that can remove free-cutting components from the surface of the free-cutting stainless steel can be used. For example, an aqueous solution of sulfuric acid, hydrochloric acid, hydrofluoric acid, or the like can be used.

【0033】酸処理が施されたステンレス鋼は、上述し
たように、耐食性を向上し、パーティクルコンタミネー
ションを防止することができるが、酸処理の際に発生す
るイオウを含むガスを除去するには、酸処理後の支持部
材16をアルカリ中和処理するか、ベーキング処理する
のがよく、耐食性が高まる。
As described above, the stainless steel subjected to the acid treatment can improve the corrosion resistance and prevent the particle contamination, but it is necessary to remove the sulfur-containing gas generated during the acid treatment. It is preferable that the support member 16 after the acid treatment is subjected to an alkali neutralization treatment or a baking treatment, so that the corrosion resistance is enhanced.

【0034】ここで、中和処理とは、水酸化ナトリウ
ム、水酸化カリウム水溶液等を用いて快削成分から発生
する硫化水素を中和するものであり、ベーキングは80
℃好ましくは120℃にて数時間加温してイオウガスを
除去するものである。こうした処理を施した支持部材1
6はこれらイオウを含むガスの発生はなく、鋼材そのも
のの耐食性が高まると共に、装置内のヘッドやメディア
を腐食させることも避けることができる。
Here, the neutralization treatment is to neutralize the hydrogen sulfide generated from the free-cutting component using an aqueous solution of sodium hydroxide, potassium hydroxide or the like.
C., preferably at 120.degree. C. for several hours to remove sulfur gas. Support member 1 that has been subjected to such processing
No. 6 does not generate these sulfur-containing gases, which increases the corrosion resistance of the steel itself and can also prevent corrosion of the head and media in the apparatus.

【0035】以上、本発明の具体例について説明した
が、本発明は上記具体例に限定されるものではなく、本
発明の要旨を逸脱することなく種々の変更、修正が可能
である。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and various changes and modifications can be made without departing from the gist of the present invention.

【0036】例えば、上記の例では、ラジアル軸受部3
2の動圧溝32aが形成される支持部材16を例に取り
説明したが、スラスト軸受部34の動圧溝34aが形成
されるハブ部材24についても、本発明を同様に実施す
ることができ、ハブ部材24を快削性ステンレス鋼によ
り構成し、これを所定形状に切削加工した後、電解加工
により動圧溝34aを形成し、かつ、このハブ部材24
を酸処理するようにすればよい。勿論、酸処理後にアル
カリ中和処理したりベーキング処理することが望まれ、
また、酸処理の前処理として酸化処理するのがよい。
For example, in the above example, the radial bearing 3
Although the support member 16 in which the two dynamic pressure grooves 32a are formed has been described as an example, the present invention can be similarly applied to the hub member 24 in which the dynamic pressure grooves 34a of the thrust bearing portion 34 are formed. The hub member 24 is made of a free-cutting stainless steel, which is cut into a predetermined shape, and then the dynamic pressure groove 34a is formed by electrolytic processing.
May be subjected to an acid treatment. Of course, it is desired to perform an alkali neutralization treatment or a baking treatment after the acid treatment,
Further, an oxidation treatment is preferably performed as a pretreatment of the acid treatment.

【0037】[0037]

【発明の効果】本発明の動圧軸受モータ及びこれを用い
たディスク駆動装置は、以上説明したように構成されて
いるので、次に記載の効果を奏する。請求項1記載の動
圧軸受モータにあっては、動圧軸受を構成する固定軸受
面と回転軸受面のうち、動圧溝が形成される一方もしく
は両方を快削性ステンレス鋼により構成すると共に、電
解加工による動圧溝の形成後にその形成面を酸処理する
ようにしたので、電解加工の際に加工されにくい快削成
分からなる突起物を酸処理により除去することが可能と
なり、上記突起物によるパーティクルコンタミネーショ
ンを防止し、安定した軸受性能を発揮することができ
る。
The hydrodynamic bearing motor and the disk drive using the same according to the present invention are constructed as described above and have the following effects. In the dynamic bearing motor according to the first aspect, one or both of the fixed bearing surface and the rotary bearing surface forming the dynamic pressure bearing, in which the dynamic pressure groove is formed, are formed of free-cutting stainless steel. Since the formation surface is subjected to an acid treatment after the formation of the dynamic pressure groove by the electrolytic processing, it is possible to remove the projections made of a free-cutting component which are difficult to be processed at the time of the electrolytic processing by the acid treatment. Particle contamination due to objects can be prevented, and stable bearing performance can be exhibited.

【0038】請求項2及び3記載の動圧軸受モータにあ
っては、快削性ステンレス鋼の酸処理の後に、アルカリ
による中和処理或いはベーキングを行うようにしたの
で、上記酸処理の際に発生するイオウを含むガスを確実
に除去することが可能となる。
In the hydrodynamic bearing motor according to claims 2 and 3, neutralization treatment or baking with an alkali is performed after the acid treatment of the free-cutting stainless steel. It is possible to reliably remove the generated gas containing sulfur.

【0039】請求項4記載の動圧軸受モータにあって
は、上記酸処理の直後にクロメート処理するようにした
ので、快削性ステンレス鋼の耐食性を格段に向上するこ
とができる。
In the hydrodynamic bearing motor according to the fourth aspect, since the chromate treatment is performed immediately after the acid treatment, the corrosion resistance of the free-cutting stainless steel can be remarkably improved.

【0040】請求項5記載のディスク駆動装置にあって
は、上述した動圧軸受モータを使用してクリーンチャン
バー内において記録ディスクを回転駆動する構成とした
ので、快削成分の突起物によるパーティクルコンタミネ
ーションがなくなるため、記録ディスクに対するヘッド
のアクセスに問題を生じることがなく、高い信頼性を得
ることができるものである。
In the disk drive device according to the fifth aspect, since the recording disk is driven to rotate in the clean chamber by using the above-described dynamic bearing motor, particle contamination due to protrusions of free-cutting components is provided. Since there is no nation, no problem occurs in the access of the head to the recording disk, and high reliability can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態を示す動圧軸受モータを搭載
したハードディスク駆動装置の要部の断面図である。
FIG. 1 is a cross-sectional view of a main part of a hard disk drive including a dynamic bearing motor according to an embodiment of the present invention.

【図2】図1の支持部材における動圧溝を示す拡大断面
図である。
FIG. 2 is an enlarged sectional view showing a dynamic pressure groove in the support member of FIG.

【図3】図2の動圧溝を加工する電解加工装置を示す概
略構成図である。
FIG. 3 is a schematic configuration diagram showing an electrolytic processing apparatus for processing the dynamic pressure groove of FIG. 2;

【符号の説明】[Explanation of symbols]

10 スピンドルモータ 12 記録ディスク 16 支持部材 22 ロータハブ 24 ハブ部材 26 シャフト 32 ラジアル動圧軸受部 32a 動圧溝 34 スラスト動圧軸受部 34a 動圧溝 Reference Signs List 10 spindle motor 12 recording disk 16 support member 22 rotor hub 24 hub member 26 shaft 32 radial dynamic pressure bearing portion 32a dynamic pressure groove 34 thrust dynamic pressure bearing portion 34a dynamic pressure groove

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H02K 5/16 H02K 5/16 Z (72)発明者 石井 弘美 京都市右京区西京極堤外町10 日本電産株 式会社中央研究所内 Fターム(参考) 3J011 AA20 BA02 CA02 DA01 PA10 QA04 RA03 SB02 5D109 BB01 BB12 BB18 BB21 BB22 5H605 AA08 BB05 BB09 BB10 BB14 BB19 CC04 EB01 EB02 EB06 FF03 5H607 AA12 BB01 BB07 BB09 BB14 BB17 BB25 CC01 GG01 GG02 GG09 GG12 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H02K 5/16 H02K 5/16 Z (72) Inventor Hiromi Ishii 10 Nishitei Gokutomachi Nishitei, Ukyo-ku, Kyoto F-term in the Central Research Laboratories of Stock Company (Reference) GG12

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 固定部材側に設けられた固定軸受面と回
転部材側に設けられた回転軸受面との一方もしくは両方
に動圧溝を形成して動圧軸受を構成し、この動圧軸受に
より固定部材に対して回転部材を回転自在に支持してな
る動圧軸受モータにおいて、 前記動圧溝が形成される前記固定軸受面と回転軸受面と
の一方もしくは両方は快削性ステンレス鋼により構成さ
れ、この快削性ステンレス鋼に電解加工を施して前記動
圧溝を形成し、当該動圧溝の形成面に酸処理を行ったこ
とを特徴とする動圧軸受モータ。
1. A dynamic pressure bearing is formed by forming a dynamic pressure groove on one or both of a fixed bearing surface provided on a fixed member side and a rotary bearing surface provided on a rotary member side. A dynamic pressure bearing motor rotatably supporting a rotating member with respect to a fixed member, wherein one or both of the fixed bearing surface and the rotating bearing surface in which the dynamic pressure grooves are formed are made of free-cutting stainless steel. A hydrodynamic bearing motor, wherein the dynamic pressure groove is formed by subjecting the free-cutting stainless steel to electrolytic processing, and the surface on which the dynamic pressure groove is formed is subjected to an acid treatment.
【請求項2】 前記動圧溝の形成面は、酸処理後、アル
カリ溶液による中和処理が施されることを特徴とする請
求項1記載の動圧軸受モータ。
2. The hydrodynamic bearing motor according to claim 1, wherein the surface on which the hydrodynamic grooves are formed is subjected to a neutralization treatment with an alkali solution after the acid treatment.
【請求項3】 前記動圧溝の形成面は、酸処理後、ベー
キング処理されることを特徴とする請求項1記載の動圧
軸受モータ。
3. The hydrodynamic bearing motor according to claim 1, wherein the surface on which the hydrodynamic grooves are formed is baked after the acid treatment.
【請求項4】 前記動圧溝の形成面は、前記酸処理の直
後に、クロメート処理されることを特徴とする請求項1
〜3のいずれかに記載の動圧軸受モータ。
4. The surface on which the dynamic pressure grooves are formed is subjected to a chromate treatment immediately after the acid treatment.
The dynamic pressure bearing motor according to any one of claims 1 to 3.
【請求項5】 請求項1〜4の動圧軸受モータにより回
転される記録ディスク、該記録ディスクに対してアクセ
スするヘッド等をクリーンチャンバー内に収容してなる
ディスク駆動装置。
5. A disk drive comprising a recording chamber rotated by the hydrodynamic bearing motor according to claim 1 and a head for accessing said recording disk housed in a clean chamber.
JP2000109101A 2000-04-11 2000-04-11 Dynamic pressure bearing motor and disk driving device using the same Withdrawn JP2001298899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000109101A JP2001298899A (en) 2000-04-11 2000-04-11 Dynamic pressure bearing motor and disk driving device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000109101A JP2001298899A (en) 2000-04-11 2000-04-11 Dynamic pressure bearing motor and disk driving device using the same

Publications (1)

Publication Number Publication Date
JP2001298899A true JP2001298899A (en) 2001-10-26

Family

ID=18621841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000109101A Withdrawn JP2001298899A (en) 2000-04-11 2000-04-11 Dynamic pressure bearing motor and disk driving device using the same

Country Status (1)

Country Link
JP (1) JP2001298899A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004081400A1 (en) * 2003-03-13 2004-09-23 Matsushita Electric Industrial Co., Ltd. Fluid bearing device
JP2006002937A (en) * 2004-05-20 2006-01-05 Minebea Co Ltd Fluid dynamic pressure bearing device, its manufacturing method, spindle motor and recording disk drive
JP2006226523A (en) * 2005-01-20 2006-08-31 Nippon Densan Corp Fluid dynamic pressure bearing device and spindle motor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10220460A (en) * 1997-02-04 1998-08-21 Sankyo Seiki Mfg Co Ltd Method and device for electro-chemical machining of dynamic pressure groove in dynamic pressure bearing
JPH11162099A (en) * 1997-11-28 1999-06-18 Nippon Densan Corp Hard disk device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10220460A (en) * 1997-02-04 1998-08-21 Sankyo Seiki Mfg Co Ltd Method and device for electro-chemical machining of dynamic pressure groove in dynamic pressure bearing
JPH11162099A (en) * 1997-11-28 1999-06-18 Nippon Densan Corp Hard disk device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004081400A1 (en) * 2003-03-13 2004-09-23 Matsushita Electric Industrial Co., Ltd. Fluid bearing device
JP2006002937A (en) * 2004-05-20 2006-01-05 Minebea Co Ltd Fluid dynamic pressure bearing device, its manufacturing method, spindle motor and recording disk drive
US7764463B2 (en) 2004-05-20 2010-07-27 Minebea Co., Ltd. Fluid dynamic pressure bearing for spindle motors and storage disk drive devices and having ridge portions between grooves in the fluid dynamic pressure bearing
JP2006226523A (en) * 2005-01-20 2006-08-31 Nippon Densan Corp Fluid dynamic pressure bearing device and spindle motor

Similar Documents

Publication Publication Date Title
JP2006002937A (en) Fluid dynamic pressure bearing device, its manufacturing method, spindle motor and recording disk drive
JP5342959B2 (en) Disk drive
JP2001298899A (en) Dynamic pressure bearing motor and disk driving device using the same
JP2008180295A (en) Method of manufacturing bearing member, fluid dynamic pressure bearing device using bearing member manufactured by the method, spindle motor, and recording disk drive device
US8562221B2 (en) Spindle motor
US7235168B2 (en) Method for electrochemically forming a hydrodynamic bearing surface
JP4754794B2 (en) Fluid bearing unit, spindle motor having the fluid bearing unit, and recording disk drive
JP2007046665A (en) Dynamic-pressure bearing mechanism, spindle motor, disc driving device and method of manufacturing dynamic-pressure bearing mechanism
JP2002048132A (en) Fluid bearing
JP3238878B2 (en) Electrolytic machining method and apparatus for dynamic pressure groove in dynamic pressure bearing
JP2006304565A (en) Brushless electric motor and its manufacturing method
JP2008128481A (en) Bearing unit
JP3238876B2 (en) Electrolytic machining method and apparatus for dynamic pressure groove in dynamic pressure bearing
JP4751749B2 (en) motor
JP2004239346A (en) Fluid dynamic pressure bearing, motor with the same, and disk drive device with the motor
US20130081262A1 (en) Manufacturing method for totating device having improved quality
JP2002372039A (en) Hydrodynamic bearing device and spindle motor
JPS5844415A (en) Rotary mirror optical deflector
JP2008281104A (en) Sleeve, motor, recording disk driving device and method of manufacturing sleeve
JP2002005174A (en) Part of fluid dynamic pressure bearing, manufacturing method of the part, and motor and disc device using the part
JP2007040536A (en) Dynamic pressure bearing and its manufacturing method
JP2006153186A (en) Rolling bearing
JP2002295457A (en) Dynamic pressure bearing device, rotational drive, recording device and manufacturing method of dynamic pressure bearing device
JP4357051B2 (en) Thrust dynamic pressure bearing
JP2002188640A (en) Manufacturing method for dynamic pressure bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070330

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100624