JP4451409B2 - Method for producing hydrodynamic sintered oil-impregnated bearing unit - Google Patents

Method for producing hydrodynamic sintered oil-impregnated bearing unit Download PDF

Info

Publication number
JP4451409B2
JP4451409B2 JP2006086071A JP2006086071A JP4451409B2 JP 4451409 B2 JP4451409 B2 JP 4451409B2 JP 2006086071 A JP2006086071 A JP 2006086071A JP 2006086071 A JP2006086071 A JP 2006086071A JP 4451409 B2 JP4451409 B2 JP 4451409B2
Authority
JP
Japan
Prior art keywords
bearing
oil
dynamic pressure
impregnated
hydrodynamic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2006086071A
Other languages
Japanese (ja)
Other versions
JP2006177562A (en
Inventor
夏比古 森
一男 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2006086071A priority Critical patent/JP4451409B2/en
Publication of JP2006177562A publication Critical patent/JP2006177562A/en
Application granted granted Critical
Publication of JP4451409B2 publication Critical patent/JP4451409B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、動圧型焼結含油軸受ユニットの製造方法に関する。この動圧型焼結含油軸受は、特に情報機器分野で用いられる、DVD−ROM、DVD−RAMなどの光ディスク装置、MOなどの光磁気ディスク装置、HiFD、Zipなどの高容量FDD〔フロッピーディスクドライブ(フロッピーは登録商標)〕、HDDなどの磁気ディスク装置のディスクドライブ用軸受、あるいはLBPなどのポリゴンスキャナモータ用軸受に適しており、特に薄型モータ用の軸受として好適である。 The present invention relates to a method for manufacturing a hydrodynamic sintered oil-impregnated bearing unit . This hydrodynamic sintered oil-impregnated bearing is used in the field of information equipment, in particular, optical disk devices such as DVD-ROM and DVD-RAM, magneto-optical disk devices such as MO, high capacity FDD such as HiFD and Zip [floppy disk drive ( Floppy is a registered trademark)], suitable for a disk drive bearing of a magnetic disk device such as an HDD, or a polygon scanner motor bearing such as an LBP, and particularly suitable as a bearing for a thin motor.

上記情報機器類のスピンドルモータには、さらなる高回転精度化、高速化、低コスト化、低騒音化などが求められているが、これらの要求性能を決定づける構成要素の一つにモータのスピンドルを支持する軸受がある。近年では、この種の軸受として、焼結金属製の軸受本体に潤滑油または潤滑グリースを含浸させ、軸受面に設けた動圧溝の動圧効果で軸受隙間に潤滑油膜を形成してスピンドルを非接触支持する、いわゆる動圧型焼結含油軸受の使用が検討されている。この動圧型焼結含油軸受は、低コストでありながら高い回転精度、低騒音等の特徴を有し、上記要求性能にも十分に対応できると考えられる。   The spindle motors of the above information devices are required to have higher rotational accuracy, higher speed, lower cost, lower noise, etc. The motor spindle is one of the components that determine these required performances. There are bearings to support. In recent years, as a bearing of this type, a sintered metal bearing body is impregnated with lubricating oil or lubricating grease, and a lubricating oil film is formed in the bearing gap by the dynamic pressure effect of the dynamic pressure groove provided on the bearing surface. The use of so-called hydrodynamic sintered oil-impregnated bearings that support non-contact is being studied. This hydrodynamic sintered oil-impregnated bearing has features such as high rotational accuracy and low noise at a low cost, and is considered to be able to sufficiently cope with the required performance.

図12は、動圧型焼結含油軸受1を用いた光ディスク装置のスピンドルモータの一例である。図示のように、このスピンドルモータは、動圧型焼結含油軸受1、軸受を収容するハウジング2、軸受1に支持された回転軸3、光ディスク4を支持固定するターンテーブル5およびクランパ6、ステータ7aおよびロータ7bからなるモータ部Mを具備しており、ステータ7aへの通電により、ロータ7bと一体になったロータケース8、ターンテーブル5、光ディスク4、クランパ6を一体回転させる構造である。   FIG. 12 is an example of a spindle motor of an optical disc apparatus using the dynamic pressure type sintered oil-impregnated bearing 1. As shown in the figure, this spindle motor includes a hydrodynamic sintered oil-impregnated bearing 1, a housing 2 for housing the bearing, a rotating shaft 3 supported by the bearing 1, a turntable 5 and a clamper 6 for supporting and fixing the optical disk 4, and a stator 7a. And a motor portion M including the rotor 7b, and the rotor case 8, the turntable 5, the optical disc 4, and the clamper 6 integrated with the rotor 7b are integrally rotated by energizing the stator 7a.

動圧型焼結含油軸受1は、図13に示すように、厚肉円筒状に形成された多孔質の軸受本体1aと、潤滑油または潤滑グリースの含浸によって軸受本体1aの細孔内に保有された油とで構成される。軸受本体1aの内周面には、回転軸3の外周面と軸受隙間を介して対向する一対の軸受面1bが軸方向に離隔形成され、両軸受面1bに軸方向に対して傾斜した動圧溝1cが形成されている。   As shown in FIG. 13, the hydrodynamic sintered oil-impregnated bearing 1 is held in the pores of the bearing body 1a by impregnation with a porous bearing body 1a formed in a thick cylindrical shape and lubricating oil or grease. It is composed of oil. A pair of bearing surfaces 1b facing the outer circumferential surface of the rotating shaft 3 via a bearing gap are formed on the inner circumferential surface of the bearing body 1a so as to be spaced apart from each other in the axial direction. A pressure groove 1c is formed.

図12および図14に示すように、回転軸3のスラスト荷重は、ハウジング2の底部に設けられたスラスト軸受9で支持される。スラスト軸受9としては、球面状の軸端を、ハウジング2底部に設けた潤滑性に富む樹脂製ワッシャ9aに摺動させる構造(いわゆるピボット軸受)が一般的である。
特開平10−196644号公報
As shown in FIGS. 12 and 14, the thrust load of the rotating shaft 3 is supported by a thrust bearing 9 provided at the bottom of the housing 2. The thrust bearing 9 generally has a structure (a so-called pivot bearing) in which a spherical shaft end is slid on a resin washer 9 a having a high lubricity provided on the bottom of the housing 2.
Japanese Patent Laid-Open No. 10-196644

しかし、ピボット軸受では、ワッシャ9aの弾性変形や塑性変形、あるいは摩耗による変形等によってワッシャに窪みができ、軸の位置が時間経過と共に変化する場合がある。軸位置の変動は、HDD装置においてはディスク位置の変動を、LBPのポリゴンスキャナモータではミラー位置の変動を招来し、モータ性能に大きく影響する。この対策としてワッシャ9aを金属材料やセラミック材で形成することも考えられるが、これでは軸側が摩耗して軸端が球面から平面に変化し、軸位置の変化、トルク増加、トルク変動等の不具合を招くおそれがある。   However, in the pivot bearing, the washer may be depressed due to elastic deformation, plastic deformation, deformation due to wear, or the like of the washer 9a, and the shaft position may change with time. The change in the axis position greatly affects the performance of the disk by causing a change in the disk position in the HDD device and a change in the mirror position in the polygon scanner motor of the LBP. As a countermeasure, the washer 9a may be formed of a metal material or a ceramic material. However, in this case, the shaft end is worn and the shaft end is changed from a spherical surface to a flat surface, thereby causing problems such as a change in shaft position, torque increase, and torque fluctuation. May be incurred.

また、近年では、ノート型パソコン等への光ディスク装置やHDD装置の搭載を考慮してスピンドルモータの薄型化が要求される場合が多いが、上記のように軸受面1bを軸方向の2箇所に配置した構造では、薄型化に限界がある。薄型化は、例えば図15に示すように、軸受面1bを1箇所のみに設けることによっても実現され得るが、これではモーメント荷重に対する剛性の低下が問題となる。すなわち、回転軸3の軸受1からの突出部分には、ロータマグネット7bを固定したロータケース8、ディスク4、ターンテーブル5、クランパ6等の偏心荷重が作用するため、モーメント荷重による軸振れ精度の低下が懸念される。   In recent years, it is often required to reduce the thickness of the spindle motor in consideration of mounting an optical disk device or an HDD device on a notebook computer or the like. However, as described above, the bearing surface 1b is provided at two locations in the axial direction. There is a limit to reducing the thickness of the arranged structure. For example, as shown in FIG. 15, the thinning can be realized by providing the bearing surface 1b only at one location, but this causes a problem of a decrease in rigidity against a moment load. That is, since an eccentric load such as the rotor case 8, the disk 4, the turntable 5, and the clamper 6 with the rotor magnet 7b fixed acts on the protruding portion of the rotary shaft 3 from the bearing 1, the shaft runout accuracy due to the moment load is improved. There is concern about the decline.

そこで、本発明では、長期間所期の軸受性能を維持することができ、軸振れ精度の低下等を招くことなく薄型化を実現することのできる動圧型焼結含油軸受の提供を目的とする。   Accordingly, an object of the present invention is to provide a hydrodynamic sintered oil-impregnated bearing that can maintain a desired bearing performance for a long period of time and can be thinned without causing a decrease in shaft runout accuracy. .

上記目的を達成すべく、本発明は、軸と、焼結金属で形成され、軸の外周面と軸受隙間を介して対向するラジアル軸受面を備えた軸受本体に油を含浸させてなり、ラジアル軸受面に軸方向に対して傾斜した複数の動圧溝が形成され、軸と軸受本体との相対回転時にラジアル軸受面で生じる動圧作用により軸を非接触支持する動圧型焼結含油軸受と、動圧型焼結含油軸受の少なくとも一方の端面と軸に設けたフランジ部とで構成されたスラスト軸受部とを有し、フランジ部と軸の外周面との直角度を2μm以内に設定した動圧型焼結含油軸受ユニットの製造方法であって
一対のパンチのうち、一方のパンチで焼結金属の全体をダイに圧入すると共に、この圧入時に、焼結金属の内周に配置した、前記ラジアル軸受面の形状に対応する成形型を前記一方のパンチと連動して移動させ、成形型を焼結金属の内周面に、一対のパンチを焼結金属の両端面にそれぞれ押し付けることにより、動圧型焼結含油軸受の内周面と少なくとも上記一方の端面とそれぞれサイジングし、一対のパンチおよび成形型を焼結金属と成形型の位置関係を保持しながら一体的に上昇させ、焼結金属がダイから抜けるまで焼結金属の両端面を上下のパンチで保持して焼結金属をスプリングバックさせ、焼結金属の上記一方の軸受端面と軸受内周面との直角度を3μm以内に設定することを特徴とするものである。
In order to achieve the above object, the present invention comprises a shaft and a bearing body which is formed of sintered metal and has a radial bearing surface opposed to the outer peripheral surface of the shaft via a bearing gap. A hydrodynamic sintered oil-impregnated bearing in which a plurality of hydrodynamic grooves inclined with respect to the axial direction are formed on the bearing surface, and the shaft is supported in a non-contact manner by the hydrodynamic action generated on the radial bearing surface during relative rotation between the shaft and the bearing body; A dynamic bearing having a thrust bearing composed of at least one end face of a hydrodynamic sintered oil-impregnated bearing and a flange provided on the shaft, wherein the perpendicularity between the flange and the outer peripheral surface of the shaft is set within 2 μm. A method for producing a pressure-type sintered oil-impregnated bearing unit , comprising:
Of the pair of punches, one of the punches presses the entire sintered metal into the die, and at the time of the press-fitting, the mold corresponding to the shape of the radial bearing surface is disposed on the inner periphery of the sintered metal. The mold is moved against the inner peripheral surface of the sintered metal, and the pair of punches are pressed against both end surfaces of the sintered metal, so that the inner peripheral surface of the hydrodynamic sintered oil-impregnated bearing is at least as described above. one of the end face sizing respectively, integrally raised while maintaining the mold positional relationship between sintered metal a pair of punch and mold, sintered metal to both end surfaces of the sintered metal to exit the die The sintered metal is spring-backed by being held by upper and lower punches, and the perpendicularity between the one bearing end surface of the sintered metal and the inner peripheral surface of the bearing is set within 3 μm .

上記構成のスラスト軸受部では、回転側と固定側の面当りが確保されるので、接触面圧を下げて摩耗を防止することができ、ピボット軸受のようなワッシャの摩耗変形による軸位置の変動を回避することができる。また、面当りであるからピボット軸受の点当たりに比べてモーメント荷重に対する剛性が向上する。   In the thrust bearing portion configured as described above, the contact between the rotating side and the fixed side is secured, so that the contact surface pressure can be reduced to prevent wear, and the shaft position fluctuates due to wear deformation of a washer such as a pivot bearing. Can be avoided. Further, since it is per surface, the rigidity against moment load is improved as compared with the per point of the pivot bearing.

スラスト軸受部14において、軸受端面11f1の精度、あるいはフランジ部13aの精度が十分でないと、図16に示すように、フランジ部13aが軸受端面11f1に面接触せずに片当りとなるおそれがある。片当りでは、トルクロスが大きく、かつトルク変動の要因となって情報機器に要求される高い回転精度が得られない。また、たとえ軸受端面11f1に動圧溝を設けてスラスト軸受部を非接触に保とうとしても、動圧効果が不十分であるために、軸受端面とフランジ部との接触・摩耗を生じ、回転精度や耐久性を改善することができない。   In the thrust bearing portion 14, if the accuracy of the bearing end surface 11f1 or the accuracy of the flange portion 13a is not sufficient, as shown in FIG. 16, the flange portion 13a may come into contact with the bearing end surface 11f1 without being in surface contact. . In the one-piece contact, the torque cross is large and the torque fluctuation causes a high rotational accuracy required for the information equipment. Even if a dynamic pressure groove is provided in the bearing end surface 11f1 to keep the thrust bearing portion in non-contact, the dynamic pressure effect is insufficient, causing contact and wear between the bearing end surface and the flange portion, resulting in rotation. Accuracy and durability cannot be improved.

そこで、本発明では、スラスト軸受部を構成する少なくとも一方の軸受端面と軸受内周面との直角度、およびフランジ部と軸の外周面(特にラジアル軸受面と対向する軸の外周面)との直角度を、軸と軸受本体との相対回転時に、上記一方の軸受端面とフランジ部とが片当りしない公差に管理することとした。   Therefore, in the present invention, the perpendicularity between at least one bearing end surface constituting the thrust bearing portion and the bearing inner peripheral surface, and the flange portion and the outer peripheral surface of the shaft (particularly, the outer peripheral surface of the shaft facing the radial bearing surface). The perpendicularity is managed to be a tolerance that the one bearing end face and the flange portion do not come into contact with each other at the time of relative rotation between the shaft and the bearing body.

この場合、例えば軸受端面11f1と軸受内周面との直角度が4μm以上で、フランジ部13aと軸の外周面との直角度が3μm以上であると、フランジ部13aが軸受端面11f1に面当りせずに片当りするおそれがある。従って、軸受端面11f1と軸受内周面との直角度は3μm以内に、フランジ部13aと軸の外周面との直角度は2μm以内にそれぞれ設定する。   In this case, for example, if the perpendicularity between the bearing end surface 11f1 and the bearing inner peripheral surface is 4 μm or more and the perpendicularity between the flange portion 13a and the outer peripheral surface of the shaft is 3 μm or more, the flange portion 13a contacts the bearing end surface 11f1. There is a risk of hitting without touching. Accordingly, the perpendicularity between the bearing end surface 11f1 and the bearing inner peripheral surface is set within 3 μm, and the perpendicularity between the flange portion 13a and the outer peripheral surface of the shaft is set within 2 μm.

なお、ここでいう「直角度」とは、直角であるべき平面部分と基準となる面との組合わせにおいて、この基準面に対して直角な幾何学的平面からの直角であるべき平面部分の狂いの大きさをいう。   The term “squareness” as used herein refers to the plane portion that should be perpendicular to the geometric plane perpendicular to the reference plane in the combination of the plane portion that should be perpendicular and the reference plane. This is the size of the madness.

従来の動圧型焼結含油軸受では、軸受端面の精度が十分でなく(軸受内周面に対する軸受端面の直角度は10μm程度)、上記数値範囲内の精度を持つ軸受本体を量産することは難しい。対策としては、例えば軸受をハウジングに固定した後、軸受内径面を基準に、あるいは軸受内径面に対して同軸度が確保された外径面などを基準として軸受端面を機械加工で仕上げる方法があるが、その場合には、(1)加工によって生じた削り粉が軸受内周面に付着するため、加工後に洗浄が必要となり、(2)また、後加工、洗浄などの工程が別途必要となるため、コストが大幅にアップし、動圧型焼結含油軸受の最大の特徴である低コスト性が損なわれる等の問題が生じる。   In conventional hydrodynamic sintered oil-impregnated bearings, the accuracy of the bearing end surface is not sufficient (the perpendicularity of the bearing end surface with respect to the inner peripheral surface of the bearing is about 10 μm), and it is difficult to mass-produce bearing bodies having accuracy within the above numerical range. . As a countermeasure, for example, after fixing the bearing to the housing, there is a method in which the bearing end surface is finished by machining on the basis of the bearing inner diameter surface or on the basis of the outer diameter surface in which the coaxiality is secured with respect to the bearing inner diameter surface. In that case, however, (1) since the shavings generated by the processing adhere to the inner peripheral surface of the bearing, cleaning is required after processing, and (2) additional steps such as post-processing and cleaning are required. For this reason, the cost is significantly increased, and problems such as a reduction in low cost, which is the greatest feature of the hydrodynamic sintered oil-impregnated bearing, occur.

そこで、本発明では、ラジアル軸受面における動圧溝を成形する成形型を軸受本体素材の内周面に挿入すると共に、軸受本体素材の両端面を一対のパンチ面で保持した状態で軸受本体素材に圧迫力を加えることにより、成形型で軸受本体素材の内周面に軸方向に対して傾斜した動圧溝を有するラジアル軸受面を成形すると共に、少なくとも一方のパンチ面で軸受本体素材の一方の端面に軸との間でスラスト軸受部を構成するスラスト軸受部を構成するスラスト軸受面を成形するに際し、上記少なくとも一方のパンチ面と、成形型の外周面との直角度を2μm以内(望ましくは1μm以内)に設定した。   Therefore, in the present invention, a bearing body material is inserted in a state in which a molding die for forming a dynamic pressure groove on the radial bearing surface is inserted into the inner peripheral surface of the bearing body material and both end surfaces of the bearing body material are held by a pair of punch surfaces. A radial bearing surface having a dynamic pressure groove inclined with respect to the axial direction is formed on the inner peripheral surface of the bearing body material with a molding die by applying a pressing force to the bearing body material, and at least one punch surface of the bearing body material is When forming the thrust bearing surface constituting the thrust bearing portion between the end surface of the mold and the shaft, the perpendicularity between the at least one punch surface and the outer peripheral surface of the mold is within 2 μm (desirably Was set to within 1 μm.

このようにパンチ面と成形型とを高精度に仕上げる方法としては、上記一方のパンチ面と成形型とを一体的に構成することが考えられる。例えば、パンチと成形型を同一部材から一体的に削り出すか、あるいはそれぞれ別体として製作し、圧入などの方法で一体的に固着した後、パンチ面と成形型の外周面との直角度を2μm以内に仕上げる等の手段が可能である。軸とフランジ部は同一部材で一体的に製作してもよいし、別体として製作してから何れかを相手側に圧入し、所定の直角度に仕上げてもよい。   As a method for finishing the punch surface and the molding die with high accuracy in this way, it is conceivable to integrally form the one punch surface and the molding die. For example, the punch and the mold are integrally cut out from the same member, or are manufactured as separate bodies and fixed together by a method such as press fitting, and then the perpendicularity between the punch surface and the outer peripheral surface of the mold is set. Means such as finishing within 2 μm are possible. The shaft and the flange portion may be manufactured integrally with the same member, or after being manufactured separately, either one may be press-fitted into the other side and finished to a predetermined squareness.

軸受本体素材を所定寸法に成形した後は、圧迫力を解除して軸受本体素材をスプリングバックさせると共に、軸受本体素材と成形型との間に軸受本体素材の内径と成形型の外径との寸法差が拡大するような熱膨張差を生じさせて、上記成形型を軸受本体素材の内周面から離型するのがよい。これにより、成形型と軸受本体素材との干渉が回避され、成形した動圧溝を崩すことなく、軸受本体素材の内周面から成形型を抜き取ることが可能となる。   After the bearing body material is molded to the specified dimensions, the compression force is released and the bearing body material is spring-backed, and the inner diameter of the bearing body material and the outer diameter of the molding die are between the bearing body material and the mold. It is preferable to release the molding die from the inner peripheral surface of the bearing body material by causing a thermal expansion difference that increases the dimensional difference. Thereby, interference with a shaping | molding die and a bearing main body material is avoided, and it becomes possible to extract a shaping | molding die from the internal peripheral surface of a bearing main body raw material, without destroying the shape | molded dynamic pressure groove.

上記熱膨張差を生じさせるには、軸受面を成形した後、例えば軸受本体素材側から加熱すればよい。成形型の材料としては、通常、超硬材が使用されるが、この材料の線膨張係数は5.1×10−6[1/℃]である。一方、軸受本体素材は銅粉、鉄粉が主成分であり、線膨張係数の一例としては12.9×10−6[1/℃]である。従って、軸受本体素材を加熱して高温にすると、両者の熱膨張差から軸受本体素材の内径と成形型の外径との間の寸法差が大きくなり、軸受本体素材から成形型を抜きやすくなる。 In order to cause the difference in thermal expansion, after the bearing surface is formed, for example, heating may be performed from the bearing body material side. As the material of the mold, a cemented carbide is usually used, and the linear expansion coefficient of this material is 5.1 × 10 −6 [1 / ° C.]. On the other hand, the bearing body material is mainly composed of copper powder and iron powder, and an example of the linear expansion coefficient is 12.9 × 10 −6 [1 / ° C.]. Therefore, when the bearing body material is heated to a high temperature, the difference in size between the inner diameter of the bearing body material and the outer diameter of the molding die increases due to the difference in thermal expansion between them, and the molding die can be easily removed from the bearing body material. .

上記構成においては、動圧型焼結含油軸受の軸受内径dと軸受幅LをL≦1.2dに設定し、かつラジアル軸受面を、軸受内周面の1箇所に設けるのがよい。これによりスピンドルモータの薄型化が図られる。   In the above configuration, it is preferable that the bearing inner diameter d and the bearing width L of the hydrodynamic sintered oil-impregnated bearing are set to L ≦ 1.2d, and the radial bearing surface is provided at one place on the inner peripheral surface of the bearing. As a result, the spindle motor can be made thinner.

また、動圧型焼結含油軸受の軸受内周面に軸方向に対して傾斜した油供給用の動圧溝を設け、この動圧溝で生じる動圧作用によりスラスト軸受部に油を供給するようにすることもできる。軸受端面が動圧溝のない平滑面の場合、スラスト軸受部の油は遠心作用で外径側に排出されるので、特に高速回転の場合などには潤滑不良に陥る懸念がある。これに対し、上記動圧溝を設ければ、スラスト軸受部に油膜が形成されやすくなり、潤滑性が向上する。また、スラスト軸受部での摩耗も著しく低減されるので耐久性も飛躍的に向上する。   In addition, an oil supply dynamic pressure groove inclined with respect to the axial direction is provided on the inner peripheral surface of the hydrodynamic sintered oil-impregnated bearing, and oil is supplied to the thrust bearing portion by the dynamic pressure action generated in the dynamic pressure groove. It can also be. When the bearing end surface is a smooth surface without a dynamic pressure groove, the oil in the thrust bearing portion is discharged to the outer diameter side by centrifugal action, so that there is a concern that poor lubrication may occur, particularly in the case of high-speed rotation. On the other hand, if the dynamic pressure groove is provided, an oil film is easily formed on the thrust bearing portion, and lubricity is improved. Further, since wear at the thrust bearing portion is significantly reduced, the durability is greatly improved.

なお、スラスト軸受部に供給された油は、軸受端面やチャンファ部から吸収されて軸受内部に回収され、再び軸受内周面から軸受隙間に供給される。   The oil supplied to the thrust bearing portion is absorbed from the bearing end surface and the chamfer portion, collected inside the bearing, and supplied again to the bearing gap from the bearing inner peripheral surface.

また、上記構成においては、スラスト軸受部を、軸と軸受本体との相対回転時に生じる動圧作用により軸を非接触支持する構造とするのがよい。非接触支持であれば、スラスト軸受部における摩耗がなくなり、耐久性がさらに飛躍的に向上する。   Moreover, in the said structure, it is good for a thrust bearing part to set it as the structure which supports a shaft non-contactingly by the dynamic pressure effect | action produced at the time of relative rotation of a shaft and a bearing main body. If it is non-contact support, the wear in the thrust bearing portion is eliminated, and the durability is further improved dramatically.

具体的には、スラスト軸受部を構成する、上記一方の軸受端面とこれに対向するフランジ部の何れか一方に、円周方向に配設された複数の凹部(3箇所以上に設けるのが望ましい)を有する動圧発生部を設けることが考えられる。この場合、凹部が油溜りとなり、回転に伴って凹部内の油が隣接する凸部に引き出される際に圧力が発生し、油膜圧力が高まるのでスラスト軸受部を安定して非接触状態に保持できる。動圧発生部の凹部は、軸受端面に描いた放射状の仮想線に対して傾斜した部分を持つ動圧溝とすることができ、この場合には回転に伴ってスラスト軸受部およびその周辺の油が内周側に集められて油膜圧力が高まるので、スラスト軸受部をさらに安定して非接触状態に保持することができる。動圧溝形状としては、スパイラル型あるいはへリングボーン型が適用され得る。   Specifically, it is desirable to provide a plurality of concave portions (three or more locations) arranged in the circumferential direction on either one of the one bearing end surface and the flange portion facing the one bearing end surface constituting the thrust bearing portion. It is conceivable to provide a dynamic pressure generator having In this case, the concave portion becomes an oil reservoir, and pressure is generated when the oil in the concave portion is drawn to the adjacent convex portion with rotation, and the oil film pressure increases, so that the thrust bearing portion can be stably held in a non-contact state. . The concave portion of the dynamic pressure generating portion can be a dynamic pressure groove having a portion inclined with respect to a radial imaginary line drawn on the bearing end surface. In this case, the thrust bearing portion and the surrounding oil are rotated with rotation. Is collected on the inner peripheral side and the oil film pressure is increased, so that the thrust bearing portion can be more stably held in a non-contact state. As the dynamic pressure groove shape, a spiral type or a herringbone type can be applied.

上記構成においては、スラスト軸受部を軸方向に離隔した2箇所に設けるのがよい。この場合、両方向のスラスト荷重を支持することができ、さらに軸の抜けを防止することもできる。   In the said structure, it is good to provide a thrust bearing part in two places spaced apart to the axial direction. In this case, the thrust load in both directions can be supported, and the shaft can be prevented from coming off.

また、動圧型焼結含油軸受の表面開孔率は、ラジアル軸受面で10%以下(望ましくは5%以下)、スラスト軸受部を構成する軸受端面で5%以下(望ましくは2%以下)に設定するのがよい。ラジアル軸受面の表面開孔率が10%以下であれば、圧力降下を防止しつつ油の循環を確保することができ、上記軸受端面の表面開孔率を5%以下とすれば、動圧溝を設けた場合でも圧力発生に伴う開孔部からの油の逃げを防止することができる。「開孔部」とは、多孔質体組織の細孔が外表面に開口した部分をいい、「表面開孔率」とは、外表面の単位面積内に占める表面開孔の面積割合をいう。   The surface area of the hydrodynamic sintered oil-impregnated bearing is 10% or less (preferably 5% or less) on the radial bearing surface, and 5% or less (preferably 2% or less) on the bearing end surface constituting the thrust bearing portion. It is good to set. If the surface opening ratio of the radial bearing surface is 10% or less, oil circulation can be secured while preventing a pressure drop, and if the surface opening ratio of the bearing end surface is 5% or less, the dynamic pressure Even when the groove is provided, oil escape from the opening due to pressure generation can be prevented. “Aperture” refers to the portion where the pores of the porous body structure are open on the outer surface, and “surface porosity” refers to the area ratio of the surface aperture that occupies the unit area of the outer surface. .

本発明によれば、軸受端面でスラスト方向の支持ができるようになるので、ピボット軸受のような、スラストワッシャの変形や摩耗による窪みのため軸位置が変化することはなく、また軸受を薄型化した場合でもモーメント剛性を高く保持することができる。さらに、軸と軸受本体との相対回転時に、一方の軸受端面とフランジ部とが片当りしないので、トルクロスが小さく、かつトルク変動を抑制して情報機器に要求される高い回転精度を実現することができる。   According to the present invention, the bearing end face can be supported in the thrust direction, so that the shaft position does not change due to a depression due to deformation or wear of the thrust washer, such as a pivot bearing, and the bearing is made thinner. Even in this case, the moment rigidity can be kept high. Furthermore, when the shaft and the bearing body are rotated relative to each other, one bearing end face and the flange portion do not come into contact with each other, so that the torque cross is small and torque fluctuation is suppressed to achieve high rotational accuracy required for information equipment. Can do.

スラスト軸受部を軸方向の2箇所に設けた場合、回転軸の軸方向の動きを規制することができるので、衝撃荷重特性を向上させることができる。特にHDD装置のように読み取り用ヘッドがディスクと僅かな隙間を介して配置されているような場合、衝撃荷重が加わってもヘッドがディスクと衝突する事態を回避することができる。   When the thrust bearing portions are provided at two positions in the axial direction, the movement of the rotating shaft in the axial direction can be restricted, so that the impact load characteristics can be improved. In particular, when the reading head is arranged with a small gap from the disk as in the HDD device, it is possible to avoid a situation where the head collides with the disk even when an impact load is applied.

焼結含油軸受は、焼結合金などの多孔質体で構成するので、低コストで高精度名加工が可能となる。また、多孔質体であるから油の保持量が多く、また、油が循環するので油の劣化が遅くなり、耐久性が向上する。   Since the sintered oil-impregnated bearing is composed of a porous body such as a sintered alloy, high-precision name processing is possible at low cost. Moreover, since it is a porous body, the amount of oil retained is large, and since the oil circulates, the deterioration of the oil is delayed and the durability is improved.

以下、本発明の実施形態を図1乃至図11に基いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図1は、本発明にかかる動圧型焼結含油軸受ユニットの断面図である。軸受ユニットは、動圧型の焼結含油軸受11と、焼結含油軸受11を内径部に固定した円筒状のハウジング12と、焼結含油軸受11の内径部に挿入された回転軸13とを具備する。   FIG. 1 is a cross-sectional view of a hydrodynamic sintered oil-impregnated bearing unit according to the present invention. The bearing unit includes a dynamic pressure type sintered oil-impregnated bearing 11, a cylindrical housing 12 in which the sintered oil-impregnated bearing 11 is fixed to the inner diameter portion, and a rotating shaft 13 inserted into the inner diameter portion of the sintered oil-impregnated bearing 11. To do.

動圧型焼結含油軸受11は、回転軸13の外周面と軸受隙間を介して対向するラジアル軸受面11bを有する焼結金属からなる円筒状の軸受本体11aに、潤滑油あるいは潤滑グリースを含浸させて構成される。焼結金属からなる軸受本体11aは、銅系あるいは鉄系、またはその双方を主成分とする焼結金属で形成され、望ましくは銅を20〜95重量%使用して、密度6.4〜7.2g/cmに成形される。軸受本体11aの材質として、鋳鉄、合成樹脂、セラミックスなどを焼結または発泡成形し、多数の細孔を有する多孔質体としたものも用いることができる。軸受本体11aの表面開孔率は、ラジアル軸受面11bで10%以下、後述するスラスト軸受面11f1、11f2で5%以下とするのがよい。 The hydrodynamic sintered oil-impregnated bearing 11 is made by impregnating a cylindrical bearing body 11a made of sintered metal having a radial bearing surface 11b opposed to the outer peripheral surface of the rotating shaft 13 with a bearing gap impregnated with lubricating oil or lubricating grease. Configured. The bearing body 11a made of sintered metal is formed of a sintered metal mainly composed of copper, iron, or both, and preferably has a density of 6.4 to 7 using 20 to 95% by weight of copper. Molded to 2 g / cm 3 . As the material of the bearing body 11a, a porous body having many pores obtained by sintering or foaming cast iron, synthetic resin, ceramics, or the like can be used. The surface open area ratio of the bearing body 11a is preferably 10% or less for the radial bearing surface 11b and 5% or less for thrust bearing surfaces 11f1 and 11f2 described later.

軸受本体11aの内周面11hに設けられたラジアル軸受面11bは1箇所のみに形成されており、軸受面11bには軸方向に対して傾斜した複数の動圧溝11c(へリングボーン型)が円周方向に配列形成される。動圧溝11cは、軸方向に対して傾斜して形成されていれば足り、この条件を満たす限りへリングボーン型以外の他の形状、例えばスパイラル型でもよい。焼結含油軸受11の外周には、軸受11の内径部に軸13を挿入する際の空気抜きとなる1または複数の溝11gが軸方向に沿って形成されている。なお、スピンドルモータの薄型化を図るべく、軸受内径dと軸受幅Lは、L≦1.2dを満たすように設定される。   A radial bearing surface 11b provided on the inner peripheral surface 11h of the bearing body 11a is formed at only one location, and the bearing surface 11b has a plurality of dynamic pressure grooves 11c (herringbone type) inclined with respect to the axial direction. Are arranged in the circumferential direction. The dynamic pressure groove 11c only needs to be formed to be inclined with respect to the axial direction, and may have a shape other than the herringbone type, for example, a spiral type as long as this condition is satisfied. On the outer periphery of the sintered oil-impregnated bearing 11, one or a plurality of grooves 11 g are formed along the axial direction to serve as air vents when the shaft 13 is inserted into the inner diameter portion of the bearing 11. In order to reduce the thickness of the spindle motor, the bearing inner diameter d and the bearing width L are set so as to satisfy L ≦ 1.2d.

上記焼結含油軸受11では、回転軸13の回転に伴う圧力発生と昇温による油の熱膨張によって軸受本体11aの内部の潤滑剤(潤滑油または潤滑グリースの基油)が軸受本体11aの表面からにじみ出し、動圧溝11cの作用によって軸受隙間に引き込まれる。軸受隙間に引き込まれた油は潤滑油膜を形成して回転軸を非接触支持する。すなわち、軸受面11bに、上記傾斜した動圧溝11cを設けると、その動圧作用によってにじみ出した軸受本体11a内部の潤滑剤が軸受隙間に引き込まれると共に、軸受面11bに潤滑剤が押し込まれ続けるので、油膜力が高まり、軸受の剛性を向上させることができる。なお、軸受ユニットの組立時において、軸受11に回転軸13を挿入する際には、軸受隙間および軸受周辺が油で満たされるよう注油しておくのが望ましい。   In the sintered oil-impregnated bearing 11, the lubricant (lubricating oil or base oil of the lubricating grease) inside the bearing main body 11a is generated on the surface of the bearing main body 11a by the pressure generated by the rotation of the rotating shaft 13 and the thermal expansion of the oil due to the temperature rise. It oozes out and is drawn into the bearing gap by the action of the dynamic pressure groove 11c. The oil drawn into the bearing gap forms a lubricating oil film and supports the rotating shaft in a non-contact manner. That is, when the inclined dynamic pressure groove 11c is provided on the bearing surface 11b, the lubricant inside the bearing body 11a oozed out by the dynamic pressure action is drawn into the bearing gap and the lubricant is continuously pushed into the bearing surface 11b. Therefore, the oil film force is increased and the rigidity of the bearing can be improved. When assembling the bearing unit, when inserting the rotary shaft 13 into the bearing 11, it is desirable to lubricate the bearing gap and the periphery of the bearing with oil.

軸受隙間に正圧が発生すると、軸受面11bの表面に孔があるため、潤滑剤は軸受本体の内部に還流するが、次々と新たな潤滑剤が軸受隙間に押し込まれ続けるので油膜力および剛性は高い状態で維持される。この場合、連続しかつ安定した油膜が形成されるので、高回転精度が得られ、軸振れやNRRO、ジッタ等が低減される。また、回転軸13と軸受本体11aが非接触で回転するために低騒音であり、しかも低コストである。   When positive pressure is generated in the bearing gap, there is a hole in the surface of the bearing surface 11b, so that the lubricant returns to the inside of the bearing body. However, since new lubricant continues to be pushed into the bearing gap one after another, oil film strength and rigidity Is maintained high. In this case, since a continuous and stable oil film is formed, high rotational accuracy is obtained, and shaft runout, NRRO, jitter, and the like are reduced. Further, since the rotating shaft 13 and the bearing body 11a rotate without contact, the noise is low and the cost is low.

ラジアル軸受面11bは、一方に傾斜する動圧溝11cが配列された第1の溝領域m1と、第1の溝領域m1から軸方向に離隔し、他方に傾斜する動圧溝11cが配列された第2の溝領域m2と、2つの溝領域m1、m2の間に位置する環状の平滑部nとを備えており、2つの溝領域m1、m2の動圧溝11cは平滑部nで区画されて非連続になっている。平滑部nと動圧溝11c間の背の部分11eとは同一レベルにある。この種の非連続型の動圧溝11cは、連続型、すなわち平滑部nを省略し、動圧溝11cを両溝領域m1、m2間で互いに連続するV字状に形成した場合に比べ、平滑部nを中心として油が集められるために油膜圧力が高く、また溝のない平滑部nを有するので軸受剛性が高いという利点を有する。   The radial bearing surface 11b has a first groove region m1 in which a dynamic pressure groove 11c inclined on one side is arranged, and an axially separated dynamic pressure groove 11c which is spaced apart from the first groove region m1 and inclined in the other side. The second groove region m2 and the annular smooth portion n positioned between the two groove regions m1 and m2 are provided, and the dynamic pressure groove 11c of the two groove regions m1 and m2 is partitioned by the smooth portion n. Has been discontinuous. The back portion 11e between the smooth portion n and the dynamic pressure groove 11c is at the same level. This kind of non-continuous type dynamic pressure groove 11c is continuous type, that is, the smooth portion n is omitted, and the dynamic pressure groove 11c is formed in a V-shape that is continuous between both groove regions m1 and m2. Since oil is collected around the smooth portion n, the oil film pressure is high, and since the smooth portion n without a groove is provided, the bearing rigidity is high.

焼結含油軸受11の軸方向一端側には、スラスト軸受部14が設けられる。図1は、焼結含油軸受11の上端側にスラスト軸受部14を設けた実施形態で、焼結含油軸受11の上軸受端面11f1(スラスト軸受面)と、回転軸13に固定した円盤状のフランジ部13aとを対向させて構成される。回転軸13とフランジ部13aは、同一部材で一体に製作したり、あるいは別体として製作してから相互に嵌合固定し、回転軸13の外周面、特に軸受11に組み込んだ際に軸受面11bと対向する外周面の直角度がフランジ部13aの軸受11側の端面13a1に対して2μm以内、望ましくは1μm以内となるように仕上げ加工される。   A thrust bearing portion 14 is provided on one end side in the axial direction of the sintered oil-impregnated bearing 11. FIG. 1 shows an embodiment in which a thrust bearing portion 14 is provided on the upper end side of a sintered oil-impregnated bearing 11, and a disc-like shape fixed to the upper bearing end surface 11 f 1 (thrust bearing surface) of the sintered oil-impregnated bearing 11 and the rotary shaft 13. The flange portion 13a is configured to face each other. The rotary shaft 13 and the flange portion 13a are manufactured integrally with the same member, or are manufactured separately and then fitted and fixed to each other, and the outer peripheral surface of the rotary shaft 13, particularly when incorporated in the bearing 11, is a bearing surface. Finishing is performed so that the perpendicularity of the outer peripheral surface facing 11b is within 2 μm, preferably within 1 μm, with respect to the end surface 13a1 on the bearing 11 side of the flange portion 13a.

このようなスラスト軸受部14であれば、摺動接触部分が面当りとなるため、ピボット軸受で問題となる軸位置の変動を防止しつつ、単列の軸受面11bであってもモーメント剛性を高め、軸を高精度に支持することが可能となる。   With such a thrust bearing portion 14, the sliding contact portion comes into contact with the surface, so that the moment rigidity can be increased even with the single-row bearing surface 11 b while preventing the fluctuation of the shaft position which is a problem in the pivot bearing. The shaft can be supported with high accuracy.

ところで、上記のように回転軸13にフランジ部13aを設けた場合、回転軸13の上端には、ロータケース8やターンテーブル(5:図13参照)などの部品が固定されるため、軸受11の上端を従来のようなシールワッシャ8(図15参照)でシールすることは難しくなる。そこで、軸受11上端からの油漏れは、フランジ部13a外周面とハウジング12内周面の微小隙間による毛細管シールで行う。シール隙間cは0.05mm以下、望ましくは0.02mm以下とするのがよく、シール幅aは0.5mm以上、望ましくは1mm以上とする。シールを構成するフランジ部13a外周面やハウジング12内周面に揆油剤を塗布しておけば油漏れ防止により有効となる。   By the way, when the flange part 13a is provided in the rotating shaft 13 as mentioned above, since components, such as the rotor case 8 and a turntable (5: refer FIG. 13), are fixed to the upper end of the rotating shaft 13, the bearing 11 It becomes difficult to seal the upper end of the plate with a conventional seal washer 8 (see FIG. 15). Therefore, oil leakage from the upper end of the bearing 11 is performed by a capillary seal formed by a minute gap between the outer peripheral surface of the flange portion 13a and the inner peripheral surface of the housing 12. The seal gap c is 0.05 mm or less, preferably 0.02 mm or less, and the seal width a is 0.5 mm or more, preferably 1 mm or more. Applying a glaze agent to the outer peripheral surface of the flange portion 13a constituting the seal and the inner peripheral surface of the housing 12 is effective in preventing oil leakage.

一方、軸受11下端側からの油漏れは、例えば底板15をハウジング12の底部開口部に圧入してからかしめることによって防止することができる。底板15とハウジング12との間の隙間を接着剤でシールしておけば、油漏れ防止にさらに有効である。   On the other hand, oil leakage from the lower end side of the bearing 11 can be prevented by, for example, pressing the bottom plate 15 into the bottom opening of the housing 12 and then caulking it. If the gap between the bottom plate 15 and the housing 12 is sealed with an adhesive, it is more effective in preventing oil leakage.

図2(A)は、底板15側からの油漏れを防止するため、樹脂、ゴムなどの弾性材料15aを底板15の上に重ねてパッキンとして使用した実施形態である。この場合も底板15は、ハウジング12に圧入した後、必要であればかしめた方が望ましい。   FIG. 2A shows an embodiment in which an elastic material 15a such as resin or rubber is stacked on the bottom plate 15 and used as a packing in order to prevent oil leakage from the bottom plate 15 side. Also in this case, it is desirable that the bottom plate 15 is caulked if necessary after being press-fitted into the housing 12.

図2(B)は、フランジ部13aの外周面と対向するハウジング12の内周面に環状の凹部12aを設けた実施形態である。フランジ部13aが回転することにより、油が遠心力で凹部12aに溜まるため、ハウジング12上端からの油漏れを確実に防止することができる(遠心シール)。遠心シールのみだと、軸姿勢が横向きの場合に油漏れを生じるおそれがあるので、毛細管シールとの併用が望ましい。   FIG. 2B shows an embodiment in which an annular recess 12a is provided on the inner peripheral surface of the housing 12 facing the outer peripheral surface of the flange portion 13a. By rotating the flange portion 13a, oil accumulates in the concave portion 12a by centrifugal force, so that oil leakage from the upper end of the housing 12 can be reliably prevented (centrifugal seal). If only the centrifugal seal is used, oil leakage may occur when the shaft orientation is in the horizontal direction. Therefore, it is desirable to use in combination with a capillary seal.

図3(A)は、フランジ部13aの外周面に、回転時に軸受11側への気流が発生するような傾斜溝13a2を設けた例である。発生した気流により、油が軸受11側に押し戻されるため、軸受上端からの油漏れを防止することができる(停止中は毛細管シールで油漏れを防止する)。上記傾斜溝13a2は油漏れを防止できさえすればよいので、ラジアル軸受面11bの動圧溝11cのように高精度に加工する必要はない。溝深さは5〜30μm程度が適当で、転造などの手法で加工することができる。   FIG. 3A shows an example in which an inclined groove 13a2 is provided on the outer peripheral surface of the flange portion 13a so as to generate an airflow toward the bearing 11 during rotation. Since the oil is pushed back to the bearing 11 side by the generated airflow, oil leakage from the upper end of the bearing can be prevented (oil leakage is prevented by a capillary seal during stoppage). Since the inclined groove 13a2 only needs to prevent oil leakage, it does not need to be processed with high accuracy like the dynamic pressure groove 11c of the radial bearing surface 11b. The groove depth is suitably about 5 to 30 μm and can be processed by a method such as rolling.

この傾斜溝13a2は、図3(A)に示すようにフランジ部13aの幅(軸方向寸法)の全長にわたって形成すると、軸受11側に過剰の空気を送り込む場合があるので、図3(B)に示すように部分的に設けてもよい。この場合、ハウジング12内周面のうち、傾斜溝13a2の非形成領域との対向部に環状の凹部12aを設けておくのが望ましい。   If this inclined groove 13a2 is formed over the entire length of the width (axial dimension) of the flange portion 13a as shown in FIG. 3 (A), excess air may be sent to the bearing 11 side. As shown in FIG. In this case, it is desirable to provide an annular recess 12a on the inner peripheral surface of the housing 12 at a portion facing the non-formation region of the inclined groove 13a2.

図4は、軸受11の下軸受端面11f2と、軸端に設けたフランジ部13aとでスラスト軸受部14を構成した実施形態である。回転中は、回転軸13がロータ7bとステータ7a(図13参照)間の励磁力により浮上力を受けて底板15から浮いた状態となり、下軸受端面11f2(スラスト軸受面)とフランジ部13bの上面13b2とでスラスト力が支持される。底板15の上面でかつ回転軸13の直下には、潤滑性に富む樹脂材料等からなるスラストワッシャ15aが配置され、モータの起動直後や停止直前の軸端との間の摩擦低減が図られている。ハウジング12の上端開口は、油漏れ防止用のスラストワッシャ16によって閉塞され、軸との間隙を0.2mm以下とすることで外部への油の漏れ出しを防止している(毛細管作用)。シールワッシャ16の内周面や内周部の上下面、あるいはシールワッシャ16の内周面と対向する軸13の外周面に揆油剤を塗布することにより、さらに有効な油漏れ防止が図られる。   FIG. 4 shows an embodiment in which the thrust bearing portion 14 is configured by the lower bearing end surface 11f2 of the bearing 11 and the flange portion 13a provided at the shaft end. During the rotation, the rotary shaft 13 is lifted from the bottom plate 15 by receiving a floating force due to the exciting force between the rotor 7b and the stator 7a (see FIG. 13), and the lower bearing end surface 11f2 (thrust bearing surface) and the flange portion 13b Thrust force is supported by the upper surface 13b2. A thrust washer 15a made of a resin material having a high lubricity is disposed on the upper surface of the bottom plate 15 and directly below the rotary shaft 13, and friction between the shaft end immediately after the start of the motor and immediately before the stop is reduced. Yes. The upper end opening of the housing 12 is closed by a thrust washer 16 for preventing oil leakage, and the gap between the shaft and the shaft is 0.2 mm or less to prevent oil from leaking outside (capillary action). By applying a lubricant to the inner peripheral surface of the seal washer 16, the upper and lower surfaces of the inner peripheral portion, or the outer peripheral surface of the shaft 13 facing the inner peripheral surface of the seal washer 16, further effective oil leakage prevention is achieved.

図5は、動圧型焼結含油軸受11の軸受内周面11hに軸方向に対して傾斜した油供給用の動圧溝11jを設け、この動圧溝11jで生じる動圧作用でスラスト軸受部14に油を供給するようにしたものである。動圧溝11jは、ラジアル軸受面11bの溝形成領域(スラスト軸受部14側)の動圧溝11cと連続したV字状に形成される。油供給用の動圧溝11jを設けることにより、スラスト軸受部14に油膜が形成されやすくなって潤滑性が向上し、また、スラスト軸受部14での摩耗も著しく低減されるので耐久性も飛躍的に向上する。   FIG. 5 shows that a dynamic pressure groove 11j for oil supply inclined with respect to the axial direction is provided on the bearing inner peripheral surface 11h of the dynamic pressure type sintered oil impregnated bearing 11, and the thrust bearing portion is generated by the dynamic pressure action generated in the dynamic pressure groove 11j. 14 is supplied with oil. The dynamic pressure groove 11j is formed in a V shape that is continuous with the dynamic pressure groove 11c in the groove forming region (on the thrust bearing portion 14 side) of the radial bearing surface 11b. By providing the dynamic pressure groove 11j for oil supply, an oil film is easily formed on the thrust bearing portion 14 and lubricity is improved. Also, wear at the thrust bearing portion 14 is remarkably reduced, so that durability is also greatly improved. Improve.

図6および図7は、スラスト軸受部14を、回転軸13の回転時に生じる動圧作用により回転軸13を非接触支持するようにしたものである。非接触支持であれば、スラスト軸受部14における摩擦がなくなり、耐久性が飛躍的に向上する。動圧作用は、スラスト軸受部14を構成する軸受端面11f1とこれに対向するフランジ部13aの何れか一方に、円周方向に配設された複数の凹部11kを有する動圧発生部17を設けることによって得ることができる。凹部11kとしては、例えば動圧溝が考えられる。   6 and 7 show the thrust bearing portion 14 supported in a non-contact manner by the dynamic pressure generated when the rotating shaft 13 rotates. If it is non-contact support, the friction in the thrust bearing portion 14 is eliminated, and the durability is greatly improved. For the dynamic pressure action, a dynamic pressure generating portion 17 having a plurality of concave portions 11k arranged in the circumferential direction is provided on either one of the bearing end surface 11f1 constituting the thrust bearing portion 14 and the flange portion 13a opposed thereto. Can be obtained. As the recess 11k, for example, a dynamic pressure groove can be considered.

図6は、動圧発生部17を有するスラスト軸受部14の一例で、スラスト軸受面11f1に、軸受端面に描いた放射状の仮想線に対して傾斜した部分を持つ動圧溝11kを設けたものである。動圧溝11kは、へリングボーン型、すなわち半径方向のほぼ中心部に屈曲部分を有するV字状をなし、この動圧溝は、円周方向に等間隔で配列して形成される。この場合、回転に伴ってスラスト軸受部14およびその周辺の油が動圧溝11kの屈曲部分に集められて油膜圧力が高まるため、スラスト軸受部14を安定して非接触状態に保持できる。動圧溝形状としては、へリングボーン型の他にスパイラル型も適用することができる。また、動圧溝11kをフランジ部端面13a1に設け、スラスト軸受面11f1を動圧溝のない平滑面としてもよい。   FIG. 6 shows an example of the thrust bearing portion 14 having the dynamic pressure generating portion 17, and the thrust bearing surface 11f1 is provided with a dynamic pressure groove 11k having a portion inclined with respect to a radial imaginary line drawn on the bearing end surface. It is. The dynamic pressure groove 11k has a herringbone shape, that is, a V-shape having a bent portion at a substantially central portion in the radial direction, and the dynamic pressure grooves are formed at equal intervals in the circumferential direction. In this case, the thrust bearing portion 14 and the surrounding oil are collected at the bent portion of the dynamic pressure groove 11k as the rotation occurs, and the oil film pressure increases, so that the thrust bearing portion 14 can be stably held in a non-contact state. As a dynamic pressure groove shape, a spiral type can be applied in addition to the herringbone type. Further, the dynamic pressure groove 11k may be provided in the flange end surface 13a1, and the thrust bearing surface 11f1 may be a smooth surface without the dynamic pressure groove.

図7は、図6と同様にスラスト軸受面11f1に動圧溝11kを設けると共に、図5と同様に軸受内周面に油供給用の動圧溝11jを設けたものである。   FIG. 7 shows a structure in which a dynamic pressure groove 11k is provided on the thrust bearing surface 11f1 as in FIG. 6, and an oil supply dynamic pressure groove 11j is provided on the inner peripheral surface of the bearing as in FIG.

図8および図9は、スラスト軸受部14a、14bを軸方向に離隔した2箇所に設けて、両方向のスラスト荷重を支持できるようにしたものである。図8は軸受の両端側にフランジ部13a、13bを配し、各フランジ部13a、13bと両軸受端面11f1、11f2との間に形成された2つのスラスト軸受部14a、14bで両方向のスラスト荷重を支持できるようにしたものである。スラスト軸受部14を構成するスラスト軸受面11f1、11f2と、これに対向するフランジ部13a、13b端面との何れか一方(図面ではスラスト軸受面11f1、11f2)には、同図(b)(c)に示すように、図6と同様の動圧溝11kが形成されている。この構造であれば、両方向のスラスト支持だけでなく、回転軸13の軸受11からの抜けを防止できるので、回転軸13に衝撃荷重が加わった場合でもモータの損傷を回避することができる。   8 and FIG. 9, thrust bearing portions 14a and 14b are provided at two locations separated in the axial direction so as to be able to support thrust loads in both directions. In FIG. 8, flanges 13a and 13b are arranged at both ends of the bearing, and two thrust bearing portions 14a and 14b formed between the flange portions 13a and 13b and both bearing end surfaces 11f1 and 11f2 are used in both directions. Can be supported. Any one of the thrust bearing surfaces 11f1 and 11f2 constituting the thrust bearing portion 14 and the end surfaces of the flange portions 13a and 13b opposed to the thrust bearing surfaces 11f1 and 11f2 (in the drawing, the thrust bearing surfaces 11f1 and 11f2) is shown in FIGS. As shown in FIG. 6, a dynamic pressure groove 11k similar to that shown in FIG. 6 is formed. With this structure, not only thrust support in both directions but also removal of the rotating shaft 13 from the bearing 11 can be prevented, so that even when an impact load is applied to the rotating shaft 13, damage to the motor can be avoided.

図9は、軸受11と底板15との間にフランジ部13bを設け、フランジ部13bの両側にスラスト軸受部14a、14bを構成したものである。すなわち、フランジ部13bの上端面13a1と下側の軸受端面11f2の何れか一方、および、フランジ部13bの下端面13b2と底板15の上面の何れか一方(図面では下軸受端面11f2およびフランジ部の下端面13b2)にそれぞれ図6と同様の動圧溝11kを設けたもので、図8の構造と同様の効果が奏される。   In FIG. 9, a flange portion 13b is provided between the bearing 11 and the bottom plate 15, and thrust bearing portions 14a and 14b are formed on both sides of the flange portion 13b. That is, one of the upper end surface 13a1 and the lower bearing end surface 11f2 of the flange portion 13b, and one of the lower end surface 13b2 of the flange portion 13b and the upper surface of the bottom plate 15 (in the drawing, the lower bearing end surface 11f2 and the flange portion The lower end surface 13b2) is provided with a dynamic pressure groove 11k similar to that in FIG. 6, and the same effect as the structure in FIG.

上記動圧型焼結含油軸受11の軸受本体11aは、上記金属粉末を圧縮成形し、さらに焼成して得られた円筒状の焼結金属素材(軸受本体素材)に対して、例えば、サイジング→回転サイジング→軸受面成形加工を施して製造することができる。   The bearing main body 11a of the hydrodynamic sintered oil-impregnated bearing 11 is formed by, for example, sizing → rotating a cylindrical sintered metal material (bearing body material) obtained by compression-molding the metal powder and firing the metal powder. Sizing → Bearing surface molding can be performed.

サイジング工程は、焼結金属素材の外周面と内周面のサイジングを行って焼結工程での曲がりなどを矯正する工程で、焼結金属素材の外周面を円筒状のダイに圧入すると共に、内周面にサイジングピンを圧入して行われる。回転サイジング工程は、断面略多角形状の回転サイジングピン(断面円形のピンの外周面を部分的に平坦加工して、円周等配位置に円弧部分を残したもの)を焼結金属素材の内周面に押付けながら、サイジングピンを回転させて内周面のサイジングを行う工程である。この回転サイジングにより焼結金属素材の内周面の真円度、円筒度が矯正され、かつ表面開孔率が例えば3〜15%に仕上げられる。軸受面成形工程は、上記のようなサイジング加工を施した焼結金属素材の内周面に、完成品の軸受面に対応した形状の成形型を加圧することによって、軸受面の動圧溝の形成領域とそれ以外の領域(背11eおよび環状の平滑領域n)とを同時成形する工程である。   The sizing process is a process of sizing the outer peripheral surface and the inner peripheral surface of the sintered metal material to correct bending in the sintering process, and press-fitting the outer peripheral surface of the sintered metal material into a cylindrical die, This is done by press-fitting sizing pins into the inner peripheral surface. In the rotational sizing process, a rotational sizing pin having a substantially polygonal cross section (a part of the outer peripheral surface of a circular cross section that has been partially flattened to leave an arc portion at the circumferentially equidistant position) This is a step of sizing the inner peripheral surface by rotating a sizing pin while pressing against the peripheral surface. By this rotational sizing, the roundness and cylindricity of the inner peripheral surface of the sintered metal material are corrected, and the surface area ratio is finished to 3 to 15%, for example. In the bearing surface forming step, the inner surface of the sintered metal material subjected to the sizing process as described above is pressed with a molding die having a shape corresponding to the bearing surface of the finished product, thereby forming the dynamic pressure grooves on the bearing surface. This is a step of simultaneously forming a formation region and other regions (back 11e and annular smooth region n).

図11は、軸受面成形工程で使用する成形装置の概略構造を例示している。この装置は焼結金属素材11’の外周面を圧入する円筒状のダイ20、焼結金属素材11’の内周面を成形する超硬合金製のコアロッド21、焼結金属素材11’の両端面を上下方向から押さえる上下のパンチ22、23を主要な要素として構成される。コアロッド21と上パンチ22は一体となっており、コアロッド21の外周面と上パンチ22のパンチ面22aの直角度は2μm以内に仕上げられている。   FIG. 11 illustrates a schematic structure of a molding apparatus used in the bearing surface molding process. This apparatus includes a cylindrical die 20 for press-fitting the outer peripheral surface of the sintered metal material 11 ′, a core rod 21 made of cemented carbide for forming the inner peripheral surface of the sintered metal material 11 ′, and both ends of the sintered metal material 11 ′. The upper and lower punches 22 and 23 that hold the surface in the vertical direction are configured as main elements. The core rod 21 and the upper punch 22 are integrated, and the perpendicularity between the outer peripheral surface of the core rod 21 and the punch surface 22a of the upper punch 22 is finished within 2 μm.

図10に示すように、コアロッド21の外周面には、完成品の軸受面11bの形状に対応した凹凸状の成形型21aが設けられている。成形型21aの凸部分21a1は軸受面11bにおける動圧溝11cの領域を成形し、凹部分21a2は動圧溝11c以外の領域(背11eおよび環状の平滑領域n)を成形するものである。成形型21aにおける凸部分21a1と凹部分21a2との段差は、軸受面11bにおける動圧溝11cの深さと同程度(例えば2〜5μm程度)で微小なものであるが、図面ではかなり誇張して図示されている。なお、上下軸受端面11f1、11f2に動圧溝11kを設ける場合(図6〜9参照)は、上下のパンチ22、23のパンチ面22a、23aにも当該動圧溝11kに対応した形状の転写用成形型が設けられる。   As shown in FIG. 10, an uneven mold 21a corresponding to the shape of the finished bearing surface 11b is provided on the outer peripheral surface of the core rod 21. As shown in FIG. The convex portion 21a1 of the molding die 21a forms a region of the dynamic pressure groove 11c on the bearing surface 11b, and the concave portion 21a2 forms a region other than the dynamic pressure groove 11c (back 11e and annular smooth region n). The level difference between the convex portion 21a1 and the concave portion 21a2 in the mold 21a is as small as the depth of the dynamic pressure groove 11c in the bearing surface 11b (for example, about 2 to 5 μm), but is considerably exaggerated in the drawing. It is shown in the figure. When the dynamic pressure grooves 11k are provided on the upper and lower bearing end surfaces 11f1 and 11f2 (see FIGS. 6 to 9), the shape corresponding to the dynamic pressure grooves 11k is also transferred to the punch surfaces 22a and 23a of the upper and lower punches 22 and 23. A mold is provided.

この成形装置による成形は、図11に示す(1)〜(4)の手順で行われる。   The molding by this molding apparatus is performed according to the procedures (1) to (4) shown in FIG.

先ず、焼結金属素材11’をダイ20の上面に位置合わせして配置した後、上パンチ22およびコアロッド21を降下させ、焼結金属素材11’をダイ20に圧入し、さらに下パンチ23に押付けて上下方向から加圧する(1)。   First, after placing the sintered metal material 11 ′ in alignment with the upper surface of the die 20, the upper punch 22 and the core rod 21 are lowered to press-fit the sintered metal material 11 ′ into the die 20, and further into the lower punch 23. Press and apply pressure from above and below (1).

焼結金属素材11’は、ダイ20と上下パンチ22・23から圧迫力を受けて変形を起こし、内周面がコアロッド21の成形型21aに加圧される。これにより、成形型21aの形状が焼結金属素材11’の内周面に転写され、軸受面11bが所定の形状および寸法に成形される(同時に焼結金属素材11’の外周面および両端面もサイジングされる)。   The sintered metal material 11 ′ is deformed by receiving a pressing force from the die 20 and the upper and lower punches 22 and 23, and the inner peripheral surface is pressed against the forming die 21 a of the core rod 21. Thereby, the shape of the forming die 21a is transferred to the inner peripheral surface of the sintered metal material 11 ′, and the bearing surface 11b is formed into a predetermined shape and dimensions (at the same time, the outer peripheral surface and both end surfaces of the sintered metal material 11 ′. Is also sized).

軸受面11bの成形が完了した後、焼結金属素材11’とコアロッドの位置関係を保持したまま上下のパンチ22、23およびコアロッド21を一体的に上昇させ(2)、焼結金属素材11’をダイ20から抜く。次に、クランパ24で掴んだ焼結金属素材11’の外周面に熱風発生器等の加熱機25で熱風を吹き付けて焼結金属素材11’を加熱し(3)、その後、焼結金属素材11’をコアロッド21から抜く(4)。この時、焼結金属素材11’をダイ20から抜くと同時に焼結金属素材11’にスプリングバックが生じてその内径寸法が拡大する。また、加熱によって焼結金属素材の温度がコアロッド21によりも高くなり、かつコアロッド21(超硬合金製)よりも焼結金属素材11’(銅を主成分とする)の熱膨張係数が大きいため、焼結金属素材11’の内径寸法がさらに拡大する。そのため、コアロッド21と焼結金属素材11’との干渉が回避され、動圧溝11cを崩すことなく、焼結金属素材11’の内周面からコアロッド21を抜き取ることが可能となる。スプリングバックのみでスムーズに焼結金属素材11’を抜ける場合は、加熱機25による加熱工程を省略しても構わない。   After the formation of the bearing surface 11b is completed, the upper and lower punches 22 and 23 and the core rod 21 are integrally raised while maintaining the positional relationship between the sintered metal material 11 ′ and the core rod (2), and the sintered metal material 11 ′. Is removed from the die 20. Next, the sintered metal material 11 'is heated by blowing hot air to the outer peripheral surface of the sintered metal material 11' grasped by the clamper 24 with a heater 25 such as a hot air generator (3), and then the sintered metal material. 11 'is extracted from the core rod 21 (4). At this time, the sintered metal material 11 'is pulled out of the die 20 and at the same time, a springback is generated in the sintered metal material 11' and its inner diameter is increased. Moreover, since the temperature of the sintered metal material becomes higher than that of the core rod 21 by heating, and the thermal expansion coefficient of the sintered metal material 11 ′ (mainly made of copper) is larger than that of the core rod 21 (made of cemented carbide). Further, the inner diameter of the sintered metal material 11 ′ is further expanded. Therefore, interference between the core rod 21 and the sintered metal material 11 'is avoided, and the core rod 21 can be extracted from the inner peripheral surface of the sintered metal material 11' without breaking the dynamic pressure groove 11c. When the sintered metal material 11 ′ can be smoothly removed only by the spring back, the heating process by the heater 25 may be omitted.

以上の工程を経て製造した焼結金属素材11’を洗浄し、これに潤滑油又は潤滑グリースを含浸させて油を保有させると、図1に示す動圧型滑り軸受(動圧型多孔質含油軸受)が完成する。この軸受11は、ハウジング12の内周面に例えば接着によって固定される。なお、軸受11のハウジング12への組み込み後に、含浸油とは別に注油によって軸受隙間および軸受周辺の空間を油で満たしておくと、潤滑性が著しく向上する。   When the sintered metal material 11 ′ manufactured through the above steps is washed and impregnated with lubricating oil or lubricating grease to hold the oil, the dynamic pressure type sliding bearing (dynamic pressure type porous oil bearing) shown in FIG. Is completed. The bearing 11 is fixed to the inner peripheral surface of the housing 12 by, for example, adhesion. In addition, if the bearing gap and the space around the bearing are filled with oil by lubricating separately from the impregnation oil after the bearing 11 is incorporated into the housing 12, the lubricity is remarkably improved.

上記のようにコアロッド21の外周面と上パンチ22のパンチ面22aの直角度を2μm以内に設定しておけば、軸受内周面11hに対するスラスト軸受面11f1の直角度が3μm以内の焼結含油軸受11が提供可能となる。この軸受11と、フランジ部13aと外周面の直角度を所定範囲に設定した回転軸13とを組み合わせることにより、スラスト軸受部14での片当りを防止し、確実に面当りを実現することができる。   As described above, if the perpendicularity between the outer peripheral surface of the core rod 21 and the punching surface 22a of the upper punch 22 is set within 2 μm, the sintered oil impregnation with the perpendicularity of the thrust bearing surface 11f1 with respect to the bearing inner peripheral surface 11h being within 3 μm. The bearing 11 can be provided. By combining this bearing 11, the flange portion 13a, and the rotating shaft 13 in which the perpendicularity of the outer peripheral surface is set within a predetermined range, it is possible to prevent one-side contact at the thrust bearing portion 14 and to realize the surface contact with certainty. it can.

本発明にかかる動圧型焼結含油軸受ユニットの断面図である。It is sectional drawing of the hydrodynamic type sintered oil-impregnated bearing unit concerning this invention. 本発明の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of this invention. 本発明の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of this invention. 本発明の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of this invention. 本発明の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of this invention. 本発明の他の実施形態を示す図で、A図は断面図、B図は平面図である。It is a figure which shows other embodiment of this invention, A figure is sectional drawing, B figure is a top view. 本発明の他の実施形態を示す図で、A図は断面図、B図は平面図である。It is a figure which shows other embodiment of this invention, A figure is sectional drawing, B figure is a top view. 本発明の他の実施形態を示す図で、A図は断面図、B図は平面図、C図は下面図である。It is a figure which shows other embodiment of this invention, A figure is sectional drawing, B figure is a top view, C figure is a bottom view. 本発明の他の実施形態を示す図で、A図は断面図、B図およびC図は下面図である。It is a figure which shows other embodiment of this invention, A figure is sectional drawing, B figure and C figure are bottom views. コアロッドおよび上パンチの側面図である。It is a side view of a core rod and an upper punch. 本発明方法を示す断面図である。It is sectional drawing which shows this invention method. 動圧型焼結含油軸受ユニットを組み込んだ光ディスク装置の断面図である。It is sectional drawing of the optical disk apparatus incorporating the dynamic pressure type sintered oil-impregnated bearing unit. 従来の動圧型焼結含油軸受の断面図である。It is sectional drawing of the conventional dynamic pressure type sintered oil-impregnated bearing. 従来の動圧型焼結含油軸受ユニットの断面図である。It is sectional drawing of the conventional dynamic pressure type sintered oil-impregnated bearing unit. 動圧型焼結含油軸受ユニットの断面図である。It is sectional drawing of a dynamic pressure type sintered oil-impregnated bearing unit. 動圧型焼結含油軸受ユニットの断面図である。It is sectional drawing of a dynamic pressure type sintered oil-impregnated bearing unit.

符号の説明Explanation of symbols

11 動圧型焼結含油軸受
11a 軸受本体
11b ラジアル軸受面
11c ラジアル軸受面の動圧溝
11f1 軸受端面(スラスト軸受面)
11f2 軸受端面(スラスト軸受面)
11h 軸受内周面
11j 油供給用の動圧溝
11k スラスト軸受面の動圧溝(凹部)
12 ハウジング
13 回転軸(軸)
13a フランジ部
14 スラスト軸受部
17 動圧発生部
11 Hydrodynamic sintered oil-impregnated bearing
11a Bearing body
11b Radial bearing surface
11c Dynamic pressure groove on radial bearing surface
11f1 Bearing end face (Thrust bearing face)
11f2 Bearing end face (Thrust bearing face)
11h Bearing inner peripheral surface
11j Dynamic pressure groove for oil supply
11k Thrust bearing surface dynamic pressure groove (concave)
12 Housing 13 Rotating shaft (axis)
13a Flange part 14 Thrust bearing part 17 Dynamic pressure generating part

Claims (8)

軸と、焼結金属で形成され、軸の外周面と軸受隙間を介して対向するラジアル軸受面を備えた軸受本体に油を含浸させてなり、ラジアル軸受面に軸方向に対して傾斜した複数の動圧溝が形成され、軸と軸受本体との相対回転時にラジアル軸受面で生じる動圧作用により軸を非接触支持する動圧型焼結含油軸受と、動圧型焼結含油軸受の少なくとも一方の端面と軸に設けたフランジ部とで構成されたスラスト軸受部とを有し、フランジ部と軸の外周面との直角度を2μm以内に設定した動圧型焼結含油軸受ユニットの製造方法であって
一対のパンチのうち、一方のパンチで焼結金属の全体をダイに圧入すると共に、この圧入時に、焼結金属の内周に配置した、前記ラジアル軸受面の形状に対応する成形型を前記一方のパンチと連動して移動させ、成形型を焼結金属の内周面に、一対のパンチを焼結金属の両端面にそれぞれ押し付けることにより、動圧型焼結含油軸受の内周面と少なくとも上記一方の端面とそれぞれサイジングし、一対のパンチおよび成形型を焼結金属と成形型の位置関係を保持しながら一体的に上昇させ、焼結金属がダイから抜けるまで焼結金属の両端面を一対のパンチで保持して焼結金属をスプリングバックさせ、焼結金属の上記一方の軸受端面と軸受内周面との直角度を3μm以内に設定することを特徴とする動圧型焼結含油軸受ユニットの製造方法
A shaft and a plurality of bearings formed of sintered metal and impregnated with oil in a bearing body having a radial bearing surface opposed to the outer peripheral surface of the shaft via a bearing gap, and inclined to the axial direction on the radial bearing surface At least one of a hydrodynamic sintered oil-impregnated bearing and a hydrodynamic sintered oil-impregnated bearing that supports the shaft in a non-contact manner by the hydrodynamic action generated on the radial bearing surface when the shaft and the bearing body rotate relative to each other. This is a method for manufacturing a hydrodynamic sintered oil-impregnated bearing unit having a thrust bearing portion composed of an end face and a flange portion provided on a shaft, wherein the perpendicularity between the flange portion and the outer peripheral surface of the shaft is set within 2 μm. And
Of the pair of punches, one of the punches presses the entire sintered metal into the die, and at the time of the press-fitting, the mold corresponding to the shape of the radial bearing surface is disposed on the inner periphery of the sintered metal. The mold is moved against the inner peripheral surface of the sintered metal, and the pair of punches are pressed against both end surfaces of the sintered metal, so that the inner peripheral surface of the hydrodynamic sintered oil-impregnated bearing is at least as described above. one of the end face sizing respectively, integrally raised while maintaining the mold positional relationship between sintered metal a pair of punch and mold, sintered metal to both end surfaces of the sintered metal to exit the die A hydrodynamic sintered oil-impregnated bearing characterized in that the sintered metal is held back by a pair of punches and the sintered metal is spring-backed, and the perpendicularity between the one end face of the sintered metal and the inner peripheral surface of the bearing is set within 3 μm. method of manufacturing a unit
動圧型焼結含油軸受の軸受内径dと軸受幅Lを
L≦1.2d
に設定し、かつラジアル軸受面を、軸受内周面の1箇所に設けた請求項1記載の動圧型焼結含油軸受ユニットの製造方法
Bearing inner diameter d and bearing width L of hydrodynamic sintered oil-impregnated bearing
L ≦ 1.2d
The method for manufacturing a hydrodynamic sintered oil-impregnated bearing unit according to claim 1, wherein a radial bearing surface is provided at one location on the inner peripheral surface of the bearing.
動圧型焼結含油軸受の軸受内周面に軸方向に対して傾斜した油供給用の動圧溝を設け、この動圧溝で生じる動圧作用によりスラスト軸受部に油を供給するようにした請求項1記載の動圧型焼結含油軸受ユニットの製造方法An oil supply dynamic pressure groove inclined with respect to the axial direction is provided on the inner peripheral surface of the hydrodynamic sintered oil-impregnated bearing, and oil is supplied to the thrust bearing portion by the dynamic pressure action generated in the dynamic pressure groove. A method for producing a hydrodynamic sintered oil-impregnated bearing unit according to claim 1. スラスト軸受部が、軸と軸受本体との相対回転時に生じる動圧作用により軸を非接触支持するものである請求項1乃至3何れか記載の動圧型焼結含油軸受ユニットの製造方法The method of manufacturing a hydrodynamic sintered oil-impregnated bearing unit according to any one of claims 1 to 3, wherein the thrust bearing portion supports the shaft in a non-contact manner by a dynamic pressure action generated at the time of relative rotation between the shaft and the bearing body. スラスト軸受部を構成する、上記一方の軸受端面とこれに対向するフランジ部の何れか一方に、円周方向に配設された複数の凹部を有する動圧発生部を設けた請求項4記載の動圧型焼結含油軸受ユニットの製造方法The dynamic pressure generation part which has the some recessed part arrange | positioned in the circumferential direction was provided in either one of said one bearing end surface and the flange part which opposes this which comprises a thrust bearing part. Manufacturing method of hydrodynamic sintered oil-impregnated bearing unit. 動圧発生部の凹部が、軸受端面に描いた放射状の仮想線に対して傾斜した部分を持つ動圧溝である請求項5記載の動圧型焼結含油軸受ユニットの製造方法The method for producing a hydrodynamic sintered oil-impregnated bearing unit according to claim 5, wherein the concave portion of the dynamic pressure generating portion is a dynamic pressure groove having a portion inclined with respect to a radial imaginary line drawn on the bearing end surface. スラスト軸受部を軸方向の2箇所に配置して両方向のスラスト荷重を支持するようにした請求項1乃至6何れか記載の動圧型焼結含油軸受ユニットの製造方法The method for manufacturing a hydrodynamic sintered oil-impregnated bearing unit according to any one of claims 1 to 6, wherein thrust bearing portions are arranged at two locations in the axial direction to support thrust loads in both directions. 動圧型焼結含油軸受の表面開孔率を、ラジアル軸受面で10%以下、スラスト軸受部を構成する軸受端面で5%以下に設定した請求項1乃至7何れか記載の動圧型焼結含油軸受ユニットの製造方法The hydrodynamic sintered oil-impregnated bearing according to any one of claims 1 to 7, wherein the surface porosity of the hydrodynamic sintered oil-impregnated bearing is set to 10% or less on the radial bearing surface and 5% or less on the bearing end surface constituting the thrust bearing portion. Manufacturing method of bearing unit.
JP2006086071A 2006-03-27 2006-03-27 Method for producing hydrodynamic sintered oil-impregnated bearing unit Expired - Lifetime JP4451409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006086071A JP4451409B2 (en) 2006-03-27 2006-03-27 Method for producing hydrodynamic sintered oil-impregnated bearing unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006086071A JP4451409B2 (en) 2006-03-27 2006-03-27 Method for producing hydrodynamic sintered oil-impregnated bearing unit

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP25711698A Division JP2000087953A (en) 1998-09-10 1998-09-10 Dynamic pressure type sintered oil-retaining bearing unit

Publications (2)

Publication Number Publication Date
JP2006177562A JP2006177562A (en) 2006-07-06
JP4451409B2 true JP4451409B2 (en) 2010-04-14

Family

ID=36731825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006086071A Expired - Lifetime JP4451409B2 (en) 2006-03-27 2006-03-27 Method for producing hydrodynamic sintered oil-impregnated bearing unit

Country Status (1)

Country Link
JP (1) JP4451409B2 (en)

Also Published As

Publication number Publication date
JP2006177562A (en) 2006-07-06

Similar Documents

Publication Publication Date Title
KR100619164B1 (en) Hydrodynamic type bearing and hydrodynamic type bearing unit
JP3607492B2 (en) Dynamic pressure type porous oil-impregnated bearing and manufacturing method thereof
JP4245897B2 (en) Method for manufacturing hydrodynamic bearing device
JP2000291648A (en) Dynamic pressure-type bearing unit
JP2000087953A (en) Dynamic pressure type sintered oil-retaining bearing unit
JP3607661B2 (en) Hydrodynamic porous oil-impregnated bearing and method for producing the same
JP6877185B2 (en) Fluid dynamic bearing device and motor equipped with it
JP3607478B2 (en) Dynamic pressure type porous oil-impregnated bearing
JP4451409B2 (en) Method for producing hydrodynamic sintered oil-impregnated bearing unit
JP2005180707A (en) Dynamic pressure type sintered oil-impregnated bearing unit
JP2004316924A (en) Dynamic pressure-type oil-impregnated sintered bearing unit
JP2011047005A (en) Method of manufacturing bearing sleeve and fluid dynamic bearing device
JP2004316925A (en) Dynamic pressure-type oil-impregnated sintered bearing unit
JP2004301338A (en) Dynamic pressure type sintering oil impregnation bearing unit
JP2004360921A (en) Dynamic pressure type sintered oil retaining bearing unit
WO2019139007A1 (en) Fluid dynamic bearing device and motor equipped with same
JP4172944B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP3782900B2 (en) Hydrodynamic bearing and hydrodynamic bearing unit
JP4188288B2 (en) Manufacturing method of dynamic pressure type porous oil-impregnated bearing
JP2004340385A (en) Dynamic pressure type bearing unit
JP4327038B2 (en) Spindle motor
JP4509922B2 (en) Hydrodynamic sintered oil-impregnated bearing for information equipment spindle motor
JP7094118B2 (en) Sintered metal dynamic pressure bearing
JP2001124059A (en) Dynamic pressure bearing unit
WO2023189389A1 (en) Oil-impregnated sintered bearing and fluid dynamic bearing device including same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090730

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091124

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term