JP3607661B2 - Hydrodynamic porous oil-impregnated bearing and method for producing the same - Google Patents

Hydrodynamic porous oil-impregnated bearing and method for producing the same Download PDF

Info

Publication number
JP3607661B2
JP3607661B2 JP2001329571A JP2001329571A JP3607661B2 JP 3607661 B2 JP3607661 B2 JP 3607661B2 JP 2001329571 A JP2001329571 A JP 2001329571A JP 2001329571 A JP2001329571 A JP 2001329571A JP 3607661 B2 JP3607661 B2 JP 3607661B2
Authority
JP
Japan
Prior art keywords
bearing
dynamic pressure
porous
oil
core rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001329571A
Other languages
Japanese (ja)
Other versions
JP2002206534A (en
Inventor
一男 岡村
康裕 山本
功 古森
夏比古 森
誠 白波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2001329571A priority Critical patent/JP3607661B2/en
Publication of JP2002206534A publication Critical patent/JP2002206534A/en
Application granted granted Critical
Publication of JP3607661B2 publication Critical patent/JP3607661B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/102Construction relative to lubrication with grease as lubricant

Description

【0001】
【発明の属する技術分野】
本発明は、焼結金属等の多孔質体からなる軸受本体に潤滑油あるいは潤滑グリースを含浸させて自己潤滑機能を持たせると共に、動圧溝の動圧作用によって形成される潤滑油膜で軸の摺動面を非接触支持する動圧型多孔質含油軸受に関し、特にレーザビームプリンタ(LBP)のポリゴンミラー用や磁気ディスクドライブ(HDD等)用のスピンドルモータなど、高速下で高回転精度が要求される機器や、DVD−ROM用のスピンドルモータのように、ディスクが載ることによって大きなアンバランス荷重が作用し高速で駆動する機器などの軸受に好適である。
【0002】
【従来の技術】
上記のような情報機器関連の小型スピンドルモータでは、回転性能のより一層の向上と低コスト化が求められており、そのための手段として、スピンドルの軸受部を転がり軸受から多孔質含油軸受に置き換えることが検討されている。しかし、多孔質含油軸受は、真円軸受の一種であるため、軸の偏心が小さいところでは、不安定振動が発生しやすく、回転速度の1/2の速度で振れ回るいわゆるホワールが発生しやすい欠点がある。そこで、軸受面にヘリングボーン形やスパイラル形などの動圧溝を設け、軸の回転に伴う動圧溝の作用によって軸受隙間に潤滑油膜を形成させて軸を非接触支持することが従来より試みられている(動圧型多孔質含油軸受)。
【0003】
多孔質含油軸受の軸受面に動圧溝を形成した従来技術としては、実用新案公告昭和63年19627号に記載のものがある。同号記載の技術は、軸受面における動圧溝の形成領域に表面目つぶし加工を施して、動圧溝の形成領域を封孔したものである。また、軸受面における動圧溝の成形方法として、黄銅やアルミ合金などの軟質金属からなる軸受素材よりも硬質の複数個のボールを円周等間隔に配列保持した軸状の治具を軸受素材の内周面に挿入し、治具の回転と送りによってボールに螺旋運動を与えながら、ボールを素材内周面に加圧して動圧溝の形成領域を塑性加工する方法が知られている(特許2541208号)。
【0004】
【発明が解決しようとする課題】
実用新案公告昭和63年19627号に記載された構成では、次のような問題点が生じる。まず、動圧溝の形成領域が完全に封孔されているので、その領域では多孔質含油軸受の最大の特徴である油の循環が阻害される。従って、一旦軸受隙間に滲み出した油は動圧溝の作用によって軸受面の軸方向中央部に押し込まれ、そこにとどまることになる。軸受隙間内では大きな剪断作用が働いているので、その剪断力と摩擦熱によって軸受隙間内にとどまった油は変性しやすく、また、温度上昇によって酸化劣化が早まる傾向にある。従って、軸受寿命が短くなる。つぎに、表面目つぶし加工を施す他の手段として塑性加工の他、コーティング等を挙げているが、コーティング被膜の厚さは溝深さよりも薄くする必要があり、数μmのコーティング被膜を動圧溝の形成領域にのみ施すのは極めて困難である。
【0005】
また、特許2541208号に記載された方法では、成形時に動圧溝に隣接する領域で素材隆起が起こるので、これを旋盤やリーマで除去加工する必要がある(特許公開平成8年232958号)。そのため、製造工数が多くなる。また、治具の回転駆動機構と送り機構が必要であるため、製造設備が複雑になる。さらに、軸受素材をチャックで固定する必要があるため、チャック力によって軸受面が変形したり、外周面との同軸度に狂いが生じたりする。
【0006】
本発明の目的は、傾斜状の動圧溝を有する軸受面の成形加工を簡易な設備で、少ない工数で、かつ、精度良く行うことができる製造方法を提供すると共に、軸受本体の内部と軸受隙間との間の適切な油の循環を確保し、軸受隙間内の油の劣化を抑制して軸受寿命を向上させることにある。
【0007】
【課題を解決するための手段】
上記目的を達成するため、本発明は、軸受本体の内周に傾斜状の動圧溝を有する軸受面が形成された動圧型多孔質含油軸受を製造するための方法であって、軸受面の形状に対応した成形型を有するコアロッドを円筒状の多孔質素材の内周面に所定の内径すきまを設けて挿入し、多孔質素材をコアロッドと伴に下降させて、多孔質素材の外周面を所定の外径しめしろでダイに圧入すると共に、上パンチと下パンチによって上下方向から加圧して、多孔質素材に圧迫力を加え、多孔質素材の内周面を外径しめしろと内径すきまとの差に略等しい加圧量でコアロッドの成形型に加圧することにより、多孔質素材の内周面に動圧溝を塑性加工により成形し、その後、多孔質素材にコアロッドを挿入したままの状態で下パンチとコアロッドを連動して上昇させて、多孔質素材をダイから抜き、上記圧迫力を解除することによる多孔質素材のスプリングバックを利用して、コアロッドを多孔質素材の内周面から離型する工程を含む構成を提供する。
上記構成において、コアロッドの成形型の加圧により、軸受面における動圧溝の領域とそれ以外の領域とを同時成形しても良い。
上記の多孔質素材は、好ましくは焼結金属で形成され、より好ましくは銅または鉄、あるいは、その両者を主成分とする焼結金属で形成される。
【0008】
【発明の実施の形態】
以下、本発明の実施形態について説明する。
【0009】
図1は、本発明の製造方法によって製造した動圧型多孔質含油軸受の一形態を例示している。この多孔質含油軸受1は、例えば、図2に示すようなレーザビームプリンタのスキャナモータにおいて、ロータ2とステータとの間の例磁力によって高速回転するスピンドル軸4をハウジング5に対して回転自在に非接触支持するものである。
【0010】
多孔質含油軸受1は、多孔質の軸受本体1aと、潤滑油又は潤滑グリースの含浸によって軸受本体1aの細孔内に保有された油とで構成される。軸受本体1aは、例えば銅又は鉄、あるいはその両者を主成分とする焼結金属で形成され、望ましくは銅を20〜95重量%含有し、密度が6.4〜7.2g/cm3 となるように形成される。軸受本体1aの材質として、鋳鉄、合成樹脂、セラミックスなどを焼結または発泡成形し、多数の細孔を有する多孔質体としたものを用いても良い。
【0011】
軸受本体1aの内周面には、支持すべき軸の外周面と軸受隙間を介して対向する軸受面1bが形成され、その軸受面1bに傾斜状の動圧溝1cが形成されている。この実施形態における軸受面1bは、軸方向に対して一方に傾斜した複数の動圧溝1cを円周方向に配列した第1領域m1と、第1領域m1から軸方向に離隔し、軸方向に対して他方に傾斜した複数の動圧溝1cを円周方向に配列した第2領域m2と、第1領域m1と第2領域m2との間に位置する環状の平滑領域nとで構成される。第1領域m1の背(動圧溝1c間の領域)1dと第2領域m2の背(動圧溝1c間の領域)1dは、それぞれ平滑領域nに連続している。第1領域m1の動圧溝1cと第2領域m2の動圧溝1cとは、軸受面1bの軸方向中心線に対して左右対称になっている。軸受面1bには、動圧溝1cの形成領域を含む全領域にわたって表面開孔が分布しており、主に軸受面1bの表面開孔を介して、軸受本体1aの内部と軸受隙間との間で油を循環させて、軸の外周面を軸受面1bに対して非接触支持する構成になっている。例えば、表面開孔率は、第1領域m1および第2領域m2において5〜40%の範囲、望ましくは5〜20%の範囲に設定し、平滑領域nにおいて2〜30%の範囲、望ましくは2〜10%の範囲に設定することができる。また、平滑領域nの表面開孔率は、第1領域m1および第2領域m2の表面開孔率よりも小さくすることができる。ここで、「表面開孔」とは、多孔質体組織の細孔が外表面に開口した部分をいい、「表面開孔率」とは、外表面の単位面積内に占める表面開孔の面積割合をいう。
【0012】
軸受本体1aと軸との間に相対回転が生じると、第1領域m1と第2領域m2にそれぞれ逆向きに傾斜形成された動圧溝1cによって、軸受隙間内の油が平滑領域nに向けて引き込まれ、油が平滑領域nに集められるため、平滑領域nにおける油膜圧力が高められる。そのため、潤滑油膜の形成効果が高い。しかも、背1dに加え、平滑領域nも軸を支持する支持面になるので、支持面積が拡大し、軸受剛性が高められる。平滑領域nの軸方向幅の比率rは、軸受幅を1とした場合、r=0.1〜0.6の範囲、望ましくは、r=0.2〜0.4の範囲に設定するのが良い。尚、動圧溝1cは軸方向に対して傾斜した形状であれば良く、例えば図3に示すような軸方向の連続形状でも良いし(この場合、環状の平滑領域は有しない。)、あるいは、スパイラル形状でも良い。
【0013】
図4は、上記構成の多孔質含油軸受1で軸4を支持する際における、軸方向断面での油Oの流れを示している。軸4の回転に伴い、軸受本体1aの内部の細孔内に保有された油Oが軸受面1bの軸方向両側及びチャンファー部付近から軸受隙間に滲み出し、さらに動圧溝によって軸受隙間の軸方向中央に向けて引き込まれる。その油Oの引き込み作用(動圧作用)によって軸受隙間に介在する油膜の圧力が高められ、潤滑油膜が形成される。この軸受隙間に形成される潤滑油膜(動圧溝の動圧作用によって形成される潤滑油膜)によって、軸4はホワール等の不安定振動を生じることなく、軸受面1bに対して非接触支持される。軸受隙間に滲み出した油Oは、軸4の回転に伴う発生圧力により、主に軸受面1bの表面開孔から軸受本体1aの内部に戻り、軸受本体1aの内部を循環して、再び軸受面1b及びチャンファー部付近から軸受隙間に滲み出す。
【0014】
図1に示す多孔質含油軸受1の軸受本体1aは、例えば銅又は鉄、あるいはその両者を主成分とする金属粉末を圧縮成形し、さらに焼成して得られた図12に示すような円筒形状の焼結金属素材1’に対して、例えばサイジング→回転サイジング→軸受面成形加工を施して製造することができる。
【0015】
サイジング工程は、焼結金属素材1’の外周面と内周面のサイジングを行う工程で、焼結金属素材1’の外周面を円筒状のダイに圧入すると共に、内周面にサイジングピン(断面円形)を圧入する。回転サイジング工程は、断面略多角形のサイジングピン(断面円形のピンの外周面を部分的に平坦加工して、円周等配位置に円弧部分を残したもの)を焼結金属素材1’の内周面に圧入し、これを回転させながら内周面のサイジングを行う工程である。軸受面成形工程は、上記のようなサイジング加工を施した焼結金属素材1’の内周面に、完成品1aの軸受面1bに対応した形状の成形型を加圧することによって、軸受面1bの動圧溝1cの形成領域とそれ以外の領域(背1dおよび環状の平滑領域n)とを同時成形する工程である。この工程は、例えば以下のようなものである。
【0016】
図5は、軸受面成形工程で使用する成形装置の概略構造を例示している。この装置は、焼結金属素材1’の外周面を圧入する円筒状のダイ20、焼結金属素材1’の内周面を成形するコアロッド21、焼結金属素材1’の両端面を上下方向から押さえる上下のパンチ22、23を主要な要素として構成される。図5(b)に示すように、コアロッド21の外周面には、完成品の軸受面1bの形状に対応した凹凸状の成形型21aが設けられている。成形型21aの凸部分21a1は軸受面1bにおける動圧溝1cの領域を成形し、凹部分21a2は動圧溝1c以外の領域(背1dおよび環状の平滑領域n)を成形するものである。成形型21aにおける凸部分21a1と凹部分21a2との段差(深さH)は、軸受面1bにおける動圧溝1cの深さと同程度(例えば2〜5μm程度)で微小なものであるが、図面ではかなり誇張して図示されている。
【0017】
ダイ20への圧入前の状態において、焼結金属素材1’の内周面とコアロッド21の成形型21a(凸部分21a1を基準)との間には内径すきまTがある。内径すきまT(直径量)の大きさは例えば50μmである。焼結金属素材1’の外周面のダイ20に対する圧入代(外径しめしろS:直径量)は例えば150μmである。
【0018】
焼結金属素材1’をダイ20の上面に位置合わせして配置した後、図6に示すように、上パンチ22およびコアロッド21を降下させ、焼結金属素材1’をダイ20に圧入し、さらに下パンチ23に押し付けて上下方向から加圧する。
【0019】
焼結金属素材1’はダイ20と上下パンチ22・23から圧迫力を受けて変形を起こし、内周面がコアロッド21の成形型21aに加圧される。内周面の加圧量は、外径しめしろSと内径すきまTとの差に略等しく、内周面から所定深さまでの表層部分がコアロッド21の成形型21aに加圧され、塑性流動を起こして成形型21aに食い付く。これにより、成形型21aの形状が焼結金属素材1’の内周面に転写され、軸受面1bが図1に示す形状および寸法に成形される(同時に焼結金属素材1’の外周面もサイジングされる。)。
【0020】
軸受面1bの成形が完了した後、図9に示すように、焼結金属素材1’にコアロッド21を挿入したままの状態で下パンチ23とコアロッド21を連動して上昇させ(図9▲2▼の状態)、焼結金属素材1’をダイ20から抜く(図9▲3▼の状態)。焼結金属素材1’をダイ20から抜くと、焼結金属素材1’にスプリングバックが生じ、その内径寸法が拡大するので(図7参照)、動圧溝1cを崩すことなく、焼結金属素材1’の内周面からコアロッド21を抜き取ることができる(図9▲4▼の状態)。これにより、軸受本体1aが完成する。尚、通常の真円軸受(軸受面に動圧溝を有しない焼結含油軸受)の製造工程では、図8に示すように、軸受面(内周面)のサイジングを行った後、焼結金属素材1”をダイ20’に圧入したままの状態で、サイジングピン21’{断面円形:図5(b)に示すような成形型21aは有しない。)を上昇させて焼結金属素材1”の内周面から抜き、その後、下パンチ23’で焼結金属素材1”を押し上げてダイ20’から取出すようにしている。この手順を、傾斜状の動圧溝を有する軸受面の成形に用いると、サイジングピン(コアロッド)を焼結金属素材の内周面から抜き取る際に、動圧溝の形状を崩してしまう。
【0021】
図10に、内径φ3、外径φ6、幅3mmの焼結金属素材1’に対して、上述した軸受面成形工程を行った時の、内径すきまTおよび外径しめしろSとスプリングバック量との関係を示す。同図に示すように、内径すきまTおよび外径しめしろSとスプリングバック量との間には一定の相関関係があり、内径すきまTと外径しめしろSを特定すれば、その時のスプリングバック量も特定されることが理解できる。実験によれば、所定の深さH(2μm〜3μm:成形される動圧溝1cの深さと略等しい。)において、スプリングバック量を4〜5μm(直径量)程度に設定すれば、動圧溝1cを崩すことなく焼結金属素材1’をコアロッド21から抜き取ることができたので、この程度のスプリングバック量が得られるよう内径すきまTと外径しめしろSとを設定するのが望ましい。尚、焼結金属素材1’のスプリングバック量の半径量が深さHよりも大きい場合は、成形型21aを焼結金属素材1’の内周面に干渉させることなく離型することができるが、焼結金属素材1’のスプリングバック量の半径量が深さHよりも小さく、成形型21aが焼結金属素材1’の内周面に多少干渉する場合であっても、焼結金属素材1’の材料弾性による拡径量(半径量)を付加して、動圧溝1cを崩すことなく成形型21aを焼結金属素材1’の内周面から離型できれば良い。従って、上記の実験結果に基づく寸法設定は一例であり、これによって本発明が限定的に解釈されるものではない。
【0022】
なお、軸受面1bの成形工程が完了した後、軸受面1bを通常のサイジングピン(断面円形)を用いてサイジングしてもよい。この場合、軸受面1bにおける背1dおよび平滑領域nがサイジングピンによってサイジングされることにより、それら領域の表面開孔率は動圧溝1cの形成領域の表面開孔率よりも小さくなる。また、軸受面の成形工程において、成形型によって動圧溝の形成領域のみを成形し、その後、動圧溝の形成領域以外の領域をサイジング(断面円形のサイジングピンを使用)または回転サイジング(断面円形のピンの外周面を部分的に平坦加工して、円周等配位置に円弧部分を残したサイジングピンを使用)によって仕上げることも可能である。
【0023】
以上のような工程を経て軸受本体1aを製造し、これに潤滑油又は潤滑グリースを含浸させて油を保有させると、図1に示す形態の動圧型多孔質含油軸受1が完成する。
【0024】
真円軸受(軸受面に動圧溝を有しない焼結含油軸受)と上記方法によって製造した動圧型多孔質含油軸受(焼結含油軸受)を用いて軸振れ性能の比較実験を行った。実験は、図13に示すようなCD−ROM実機モータに試験軸受を組み込み、市販のCDを実装して、回転数に対する軸振れを測定したものである。その結果を図11に示す。同図からも真円軸受に比べ、実施形態の動圧型多孔質含油軸受が軸振れの抑制に有効であることが理解できる。
【0025】
上記の実施形態は、焼結金属素材1’に対して軸受面成形を行うものであるが、この他にフォーミング工程において軸受面成形を行うこともできる。フォーミングは、外型の内側に内型となるフォーミングピンを挿入し、内型と外型の間に粉末材料を充填した後、軸方向に加圧圧縮して円筒状に成形する工程である。このフォーミング工程において、フォーミングピンの外周面に図5(b)に示すような成形型を形成しておくことによって、フォーミングと同時に成形品(圧縮成形体)の内周面に図1に示すような形状の軸受面を成形することができる。また、加圧圧縮後、圧縮成形力を除去すれば成形品(圧縮成形体)のスプリングバックを利用して成形品(圧縮成形体)をフォーミングピンから抜くことができ、この時に軸受面の形状が崩れることもない。粉末材料は金属粉末材料で、例えば銅又は鉄、あるいはその両者を主成分とするものである。フォーミング後の成形品は、焼成した後、サイジング工程、油の含浸工程等を経て製品化される。
【0026】
以上の説明では、多孔質素材又は圧縮成形体のスプリングバックを利用して軸受面の成形型を離型する場合を例示しているが、その他に、成形型を弾性的に縮拡径可能な構造とし(例えば成形型をスリットによる分割構造とする。)、軸受面の成形後、成形型を弾性的に縮径させて離型するようにしても良い。また、軸受面の形状(動圧溝の形状)に応じて、成形型の形状を変えることによって、種々の形状の軸受面を同様にして成形することができる。さらに、1つの軸受本体の内周面に複数の軸受面を軸方向に離隔して形成する場合も、外周面に複数の成形型を軸方向に離隔して形成したコアロッドやフォーミングピンを用いることによって、複数の軸受面を同時成形することができる。
【0027】
【発明の効果】
本発明によれば、軸受面の形状に対応した成形型を有するコアロッドを内型とし、ダイを外型として、多孔質素材の内周面にコアロッドの成形型を加圧して、多孔質素材の内周面に動圧溝を塑性加工により成形するので、傾斜状の動圧溝を有する軸受面の成形加工を簡易な設備で、少ない工数で、かつ、精度良く行うことができる。
【0028】
本発明の製造方法によって製造された動圧型多孔質含油軸受は、軸受面の成形精度が高く、しかも、動圧溝の形成領域を含む軸受面の全領域に表面開孔が分布し、軸受本体の内部と軸受隙間との間の適切な油の循環が確保されるので、潤滑油膜の形成効果が高く、良好かつ安定した軸受機能を有すると同時に、高い耐久寿命を有する。
【図面の簡単な説明】
【図1】実施形態の製造方法によって製造された動圧型多孔質含油軸受の一形態を示す縦断面図である。
【図2】多孔質含油軸受を組み込んだモータを概念的に示す縦断面図である。
【図3】動圧型多孔質含油軸受の他の実施形態を示す縦断面図である。
【図4】動圧型多孔質含油軸受で軸を非接触支持する際の、軸方向断面での油の流れを模式的に示す図である。
【図5】図5(a)は軸受面の成形加工に使用する成形装置の概略を示す縦断面図、図5(b)は軸受面を成形する成形型を示す側面図である。
【図6】軸受面の成形工程を示す図である。
【図7】軸受面の成形工程を示す図である。
【図8】従来の真円軸受における軸受面の成形工程を示す図である。
【図9】実施形態の軸受面の成形工程を示す図である。
【図10】内径すきま及び外径すきまとスプリングバック量との関係を示す図である。
【図11】従来の真円軸受と実施形態の動圧型多孔質含油軸受を使用した場合の、軸振れを比較試験した結果を示す図である。
【図12】焼結金属素材を示す縦断面図である。
【図13】軸振れの比較試験に使用した実験装置を概念的に示す縦断面図である。
【符号の説明】
1 動圧型多孔質含油軸受
1a 軸受本体
1b 軸受面
1c 動圧溝
21a 成形型
[0001]
BACKGROUND OF THE INVENTION
The present invention provides a self-lubricating function by impregnating a bearing body made of a porous body such as sintered metal with lubricating oil or lubricating grease, and a lubricating oil film formed by the dynamic pressure action of a dynamic pressure groove. With respect to hydrodynamic porous oil-impregnated bearings that support the sliding surface in a non-contact manner, high rotational accuracy is required at high speeds, especially for spindle motors for polygon mirrors of laser beam printers (LBP) and magnetic disk drives (HDDs, etc.). It is suitable for a bearing such as a device that is driven at a high speed by applying a large unbalance load when a disk is placed, such as a spindle motor for DVD-ROM.
[0002]
[Prior art]
In the above-mentioned small spindle motors related to information equipment, further improvement in rotational performance and cost reduction are required. As a means for that purpose, the spindle bearing is replaced from a rolling bearing to a porous oil-impregnated bearing. Is being considered. However, since the porous oil-impregnated bearing is a kind of a perfect circular bearing, unstable vibrations are likely to occur where the shaft is small in eccentricity, and so-called whirling that tends to swing at half the rotational speed is likely to occur. There are drawbacks. Therefore, a conventional attempt has been made to support the shaft in a non-contact manner by providing a herringbone type or spiral type dynamic pressure groove on the bearing surface and forming a lubricating oil film in the bearing gap by the action of the dynamic pressure groove accompanying the rotation of the shaft. (Dynamic pressure type porous oil-impregnated bearing).
[0003]
As a conventional technique in which a dynamic pressure groove is formed on the bearing surface of a porous oil-impregnated bearing, there is one described in Utility Model Public Notice No. 19627 in 1988. In the technique described in the same reference, the formation area of the dynamic pressure groove on the bearing surface is subjected to surface crushing to seal the formation area of the dynamic pressure groove. In addition, as a method for forming dynamic pressure grooves on the bearing surface, a shaft-shaped jig in which a plurality of balls that are harder than a bearing material made of a soft metal such as brass or an aluminum alloy is arranged and held at equal circumferential intervals is used as the bearing material. A method is known in which a dynamic pressure groove forming region is plastically processed by pressing the ball against the inner peripheral surface of the material while applying a helical motion to the ball by rotating and feeding the jig. Japanese Patent No. 2541208).
[0004]
[Problems to be solved by the invention]
In the configuration described in Utility Model Notification 19627, 1988, the following problems arise. First, since the region where the dynamic pressure groove is formed is completely sealed, the circulation of oil, which is the greatest feature of the porous oil-impregnated bearing, is inhibited in that region. Therefore, the oil that has once oozed into the bearing gap is pushed into the axial central portion of the bearing surface by the action of the dynamic pressure groove and remains there. Since a large shearing action is acting in the bearing gap, the oil remaining in the bearing gap is easily denatured by the shearing force and frictional heat, and oxidation deterioration tends to be accelerated due to temperature rise. Therefore, the bearing life is shortened. Next, as other means for crushing the surface, other than plastic working, coating, etc. are mentioned, but the thickness of the coating film needs to be thinner than the groove depth, and a coating film of several μm is formed in the dynamic pressure groove. It is extremely difficult to apply only to the formation region.
[0005]
Further, in the method described in Japanese Patent No. 2541208, a material bulge occurs in a region adjacent to the dynamic pressure groove at the time of molding, and it is necessary to remove this with a lathe or reamer (Japanese Patent Publication No. 232958). Therefore, the number of manufacturing steps increases. Further, since a jig rotation driving mechanism and a feeding mechanism are necessary, the manufacturing equipment becomes complicated. Furthermore, since it is necessary to fix the bearing material with a chuck, the bearing surface is deformed by the chucking force, or the coaxiality with the outer peripheral surface is deviated.
[0006]
SUMMARY OF THE INVENTION An object of the present invention is to provide a manufacturing method capable of performing a molding process of a bearing surface having an inclined dynamic pressure groove with a simple facility, with a small number of man-hours and with high accuracy, and also in the interior of the bearing body and the bearing. The purpose is to ensure proper oil circulation between the gaps and to suppress the deterioration of the oil in the bearing gaps, thereby improving the bearing life.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is a method for producing a dynamic pressure type porous oil-impregnated bearing in which a bearing surface having an inclined dynamic pressure groove is formed on the inner periphery of a bearing body. Insert a core rod having a molding die corresponding to the shape with a predetermined inner diameter clearance on the inner peripheral surface of the cylindrical porous material, and lower the porous material together with the core rod so that the outer peripheral surface of the porous material is While press-fitting into the die with a predetermined outer diameter interference, pressure is applied from above and below with the upper and lower punches to apply pressure to the porous material, and the inner peripheral surface of the porous material has an outer diameter interference and an inner clearance. By pressurizing the core rod mold with an amount of pressure approximately equal to the difference between and the dynamic pressure groove on the inner peripheral surface of the porous material is formed by plastic working, and then the core rod is inserted into the porous material. In conjunction with the lower punch and core rod A structure including a step of releasing the core rod from the inner peripheral surface of the porous material by using the spring back of the porous material by releasing the compression force and removing the porous material from the die. .
In the above configuration, the dynamic pressure groove region on the bearing surface and the other region may be simultaneously formed by pressing the core rod forming die.
The porous material is preferably formed of a sintered metal, more preferably copper or iron, or a sintered metal mainly composed of both.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0009]
FIG. 1 illustrates one embodiment of a dynamic pressure type porous oil-impregnated bearing manufactured by the manufacturing method of the present invention. The porous oil-impregnated bearing 1 is configured so that, for example, in a scanner motor of a laser beam printer as shown in FIG. 2, a spindle shaft 4 that rotates at high speed by an example magnetic force between a rotor 2 and a stator is rotatable with respect to a housing 5. Non-contact support.
[0010]
The porous oil-impregnated bearing 1 is composed of a porous bearing body 1a and oil retained in the pores of the bearing body 1a by impregnation with lubricating oil or lubricating grease. The bearing main body 1a is made of, for example, copper or iron, or a sintered metal mainly containing both, and preferably contains 20 to 95% by weight of copper and has a density of 6.4 to 7.2 g / cm 3. Formed as follows. As the material of the bearing body 1a, a porous body having many pores obtained by sintering or foaming cast iron, synthetic resin, ceramics, or the like may be used.
[0011]
A bearing surface 1b is formed on the inner circumferential surface of the bearing body 1a so as to face the outer circumferential surface of the shaft to be supported via a bearing gap, and an inclined dynamic pressure groove 1c is formed on the bearing surface 1b. The bearing surface 1b in this embodiment has a first region m1 in which a plurality of dynamic pressure grooves 1c inclined in one direction with respect to the axial direction are arranged in the circumferential direction, and is axially separated from the first region m1. The second region m2 in which a plurality of dynamic pressure grooves 1c inclined to the other side are arranged in the circumferential direction, and an annular smooth region n positioned between the first region m1 and the second region m2. The The back (region between the dynamic pressure grooves 1c) 1d of the first region m1 and the back (region between the dynamic pressure grooves 1c) 1d of the second region m2 are respectively continuous with the smooth region n. The dynamic pressure groove 1c in the first region m1 and the dynamic pressure groove 1c in the second region m2 are symmetrical with respect to the axial center line of the bearing surface 1b. In the bearing surface 1b, surface openings are distributed over the entire region including the region where the dynamic pressure grooves 1c are formed, and mainly between the interior of the bearing body 1a and the bearing gap through the surface openings of the bearing surface 1b. Oil is circulated between the shafts, and the outer peripheral surface of the shaft is supported in a non-contact manner with respect to the bearing surface 1b. For example, the surface area ratio is set to a range of 5 to 40%, preferably 5 to 20% in the first region m1 and the second region m2, and preferably in a range of 2 to 30% in the smooth region n, preferably It can be set in the range of 2 to 10%. Further, the surface area ratio of the smooth region n can be made smaller than the surface area ratios of the first region m1 and the second region m2. Here, the “surface opening” means a portion where the pores of the porous body structure are opened on the outer surface, and the “surface opening ratio” means the area of the surface opening that occupies the unit area of the outer surface. Say percentage.
[0012]
When relative rotation occurs between the bearing body 1a and the shaft, the oil in the bearing gap is directed toward the smooth region n by the dynamic pressure grooves 1c formed in the first region m1 and the second region m2 so as to be inclined in opposite directions. Since the oil is drawn in and collected in the smooth region n, the oil film pressure in the smooth region n is increased. Therefore, the formation effect of the lubricating oil film is high. In addition to the spine 1d, the smooth region n also serves as a support surface for supporting the shaft, so that the support area is increased and the bearing rigidity is increased. The ratio r of the axial width of the smooth region n is set in the range of r = 0.1 to 0.6, preferably in the range of r = 0.2 to 0.4, where the bearing width is 1. Is good. The dynamic pressure groove 1c only needs to have a shape inclined with respect to the axial direction. For example, the dynamic pressure groove 1c may have a continuous shape in the axial direction as shown in FIG. 3 (in this case, it does not have an annular smooth region). A spiral shape may be used.
[0013]
FIG. 4 shows the flow of the oil O in the axial section when the shaft 4 is supported by the porous oil-impregnated bearing 1 having the above-described configuration. As the shaft 4 rotates, the oil O retained in the pores inside the bearing body 1a oozes out from the both sides in the axial direction of the bearing surface 1b and the vicinity of the chamfer portion into the bearing clearance, and further, the bearing clearance is reduced by the dynamic pressure groove. It is pulled toward the axial center. The oil O pulling action (dynamic pressure action) increases the pressure of the oil film interposed in the bearing gap, thereby forming a lubricating oil film. Due to the lubricating oil film formed in the bearing gap (the lubricating oil film formed by the dynamic pressure action of the dynamic pressure groove), the shaft 4 is supported in a non-contact manner with respect to the bearing surface 1b without causing unstable vibration such as a whirl. The The oil O that has oozed into the bearing gap returns to the inside of the bearing body 1a mainly from the surface opening of the bearing surface 1b due to the pressure generated by the rotation of the shaft 4, circulates inside the bearing body 1a, and again becomes a bearing. It oozes out from the surface 1b and the vicinity of the chamfer portion into the bearing gap.
[0014]
The bearing body 1a of the porous oil-impregnated bearing 1 shown in FIG. 1 has a cylindrical shape as shown in FIG. 12, for example, obtained by compression-molding and firing a metal powder mainly composed of copper or iron, or both. For example, sizing → rotational sizing → bearing surface forming can be performed on the sintered metal material 1 ′.
[0015]
The sizing process is a process of sizing the outer peripheral surface and the inner peripheral surface of the sintered metal material 1 ′. The outer peripheral surface of the sintered metal material 1 ′ is pressed into a cylindrical die and a sizing pin ( Press fit (circular cross section). In the rotational sizing process, a sizing pin having a substantially polygonal cross-section (a part obtained by partially flattening the outer peripheral surface of a pin having a circular cross-section and leaving an arc portion at a circumferentially equidistant position) of the sintered metal material 1 ′ It is a step of sizing the inner peripheral surface while being press-fitted into the inner peripheral surface and rotating the inner peripheral surface. In the bearing surface molding step, the bearing surface 1b is formed by pressurizing a molding die having a shape corresponding to the bearing surface 1b of the finished product 1a onto the inner peripheral surface of the sintered metal material 1 ′ subjected to the sizing process as described above. This is a step of simultaneously forming the formation region of the dynamic pressure groove 1c and the other region (the spine 1d and the annular smooth region n). This process is as follows, for example.
[0016]
FIG. 5 illustrates a schematic structure of a molding apparatus used in the bearing surface molding process. This apparatus has a cylindrical die 20 for press-fitting the outer peripheral surface of the sintered metal material 1 ′, a core rod 21 for forming the inner peripheral surface of the sintered metal material 1 ′, and both end surfaces of the sintered metal material 1 ′ in the vertical direction. The upper and lower punches 22 and 23 to be pressed from the main parts are configured as main elements. As shown in FIG. 5 (b), an uneven mold 21 a corresponding to the shape of the finished bearing surface 1 b is provided on the outer peripheral surface of the core rod 21. The convex portion 21a1 of the molding die 21a forms a region of the dynamic pressure groove 1c on the bearing surface 1b, and the concave portion 21a2 forms a region other than the dynamic pressure groove 1c (the back 1d and the annular smooth region n). The step (depth H) between the convex portion 21a1 and the concave portion 21a2 in the molding die 21a is about the same as the depth of the dynamic pressure groove 1c in the bearing surface 1b (for example, about 2 to 5 μm), but is very small. In FIG.
[0017]
In a state before press-fitting into the die 20, there is an inner diameter clearance T between the inner peripheral surface of the sintered metal material 1 ′ and the forming die 21 a (based on the convex portion 21 a 1) of the core rod 21. The size of the inner diameter clearance T (diameter amount) is, for example, 50 μm. The press-fitting allowance (outer diameter interference S: diameter amount) of the outer peripheral surface of the sintered metal material 1 ′ to the die 20 is, for example, 150 μm.
[0018]
After the sintered metal material 1 ′ is positioned and arranged on the upper surface of the die 20, as shown in FIG. 6, the upper punch 22 and the core rod 21 are lowered, and the sintered metal material 1 ′ is press-fitted into the die 20, Further, it is pressed against the lower punch 23 and pressurized from above and below.
[0019]
The sintered metal material 1 ′ is deformed by receiving a pressing force from the die 20 and the upper and lower punches 22 and 23, and the inner peripheral surface is pressed against the forming die 21 a of the core rod 21. The amount of pressurization of the inner peripheral surface is substantially equal to the difference between the outer diameter interference margin S and the inner diameter clearance T, and the surface layer portion from the inner peripheral surface to a predetermined depth is pressed to the molding die 21a of the core rod 21 to cause plastic flow. Raise and bite into the mold 21a. Thereby, the shape of the molding die 21a is transferred to the inner peripheral surface of the sintered metal material 1 ′, and the bearing surface 1b is formed into the shape and dimensions shown in FIG. 1 (at the same time, the outer peripheral surface of the sintered metal material 1 ′ is also Sized.)
[0020]
After the formation of the bearing surface 1b is completed, as shown in FIG. 9, the lower punch 23 and the core rod 21 are raised in conjunction with the core rod 21 inserted into the sintered metal material 1 ′ ((2) in FIG. 9). The state of ▼), the sintered metal material 1 ′ is pulled out from the die 20 (the state of FIG. 9 (3)). When the sintered metal material 1 ′ is pulled out of the die 20, a spring back is generated in the sintered metal material 1 ′ and its inner diameter is enlarged (see FIG. 7), so that the sintered metal material is not destroyed without breaking the dynamic pressure groove 1c. The core rod 21 can be extracted from the inner peripheral surface of the material 1 ′ (the state shown in FIG. 9 (4)). Thereby, the bearing main body 1a is completed. In the manufacturing process of an ordinary perfect circle bearing (sintered oil-impregnated bearing having no dynamic pressure groove on the bearing surface), as shown in FIG. 8, the bearing surface (inner peripheral surface) is sized and then sintered. In a state where the metal material 1 ″ is press-fitted into the die 20 ′, the sizing pin 21 ′ {circular cross section: does not have the forming die 21a as shown in FIG. 5B) is raised and the sintered metal material 1 is raised. Then, the sintered metal material 1 "is pushed up by the lower punch 23 'and taken out from the die 20'. This procedure is performed to form a bearing surface having an inclined dynamic pressure groove. If it is used for, when the sizing pin (core rod) is extracted from the inner peripheral surface of the sintered metal material, the shape of the dynamic pressure groove is destroyed.
[0021]
FIG. 10 shows an inner diameter clearance T, an outer diameter interference margin S, and a springback amount when the bearing surface forming process described above is performed on a sintered metal material 1 ′ having an inner diameter φ3, an outer diameter φ6, and a width 3 mm. The relationship is shown. As shown in the figure, there is a certain correlation between the inner diameter clearance T and the outer diameter interference S and the amount of spring back. If the inner diameter clearance T and the outer diameter interference S are specified, the spring back at that time is determined. It can be seen that the amount is also specified. According to the experiment, if the springback amount is set to about 4 to 5 μm (diameter amount) at a predetermined depth H (2 μm to 3 μm: substantially equal to the depth of the dynamic pressure groove 1c to be formed), the dynamic pressure Since the sintered metal material 1 ′ can be extracted from the core rod 21 without breaking the groove 1c, it is desirable to set the inner diameter clearance T and the outer diameter interference margin S so as to obtain this amount of springback. When the radius of the springback amount of the sintered metal material 1 ′ is larger than the depth H, the mold 21a can be released without interfering with the inner peripheral surface of the sintered metal material 1 ′. However, even when the radius of the springback amount of the sintered metal material 1 ′ is smaller than the depth H and the molding die 21a slightly interferes with the inner peripheral surface of the sintered metal material 1 ′, the sintered metal It is only necessary to add a diameter expansion amount (radial amount) due to material elasticity of the material 1 ′ so that the forming die 21a can be released from the inner peripheral surface of the sintered metal material 1 ′ without breaking the dynamic pressure groove 1c. Therefore, the dimension setting based on the above experimental result is an example, and the present invention is not limitedly interpreted thereby.
[0022]
In addition, after the formation process of the bearing surface 1b is completed, you may size the bearing surface 1b using a normal sizing pin (circular cross section). In this case, when the spine 1d and the smooth region n on the bearing surface 1b are sized by the sizing pins, the surface area ratio of these regions becomes smaller than the surface area ratio of the formation region of the dynamic pressure grooves 1c. Also, in the molding process of the bearing surface, only the formation area of the dynamic pressure groove is formed by the molding die, and then the area other than the formation area of the dynamic pressure groove is sized (using a sizing pin with a circular cross section) or rotational sizing (cross section) It is also possible to finish by partially flattening the outer peripheral surface of the circular pin and using a sizing pin that leaves an arc portion in the circumferentially equidistant position.
[0023]
When the bearing main body 1a is manufactured through the steps as described above, and this is impregnated with lubricating oil or lubricating grease to hold the oil, the dynamic pressure type porous oil-impregnated bearing 1 having the form shown in FIG. 1 is completed.
[0024]
A comparative experiment of shaft runout performance was conducted using a perfect circle bearing (sintered oil-impregnated bearing having no dynamic pressure groove on the bearing surface) and a dynamic pressure type porous oil-impregnated bearing (sintered oil-impregnated bearing) manufactured by the above method. In the experiment, a test bearing was incorporated into a CD-ROM actual motor as shown in FIG. 13, a commercially available CD was mounted, and the shaft run-out with respect to the rotational speed was measured. The result is shown in FIG. From this figure, it can be understood that the dynamic pressure type porous oil-impregnated bearing of the embodiment is more effective in suppressing the shaft runout than the perfect circle bearing.
[0025]
In the above-described embodiment, the bearing surface is formed on the sintered metal material 1 ′. In addition, the bearing surface can be formed in the forming process. Forming is a process in which a forming pin serving as an inner mold is inserted inside the outer mold, a powder material is filled between the inner mold and the outer mold, and then compressed in the axial direction to form a cylinder. In this forming step, by forming a molding die as shown in FIG. 5B on the outer peripheral surface of the forming pin, as shown in FIG. 1 on the inner peripheral surface of the molded product (compression molded body) simultaneously with forming. It is possible to form a bearing surface having a proper shape. If the compression molding force is removed after pressure compression, the molded product (compression molded product) can be removed from the forming pin using the spring back of the molded product (compression molded product). Will not collapse. The powder material is a metal powder material, for example, containing copper, iron, or both as a main component. The molded product after forming is baked and then commercialized through a sizing process, an oil impregnation process, and the like.
[0026]
In the above description, the case where the mold for the bearing surface is released using the spring back of the porous material or the compression molded body is exemplified, but in addition, the mold can be elastically contracted and expanded. It may be structured (for example, the mold is divided into slits), and after the bearing surface is molded, the mold may be elastically reduced in diameter and released. Further, by changing the shape of the molding die according to the shape of the bearing surface (the shape of the dynamic pressure groove), various shapes of the bearing surface can be similarly formed. Furthermore, even when a plurality of bearing surfaces are formed on the inner peripheral surface of one bearing body so as to be separated from each other in the axial direction, a core rod or a forming pin formed by separating a plurality of molding dies on the outer peripheral surface in the axial direction should be used. Thus, a plurality of bearing surfaces can be formed simultaneously.
[0027]
【The invention's effect】
According to the present invention, the core rod having a molding die corresponding to the shape of the bearing surface is the inner die, the die is the outer die, the core rod molding die is pressed against the inner peripheral surface of the porous material, Since the dynamic pressure groove is formed on the inner peripheral surface by plastic working, the bearing surface having the inclined dynamic pressure groove can be formed with simple equipment, with less man-hours and with high accuracy.
[0028]
The dynamic pressure type porous oil-impregnated bearing manufactured by the manufacturing method of the present invention has high molding accuracy of the bearing surface, and surface openings are distributed over the entire region of the bearing surface including the region where the dynamic pressure groove is formed. Since an appropriate oil circulation is ensured between the inside of the bearing and the bearing gap, the effect of forming a lubricating oil film is high, and the bearing has a good and stable bearing function and at the same time has a high durability life.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing one embodiment of a dynamic pressure type porous oil-impregnated bearing manufactured by a manufacturing method of an embodiment.
FIG. 2 is a longitudinal sectional view conceptually showing a motor incorporating a porous oil-impregnated bearing.
FIG. 3 is a longitudinal sectional view showing another embodiment of the dynamic pressure type porous oil-impregnated bearing.
FIG. 4 is a diagram schematically showing an oil flow in an axial section when a shaft is supported in a non-contact manner by a dynamic pressure type porous oil-impregnated bearing.
FIG. 5A is a longitudinal sectional view showing an outline of a forming apparatus used for forming the bearing surface, and FIG. 5B is a side view showing a forming die for forming the bearing surface.
FIG. 6 is a diagram showing a molding process of a bearing surface.
FIG. 7 is a view showing a molding process of the bearing surface.
FIG. 8 is a view showing a process of forming a bearing surface in a conventional perfect circle bearing.
FIG. 9 is a diagram showing a process of forming a bearing surface according to the embodiment.
FIG. 10 is a graph showing the relationship between the inner and outer clearances and the amount of springback.
FIG. 11 is a diagram showing the results of a comparative test of shaft runout when using a conventional perfect circle bearing and the dynamic pressure type porous oil-impregnated bearing of the embodiment.
FIG. 12 is a longitudinal sectional view showing a sintered metal material.
FIG. 13 is a longitudinal sectional view conceptually showing an experimental apparatus used for a shaft runout comparison test.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Dynamic pressure type porous oil-impregnated bearing 1a Bearing main body 1b Bearing surface 1c Dynamic pressure groove 21a Mold

Claims (5)

軸受本体の内周に傾斜状の動圧溝を有する軸受面が形成された動圧型多孔質含油軸受を製造するための方法であって、
上記軸受面の形状に対応した成形型を有するコアロッドを円筒状の多孔質素材の内周面に所定の内径すきまを設けて挿入し、
上記多孔質素材を上記コアロッドと伴に下降させて、上記多孔質素材の外周面を所定の外径しめしろでダイに圧入すると共に、上パンチと下パンチによって上下方向から加圧して、上記多孔質素材に圧迫力を加え、上記多孔質素材の内周面を上記外径しめしろと内径すきまとの差に略等しい加圧量で上記コアロッドの成形型に加圧することにより、上記多孔質素材の内周面に上記動圧溝を塑性加工により成形し、
その後、上記多孔質素材に上記コアロッドを挿入したままの状態で上記下パンチとコアロッドを連動して上昇させて、上記多孔質素材を上記ダイから抜き、上記圧迫力を解除することによる上記多孔質素材のスプリングバックを利用して、上記コアロッドを上記多孔質素材の内周面から離型する工程を含むことを特徴とする動圧型多孔質含油軸受の製造方法。
A method for producing a dynamic pressure type porous oil-impregnated bearing in which a bearing surface having an inclined dynamic pressure groove is formed on the inner periphery of a bearing body,
Insert a core rod having a molding die corresponding to the shape of the bearing surface with a predetermined inner diameter clearance on the inner peripheral surface of the cylindrical porous material,
The porous material is lowered together with the core rod, the outer peripheral surface of the porous material is press-fitted into the die with a predetermined outer diameter , and the upper and lower punches are pressed from above and below to press the porous material. The porous material is pressed by applying a pressing force to the material and pressing the inner peripheral surface of the porous material to the mold for forming the core rod with a pressurizing amount approximately equal to the difference between the outer diameter interference and the inner clearance. The above-mentioned dynamic pressure groove is formed by plastic working on the inner peripheral surface of
Thereafter, the lower punch and the core rod are raised in conjunction with the core rod inserted into the porous material, the porous material is removed from the die, and the compression force is released to release the porous force. A method for producing a dynamic pressure type porous oil-impregnated bearing, comprising a step of releasing the core rod from the inner peripheral surface of the porous material by using a springback of the material.
上記コアロッドの成形型の加圧により、上記軸受面における動圧溝の領域とそれ以外の領域とが同時成形される請求項1記載の動圧型多孔質含油軸受の製造方法。2. The method for producing a hydrodynamic porous oil-impregnated bearing according to claim 1, wherein a region of the dynamic pressure groove on the bearing surface and the other region are simultaneously formed by pressurizing the core rod forming die. 上記多孔質素材が焼結金属で形成されている請求項1又は2記載の動圧型多孔質含油軸受の製造方法。The method for producing a dynamic pressure type porous oil-impregnated bearing according to claim 1 or 2, wherein the porous material is formed of a sintered metal. 上記焼結金属が銅または鉄、あるいは、その両者を主成分とする請求項3記載の動圧型多孔質含油軸受の製造方法。The method for producing a dynamic pressure type porous oil-impregnated bearing according to claim 3, wherein the sintered metal contains copper, iron, or both as a main component. 請求項1から4の何れかに記載の製造方法によって製造された動圧型多孔質含油軸受。A dynamic pressure type porous oil-impregnated bearing manufactured by the manufacturing method according to claim 1.
JP2001329571A 1997-03-06 2001-10-26 Hydrodynamic porous oil-impregnated bearing and method for producing the same Expired - Lifetime JP3607661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001329571A JP3607661B2 (en) 1997-03-06 2001-10-26 Hydrodynamic porous oil-impregnated bearing and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5185797 1997-03-06
JP9-51857 1997-03-06
JP2001329571A JP3607661B2 (en) 1997-03-06 2001-10-26 Hydrodynamic porous oil-impregnated bearing and method for producing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP04797398A Division JP3607492B2 (en) 1997-03-06 1998-02-27 Dynamic pressure type porous oil-impregnated bearing and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002206534A JP2002206534A (en) 2002-07-26
JP3607661B2 true JP3607661B2 (en) 2005-01-05

Family

ID=26392441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001329571A Expired - Lifetime JP3607661B2 (en) 1997-03-06 2001-10-26 Hydrodynamic porous oil-impregnated bearing and method for producing the same

Country Status (1)

Country Link
JP (1) JP3607661B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3128192A4 (en) * 2014-04-04 2018-03-07 NTN Corporation Sintered bearing, fluid dynamic bearing device provided with same, and sintered bearing manufacturing method
US10099287B2 (en) 2014-11-28 2018-10-16 Ntn Corporation Dynamic pressure bearing and method for manufacturing same
US11428266B2 (en) 2016-09-06 2022-08-30 Ntn Corporation Slide bearing

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4606781B2 (en) * 2004-06-10 2011-01-05 Ntn株式会社 Hydrodynamic bearing
JP2007071375A (en) * 2005-09-09 2007-03-22 Ntn Corp Method of manufacturing bearing member
JP4675880B2 (en) * 2006-12-27 2011-04-27 Ntn株式会社 Method for manufacturing fluid dynamic bearing device
KR101615147B1 (en) 2009-03-19 2016-04-25 엔티엔 가부시키가이샤 Sintered metallic bearing and fluid dynamic bearing device equipped with the bearing
JP2020051546A (en) * 2018-09-27 2020-04-02 Ntn株式会社 Sintered bearing, fluid dynamic pressure bearing device and motor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3128192A4 (en) * 2014-04-04 2018-03-07 NTN Corporation Sintered bearing, fluid dynamic bearing device provided with same, and sintered bearing manufacturing method
US10167899B2 (en) 2014-04-04 2019-01-01 Ntn Corporation Sintered bearing, fluid dynamic bearing device provided with same, and sintered bearing manufacturing method
US10099287B2 (en) 2014-11-28 2018-10-16 Ntn Corporation Dynamic pressure bearing and method for manufacturing same
US11428266B2 (en) 2016-09-06 2022-08-30 Ntn Corporation Slide bearing

Also Published As

Publication number Publication date
JP2002206534A (en) 2002-07-26

Similar Documents

Publication Publication Date Title
KR100619164B1 (en) Hydrodynamic type bearing and hydrodynamic type bearing unit
JP3607492B2 (en) Dynamic pressure type porous oil-impregnated bearing and manufacturing method thereof
JP3607661B2 (en) Hydrodynamic porous oil-impregnated bearing and method for producing the same
JP4573349B2 (en) Manufacturing method of hydrodynamic bearing
JP3607478B2 (en) Dynamic pressure type porous oil-impregnated bearing
JP3784690B2 (en) Dynamic pressure type porous oil-impregnated bearing and manufacturing method thereof
JP3602320B2 (en) Manufacturing method of hydrodynamic sintered oil-impregnated bearing
JP2000087953A (en) Dynamic pressure type sintered oil-retaining bearing unit
JP4188288B2 (en) Manufacturing method of dynamic pressure type porous oil-impregnated bearing
JP4327038B2 (en) Spindle motor
JP3602330B2 (en) Dynamic pressure type sliding bearing and method of manufacturing the same
JP3602318B2 (en) Manufacturing method of hydrodynamic porous oil-impregnated bearing
JP4459669B2 (en) Hydrodynamic bearing device
JP3782900B2 (en) Hydrodynamic bearing and hydrodynamic bearing unit
JP2004340385A (en) Dynamic pressure type bearing unit
JP4509922B2 (en) Hydrodynamic sintered oil-impregnated bearing for information equipment spindle motor
JP2004316924A (en) Dynamic pressure-type oil-impregnated sintered bearing unit
JP3625637B2 (en) Manufacturing method of hydrodynamic bearing
JP2005180707A (en) Dynamic pressure type sintered oil-impregnated bearing unit
JP2001012470A (en) Manufacture of bearing
JP4451409B2 (en) Method for producing hydrodynamic sintered oil-impregnated bearing unit
JPH11195267A (en) Spindle motor for information equipment
JP2004301338A (en) Dynamic pressure type sintering oil impregnation bearing unit
JP2004316925A (en) Dynamic pressure-type oil-impregnated sintered bearing unit
JP2004360921A (en) Dynamic pressure type sintered oil retaining bearing unit

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041007

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071015

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term