JP2007218379A - Shaft member for hydrodynamic bearing device and its manufacturing method - Google Patents

Shaft member for hydrodynamic bearing device and its manufacturing method Download PDF

Info

Publication number
JP2007218379A
JP2007218379A JP2006041223A JP2006041223A JP2007218379A JP 2007218379 A JP2007218379 A JP 2007218379A JP 2006041223 A JP2006041223 A JP 2006041223A JP 2006041223 A JP2006041223 A JP 2006041223A JP 2007218379 A JP2007218379 A JP 2007218379A
Authority
JP
Japan
Prior art keywords
rolling
shaft member
bearing
dynamic pressure
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006041223A
Other languages
Japanese (ja)
Inventor
Kenji Hibi
建治 日比
Yasuhiro Yamamoto
康裕 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2006041223A priority Critical patent/JP2007218379A/en
Publication of JP2007218379A publication Critical patent/JP2007218379A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive shaft member for a hydrodynamic bearing device exerting a high hydrodynamic effect. <P>SOLUTION: A pair of rolling dies 12, 13 which have protruded portions 12b shaped corresponding to a recessed portion 7 to be transferred and formed into a shaft raw material 11 are used for rolling and forming the recessed portion 7 on the outer peripheral face 11a of the shaft raw material 11 for generating hydrodynamic pressure. Next, an original thickness portion of the recessed portion 7 is pushed out to the periphery to form a bulged portion 15 near the recessed portion 7 in the peripheral region 8. Then, rolling dies 16, 17 which have plane portions 16b on the opposite face 16a of one rolling die 16 are used for plane-rolling the shaft raw material 11 in which the recessed portion 7 is formed. Thus, the bulged portion 15 formed at the peripheral region 8 of the recessed portion 7 is flattened by the plane portion 16b to equalize a surface 8a in the peripheral region 8 into a flat state. A second hardened layer 18 is formed on the lower layer of the crushed bulged portion 15 by plane rolling. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、動圧軸受装置用軸部材およびその製造方法に関する。   The present invention relates to a shaft member for a hydrodynamic bearing device and a manufacturing method thereof.

動圧軸受装置は、軸受隙間に生じる流体の動圧作用で軸部材を相対回転自在に支持するものであり、最近では、その優れた回転精度、高速回転性、静粛性等を活かして、情報機器をはじめ種々の電気機器に搭載されるモータ用の軸受装置として、より具体的には、例えば、HDD等の磁気ディスク装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置、MD、MO等の光磁気ディスク装置等に搭載されるスピンドルモータ用の軸受装置として、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、プロジェクタのカラーホイールモータ、あるいはファンモータなどのモータ用軸受装置として使用されている。   The hydrodynamic bearing device supports the shaft member in a relatively rotatable manner by the hydrodynamic action of the fluid generated in the bearing gap. Recently, the hydrodynamic bearing device utilizes its excellent rotational accuracy, high-speed rotational performance, quietness, etc. More specifically, for example, a magnetic disk device such as an HDD, a CD-ROM, a CD-R / RW, a DVD-ROM / RAM, etc. As a spindle motor bearing device mounted on an optical disk device, a magneto-optical disk device such as MD, MO, etc., a motor bearing such as a polygon scanner motor of a laser beam printer (LBP), a color wheel motor of a projector, or a fan motor. Used as a device.

例えば、HDD用スピンドルモータに組み込まれる動圧軸受装置において、軸部材をラジアル方向に支持するラジアル軸受部又はスラスト方向に支持するスラスト軸受部の双方を動圧軸受で構成したものが知られている。この場合、軸受スリーブの内周面と、これに対向する軸部材の外周面との何れか一方に動圧発生部としての動圧溝が形成されると共に、両面間のラジアル軸受隙間にラジアル軸受部が形成されることが多い。また、軸部材に設けたフランジ部の一端面と、これに対向する軸受スリーブの端面との何れか一方に動圧溝が形成されると共に、両面間のスラスト軸受隙間にスラスト軸受部が形成されることが多い(例えば、特許文献1を参照)。   For example, in a hydrodynamic bearing device incorporated in a spindle motor for HDD, a configuration in which both a radial bearing portion that supports a shaft member in a radial direction or a thrust bearing portion that supports a shaft direction in a thrust direction is constituted by a hydrodynamic bearing is known. . In this case, a dynamic pressure groove as a dynamic pressure generating portion is formed on either the inner peripheral surface of the bearing sleeve or the outer peripheral surface of the shaft member facing the bearing sleeve, and the radial bearing is disposed in the radial bearing gap between both surfaces. The part is often formed. In addition, a dynamic pressure groove is formed on one end surface of the flange portion provided on the shaft member and an end surface of the bearing sleeve facing the flange portion, and a thrust bearing portion is formed in the thrust bearing gap between both surfaces. (See, for example, Patent Document 1).

上記動圧溝は、例えば軸部材の外周面にへリングボーン形状やスパイラル形状等に配列した状態で形成される。この種の動圧溝を形成するための方法として、例えば切削加工(例えば、特許文献2を参照)や、エッチング(例えば、特許文献3を参照)などが知られている。   The dynamic pressure grooves are formed, for example, in a state of being arranged in a herringbone shape, a spiral shape, or the like on the outer peripheral surface of the shaft member. As a method for forming this type of dynamic pressure groove, for example, cutting (see, for example, Patent Document 2), etching (see, for example, Patent Document 3), and the like are known.

また、上記切削加工やエッチングに比べて廉価に動圧溝を形成可能な加工手段として、例えば転造加工が知られている。この場合、転造加工後に研削を行い、素材の表面仕上げを行うことが多い(例えば、特許文献4を参照)。
特開2003−239951号公報 特開平08−196056号公報 特開平06−158357号公報 特開平07−114766号公報
Further, for example, rolling is known as a processing means capable of forming dynamic pressure grooves at a lower cost than the above-described cutting and etching. In this case, grinding is often performed after the rolling process to finish the surface of the material (for example, see Patent Document 4).
JP 2003-239951 A Japanese Patent Laid-Open No. 08-196056 Japanese Patent Laid-Open No. 06-158357 Japanese Patent Laid-Open No. 07-114766

この種の研削は、被加工物(軸部材)のサイズ上、センタレス加工で行われることが多いが、この方法だと、研削時の加工中心(研削加工中心)と、動圧溝転造時の加工中心(転造加工中心)とが必ずしも一致せず、加工条件によっては相当量ずれることもある。この場合、研削面の真円度は保たれるものの、外周面の研削代は場所によって大きく異なる。そのため、外周面上に転造形成される動圧溝の深さが大きくばらつき、十分な動圧作用を発揮できない可能性がある。   This type of grinding is often centerless due to the size of the workpiece (shaft member), but with this method, the grinding center (grinding center) and dynamic pressure groove rolling The processing center (rolling processing center) does not always match, and a considerable amount may deviate depending on the processing conditions. In this case, the roundness of the ground surface is maintained, but the grinding allowance of the outer peripheral surface varies greatly depending on the location. For this reason, the depth of the dynamic pressure grooves formed by rolling on the outer peripheral surface varies greatly, and there is a possibility that sufficient dynamic pressure action cannot be exhibited.

また、研削等の機械加工では、切粉の発生が避けられない。そのため、動圧溝内に残った切粉を除去するための洗浄工程を入念に行う必要が生じ、コストアップを招く。   Further, in machining such as grinding, generation of chips is inevitable. For this reason, it is necessary to carefully perform a cleaning process for removing chips remaining in the dynamic pressure grooves, resulting in an increase in cost.

本発明の課題は、高い動圧作用を発揮し得る動圧軸受装置用の軸部材を低コストに提供することである。   An object of the present invention is to provide a low-cost shaft member for a hydrodynamic bearing device that can exhibit a high dynamic pressure action.

前記課題を解決するため、本発明は、軸受隙間に流体の動圧作用を生じるための凹部が転造で形成されたものにおいて、転造により凹部の周囲領域に生じた隆起部が平面転造により平坦化されていることを特徴とする動圧軸受装置用軸部材を提供する。また、本発明は、軸受隙間に流体の動圧作用を生じるための凹部を転造で形成する第1転造工程と、第1転造工程により凹部の周囲領域に生じる隆起部を平面転造で平坦化する第2転造工程とを含む動圧軸受装置用軸部材の製造方法を提供する。ここでいう凹部は、軸受隙間に流体の動圧作用を生じるためのものであればよく、その形状は問わない。例えば軸方向溝状、円周方向溝状、傾斜溝状、交差溝状、軸方向又は円周方向の断続的な溝形状、くぼみ状(ディンプル状)等が凹部に含まれる。   In order to solve the above-mentioned problems, the present invention provides a method in which a concave portion for generating a fluid dynamic pressure action in a bearing gap is formed by rolling, and a raised portion generated in a peripheral region of the concave portion by rolling is flat rolled. A shaft member for a hydrodynamic bearing device, characterized in that the shaft member is flattened. Further, the present invention provides a first rolling process in which a concave portion for generating a fluid dynamic pressure action in a bearing gap is formed by rolling, and a raised portion generated in a peripheral region of the concave portion by the first rolling process is planar rolled. The manufacturing method of the shaft member for fluid dynamic bearing devices including the 2nd rolling process of flattening with a. The concave portion here may be any shape as long as it is for generating a fluid dynamic pressure action in the bearing gap, and the shape thereof is not limited. For example, the concave portion includes an axial groove shape, a circumferential groove shape, an inclined groove shape, a cross groove shape, an intermittent groove shape in the axial direction or the circumferential direction, a dimple shape, and the like.

動圧発生用の凹部を軸部材の表面に転造で形成した場合、かかる凹部とその周囲領域との間には転造に伴い凹部の周囲に押し出された肉が隆起部として残る。この種の隆起部は、本来軸受面となるべき周囲領域の表面上に形成されるため、隆起部の表面があたかも軸受面の如く機能し、支持面積の減少(接触面圧の増加)を招く。これでは、隆起部へ負荷が集中し、かかる箇所が損傷することで、軸受面の形状が損なわれ、結果として軸受性能の低下あるいは軸部材の耐久性低下につながる恐れがある。   When the concave portion for generating dynamic pressure is formed on the surface of the shaft member by rolling, the meat pushed around the concave portion due to rolling remains as a raised portion between the concave portion and the surrounding area. Since this type of raised portion is formed on the surface of the surrounding region that should originally become the bearing surface, the surface of the raised portion functions as if it is a bearing surface, resulting in a decrease in the support area (increase in contact surface pressure). . In this case, the load concentrates on the raised portion and the portion is damaged, so that the shape of the bearing surface is impaired, and as a result, the bearing performance may be deteriorated or the shaft member may be deteriorated in durability.

これに対して、本発明では、転造形成された凹部の周囲領域に生じた隆起部を平面転造により平坦化するようにした。平面転造は、平面を有する一対の転造型を所定の対向間隔に保った状態で被加工物の転動成形を行うものであるから、その対向間隔を高精度に管理することは比較的容易であり、研削加工に比べてその加工中心が凹部の転造加工中心とあまりずれることはない。従って、隆起部を確実に除去しつつも、周囲領域の表面および凹部形状を高精度に保って、特に動圧発生用凹部の深さを均一に保って、高い軸受性能を発揮し得る軸部材を得ることができる。また、対向間隔を一定に保った状態で、軸部材の外周面を順次かつ部分的に押圧することで、軸受面となる周囲領域の表面を過度に押圧することなく、隆起部のみを確実に押し潰して平坦化することができる。また、切粉がほとんど発生しないので、研削等の機械加工のように、切粉を除去するための洗浄工程を入念に行わずに済む。従って、洗浄工程を簡略化して、加工コストの低減を図ることができる。   On the other hand, in the present invention, the raised portion generated in the peripheral area of the recessed portion formed by rolling is flattened by plane rolling. Planar rolling is a method of rolling a workpiece while maintaining a pair of rolling molds having a plane at a predetermined facing distance, and it is relatively easy to manage the facing distance with high accuracy. Therefore, the processing center does not deviate much from the rolling processing center of the recess compared with the grinding processing. Therefore, while reliably removing the raised portion, the shaft member capable of exhibiting high bearing performance while maintaining the surface of the surrounding region and the shape of the concave portion with high accuracy, particularly keeping the depth of the dynamic pressure generating concave portion uniform. Can be obtained. In addition, by pressing the outer peripheral surface of the shaft member sequentially and partially with the facing interval kept constant, it is possible to ensure that only the raised portion is pressed without excessively pressing the surface of the surrounding area that becomes the bearing surface. It can be flattened by crushing. In addition, since almost no chips are generated, it is not necessary to carefully perform a cleaning process for removing chips as in machining such as grinding. Therefore, the cleaning process can be simplified and the processing cost can be reduced.

上述のように、隆起部が平坦化された軸部材において、凹部の深さdに対する隆起部の高さhの比h/dは0.1以下であることが好ましい。一般に、動圧発生用凹部の深さは、その軸受隙間の大きさに応じて決定するのが好ましく、また、要求される軸受隙間が小さくなるにつれて該軸受隙間を形成する軸受面にも高い面精度(例えば真円度や円筒度)が求められる。上記比h/dはかかる観点から設定されたもので、凹部の深さdに対する隆起部の高さhの比が上記範囲内となるよう平面転造で隆起部を除去することで、高い動圧作用を発揮し得る凹部および軸受面を得ることができる。   As described above, in the shaft member in which the raised portion is flattened, the ratio h / d of the height h of the raised portion to the depth d of the recessed portion is preferably 0.1 or less. In general, the depth of the dynamic pressure generating recess is preferably determined in accordance with the size of the bearing gap, and as the required bearing gap becomes smaller, the bearing surface that forms the bearing gap becomes higher. Accuracy (for example, roundness or cylindricity) is required. The ratio h / d is set from such a viewpoint. By removing the ridges by plane rolling so that the ratio of the height h of the ridges to the depth d of the recesses is within the above range, a high dynamic rate is obtained. A recess and a bearing surface that can exert a pressure action can be obtained.

隆起部が完全に除去されていることが望ましいことから、上記の比h/dは0であることが当然に望ましいが、実際には、加工精度上の問題から、あまりにh/d=0に近い精度を狙い過ぎると、却って周囲領域の表面を変形させ、軸受面精度の低下を招く。そのため、比h/dの下限を0.01と定めて、あるいはこの値を狙って加工するのがよい。もちろん、動圧軸受に要求される機能、精度、コストなども考慮してh/dを上記範囲内で設定するのがよい。   The ratio h / d is naturally desirably 0 because it is desirable that the ridges are completely removed. However, in practice, h / d = 0 is too high due to a problem in processing accuracy. If the close accuracy is aimed too much, the surface of the surrounding area is deformed and the bearing surface accuracy is lowered. For this reason, the lower limit of the ratio h / d is preferably set to 0.01, or this value is preferably processed. Of course, it is preferable to set h / d within the above range in consideration of the function, accuracy, cost, etc. required for the hydrodynamic bearing.

上記構成の動圧軸受装置用軸部材は、例えばこの軸部材を備えた動圧軸受装置として好適に提供可能である。   The shaft member for a fluid dynamic bearing device having the above-described configuration can be suitably provided as, for example, a fluid dynamic bearing device including the shaft member.

以上のように、本発明によれば高い動圧作用を発揮し得る動圧軸受装置用の軸部材を低コストに提供することができる。   As described above, according to the present invention, a shaft member for a hydrodynamic bearing device capable of exhibiting a high dynamic pressure action can be provided at a low cost.

以下、本発明の一実施形態を図1〜図4に基づいて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS.

図1は、本発明の一実施形態に係る動圧軸受装置1の断面図を示す。同図において、動圧軸受装置1は、軸部材2と、軸部材2を内周に挿入可能な軸受部材3とを備える。   FIG. 1 is a sectional view of a fluid dynamic bearing device 1 according to an embodiment of the present invention. In the figure, a hydrodynamic bearing device 1 includes a shaft member 2 and a bearing member 3 capable of inserting the shaft member 2 into the inner periphery.

軸受部材3は、この実施形態では、電鋳部4と成形部5とからなる有底筒体で、マスターと一体又は別体の電鋳部4をインサート部品として樹脂で一体に射出成形される。軸部材2の外周面2aと対向する電鋳部4の内周面4aは真円形状をなしている。   In this embodiment, the bearing member 3 is a bottomed cylindrical body composed of an electroformed part 4 and a molded part 5, and is integrally injection-molded with resin using the electroformed part 4 that is integral with the master or a separate part as an insert part. . The inner peripheral surface 4a of the electroformed portion 4 facing the outer peripheral surface 2a of the shaft member 2 has a perfect circle shape.

軸部材2は径一定の軸状をなすもので、例えば各種炭素鋼、クロム鋼、ステンレス鋼や各種合金鋼など、比較的加工性の高い金属材料(硬度でいえば、200Hv〜400Hv程度)から製作される。もちろん、素材全体の硬度を焼入れ等により上記数値範囲にまで高めたものを使用することもできる。   The shaft member 2 has a shaft shape with a constant diameter, and is made of, for example, various carbon steel, chrome steel, stainless steel and various alloy steels, which are relatively highly workable metal materials (in terms of hardness, about 200 Hv to 400 Hv). Produced. Of course, it is also possible to use a material whose hardness is increased to the above numerical range by quenching or the like.

軸部材2の外周面2aの全面あるいは一部領域には、外周面2aと電鋳部4の内周面4aとの間のラジアル軸受隙間6に潤滑油の動圧作用を生じるための複数の凹部7が形成されている。この実施形態では、凹部7は、円周方向一端側で連続し、かつ円周方向他端側に向けて互いに離隔する方向に傾斜した傾斜溝9aと傾斜溝9bとからなる。かかる形状をなす複数の凹部7は、いわゆるへリングボーン形状となるように、円周方向に所定の間隔を置いて配列されている。この場合、各凹部7(傾斜溝9a、9b)とこれらの周囲領域8とで、ラジアル軸受隙間6に潤滑油の動圧作用を生じる動圧発生部10が構成される。また、上記構成の動圧発生部10は、この実施形態では、軸方向上下に離隔して2箇所設けられている。   On the entire or partial region of the outer peripheral surface 2 a of the shaft member 2, a plurality of lubricating oil dynamic pressure effects are generated in the radial bearing gap 6 between the outer peripheral surface 2 a and the inner peripheral surface 4 a of the electroformed part 4. A recess 7 is formed. In this embodiment, the concave portion 7 is composed of an inclined groove 9a and an inclined groove 9b that are continuous at one end in the circumferential direction and are inclined in a direction away from each other toward the other end in the circumferential direction. The plurality of recesses 7 having such a shape are arranged at predetermined intervals in the circumferential direction so as to form a so-called herringbone shape. In this case, each concave portion 7 (inclined grooves 9a, 9b) and their surrounding region 8 constitute a dynamic pressure generating portion 10 that generates a dynamic pressure action of the lubricating oil in the radial bearing gap 6. Further, in this embodiment, the dynamic pressure generating section 10 having the above-described configuration is provided at two locations separated vertically in the axial direction.

軸部材2の一端面2bは略球面状をなし、軸部材2を軸受部材3の内周に挿入した状態では、対向する電鋳部4の底部4bの上端面4b1に当接する。   One end surface 2b of the shaft member 2 has a substantially spherical shape, and abuts against the upper end surface 4b1 of the bottom 4b of the opposing electroformed portion 4 when the shaft member 2 is inserted into the inner periphery of the bearing member 3.

軸受部材3と軸部材2との間のラジアル軸受隙間6の大気解放側から潤滑油が注油される。これにより、ラジアル軸受隙間6を含む軸受内部空間を潤滑油で充満した動圧軸受装置1が完成する。   Lubricating oil is injected from the air release side of the radial bearing gap 6 between the bearing member 3 and the shaft member 2. Thereby, the hydrodynamic bearing device 1 in which the bearing internal space including the radial bearing gap 6 is filled with the lubricating oil is completed.

上記構成の動圧軸受装置1において、軸部材2の相対回転時、軸部材2の外周面2aに設けられた動圧発生部10、10と、これらに対向する電鋳部4の内周面4aとの間のラジアル軸受隙間6に潤滑油の動圧作用が生じる。これにより、軸部材2をラジアル方向に相対回転自在に支持する第1ラジアル軸受部R1と第2ラジアル軸受部R2とがそれぞれ形成される。   In the hydrodynamic bearing device 1 having the above-described configuration, when the shaft member 2 is relatively rotated, the dynamic pressure generating portions 10 and 10 provided on the outer peripheral surface 2a of the shaft member 2 and the inner peripheral surface of the electroformed portion 4 facing them The dynamic pressure action of the lubricating oil is generated in the radial bearing gap 6 between 4a and 4a. Thereby, the first radial bearing portion R1 and the second radial bearing portion R2 that support the shaft member 2 so as to be relatively rotatable in the radial direction are formed.

また、軸部材2の相対回転時、軸部材2の一端面2bが底部4bの上端面4b1に接触支持(ピボット支持)される。これにより、軸部材2をスラスト方向に相対回転自在に支持するスラスト軸受部T1が形成される。   Further, at the time of relative rotation of the shaft member 2, one end surface 2b of the shaft member 2 is contact-supported (pivot supported) to the upper end surface 4b1 of the bottom portion 4b. Thereby, the thrust bearing portion T1 that supports the shaft member 2 so as to be relatively rotatable in the thrust direction is formed.

以下、軸部材2の製造工程の一例を、図2〜図4に基づいて説明する。   Hereinafter, an example of the manufacturing process of the shaft member 2 will be described with reference to FIGS.

図2は、上記材料からなる軸素材11の外周面11aに、図1に示す形状の凹部7を転造で形成する工程(凹部転造工程)を概念的に示したものである。一対の転造ダイス12、13(この図示例では平ダイス)のうち、一方の転造ダイス12の対向面12aには、軸素材11に転写形成すべき凹部7に対応した形状の凸部12bが設けられている。図3(a)に示すように、転造前の状態では、軸素材11の外周面11aは平滑である。   FIG. 2 conceptually shows a step of forming the concave portion 7 having the shape shown in FIG. 1 on the outer peripheral surface 11a of the shaft material 11 made of the above material by rolling (recess rolling step). Of the pair of rolling dies 12 and 13 (in this example, a flat die), on the opposing surface 12a of one rolling die 12, a convex portion 12b having a shape corresponding to the concave portion 7 to be transferred to the shaft material 11 is formed. Is provided. As shown to Fig.3 (a), in the state before rolling, the outer peripheral surface 11a of the shaft raw material 11 is smooth.

軸素材11を、転造ダイス12、13間に導入し、他方の転造ダイス13を一方の転造ダイス12に対して相対摺動させることで、軸素材11が転造ダイス12の凸部12b形成領域上を押圧転動する。これにより、一方の転造ダイス12側から、軸素材11に例えば図1に示す形状の凹部7(動圧発生部10)が転造形成される。   The shaft material 11 is introduced between the rolling dies 12, 13, and the other rolling die 13 is slid relative to the one rolling die 12, so that the shaft material 11 is a convex portion of the rolling die 12. Press and roll over the 12b formation region. Thereby, the concave part 7 (dynamic pressure generating part 10) having the shape shown in FIG.

この際、軸素材11の外周面11aに形成される凹部7の表層部14には、図3(b)に示すように、転造による第1の加工硬化層14aが形成される。また、転造に伴い、元々凹部7にあった肉が周囲に押し出される。その結果、図3(b)に示すように、周囲領域8の凹部7近傍に盛り上がり(隆起部15)が生じる。   At this time, as shown in FIG. 3B, a first work-hardened layer 14 a is formed by rolling on the surface layer portion 14 of the recess 7 formed on the outer peripheral surface 11 a of the shaft material 11. Moreover, the meat which was originally in the recessed part 7 is extruded to circumference | surroundings with rolling. As a result, as shown in FIG. 3 (b), a bulge (protrusion 15) occurs in the vicinity of the recess 7 in the surrounding region 8.

軸素材11に転造で凹部7を形成した後、かかる軸素材11に平面転造を行う(平面転造工程)。ここで使用する転造ダイス16、17は、例えば図4に示すように、転造ダイス12、13と同形であり、かつ一方の転造ダイス16の対向面16aには、凹部7に対応した形状の凸部12bに代えて、平面部16bが設けられている。   After forming the recess 7 in the shaft material 11 by rolling, the shaft material 11 is subjected to planar rolling (planar rolling process). The rolling dies 16, 17 used here have the same shape as the rolling dies 12, 13, as shown in FIG. 4, for example, and the opposing surface 16a of one of the rolling dies 16 corresponds to the recess 7. Instead of the convex portion 12b having a shape, a flat portion 16b is provided.

軸素材11を、図4に示すように、転造ダイス16、17間に導入し、他方の転造ダイス17を一方の転造ダイス16に対して相対摺動させることで、軸素材11が一方の転造ダイス16の平面部16b形成領域上を押圧転動する。これにより、凹部7の周囲領域8に生じた隆起部15が対向面16aに設けられた平面部16bにより押し潰され、周囲領域8の表面8aが、例えば図3(c)に示すように平滑な状態に均される(平坦化される)。この場合、押し潰された隆起部15の下層部には、平面転造による第2の加工硬化層18が形成される。   As shown in FIG. 4, the shaft material 11 is introduced between the rolling dies 16, 17, and the other rolling die 17 is slid relative to the one rolling die 16. One rolling die 16 is pressed and rolled on the flat portion 16b forming region. Thereby, the raised portion 15 generated in the peripheral region 8 of the recess 7 is crushed by the flat portion 16b provided on the opposing surface 16a, and the surface 8a of the peripheral region 8 is smoothed as shown in FIG. 3C, for example. Smoothed (flattened). In this case, a second work-hardened layer 18 by plane rolling is formed on the lower layer portion of the crushed raised portion 15.

このように、凹部7を転造で形成した軸素材11を平面部16bで転造成形することで、軸素材11の外周面11aが順次かつ部分的に押圧される。そのため、軸受面となる周囲領域8の表面8aを過度に押圧することなく、必要箇所すなわち隆起部15のみを確実に押し潰して平坦化することができる。また、転造ダイス16、17間の対向間隔が高精度に管理可能であることから、従来の加工手段(研削加工など)に比べ、平面転造時の加工中心が凹部7転造時の加工中心とずれるのを極力防ぐことができる。従って、軸受面(表面8a)や凹部7の形状精度を高く保ちつつ、特に凹部7の深さを均一に保ちつつ、隆起部15を除去することができ、ラジアル軸受隙間6、6で十分な大きさの潤滑油の動圧作用を安定して発揮することができる。特に、この実施形態のように、比較的加工性に優れた金属材料(硬度でいえば200Hv〜400Hv)から製作される軸素材11を使用することで、凹部7の転造時に生じる隆起部15を平面転造加工により容易に除去することができる。また、全面プレス等と比べて軸素材11の変形抵抗が小さいため、転造型(ダイス16、17)にかかる負担も小さくて済み、型の長寿命化を図ることができる。   In this way, the outer peripheral surface 11a of the shaft material 11 is sequentially and partially pressed by rolling and forming the shaft material 11 in which the concave portion 7 is formed by rolling with the flat surface portion 16b. Therefore, it is possible to reliably crush and flatten only a necessary portion, that is, the raised portion 15 without excessively pressing the surface 8a of the surrounding region 8 serving as a bearing surface. Further, since the facing distance between the rolling dies 16 and 17 can be managed with high accuracy, the processing center at the time of flat surface rolling is the processing at the time of rolling the recess 7 compared to conventional processing means (grinding, etc.). It is possible to prevent the deviation from the center as much as possible. Therefore, it is possible to remove the raised portion 15 while keeping the shape accuracy of the bearing surface (surface 8a) and the concave portion 7 high, and particularly keeping the depth of the concave portion 7 uniform, and the radial bearing gaps 6 and 6 are sufficient. The dynamic pressure action of the large-sized lubricating oil can be stably exhibited. In particular, as in this embodiment, by using the shaft material 11 manufactured from a metal material having relatively excellent workability (200 Hv to 400 Hv in terms of hardness), the raised portion 15 generated when the recess 7 is rolled. Can be easily removed by plane rolling. In addition, since the deformation resistance of the shaft material 11 is smaller than that of a full surface press or the like, the burden on the rolling mold (dies 16 and 17) can be reduced, and the life of the mold can be extended.

また、上記隆起部15の除去を研削等の機械加工で行う場合には切粉の発生が避けられないが、本発明のように、隆起部15の除去を平面転造で行うことで、切粉の発生を極力減じることができる。これにより、その後の洗浄工程を簡略化することができ、コストダウンが達成可能となる。   In addition, when the removal of the raised portion 15 is performed by machining such as grinding, the generation of chips is inevitable. However, the removal of the raised portion 15 is performed by plane rolling as in the present invention. The generation of powder can be reduced as much as possible. As a result, the subsequent cleaning process can be simplified, and cost reduction can be achieved.

上記平面転造を施した後の軸素材11(軸部材2)において、例えば図3(d)に示すように、凹部7の深さdに対する隆起部15の高さhの比h/dが0.1以下であることが好ましい。この図示例では、凹部7の深さdは、軸受面となる表面8aから凹部7の底面7aまでの半径方向距離で表され、また、隆起部15の高さhは、表面8aから平坦化された隆起部15の頂部15aまでの半径方向距離で表される。上記比h/dが上記範囲内となるよう平面転造で隆起部15を平坦化することで、隆起部15の頂部15aのみが軸受面となり、実質的に軸受面積が減少するのを防いで、高い動圧作用を発揮し得る凹部7および軸受面(表面8a)を得ることができる。その一方で、あまりにh/dの値を0に近づけようとすると、すなわち完全に隆起部15を除去しようとすると、加工精度上の問題から、隆起部15だけでなく周囲領域8の表面8aを変形させる恐れがあり、これにより軸受面精度の低下が懸念される。そのため、実際には、比h/dの下限を0.01と定め、この値を狙って加工するのがよい。   In the shaft material 11 (shaft member 2) after the above-described plane rolling, for example, as shown in FIG. 3D, the ratio h / d of the height h of the raised portion 15 to the depth d of the recess 7 is It is preferable that it is 0.1 or less. In this illustrated example, the depth d of the recess 7 is represented by a radial distance from the surface 8a serving as the bearing surface to the bottom surface 7a of the recess 7, and the height h of the raised portion 15 is flattened from the surface 8a. It is represented by the radial distance to the top 15a of the raised ridge 15. By flattening the raised portion 15 by plane rolling so that the ratio h / d is within the above range, only the top portion 15a of the raised portion 15 becomes the bearing surface, and the bearing area is prevented from being substantially reduced. Thus, the recess 7 and the bearing surface (surface 8a) that can exhibit a high dynamic pressure action can be obtained. On the other hand, if the value of h / d is too close to 0, that is, if the bulging portion 15 is completely removed, the surface 8a of the surrounding region 8 as well as the bulging portion 15 will not be affected due to processing accuracy. There is a risk of deformation, which may cause a decrease in bearing surface accuracy. Therefore, in practice, the lower limit of the ratio h / d is set to 0.01, and it is preferable to perform processing with this value as a target.

もちろん、軸受面の矯正を兼ねる目的であって、加工上特に問題がないのであれば、上記比h/dが0となるように、すなわち隆起部15のみならず、軸受面となる周囲領域8の表面8aも積極的に押圧するように転造ダイス16、17の対向間隔を調整して転造を行うことも可能である。   Of course, if the purpose is to correct the bearing surface and there is no particular problem in processing, the ratio h / d is set to 0, that is, not only the raised portion 15 but also the peripheral region 8 serving as the bearing surface. It is also possible to perform rolling by adjusting the facing distance between the rolling dies 16 and 17 so as to positively press the surface 8a.

なお、上記平面転造後、必要に応じて、熱処理等の後処理を施すことも可能である。これは、軸部材2の回転時、特に起動停止時、凹部7の周囲領域8の表面8aは、対向する電鋳部4の内周面4aと摺動接触する場合があるためで、例えば上述のように熱処理を施すことで、かかる軸受面(表面8a)を含む表層部の硬度を高めることができる。これにより、凹部7や軸受面となる表面8aの磨り減りを抑えて、高い動圧作用を長期に亘って安定的に発揮することができる。なお、熱処理としては、種々の手段が使用可能であるが、熱処理時の変形を極力避ける目的から、できるだけ低温で実施可能な熱処理、例えば窒化処理を使用するのが好ましい。   In addition, it is also possible to perform post-processing, such as heat processing, after the said plane rolling, as needed. This is because the surface 8a of the peripheral region 8 of the concave portion 7 may be in sliding contact with the inner peripheral surface 4a of the opposing electroformed portion 4 when the shaft member 2 rotates, particularly when starting and stopping. By performing the heat treatment as described above, the hardness of the surface layer portion including the bearing surface (surface 8a) can be increased. Thereby, it is possible to suppress the abrasion of the concave portion 7 and the surface 8a serving as the bearing surface, and to stably exhibit a high dynamic pressure action over a long period of time. Although various means can be used as the heat treatment, it is preferable to use a heat treatment that can be performed at as low a temperature as possible, for example, a nitriding treatment, in order to avoid deformation during the heat treatment as much as possible.

また、この実施形態では、一方の対向面12aに凹部7を転造するための凸部12bを設けた転造ダイス12、13と、同じく一方の対向面16aに凹部7の転造により生じる隆起部15を平坦化するための平面部16bを設けた転造ダイス16、17とをそれぞれ用いた場合を説明したが、これらを一体化したものを使用して一連の転造成形を行うこともできる。図5はその一例を示すもので、例えば一方の転造ダイス19の、他方の転造ダイス20との対向面に、凹部7を転造するための凸部12bと、隆起部15を平坦化するための平面部16bとがそれぞれ設けられている。この場合、凸部12bおよび平面部16bは、被加工物(軸素材11)の押圧転動に伴い、凸部12bが平面部16bより先に軸素材11の外周面11aを押圧するように配設されている。   Moreover, in this embodiment, the rolling dies 12 and 13 provided with the convex part 12b for rolling the concave part 7 on one opposing surface 12a, and the ridge generated by the rolling of the concave part 7 on the one opposing surface 16a. Although the case where the rolling dies 16 and 17 provided with the flat portion 16b for flattening the portion 15 is used has been described, a series of rolling dies may be performed using these integrated dies. it can. FIG. 5 shows an example. For example, on one surface of the rolling die 19 facing the other rolling die 20, the convex portion 12b for rolling the concave portion 7 and the raised portion 15 are flattened. And a plane portion 16b for the purpose. In this case, the convex portion 12b and the flat surface portion 16b are arranged so that the convex portion 12b presses the outer peripheral surface 11a of the shaft raw material 11 before the flat surface portion 16b in accordance with the pressing rolling of the workpiece (the shaft raw material 11). It is installed.

かかる転造型(転造ダイス19、20)を用いて軸素材11の転造を行うことで、軸素材11の外周面11aにまず凹部7が転造形成され、続いて転動方向前方に設けられた平面部16bにより、周囲領域8の凹部7周辺に生じた隆起部15が押し潰され、平坦化される。従って、凹部7の転造形成と隆起部15の除去(軸受面となる周囲領域表面8aの平滑化)とを一の工程で行うことができ、工程の簡略化が図られる。加えて、共通の転造型で凹部7の転造形成と、隆起部15の除去とを行うことで、使用する転造型19、20の対向間隔を変えることなく両工程を行うことができる。そのため、凹部7転造時の加工中心と、平面転造時の加工中心とをずらすことなく一連の転造を行うことができる。従って、隆起部15を除去した後の凹部7深さをばらつきなく一定に保って、高い動圧作用を発揮し得る軸部材2を製造することができる。   By rolling the shaft blank 11 using such rolling dies (rolling dies 19 and 20), the concave portion 7 is first formed by rolling on the outer peripheral surface 11a of the shaft blank 11, and then provided forward in the rolling direction. The raised portion 15 generated around the concave portion 7 in the surrounding region 8 is crushed and flattened by the flat portion 16b. Therefore, the rolling formation of the recess 7 and the removal of the raised portion 15 (smoothing of the surrounding region surface 8a serving as the bearing surface) can be performed in one step, and the process can be simplified. In addition, by performing the rolling formation of the recess 7 and the removal of the raised portion 15 with a common rolling die, both processes can be performed without changing the facing distance between the rolling dies 19 and 20 to be used. Therefore, a series of rolling can be performed without shifting the processing center at the time of rolling the recess 7 and the processing center at the time of flat surface rolling. Accordingly, it is possible to manufacture the shaft member 2 capable of exhibiting a high dynamic pressure action while keeping the depth of the concave portion 7 after removing the raised portion 15 constant without variation.

また、この実施形態のように、溝状の凹部7(傾斜溝9a、9b)を転造で形成することで凹部7の周縁部にバリが発生することもあるが、平面部16bを有する転造型で転造を行うことで、かかるバリを除去して、あるいは凹部7の周縁部を適度に面取りすることができる。これにより、軸部材2の相対回転時、摺動相手面となる電鋳部4の内周面4aの摩耗を極力避け、あるいはかじり等の損傷を避けて、軸受の耐久性を向上させることができる。   Further, as in this embodiment, burrs may be generated at the peripheral edge of the recess 7 by forming the groove-like recess 7 (inclined grooves 9a, 9b) by rolling, but the rolling having the flat portion 16b. By performing rolling by molding, such burrs can be removed, or the peripheral edge of the recess 7 can be appropriately chamfered. Thereby, at the time of relative rotation of the shaft member 2, it is possible to avoid wear of the inner peripheral surface 4a of the electroformed portion 4 serving as a sliding mating surface as much as possible, or to avoid damage such as galling, thereby improving the durability of the bearing. it can.

また、この実施形態では、軸部材2に転造で形成された凹部7(傾斜溝9a、9b)との間にラジアル軸受隙間6を形成する軸受部材3の内周面を、電鋳部4の内周面4aで形成したので、かかる内周面4aを高精度に形成でき、これにより、ラジアル軸受隙間6をより狭小に設定することができる。むしろ、必要とされる軸受性能にもよるが、ラジアル軸受隙間6の幅を小さくかつ高精度に管理できるのであれば、複数の凹部7を複雑な形状(へリングボーン形状など)に配列させる必要はない。例えば後述する軸方向溝22や、ディンプル32のようなシンプルな形状の(より加工が容易な形状の)凹部7で構成される動圧発生部であっても、ラジアル軸受隙間に高い動圧作用をもたらすことが可能となる。   Moreover, in this embodiment, the inner peripheral surface of the bearing member 3 that forms the radial bearing gap 6 between the shaft member 2 and the recess 7 (the inclined grooves 9a and 9b) formed by rolling is formed on the electroformed portion 4. Since the inner peripheral surface 4a is formed, the inner peripheral surface 4a can be formed with high accuracy, whereby the radial bearing gap 6 can be set to be narrower. Rather, depending on the required bearing performance, if the width of the radial bearing gap 6 is small and can be managed with high accuracy, it is necessary to arrange a plurality of recesses 7 in a complicated shape (herringbone shape, etc.). There is no. For example, even in a dynamic pressure generating portion constituted by a recess 7 having a simple shape (a shape that can be more easily processed) such as an axial groove 22 to be described later and a dimple 32, a high dynamic pressure action is applied to the radial bearing gap. It becomes possible to bring

以上、本発明の一実施形態を説明したが、本発明は、この実施形態に限定されることなく、他の構成を採ることもできる。以下、本発明の他構成を、図6〜図9に基づいて説明する。   As mentioned above, although one embodiment of the present invention was described, the present invention is not limited to this embodiment and can adopt other configurations. Hereinafter, the other structure of this invention is demonstrated based on FIGS.

上記実施形態では、凹部7を傾斜溝9aと傾斜溝9bとで構成し、かかる形状の凹部7をへリングボーン状に配列形成した場合を例示したが、例えば図6(a)に示すように、軸部材21の外周面21aに、凹部7としての軸方向溝22を形成することもできる。この場合、複数の軸方向溝22は、図6(b)に示すように、円周方向に所定間隔おきに形成される。これら軸方向溝22と、その周囲領域23とで動圧発生部24が構成される。従って、図示は省略するが、この軸部材21を、図1に示す軸受部材3の内周に挿入し、軸部材21を軸受部材3に対して相対回転させた状態では、潤滑油で満たされたラジアル軸受隙間に、動圧発生部24による潤滑油の動圧作用が生じ、これにより軸部材21を軸受部材3に対してラジアル方向に非接触支持するラジアル軸受部が形成される。   In the above embodiment, the concave portion 7 is constituted by the inclined groove 9a and the inclined groove 9b, and the case where the concave portions 7 having such a shape are arranged in a herringbone shape is exemplified. For example, as shown in FIG. The axial groove 22 as the recess 7 can also be formed on the outer peripheral surface 21 a of the shaft member 21. In this case, the plurality of axial grooves 22 are formed at predetermined intervals in the circumferential direction as shown in FIG. These axial grooves 22 and the surrounding area 23 constitute a dynamic pressure generating portion 24. Therefore, although not shown, the shaft member 21 is inserted into the inner periphery of the bearing member 3 shown in FIG. 1 and the shaft member 21 is rotated relative to the bearing member 3 so that it is filled with lubricating oil. The dynamic pressure of the lubricating oil is generated by the dynamic pressure generating portion 24 in the radial bearing gap, thereby forming a radial bearing portion that supports the shaft member 21 in a non-contact manner in the radial direction with respect to the bearing member 3.

軸方向溝22を有する軸部材21は、上記実施形態と同様に、凹部転造工程および平面転造工程を経て形成される。これにより、例えば図7(a)に示すように、軸方向溝22の表層部25に、凹部転造工程による第1の加工硬化層25aが形成される。また、周囲領域23の表面23aの軸方向溝22周辺に生じる隆起部26(同図中破線部分)が平面転造により平坦化され、かかる隆起部15の下層部に、平面転造による第2の加工硬化層27が形成される。この場合、例えば図2や図4に示す転造ダイス12、13、16、17の他、図5に示す転造ダイス19、20を使用することもできる。   The shaft member 21 having the axial groove 22 is formed through a recess rolling process and a planar rolling process, as in the above embodiment. As a result, for example, as shown in FIG. 7A, a first work hardened layer 25 a is formed in the surface layer portion 25 of the axial groove 22 by the recess rolling process. Further, a raised portion 26 (broken line portion in the figure) generated around the axial groove 22 on the surface 23a of the peripheral region 23 is flattened by plane rolling, and a second portion by plane rolling is formed on the lower layer portion of the raised portion 15. The work hardening layer 27 is formed. In this case, for example, in addition to the rolling dies 12, 13, 16, and 17 shown in FIGS. 2 and 4, the rolling dies 19 and 20 shown in FIG. 5 can be used.

この実施形態においても、凹部7(軸方向溝22)の転造により周囲領域23に生じる隆起部26を平面転造で平坦化することで、軸受面(表面23a)や凹部7(軸方向溝22)の形状精度を高く保ちつつ、特に軸方向溝22の溝深さdを均一に保ちつつ、隆起部26を除去することができ、高い動圧作用を発揮することができる。   Also in this embodiment, the raised surface 26 generated in the peripheral region 23 by rolling of the recess 7 (axial groove 22) is flattened by plane rolling, so that the bearing surface (surface 23a) and the recess 7 (axial groove) While the shape accuracy of 22) is kept high, the raised portion 26 can be removed while keeping the groove depth d of the axial groove 22 uniform, and a high dynamic pressure action can be exhibited.

形成可能な軸方向溝22としては、図7(a)に示すように、断面形状が軸方向中心に向けて凸となる断面円弧状の曲面22aの他、例えば図7(b)に示すように、断面形状が外周面21aの円弧に対して弦となる平面22bで構成される軸方向溝22が考えられる。あるいは、図7(c)に示すように、平面22bと外周面21aとの間に段差が形成されるように、平面22bの円周方向両端に立ち上がり部22cを設けた構成の軸方向溝22や、図7(d)に示すように、溝深さが軸方向および円周方向に一定で、外径側に向けて凸となる断面形状の曲面22dで構成される軸方向溝22などが形成可能である。   As the axial groove 22 that can be formed, as shown in FIG. 7A, in addition to the curved surface 22a having an arcuate cross section that protrudes toward the center in the axial direction, for example, as shown in FIG. 7B. In addition, an axial groove 22 configured by a plane 22b whose cross-sectional shape is a chord with respect to the arc of the outer peripheral surface 21a is conceivable. Alternatively, as shown in FIG. 7C, the axial groove 22 having a configuration in which rising portions 22c are provided at both ends in the circumferential direction of the plane 22b so that a step is formed between the plane 22b and the outer peripheral surface 21a. Alternatively, as shown in FIG. 7 (d), there is an axial groove 22 constituted by a curved surface 22d having a cross-sectional shape in which the groove depth is constant in the axial direction and the circumferential direction and is convex toward the outer diameter side. It can be formed.

軸部材21の外周に形成される軸方向溝22の本数は、潤滑油の動圧作用を考慮すると、3本以上が好ましい。同様の理由で、軸方向溝22の円周方向幅を示す円周角αは10°以上60°以下、軸方向溝22の溝深さdは2μm〜20μmとするのが好ましい。また、低トルク化と高剛性化の両面から見た場合、周囲領域23の表面23aの全面積に対する、軸方向溝22の全面積の比(軸方向溝22の軸方向長さが均一とすると、上記面積比は{α/(360°−α)}となる。)は15%〜70%とするのが好ましい。   The number of the axial grooves 22 formed on the outer periphery of the shaft member 21 is preferably 3 or more in consideration of the dynamic pressure action of the lubricating oil. For the same reason, the circumferential angle α indicating the circumferential width of the axial groove 22 is preferably 10 ° to 60 °, and the groove depth d of the axial groove 22 is preferably 2 μm to 20 μm. Further, when viewed from both sides of low torque and high rigidity, the ratio of the total area of the axial groove 22 to the total area of the surface 23a of the peripheral region 23 (if the axial length of the axial groove 22 is uniform) The area ratio is {α / (360 ° −α)}.) Is preferably 15% to 70%.

また、図6では、ラジアル軸受部を形成すべき領域(動圧発生部24)全体に亘って軸方向に延びた複数の軸方向溝22を円周方向に並列配置した構成を例示したが、この他にも、例えば図8に示すように、軸方向溝22を軸方向に断続的に設けた構成を採ることもできる。この他の構成は、動圧発生部24の軸方向全長に亘って延びる軸方向溝22を設ける場合に準じるので説明を省略する。   FIG. 6 illustrates a configuration in which a plurality of axial grooves 22 extending in the axial direction over the entire region where the radial bearing portion is to be formed (dynamic pressure generating portion 24) are arranged in parallel in the circumferential direction. In addition to this, for example, as shown in FIG. 8, a configuration in which the axial grooves 22 are intermittently provided in the axial direction may be employed. The other configuration is the same as that in the case where the axial groove 22 extending over the entire axial length of the dynamic pressure generating portion 24 is provided, and the description thereof is omitted.

上記実施形態では、凹部7として傾斜溝9a、9bや軸方向溝22を例示したが、もちろん溝以外の形状をなす凹部7を形成することも可能である。図9(a)は、その一例を示すもので、軸部材31の外周面31aの一部領域に、凹部7としての複数のディンプル32が分散して配列されている。この場合、複数のディンプル32とそれらの周囲領域33とで動圧発生部34が構成される。従って、図示は省略するが、この軸部材31を、図1に示す軸受部材3の内周に挿入し、軸部材31を軸受部材3に対して相対回転させた状態では、潤滑油で満たされたラジアル軸受隙間に、動圧発生部34による潤滑油の動圧作用が生じ、これにより軸部材31を軸受部材3に対してラジアル方向に非接触支持するラジアル軸受部が形成される。   In the above-described embodiment, the inclined grooves 9a and 9b and the axial groove 22 are exemplified as the concave portion 7, but it is of course possible to form the concave portion 7 having a shape other than the groove. FIG. 9A shows an example thereof, and a plurality of dimples 32 as the recesses 7 are dispersed and arranged in a partial region of the outer peripheral surface 31 a of the shaft member 31. In this case, the dynamic pressure generating portion 34 is configured by the plurality of dimples 32 and their surrounding regions 33. Therefore, although not shown, the shaft member 31 is inserted into the inner periphery of the bearing member 3 shown in FIG. 1 and the shaft member 31 is rotated relative to the bearing member 3 to be filled with lubricating oil. Thus, a dynamic pressure action of the lubricating oil by the dynamic pressure generating portion 34 occurs in the radial bearing gap, thereby forming a radial bearing portion that supports the shaft member 31 in a non-contact manner in the radial direction with respect to the bearing member 3.

ディンプル32を有する軸部材31は、上記実施形態と同様に、凹部転造工程および平面転造工程を経て形成される。これにより、例えば図9(b)に示すように、ディンプル32の表層部35に、凹部転造工程による第1の加工硬化層35aが形成される。また、周囲領域33の表面33aのディンプル32周辺に生じる隆起部36(同図中破線部分)が平面転造により平坦化され、かかる隆起部36の下層部に、平面転造による第2の加工硬化層37が形成される。この場合、例えば図2や図4に示す転造ダイス12、13、16、17の他、図5に示す転造ダイス19、20を使用可能な点は軸方向溝22の場合と同じである。   The shaft member 31 having the dimples 32 is formed through a recess rolling process and a planar rolling process, as in the above embodiment. As a result, for example, as shown in FIG. 9B, a first work hardened layer 35 a is formed on the surface layer portion 35 of the dimple 32 by the recess rolling process. Further, a raised portion 36 (broken line portion in the figure) generated around the dimple 32 on the surface 33a of the surrounding region 33 is flattened by plane rolling, and a second process by plane rolling is applied to a lower layer portion of the raised portion 36. A hardened layer 37 is formed. In this case, for example, in addition to the rolling dies 12, 13, 16, and 17 shown in FIG. 2 and FIG. 4, the rolling dies 19 and 20 shown in FIG. .

この実施形態においても、凹部7(ディンプル32)の転造により周囲領域33に生じる隆起部36を平面転造で平坦化することで、軸受面(表面33a)や凹部7(ディンプル32)の形状精度を高く保ちつつ、特にディンプル32の深さdを均一に保ちつつ、隆起部36を除去することができ、高い動圧作用を発揮することができる。   Also in this embodiment, the shape of the bearing surface (surface 33a) and the recess 7 (dimple 32) is obtained by flattening the raised portion 36 generated in the surrounding region 33 by rolling the recess 7 (dimple 32) by plane rolling. While maintaining high accuracy, in particular, the raised portion 36 can be removed while keeping the depth d of the dimple 32 uniform, and a high dynamic pressure action can be exhibited.

ディンプル32の大きさとしては、例えば図9(a)や図9(b)に示すように、ディンプル32の長軸方向の幅aの、軸径Aに対する比a/Aを0.1以上0.4以下とするのが好ましい。また、ディンプル32の深さdは、例えば軸部材31の外周面31aが臨むラジアル軸受隙間の幅の1〜10倍程度であることが好ましい。このサイズのディンプル32であれば、従来、軸部材に設けられる類のディンプルとは異なり、高い動圧作用を生じる動圧発生部34を構成可能であり、かつラジアル軸受隙間の幅が小さい場合でも、油溜りとして有効に作用する。また、低トルク化と高剛性化との観点から、周囲領域33の表面33aの全面積に対する、ディンプル32形成領域の総面積の比は10%〜70%とするのが好ましい。また、ディンプル32の形状として、例えば図9(c)に示すように、短軸幅bに対する長軸幅aの比a/bは、1.0(真円形状)以上2.0以下の範囲内であるのが実用上好ましいが、特に上記範囲外の形状をなすディンプル32であっても問題なく形成可能である。   As the size of the dimple 32, for example, as shown in FIGS. 9A and 9B, the ratio a / A of the width a in the major axis direction of the dimple 32 to the shaft diameter A is 0.1 or more and 0. It is preferable to set it to 0.4 or less. Moreover, it is preferable that the depth d of the dimple 32 is, for example, about 1 to 10 times the width of the radial bearing gap that the outer peripheral surface 31a of the shaft member 31 faces. With dimples 32 of this size, unlike the conventional dimples provided on the shaft member, it is possible to form a dynamic pressure generating portion 34 that generates a high dynamic pressure action, and even when the radial bearing gap width is small. It works effectively as an oil sump. Further, from the viewpoint of lowering the torque and increasing the rigidity, the ratio of the total area of the dimple 32 forming region to the total area of the surface 33a of the peripheral region 33 is preferably 10% to 70%. Further, as the shape of the dimple 32, for example, as shown in FIG. 9C, the ratio a / b of the major axis width a to the minor axis width b is in the range of 1.0 (perfect circle shape) to 2.0. However, even the dimple 32 having a shape outside the above range can be formed without any problem.

上記実施形態では、凹部7として、傾斜溝9a、9bや軸方向溝22、ディンプル32などを例示したが、本発明は、ラジアル軸受隙間6などの軸受隙間に、潤滑油の動圧作用を生じるための凹部である限り、上記以外の形状をなす凹部7についても同様に適用することができる。   In the above embodiment, the inclined grooves 9a and 9b, the axial grooves 22, the dimples 32, and the like are exemplified as the recesses 7. However, the present invention produces a dynamic pressure action of lubricating oil in the bearing gap such as the radial bearing gap 6. Therefore, the present invention can be applied to the concave portion 7 having a shape other than the above as long as it is a concave portion.

以上説明した動圧軸受装置用軸部材およびこれを備えた動圧軸受装置は、例えば情報機器用のスピンドルモータに組み込んで使用可能である。以下、動圧軸受装置用軸部材31を上記モータ用のスピンドルに適用した構成例を、図10に基づいて説明する。なお、図1〜図9に示す実施形態と構成・作用を同一にする部位および部材については、同一の参照番号を付し、重複説明を省略する。   The shaft member for a hydrodynamic bearing device and the hydrodynamic bearing device including the shaft member described above can be used by being incorporated in a spindle motor for information equipment, for example. A configuration example in which the dynamic pressure bearing device shaft member 31 is applied to the motor spindle will be described below with reference to FIG. In addition, about the site | part and member which make the structure and effect | action same as embodiment shown in FIGS. 1-9, the same reference number is attached | subjected and duplication description is abbreviate | omitted.

図10は、動圧軸受装置41を組み込んだモータ40の断面図を示している。このモータ40は、例えばHDD等のディスク駆動装置用のスピンドルモータとして使用されるものであって、軸部材31を回転自在に非接触支持する動圧軸受装置41と、軸部材31に装着されたロータ(ディスクハブ)42と、例えば半径方向のギャップを介して対向させたステータコイル43およびロータマグネット44と、ブラケット45とを備えている。ステータコイル43は、ブラケット45の外周に取付けられ、ロータマグネット44はディスクハブ42の内周に取付けられている。ディスクハブ42には、磁気ディスク等のディスクDが一又は複数枚(図10では2枚)保持されている。ステータコイル43に通電すると、ステータコイル43とロータマグネット44との間の電磁力でロータマグネット44が回転し、それによって、ディスクハブ42及びディスクハブ42に保持されたディスクDが軸部材31と一体に回転する。   FIG. 10 shows a cross-sectional view of the motor 40 in which the hydrodynamic bearing device 41 is incorporated. The motor 40 is used as a spindle motor for a disk drive device such as an HDD, and is mounted on the shaft member 31 and a dynamic pressure bearing device 41 that rotatably supports the shaft member 31 in a non-contact manner. A rotor (disk hub) 42, a stator coil 43 and a rotor magnet 44 that are opposed to each other with a gap in the radial direction, for example, and a bracket 45 are provided. The stator coil 43 is attached to the outer periphery of the bracket 45, and the rotor magnet 44 is attached to the inner periphery of the disk hub 42. The disk hub 42 holds one or a plurality of disks D such as a magnetic disk (two in FIG. 10). When the stator coil 43 is energized, the rotor magnet 44 is rotated by electromagnetic force between the stator coil 43 and the rotor magnet 44, whereby the disc D held by the disc hub 42 and the disc hub 42 is integrated with the shaft member 31. Rotate to.

この実施形態において、動圧軸受装置41は、軸受部材46と、軸受部材46の内周に挿入される軸部材31とを備えている。軸受部材46は、一端を開口した有底筒状の電鋳部47と、電鋳部47と一体に形成される成形部48とからなる。軸受部材46は、例えばマスターと一体又は別体の電鋳部47をインサート部品として樹脂で成形部48と一体に射出成形される。   In this embodiment, the hydrodynamic bearing device 41 includes a bearing member 46 and a shaft member 31 inserted into the inner periphery of the bearing member 46. The bearing member 46 includes a bottomed cylindrical electroformed portion 47 having one end opened, and a molded portion 48 formed integrally with the electroformed portion 47. The bearing member 46 is injection-molded integrally with the molding part 48 with resin using, for example, an electroformed part 47 that is integral with or separate from the master as an insert part.

軸部材31の外周面31aには、図10に示すように、凹部7としての複数のディンプル32が形成されている。また、軸部材31の一端面31bは球面状をなし、軸部材31を軸受部材46の内周に挿入した状態では、対向する電鋳部47の底部47bの上端面47b1に当接する。また、軸部材31の外周面31aのうち、ディスクハブ42の固定領域となる端部領域には円環溝31cが形成される。円環溝31cを有する軸部材31は、例えば軸部材31をインサート部品とする型成形によりディスクハブ42と一体に形成される。この場合、円環溝31cは、ディスクハブ42の軸部材31に対する抜止めとして作用する。円環溝31cの他、軸部材の外周面に加工が必要なもので、上述の転造工程で転造加工できる形状のものは、同時に加工することも可能である。これ以外の構成は、上記実施形態における記載に準じるので説明を省略する。   As shown in FIG. 10, a plurality of dimples 32 as the recesses 7 are formed on the outer peripheral surface 31 a of the shaft member 31. Further, the one end surface 31 b of the shaft member 31 has a spherical shape, and abuts on the upper end surface 47 b 1 of the bottom 47 b of the opposing electroformed portion 47 when the shaft member 31 is inserted into the inner periphery of the bearing member 46. An annular groove 31c is formed in an end region of the outer peripheral surface 31a of the shaft member 31 which is a fixed region of the disk hub 42. The shaft member 31 having the annular groove 31c is formed integrally with the disc hub 42 by, for example, molding using the shaft member 31 as an insert part. In this case, the annular groove 31 c acts as a retaining for the shaft member 31 of the disk hub 42. In addition to the annular groove 31c, the outer peripheral surface of the shaft member needs to be processed, and those having a shape that can be rolled in the rolling process described above can be simultaneously processed. Since the other configuration conforms to the description in the above embodiment, the description is omitted.

上記構成の軸部材31を軸受部材46の内周に挿入し、軸受部材46の内部空間に潤滑油を注油する。これにより、電鋳部47の内周面47aや底部47bの上端面47b1と、これらに対向する軸部材31の外周面31aとの間の隙間空間、および軸部材31に形成されたディンプル32を含む軸受内部空間を潤滑油で充満した動圧軸受装置41が完成する。   The shaft member 31 configured as described above is inserted into the inner periphery of the bearing member 46, and lubricating oil is injected into the internal space of the bearing member 46. Thereby, the dimple 32 formed in the gap space between the inner peripheral surface 47a of the electroformed portion 47 and the upper end surface 47b1 of the bottom portion 47b and the outer peripheral surface 31a of the shaft member 31 opposed thereto is formed. The hydrodynamic bearing device 41 in which the bearing internal space is filled with lubricating oil is completed.

上記構成の動圧軸受装置41において、軸部材31の回転時、軸部材31の外周面31aに形成された動圧発生部34は、対向する軸受部材46の内周面(電鋳部47の真円内周面47a)との間にラジアル軸受隙間49を形成する。そして、軸部材31の回転に伴い、ラジアル軸受隙間49の潤滑油が動圧発生部34による動圧作用を生じ、その圧力が上昇する。これにより、軸部材31をラジアル方向に回転自在に支持するラジアル軸受部R11が形成される。同時に、軸部材31の一端面31bと、これに対向する電鋳部47の上端面47b1との間に、軸部材31をスラスト方向に回転自在に支持するスラスト軸受部T11が形成される。   In the dynamic pressure bearing device 41 configured as described above, when the shaft member 31 rotates, the dynamic pressure generating portion 34 formed on the outer peripheral surface 31 a of the shaft member 31 is connected to the inner peripheral surface (the electroformed portion 47 of the electroformed portion 47). A radial bearing gap 49 is formed between the inner circumference 47a). As the shaft member 31 rotates, the lubricating oil in the radial bearing gap 49 produces a dynamic pressure action by the dynamic pressure generating portion 34, and the pressure rises. Thus, a radial bearing portion R11 that supports the shaft member 31 so as to be rotatable in the radial direction is formed. At the same time, a thrust bearing portion T11 that supports the shaft member 31 rotatably in the thrust direction is formed between the one end surface 31b of the shaft member 31 and the upper end surface 47b1 of the electroformed portion 47 opposed thereto.

このように、隆起部36が平坦化され、高い面精度を有する軸受面(表面33a)を設けた軸部材31を動圧軸受装置41の軸部材として使用することにより、かかる軸部材31と軸受部材46との間の摺動摩耗を低減することができ、またラジアル軸受隙間49の幅が高精度に管理できる。従って、軸部材31に設けられたディンプル32あるいはその周囲領域33の摩耗によりラジアル軸受隙間49に生じる動圧作用が低下するといった事態を極力避けて、安定した軸受性能を長期に亘って発揮することが可能となる。   Thus, by using the shaft member 31 with the raised portion 36 flattened and having the bearing surface (surface 33a) having high surface accuracy as the shaft member of the hydrodynamic bearing device 41, the shaft member 31 and the bearing are provided. Sliding wear with the member 46 can be reduced, and the width of the radial bearing gap 49 can be managed with high accuracy. Therefore, it is possible to avoid the situation where the dynamic pressure action generated in the radial bearing gap 49 is reduced due to wear of the dimple 32 provided on the shaft member 31 or the surrounding area 33 as much as possible, and to exhibit stable bearing performance over a long period of time. Is possible.

また、軸部材31の側に動圧発生部34(動圧作用を生じるための凹部7)を設けることで、かかる動圧発生部34を軸受部材46の側に設ける場合と比べ加工(特に、転造加工)が容易である。そのため、上記モータの小サイズ化に対する要求にも容易に対応することができる。   In addition, by providing the dynamic pressure generating portion 34 (the concave portion 7 for generating the dynamic pressure action) on the shaft member 31 side, machining (particularly, compared to the case where the dynamic pressure generating portion 34 is provided on the bearing member 46 side) Rolling process) is easy. For this reason, it is possible to easily meet the demand for downsizing the motor.

なお、上記実施形態では、軸受部材3、46を、電鋳部4、47と樹脂製の成形部5、48とで構成した場合を例示したが、特にこの構成に限る必要はない。例えば、電鋳部4、47の代わりに、焼結金属製のスリーブ体を使用して軸受部材を構成することもできる。また、金属材料で軸受部材3、47を一体に形成したり、摺動性や耐摩耗性を高めた樹脂組成物で軸受部材3、47を一体に形成することも可能である。あるいは、モータ40側の部材であるブラケット45を、軸受部材46と同一の材料(金属又は樹脂など)で一体に形成することも可能である。また、形成方法も特に問わず、機械加工や塑性加工、あるいは射出成形等種々の成形手段を採ることが可能である。   In the above embodiment, the case where the bearing members 3 and 46 are constituted by the electroformed parts 4 and 47 and the resin molded parts 5 and 48 is exemplified, but it is not particularly limited to this structure. For example, instead of the electroformed parts 4 and 47, a sleeve member made of sintered metal can be used to constitute the bearing member. Further, it is possible to integrally form the bearing members 3 and 47 with a metal material, or to integrally form the bearing members 3 and 47 with a resin composition having improved slidability and wear resistance. Alternatively, the bracket 45, which is a member on the motor 40 side, can be integrally formed of the same material (metal or resin) as the bearing member 46. Further, the forming method is not particularly limited, and various forming means such as machining, plastic working, or injection molding can be employed.

なお、図1や図10では、スラスト軸受部T1、T11をいわゆるピボット軸受で構成した場合を例示しているが、本発明は、上記ピボット軸受を、動圧溝等の凹部とその周囲領域とで構成される動圧発生部で軸部材2をスラスト方向に非接触支持する動圧軸受としたものにも適用可能である。この場合、軸部材2に、図示は省略するが、例えば軸部材2の外径側に張り出すフランジ部を設け、フランジ部の端面に、傾斜溝やディンプル等の動圧発生用の凹部を転造で形成し、次いで端面を、例えば平滑な円筒面を有する丸ダイスなどで転造成形することで、凹部の転造により生じる隆起部を平坦化して、スラスト軸受面となる面(凹部の周囲領域の表面)の面精度を高めることができる。   1 and 10 exemplify the case where the thrust bearing portions T1 and T11 are so-called pivot bearings, the present invention is configured so that the pivot bearing includes a concave portion such as a dynamic pressure groove and its surrounding region. The present invention can also be applied to a dynamic pressure bearing configured to support the shaft member 2 in a non-contact manner in the thrust direction with a dynamic pressure generating portion constituted by: In this case, although not shown in the drawing, the shaft member 2 is provided with a flange portion that projects to the outer diameter side of the shaft member 2, for example, and a dynamic pressure generating recess such as an inclined groove or dimple is rolled on the end surface of the flange portion. Then, the end surface is rolled by, for example, a round die having a smooth cylindrical surface, etc., thereby flattening the raised portion caused by the rolling of the recess, and the surface that becomes the thrust bearing surface (around the recess) The surface accuracy of the surface of the region can be increased.

また、以上の実施形態では、動圧軸受装置1、41の内部に充満し、ラジアル軸受隙間等に動圧作用を発生させる流体として、潤滑油を例示したが、それ以外にも軸受隙間に動圧作用を生じ得る流体、例えば空気等の気体や、磁性流体等の流動性を有する潤滑剤、あるいは潤滑グリース等を使用することもできる。   In the above embodiment, the lubricating oil is exemplified as the fluid that fills the inside of the hydrodynamic bearing devices 1 and 41 and generates the hydrodynamic action in the radial bearing gap or the like. A fluid capable of generating a pressure action, for example, a gas such as air, a fluid lubricant such as a magnetic fluid, or a lubricating grease may be used.

本発明の一実施形態に係る動圧軸受装置の断面図である。1 is a cross-sectional view of a fluid dynamic bearing device according to an embodiment of the present invention. 動圧軸受装置用軸部材に凹部を転造する工程を概念的に示す図である。It is a figure which shows notionally the process of rolling a recessed part in the shaft member for dynamic-pressure bearing apparatuses. (a)は転造前の軸部材の外周面表層部付近の断面図、(b)は凹部転造後の凹部およびその周辺領域の表層部付近の断面図、(c)は平面転造後の凹部およびその周辺領域の表層部付近の断面図、(d)は平面転造後の隆起部周辺の拡大断面図である。(A) is a cross-sectional view near the outer peripheral surface layer portion of the shaft member before rolling, (b) is a cross-sectional view near the surface layer portion of the concave portion and its peripheral region after rolling the concave portion, and (c) is after flat surface rolling. Sectional drawing of the surface layer part vicinity of the recessed part of this, and its peripheral region, (d) is an expanded sectional view of the protruding part periphery after plane rolling. 動圧軸受装置用軸部材の外周面を平面で転造成形する工程を概念的に示す図である。It is a figure which shows notionally the process of rolling and shaping | molding the outer peripheral surface of the shaft member for dynamic pressure bearing apparatuses on a plane. 他形態に係る平面転造工程を概念的に示す図である。It is a figure which shows notionally the plane rolling process which concerns on another form. (a)は本発明の他実施形態に係る軸部材の側面図、(b)は軸部材の軸直交断面図である。(A) is a side view of the shaft member which concerns on other embodiment of this invention, (b) is an axis orthogonal sectional view of a shaft member. (a)は軸部材に形成された軸方向溝の一形状を示す拡大断面図、(b)〜(d)は何れも軸方向溝の他形状を示す拡大断面図である。(A) is an expanded sectional view which shows one shape of the axial direction groove | channel formed in the shaft member, (b)-(d) is an expanded sectional view in which all show the other shape of an axial direction groove | channel. 本発明の他実施形態に係る軸部材の側面図である。It is a side view of the shaft member concerning other embodiments of the present invention. (a)は他実施形態に係る軸部材の側面図、(b)は軸部材に形成されたディンプルの断面形状を示す拡大図、(c)はディンプルの平面形状を示す拡大図である。(A) is a side view of the shaft member which concerns on other embodiment, (b) is an enlarged view which shows the cross-sectional shape of the dimple formed in the shaft member, (c) is an enlarged view which shows the planar shape of a dimple. 本発明に係る動圧軸受装置を組込んだ情報機器用モータの一構成例を概念的に示す断面図である。It is sectional drawing which shows notionally the example of 1 structure of the motor for information devices incorporating the hydrodynamic bearing apparatus which concerns on this invention.

符号の説明Explanation of symbols

1、41 動圧軸受装置
2 動圧軸受装置用軸部材
3 軸受部材
4 電鋳部
6 ラジアル軸受隙間
7 凹部
8 周囲領域
9a、9b 傾斜溝
10 動圧発生部
11 軸素材
12、13 転造ダイス
12b 凸部
14a 第1の加工硬化層
15 隆起部
16、17 転造ダイス
16b 平面部
18 第2の加工硬化層
21 軸部材
22 軸方向溝
23 周囲領域
26 隆起部
31 軸部材
32 ディンプル
33 周囲領域
36 隆起部
40 モータ
d、d、d 凹部の深さ
h 隆起部の高さ
R1、R2、R11 ラジアル軸受部
T1、T11 スラスト軸受部
DESCRIPTION OF SYMBOLS 1, 41 Dynamic pressure bearing apparatus 2 Shaft member 3 for dynamic pressure bearing apparatuses 3 Bearing member 4 Electroformed part 6 Radial bearing gap 7 Recess 8 Peripheral area 9a, 9b Inclined groove 10 Dynamic pressure generating part 11 Shaft material 12, 13 Rolling die 12b Convex part 14a First work hardening layer 15 Raised parts 16, 17 Rolling die 16b Plane part 18 Second work hardening layer 21 Axial member 22 Axial groove 23 Surrounding area 26 Raised part 31 Shaft member 32 Dimple 33 Surrounding area 36 Raised portion 40 Motor d, d, d Depth of recess h Height of raised portion R1, R2, R11 Radial bearing portion T1, T11 Thrust bearing portion

Claims (5)

軸受隙間に流体の動圧作用を生じるための凹部が転造で形成された動圧軸受装置用軸部材において、
前記転造により前記凹部の周囲領域に生じた隆起部が平面転造により平坦化されていることを特徴とする動圧軸受装置用軸部材。
In the shaft member for the hydrodynamic bearing device in which the concave portion for generating the hydrodynamic action of the fluid in the bearing gap is formed by rolling,
A shaft member for a hydrodynamic bearing device, wherein a raised portion generated in a peripheral region of the recess by the rolling is flattened by planar rolling.
前記凹部の深さdに対する前記隆起部の高さhの比h/dが0.1以下である請求項1記載の動圧軸受装置用軸部材。   The shaft member for a hydrodynamic bearing device according to claim 1, wherein a ratio h / d of a height h of the raised portion to a depth d of the concave portion is 0.1 or less. 前記凹部の深さdに対する前記隆起部の高さhの比h/dが0.01以上である請求項1又は2記載の動圧軸受装置用軸部材。   The shaft member for a hydrodynamic bearing device according to claim 1 or 2, wherein a ratio h / d of a height h of the raised portion to a depth d of the concave portion is 0.01 or more. 請求項1〜3の何れかに記載の動圧軸受装置用軸部材を備えた動圧軸受装置。   A fluid dynamic bearing device comprising the shaft member for a fluid dynamic bearing device according to claim 1. 軸受隙間に流体の動圧作用を生じるための凹部を転造で形成する第1転造工程と、前記第1転造工程により前記凹部の周囲に生じる隆起部を平面転造で平坦化する第2転造工程とを含む動圧軸受装置用軸部材の製造方法。   A first rolling step for forming a recess for rolling fluid pressure in the bearing gap by rolling, and a first rolling step for flattening the raised portion around the recess by the first rolling step by plane rolling. A method for manufacturing a shaft member for a hydrodynamic bearing device including two rolling steps.
JP2006041223A 2006-02-17 2006-02-17 Shaft member for hydrodynamic bearing device and its manufacturing method Pending JP2007218379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006041223A JP2007218379A (en) 2006-02-17 2006-02-17 Shaft member for hydrodynamic bearing device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006041223A JP2007218379A (en) 2006-02-17 2006-02-17 Shaft member for hydrodynamic bearing device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007218379A true JP2007218379A (en) 2007-08-30

Family

ID=38495900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006041223A Pending JP2007218379A (en) 2006-02-17 2006-02-17 Shaft member for hydrodynamic bearing device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007218379A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013005394A1 (en) * 2011-07-01 2013-01-10 パナソニック株式会社 Sliding member
CN105570305A (en) * 2015-12-17 2016-05-11 潍柴动力股份有限公司 Bearing bush and bearing bush processing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6213812A (en) * 1985-07-11 1987-01-22 Matsushita Electric Ind Co Ltd Dynamic pressure type fluid bearing
JPS63259215A (en) * 1987-04-13 1988-10-26 Sanwa Niidorubearingu Kk Thrust bearing device having fluid retaining groove and its manufacture
JP2000199523A (en) * 1999-01-08 2000-07-18 Seiko Instruments Inc Manufacture of dynamic pressure fluid bearing
JP2000230557A (en) * 1999-02-12 2000-08-22 Seiko Instruments Inc Method and device for forming fluid holding groove of radial bearing and drive motor for hard disk

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6213812A (en) * 1985-07-11 1987-01-22 Matsushita Electric Ind Co Ltd Dynamic pressure type fluid bearing
JPS63259215A (en) * 1987-04-13 1988-10-26 Sanwa Niidorubearingu Kk Thrust bearing device having fluid retaining groove and its manufacture
JP2000199523A (en) * 1999-01-08 2000-07-18 Seiko Instruments Inc Manufacture of dynamic pressure fluid bearing
JP2000230557A (en) * 1999-02-12 2000-08-22 Seiko Instruments Inc Method and device for forming fluid holding groove of radial bearing and drive motor for hard disk

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013005394A1 (en) * 2011-07-01 2013-01-10 パナソニック株式会社 Sliding member
CN103635705A (en) * 2011-07-01 2014-03-12 松下电器产业株式会社 Sliding member
JPWO2013005394A1 (en) * 2011-07-01 2015-02-23 パナソニック株式会社 Sliding member
CN105570305A (en) * 2015-12-17 2016-05-11 潍柴动力股份有限公司 Bearing bush and bearing bush processing method

Similar Documents

Publication Publication Date Title
US8366322B2 (en) Shaft member for fluid dynamic bearing device
JP4979950B2 (en) Shaft member for hydrodynamic bearing device
JP4573349B2 (en) Manufacturing method of hydrodynamic bearing
JP2007218379A (en) Shaft member for hydrodynamic bearing device and its manufacturing method
JP5132887B2 (en) Shaft member for hydrodynamic bearing device
US7789565B2 (en) Fluid dynamic bearing apparatus
JP5819077B2 (en) Method for manufacturing fluid dynamic bearing device
JP6275369B2 (en) Material for fluid dynamic pressure bearing, shaft member using the same material and fluid dynamic pressure bearing using coaxial member
US10837486B2 (en) Shaft member for fluid bearing device, manufacturing method therefor, and fluid bearing device
WO2012121053A1 (en) Fluid dynamic pressure bearing device
JP4188288B2 (en) Manufacturing method of dynamic pressure type porous oil-impregnated bearing
JP5901979B2 (en) Method for manufacturing fluid dynamic bearing device
JP2004340385A (en) Dynamic pressure type bearing unit
JP2005265180A (en) Dynamic pressure bearing device
JP2004316924A (en) Dynamic pressure-type oil-impregnated sintered bearing unit
JP5819078B2 (en) Fluid dynamic bearing device
JP4832736B2 (en) Hydrodynamic bearing unit
JP2004360921A (en) Dynamic pressure type sintered oil retaining bearing unit
JP4451409B2 (en) Method for producing hydrodynamic sintered oil-impregnated bearing unit
JP4937644B2 (en) Hydrodynamic bearing device
JP2004316925A (en) Dynamic pressure-type oil-impregnated sintered bearing unit
JP2004301338A (en) Dynamic pressure type sintering oil impregnation bearing unit
JP2007285414A (en) Dynamic pressure bearing device
JP2006220216A (en) Fluid bearing device housing and its manufacturing method
JP2004308921A (en) Dynamic pressure type bearing unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090107

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100827

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100913