JP4606781B2 - Hydrodynamic bearing - Google Patents

Hydrodynamic bearing Download PDF

Info

Publication number
JP4606781B2
JP4606781B2 JP2004172796A JP2004172796A JP4606781B2 JP 4606781 B2 JP4606781 B2 JP 4606781B2 JP 2004172796 A JP2004172796 A JP 2004172796A JP 2004172796 A JP2004172796 A JP 2004172796A JP 4606781 B2 JP4606781 B2 JP 4606781B2
Authority
JP
Japan
Prior art keywords
dynamic pressure
pressure groove
groove region
bearing
bearing sleeve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004172796A
Other languages
Japanese (ja)
Other versions
JP2005351374A (en
Inventor
政次 清水
剛一 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2004172796A priority Critical patent/JP4606781B2/en
Priority to PCT/JP2005/010604 priority patent/WO2005121574A1/en
Publication of JP2005351374A publication Critical patent/JP2005351374A/en
Application granted granted Critical
Publication of JP4606781B2 publication Critical patent/JP4606781B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/107Grooves for generating pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/026Sliding-contact bearings for exclusively rotary movement for radial load only with helical grooves in the bearing surface to generate hydrodynamic pressure, e.g. herringbone grooves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/167Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using sliding-contact or spherical cap bearings
    • H02K5/1672Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using sliding-contact or spherical cap bearings radially supporting the rotary shaft at both ends of the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2370/00Apparatus relating to physics, e.g. instruments
    • F16C2370/12Hard disk drives or the like

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Sliding-Contact Bearings (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Motor Or Generator Frames (AREA)

Description

本発明は、動圧軸受に関するものである。   The present invention relates to a dynamic pressure bearing.

動圧軸受は、高回転精度、高速回転、低コスト、低騒音等の特徴を有し、近年ではこれらの特徴を活かして、HDD、CD−ROM、DVD−ROM等のディスク装置のスピンドルモータ、あるいはレーザビームプリンタ(LBP)のポリゴンスキャナモータ、DLP方式のビデオプロジェクタ、その他軸流ファン等の小型モータ用の軸受として広く使用されている。   The hydrodynamic bearing has features such as high rotational accuracy, high speed rotation, low cost, and low noise. In recent years, these features have been utilized to make spindle motors for disk devices such as HDDs, CD-ROMs, DVD-ROMs, Or, it is widely used as a bearing for small motors such as polygon scanner motors of laser beam printers (LBP), DLP video projectors, and other axial fans.

この動圧軸受は、軸受スリーブの内周に軸部材を挿入し、軸受スリーブの内周と軸部材の外周との間のラジアル軸受隙間に動圧溝の動圧作用で流体圧力を発生させ、この圧力で軸部材を非接触支持するものである。   In this dynamic pressure bearing, a shaft member is inserted into the inner periphery of the bearing sleeve, and fluid pressure is generated by the dynamic pressure action of the dynamic pressure groove in the radial bearing gap between the inner periphery of the bearing sleeve and the outer periphery of the shaft member. The shaft member is non-contact supported by this pressure.

この動圧軸受において、動圧溝は軸受スリーブの内周あるいは軸部材の外周に形成されるが、特に軸受スリーブの内周に動圧溝を形成する場合、複雑な形状を有する動圧溝を精度良くかつ能率的に形成することは一般に難しい。従来では、軟質金属製の軸受スリーブの内周に特殊な治具を挿入して動圧溝を転造する方法が主流であり、その一例が特開2000−312943号公報(特許文献1)に記載されている。
特開2000−312943号公報
In this dynamic pressure bearing, the dynamic pressure groove is formed on the inner periphery of the bearing sleeve or the outer periphery of the shaft member. Particularly when the dynamic pressure groove is formed on the inner periphery of the bearing sleeve, the dynamic pressure groove having a complicated shape is formed. It is generally difficult to form accurately and efficiently. Conventionally, a method of rolling a dynamic pressure groove by inserting a special jig into the inner periphery of a soft metal bearing sleeve has been mainly used, and an example thereof is disclosed in Japanese Patent Laid-Open No. 2000-312943 (Patent Document 1). Are listed.
JP 2000-312943 A

ところで、従来の動圧軸受は、軸部材の回転方向が一方向(正回転)に限定されているが、これを逆回転方向でも使用可能とすれば、動圧軸受の用途のさらなる拡大に有益である。また、回転方向が一方向に限定されている場合、軸受スリーブを軸受装置に組み込む際に、回転方向と適合した向きに軸受スリーブを組み込む必要がある。従来では、軸受スリーブの向きを識別できるように軸受スリーブ表面に識別マークを付しているが、それでも組み込み作業の煩雑化は避けられない。   By the way, in the conventional dynamic pressure bearing, the rotation direction of the shaft member is limited to one direction (forward rotation), but if this can be used in the reverse rotation direction, it is beneficial for further expansion of the application of the dynamic pressure bearing. It is. Further, when the rotation direction is limited to one direction, when the bearing sleeve is incorporated into the bearing device, it is necessary to incorporate the bearing sleeve in a direction that matches the rotation direction. Conventionally, an identification mark is attached to the surface of the bearing sleeve so that the orientation of the bearing sleeve can be identified, but it is still inevitable that the assembling work is complicated.

その一方、逆回転でも使用可能とするためには、正回転用の動圧溝とは別に、これとは逆向きに傾斜した動圧溝を新たに形成する必要がある。従来では、動圧溝を転造成形しているため、より複雑な形状となる正逆両回転用の動圧溝を成形することは困難で、上記要請に応えることは難しかった。仮に正逆両回転用の動圧溝を成形できたとしても、軸受スリーブがソリッドな金属材料で形成されている場合には、正回転時に逆回転用の動圧溝から負圧が発生するため、これがホワールの発生や油漏れの要因となるおそれがある。   On the other hand, in order to be able to be used even in reverse rotation, it is necessary to newly form a dynamic pressure groove inclined in the opposite direction separately from the dynamic pressure groove for forward rotation. Conventionally, since the dynamic pressure grooves are formed by rolling, it is difficult to form the dynamic pressure grooves for forward and reverse rotation that have a more complicated shape, and it is difficult to meet the above requirements. Even if the dynamic pressure groove for forward and reverse rotation can be formed, if the bearing sleeve is made of a solid metal material, negative pressure is generated from the reverse rotation dynamic pressure groove during forward rotation. This may cause the occurrence of whirl and oil leakage.

そこで、本発明は、正逆両回転方向に使用可能の動圧軸受を提供することを目的とする。   Accordingly, an object of the present invention is to provide a dynamic pressure bearing that can be used in both forward and reverse rotational directions.

上記目的の達成のため、本発明は、内周に、複数の動圧溝を円周方向に配列した動圧溝領域を有する軸受スリーブと、軸受スリーブの内周に挿入された軸部材とを備え、軸部材と軸受スリーブの相対回転時に、軸部材の外周と軸受スリーブの内周との間のラジアル軸受隙間に生じた流体の動圧作用で軸部材をラジアル方向に非接触支持する動圧軸受において、軸受スリーブが焼結金属製で、軸受スリーブの内周に、動圧溝領域を間に介在させることなく軸方向に分離して形成された軸方向一方側の第1の正回転用の動圧溝領域A11と軸方向他方側の第1の逆回転用の動圧溝領域A21とを有し、これら動圧溝領域を有する軸受スリーブの内周面が型成形された面であり、前記第1の正回転用の動圧溝領域A11と第1の逆回転用の動圧溝領域A21とが、それぞれ軸方向に対して傾斜する動圧溝と、これとは逆向きに傾斜する動圧溝とを軸方向の別位置に備え、前記第1の正回転用の動圧溝領域A11と前記第1の逆回転用の動圧溝領域A21のそれぞれ、相手側の動圧溝領域との最接近部の前記動圧溝を、何れも同方向に傾斜させたことを特徴とする。 To achieve the above object, the present invention provides a bearing sleeve having a dynamic pressure groove region in which a plurality of dynamic pressure grooves are arranged in the circumferential direction on an inner periphery, and a shaft member inserted in the inner periphery of the bearing sleeve. Dynamic pressure for non-contact support of the shaft member in the radial direction by the dynamic pressure action of the fluid generated in the radial bearing gap between the outer periphery of the shaft member and the inner periphery of the bearing sleeve during relative rotation of the shaft member and the bearing sleeve In the bearing, the bearing sleeve is made of sintered metal, and is formed on the inner circumference of the bearing sleeve in the axial direction so as to be separated in the axial direction without interposing a dynamic pressure groove region therebetween. The dynamic pressure groove region A11 and the first reverse rotation dynamic pressure groove region A21 on the other side in the axial direction are provided, and the inner peripheral surface of the bearing sleeve having these dynamic pressure groove regions is a molded surface. The first normal rotation dynamic pressure groove region A11 and the first reverse rotation dynamic pressure groove region A21 and includes a dynamic pressure grooves that are inclined relative to the axial direction, which between a dynamic pressure grooves inclined in the opposite direction to another position in the axial direction, the first dynamic pressure groove area of the positive rotation in each of the the A11 first hydrodynamic groove area A21 of the reverse rotation, and characterized in that the dynamic pressure grooves of the closest portion to the opposing hydrodynamic groove region, both tilted in the same direction To do.

軸受スリーブを焼結金属製とすれば、動圧溝領域は、これに対応する凹凸形状を有する溝型を軸受スリーブの内周に配置し、軸受スリーブに圧迫力を付与して軸受スリーブの内周面を溝型に押し付けることにより形成することができる。この場合、軸受スリーブの内周面が塑性変形を起こして溝型の凹凸形状が軸受スリーブの内周面に転写されるため、当該内周面に型成形した動圧溝領域が形成される。この型成形であれば、正回転用と逆回転用の動圧溝領域を有する複雑な形状の軸受スリーブ内周面を精度良く、かつ能率的に成形することができ、正逆両回転方向に使用可能の動圧軸受が提供可能となる。また、正回転時に逆回転用の動圧溝で負圧が発生した際にも、軸受スリーブ内部から表面開孔を通じてラジアル軸受隙間に油が滲み出でるため、負圧を低減しあるいは相殺することができる。このとき、軸受スリーブの内周面、特に正逆両回転用の動圧溝領域の表面開孔率は2〜20%の範囲に設定するのが望ましい。2%を下回ると負圧の低減効果が不十分となり、20%を越えると十分な動圧作用が得られないからである。   If the bearing sleeve is made of sintered metal, the dynamic pressure groove region is provided with a groove shape having a corresponding concavo-convex shape on the inner periphery of the bearing sleeve, and applying a compression force to the bearing sleeve to It can be formed by pressing the peripheral surface against the groove mold. In this case, the inner peripheral surface of the bearing sleeve undergoes plastic deformation, and the groove-shaped irregularities are transferred to the inner peripheral surface of the bearing sleeve, so that a dynamic pressure groove region molded on the inner peripheral surface is formed. With this mold forming, it is possible to accurately and efficiently form the inner circumferential surface of the bearing sleeve having a complicated shape having dynamic pressure groove regions for forward rotation and reverse rotation, in both forward and reverse rotation directions. A usable dynamic pressure bearing can be provided. Also, when negative pressure is generated in the reverse rotation dynamic pressure groove during forward rotation, oil oozes out from the bearing sleeve through the surface opening into the radial bearing gap, reducing or canceling the negative pressure. Can do. At this time, it is desirable to set the surface area ratio of the inner peripheral surface of the bearing sleeve, particularly the dynamic pressure groove region for both forward and reverse rotations, in the range of 2 to 20%. This is because if it is less than 2%, the effect of reducing the negative pressure becomes insufficient, and if it exceeds 20%, sufficient dynamic pressure action cannot be obtained.

さらに軸受スリーブは、前記第1の正回転用の動圧溝領域A11の前記軸方向一方側に第2の逆回転用の動圧溝領域A22を有すると共に、前記第1の逆回転用の動圧溝領域A21の前記軸方向他方側に第2の正回転用A12の動圧溝領域を有するものとする。この場合、2つの正回転用動圧溝領域A11,A12の領域間ピッチと、2つの逆回転用動圧溝領域A21,A22の領域間ピッチとを同じにすれば、正回転時と逆回転時のモーメント剛性を均一にすることができる。
また、前記第1の正回転用の動圧溝領域A11と前記第2の逆回転用の動圧溝領域A22とを軸方向で一部重複させると共に、前記第1の逆回転用の動圧溝領域A21と前記第2の正回転用の動圧溝領域A12とを軸方向で一部重複させてもよい。
The bearing sleeve further includes a second reverse rotation dynamic pressure groove region A22 on the one axial side of the first normal rotation dynamic pressure groove region A11, and the first reverse rotation dynamic pressure groove region A11. It is assumed that a second dynamic pressure groove region A12 for positive rotation is provided on the other axial side of the pressure groove region A21. In this case, if the inter-region pitch between the two normal rotation dynamic pressure groove regions A11, A12 and the two reverse rotation dynamic pressure groove regions A21, A22 are made the same, the reverse rotation is the same as during normal rotation. The moment stiffness can be made uniform.
Further, the first normal rotation dynamic pressure groove region A11 and the second reverse rotation dynamic pressure groove region A22 are partially overlapped in the axial direction, and the first reverse rotation dynamic pressure The groove region A21 and the second dynamic pressure groove region A12 for positive rotation may partially overlap in the axial direction.

以上から、本発明によれば、正逆両回転方向に使用可能な動圧軸受を低コストに得ることができる。これにより動圧軸受の用途を拡大することができ、また、回転方向が一方向に限定される場合でも、軸受スリーブを組み込む際の方向性が問題とならず、組み込み作業性が改善される。   As described above, according to the present invention, a hydrodynamic bearing that can be used in both forward and reverse rotational directions can be obtained at low cost. As a result, the application of the hydrodynamic bearing can be expanded, and even when the rotational direction is limited to one direction, the directionality when the bearing sleeve is incorporated does not become a problem, and the assembling workability is improved.

以下、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described.

図2に示すように本発明にかかる動圧軸受1は、軸部材2と、軸部材2を内周に挿入した円筒状の軸受スリーブ3とを主要構成要素とする。   As shown in FIG. 2, the hydrodynamic bearing 1 according to the present invention includes a shaft member 2 and a cylindrical bearing sleeve 3 in which the shaft member 2 is inserted on the inner periphery as main components.

軸部材2はステンレス鋼等の金属材料で形成され、軸受スリーブ3の内周と対向する外周面2aは平滑な円筒面状に形成される。軸受スリーブ3は、焼結金属、例えば銅あるいは鉄、もしくは双方を主成分とする焼結金属に潤滑油(又は潤滑グリース)を含浸させた含油焼結金属で形成される。軸受スリーブの内周面には、図1に示すように、複数の動圧溝4を有する円周方向の動圧溝領域A11,A12,A21,A22が軸方向の複数箇所(図示例では4箇所)に形成される。 The shaft member 2 is formed of a metal material such as stainless steel, and the outer peripheral surface 2a facing the inner periphery of the bearing sleeve 3 is formed into a smooth cylindrical surface. The bearing sleeve 3 is formed of a sintered metal, such as copper or iron, or an oil-containing sintered metal obtained by impregnating a lubricating metal (or lubricating grease) with a sintered metal mainly composed of both. On the inner peripheral surface of the bearing sleeve, as shown in FIG. 1, there are a plurality of circumferential dynamic pressure groove regions A11, A12, A21, A22 having a plurality of dynamic pressure grooves 4 in the axial direction (four in the illustrated example). Place).

各動圧溝領域A11,A12,A21,A22は、軸方向に対して傾斜した複数の動圧溝4を円周方向の全周にわたって配列したもので、図1は、その一例として、円周方向の中心線の両側に傾斜方向を逆にして動圧溝4を配列した、いわゆるヘリングボーン形の動圧溝領域を例示している。但し、この配列は例示にすぎず、これ以外の形状の動圧溝領域を形成することもできる。 Each of the dynamic pressure groove regions A11, A12, A21, A22 is formed by arranging a plurality of dynamic pressure grooves 4 inclined with respect to the axial direction over the entire circumference in the circumferential direction. FIG. A so-called herringbone-shaped dynamic pressure groove region in which the dynamic pressure grooves 4 are arranged on both sides of the direction center line with the inclination direction reversed is illustrated. However, this arrangement is merely an example, and dynamic pressure groove regions having other shapes can be formed.

図1では、軸方向で隣り合う動圧溝4間に環状の平滑部5を設け、この平滑部5で区画することにより、軸方向で隣り合う動圧溝4同士を非連続とした非連続タイプの動圧溝領域A11,A12,A21,A22を例示している。この非連続型では、円周方向で隣り合う動圧溝4間の背の部分6と平滑部5とが同一レベルとなる。この他、平滑部5を廃し、軸方向で隣り合う動圧溝4同士を連続させた連続型の動圧溝領域A11,A12,A21,A22(図7参照)を使用することもできる。 In FIG. 1, an annular smooth portion 5 is provided between the dynamic pressure grooves 4 adjacent in the axial direction and is partitioned by the smooth portion 5 so that the dynamic pressure grooves 4 adjacent in the axial direction are discontinuous. Examples of the dynamic pressure groove regions A11, A12, A21, and A22 are shown. In this discontinuous type, the back portion 6 and the smooth portion 5 between the dynamic pressure grooves 4 adjacent in the circumferential direction are at the same level. In addition, the continuous dynamic pressure groove regions A11, A12, A21, and A22 (see FIG. 7) in which the smoothing portion 5 is eliminated and the dynamic pressure grooves 4 adjacent in the axial direction are made continuous can be used.

本発明では、動圧溝領域A11,A12,A21,A22として、正回転用の領域A11,A12と逆回転用の領域A21,A22の二種類が設けられ、この点が正回転用の動圧溝領域A11,A12のみを有する従来品(図12参照)と異なる点となる。正回転用の動圧溝領域A11,A12と逆回転用の動圧溝領域A21,A22とでは、動圧溝4の傾斜方向が逆になっている以外は、動圧溝4の大きさ、形状、深さ、およびその数が同じである。 In the present invention, as the dynamic pressure groove areas A11, A12, A21, A22 , two types of areas A11, A12 for normal rotation and areas A21, A22 for reverse rotation are provided, and this point is a dynamic pressure for normal rotation. This is different from the conventional product (see FIG. 12) having only the groove regions A11 and A12 . The dynamic pressure groove area A11, A12 for forward rotation and the dynamic pressure groove area A21, A22 for reverse rotation are the same as the size of the dynamic pressure groove 4 except that the direction of inclination of the dynamic pressure groove 4 is reversed. The shape, depth, and number are the same.

この動圧軸受において、軸部材2と軸受スリーブ3のうち、一方(例えば軸受スリーブ3)を固定して他方(例えば軸部材2)を正方向に回転すると、動圧溝4の動圧作用により、第1の正回転用の動圧溝領域A11および第2の正回転用の動圧溝領域A12とこれに対向する軸部材2の外周面2aとの間のラジアル軸受隙間に油等の潤滑流体の圧力が発生し、この圧力によって軸部材2と軸受スリーブ3とが非接触に保持される。逆方向に回転させた場合も同様に、第1の逆回転用の動圧溝領域A21および第2の逆回転用の動圧溝領域A22とこれに対向する軸部材2の外周面2aとの間のラジアル軸受隙間に潤滑流体の圧力が発生し、この圧力によって軸部材2と軸受スリーブ3とが非接触に保持される。そのため、一つの動圧軸受1で正逆両方向の回転を支持することが可能となる。 In this dynamic pressure bearing, when one of the shaft member 2 and the bearing sleeve 3 (for example, the bearing sleeve 3) is fixed and the other (for example, the shaft member 2) is rotated in the forward direction, the dynamic pressure action of the dynamic pressure groove 4 causes In the radial bearing gap between the first positive rotation dynamic pressure groove region A11 and the second positive rotation dynamic pressure groove region A12 and the outer peripheral surface 2a of the shaft member 2 opposed thereto, lubrication of oil or the like is performed. A fluid pressure is generated, and the shaft member 2 and the bearing sleeve 3 are held in non-contact by this pressure. Similarly, when rotating in the reverse direction, the first reverse rotation dynamic pressure groove region A21 and the second reverse rotation dynamic pressure groove region A22 and the outer peripheral surface 2a of the shaft member 2 opposed thereto are also shown. A pressure of the lubricating fluid is generated in the radial bearing gap therebetween, and the shaft member 2 and the bearing sleeve 3 are held in a non-contact state by this pressure. Therefore, it is possible to support rotation in both forward and reverse directions with one dynamic pressure bearing 1.

特に図示のように正回転用の動圧溝領域A11,A12と逆回転用の動圧溝領域A21,22の軸方向位置をずらし、それぞれ独立して形成した場合、動圧発生時における正回転用および逆回転用の動圧溝領域A11,A12,A21,A22の相互干渉を抑制できるため、高い回転精度を得ることができる。 In particular, as shown in the figure, when the axial positions of the dynamic pressure groove areas A11, A12 for forward rotation and the dynamic pressure groove areas A21, 22 for reverse rotation are shifted and formed independently, Since mutual interference between the dynamic pressure groove regions A11, A12, A21, and A22 for rotation and reverse rotation can be suppressed, high rotation accuracy can be obtained.

また、図示例のように、軸方向で正回転用動圧溝領域A11,A12と逆回転用動圧溝領域A21,A22とを交互に配置し、二つの正回転用動圧溝領域A11,A12の領域間ピッチP1、および逆回転用動圧溝領域A21,A22の領域間ピッチP2を等しくすれば、軸受のモーメント剛性を正逆両回転方向で等しくすることができ、正逆両回転方向で軸受性能を共通化することができる。もちろん用途によっては、一方の回転方向(例えば逆回転方向)でそれほどモーメント剛性が要求されない場合もあるので、その場合は、図3に示すように二つの逆回転用動圧溝領域A21,A22を軸方向両側から正回転用動圧溝領域A11,A12で挟む形とすることにより、逆回転用動圧溝領域A21,A22の領域間ピッチP2を正回転用動圧溝領域A11,A12の領域間ピッチP1よりも小さくしてもよい。 Further, as in the illustrated example, the positive rotation dynamic pressure groove regions A11 and A12 and the reverse rotation dynamic pressure groove regions A21 and A22 are alternately arranged in the axial direction, and two forward rotation dynamic pressure groove regions A11, If the inter-region pitch P1 of A12 and the inter-region pitch P2 of the reverse rotation dynamic pressure groove regions A21 and A22 are made equal, the moment rigidity of the bearing can be made equal in both the forward and reverse rotational directions, and the forward and reverse rotational directions. The bearing performance can be standardized. Of course, depending on the application, moment rigidity may not be required so much in one rotation direction (for example, the reverse rotation direction). In that case, as shown in FIG. 3, two reverse rotation dynamic pressure groove regions A21 and A22 are provided. By adopting a shape that is sandwiched between the positive rotation dynamic pressure groove regions A11 and A12 from both sides in the axial direction , the inter-region pitch P2 of the reverse rotation dynamic pressure groove regions A21 and A22 is set to the positive rotation dynamic pressure groove regions A11 and A12 . It may be smaller than the inter-pitch P1.

このように動圧軸受1を正逆両回転方向で使用可能とすれば、軸部材の回転方向が何れか一方向に限定される場合でも、軸受スリーブ3の向きが問題とならないため、組み込み作業性を改善すると共に、軸受スリーブ3に付する識別マークを不要とすることができる。   If the hydrodynamic bearing 1 can be used in both forward and reverse rotational directions in this way, the orientation of the bearing sleeve 3 does not matter even if the rotational direction of the shaft member is limited to any one direction. In addition to improving the performance, an identification mark attached to the bearing sleeve 3 can be made unnecessary.

この軸受スリーブ3内周の動圧溝領域A11,A12,A21,A22は、型成形で形成することができる。図4は、この型成形工程の一例を示すものである。この工程は、図示のように、円筒状の焼結金属素材3’の内周に、軸受スリーブ3の内周面形状に対応する形状の溝型11aを外周面に形成したコアロッド11を挿入した状態で、軸受スリーブ3をその軸方向両端面をパンチ12a,12bで拘束してダイス13に押し入れることにより行われる。ダイス12内では焼結金属素材3’にパンチ12a,12bおよびダイス12から圧迫力が付与され、その内周面がコアロッド11の溝型11aに押し付けられる。これにより、焼結金属素材3'の内周面が塑性変形を起こして溝型11aの凹凸形状が転写され、動圧溝領域A11,A12,A21,A22が型成形される。この際、動圧溝領域A11,A12,A21,A22の動圧溝4、背の部分6、さらには平滑部5は溝型11aの凹凸によって同時成形される。 The dynamic pressure groove regions A11, A12, A21, A22 on the inner periphery of the bearing sleeve 3 can be formed by molding. FIG. 4 shows an example of this mold forming process. In this process, as shown in the drawing, a core rod 11 having a groove die 11a having a shape corresponding to the inner peripheral surface shape of the bearing sleeve 3 is inserted into the inner periphery of a cylindrical sintered metal material 3 ′. In this state, the bearing sleeve 3 is pushed into the die 13 by restraining both end surfaces in the axial direction with the punches 12a and 12b. In the die 12, a pressing force is applied to the sintered metal material 3 ′ from the punches 12 a and 12 b and the die 12, and the inner peripheral surface is pressed against the groove die 11 a of the core rod 11. As a result, the inner peripheral surface of the sintered metal material 3 ′ undergoes plastic deformation, and the uneven shape of the groove mold 11a is transferred, and the dynamic pressure groove areas A11, A12, A21, A22 are molded. At this time, the dynamic pressure grooves 4, the back portion 6, and the smooth portion 5 of the dynamic pressure groove regions A11, A12, A21, and A22 are simultaneously formed by the unevenness of the groove mold 11a.

成形終了後に焼結金属素材3’をダイス13から取り出すと、素材3’のスプリングバックによってその内周面が拡径するため、溝型11aと成形後の動圧溝領域A11,A12,A21,A22とを干渉させることなく、スムーズに焼結金属素材3’を脱型することができる。脱型した焼結金属素材3’に真空含浸等の手段で潤滑油を含浸させることにより、軸受スリーブ3が得られる。 When the sintered metal material 3 ′ is taken out from the die 13 after the forming is finished, the inner peripheral surface thereof is enlarged by the spring back of the material 3 ′, so the groove 11a and the dynamic pressure groove regions A11, A12, A21, The sintered metal material 3 ′ can be removed smoothly without causing interference with A22 . The bearing sleeve 3 is obtained by impregnating the demolded sintered metal material 3 ′ with lubricating oil by means such as vacuum impregnation.

図5は、以上の動圧軸受1を使用した動圧軸受装置の構成例を示すものである。この動圧軸受装置は、動圧軸受1に加え、さらに底部15aを一体または別体に有する有底筒状のハウジング15を備える構造である。ハウジング3の内周にモータ16のシャフトとなる軸部材2が挿入され、軸部材2の外周面2aと軸受スリーブ3の内周面との間の隙間(ラジアル軸受隙間も含む)に潤滑流体としての油が満たされている。この構成において、モータ16の正逆駆動させると、軸部材2の正逆回転がラジアル方向で非接触支持される。   FIG. 5 shows a configuration example of a fluid dynamic bearing device using the fluid dynamic bearing 1 described above. In addition to the dynamic pressure bearing 1, the dynamic pressure bearing device has a structure including a bottomed cylindrical housing 15 having a bottom portion 15a integrally or separately. A shaft member 2 that serves as a shaft of the motor 16 is inserted into the inner periphery of the housing 3, and the gap (including the radial bearing clearance) between the outer peripheral surface 2 a of the shaft member 2 and the inner peripheral surface of the bearing sleeve 3 is used as a lubricating fluid. Is filled with oil. In this configuration, when the motor 16 is driven forward / reversely, forward / reverse rotation of the shaft member 2 is supported in a non-contact manner in the radial direction.

以下、図6〜図11に基いて、本発明の他の実施形態を説明する。   Hereinafter, other embodiments of the present invention will be described with reference to FIGS.

図6は、図1に示す動圧溝領域A11,A12,A21,A22において、隣接する動圧溝領域A11,A22およびA12,A21の背の部分6を連続させることにより、正回転用動圧溝領域A11,A12と逆回転用動圧溝領域A21,A22を軸方向で一部重複させたものである。この場合、重複分だけ動圧溝領域A11,A12,A21,A22の軸方向での占有スペースが減じられるので、図1の実施形態に比べ、同種の動圧溝領域の領域間ピッチP1,P2を増すことができ、軸受のモーメント剛性をさらに向上させることもできる。 FIG. 6 shows the dynamic pressure for positive rotation by continuing the back portion 6 of the adjacent dynamic pressure groove regions A11, A22 and A12, A21 in the dynamic pressure groove regions A11, A12, A21, A22 shown in FIG. The groove regions A11, A12 and the reverse rotation dynamic pressure groove regions A21, A22 are partially overlapped in the axial direction. In this case, since the occupied space in the axial direction of the dynamic pressure groove regions A11, A12, A21, A22 is reduced by the overlap, the inter-region pitches P1, P2 of the same type of dynamic pressure groove regions are compared with the embodiment of FIG. The moment rigidity of the bearing can be further improved.

図7は、図6に示す構成において、隣接する正逆両動圧溝領域A11,A22およびA12,A21の平滑部5を廃し、その軸方向両側の動圧溝4および背の部分6を相手側と連続させた、いわゆる連続タイプの動圧溝形状を示すものである。動圧溝領域A11とA22の間、およびA12とA21の間で連続する背の部分6は、図1と同様に非連続とすることもできる。 FIG. 7 shows the configuration shown in FIG. 6, in which the smoothing portions 5 of the adjacent forward and reverse dynamic pressure groove regions A11, A22 and A12, A21 are eliminated, and the dynamic pressure grooves 4 and the back portions 6 on both sides in the axial direction are opposed. It shows a so-called continuous type dynamic pressure groove shape continuous with the side. The back portion 6 continuous between the dynamic pressure groove regions A11 and A22 and between A12 and A21 may be discontinuous as in FIG.

図8は、図6に示す構成において、正回転用の動圧溝領域A11,A12を、軸受スリーブ3の内周面を円周方向等ピッチに分割してできる一部領域であって、円周方向に離隔した複数(望ましくは三以上)の領域に形成したものである。逆回転用の動圧溝領域A21,A22も同様の態様で配置されているが、その円周方向の位相は正回転用の動圧溝領域A11,A12とずらしている。正回転用の動圧溝領域A11,A12および逆回転用の動圧溝領域A21,A22の円周方向両端で背の部分6を相手側の動圧溝領域の背の部分6と連続させている。 FIG. 8 is a partial area formed by dividing the dynamic pressure groove areas A11 and A12 for positive rotation into the circumferential direction equal pitch in the configuration shown in FIG. It is formed in a plurality of (preferably three or more) regions separated in the circumferential direction. The reverse rotation dynamic pressure groove regions A21 and A22 are also arranged in the same manner, but their circumferential phases are shifted from the forward rotation dynamic pressure groove regions A11 and A12 . The back portion 6 is made to be continuous with the back portion 6 of the opposite dynamic pressure groove region at both ends in the circumferential direction of the dynamic pressure groove regions A11, A12 for forward rotation and the dynamic pressure groove regions A21, A22 for reverse rotation. Yes.

以上に述べた図1および図6〜8に示す実施形態は、正回転用の動圧溝領域A11,A12と逆回転用の動圧溝領域A21,A22の軸方向位置を異ならせたものであるのに対し、図9〜図11に示す実施形態は、隣接する両動圧溝領域(A11とA22、およびA21とA12)の軸方向位置を同じにし、両動圧溝領域(A11とA22、およびA21とA12)を軸方向で完全に重複させたものである。この場合、軸方向に離隔した二つの動圧溝領域間の軸方向ピッチPがさらに増すため、軸受のモーメント剛性をより高めることができる。 The embodiment shown in FIGS. 1 and 6 to 8 described above is such that the axial pressure positions of the dynamic pressure groove areas A11, A12 for forward rotation and the dynamic pressure groove areas A21, A22 for reverse rotation are different. On the other hand, in the embodiment shown in FIGS. 9 to 11, the axial positions of adjacent dynamic pressure groove regions (A11 and A22, and A21 and A12) are made the same, and both dynamic pressure groove regions (A11 and A22) are used. , And A21 and A12) are completely overlapped in the axial direction. In this case, since the axial pitch P between the two dynamic pressure groove regions separated in the axial direction is further increased, the moment rigidity of the bearing can be further increased.

このうちの図9は、正回転用の動圧溝4と逆回転用の動圧溝4とを円周方向に交互配置した例であり、図10は正回転用の動圧溝領域A1と逆回転用の動圧溝領域A2とを、図8と同様にその円周方向の位相をずらしてそれぞれ軸受スリーブ3内周面に形成した例である。   Of these, FIG. 9 shows an example in which the dynamic pressure grooves 4 for forward rotation and the dynamic pressure grooves 4 for reverse rotation are alternately arranged in the circumferential direction, and FIG. 10 shows a dynamic pressure groove region A1 for positive rotation. This is an example in which the dynamic pressure groove region A2 for reverse rotation is formed on the inner peripheral surface of the bearing sleeve 3 with the circumferential phase shifted as in FIG.

図11は、図10の構成において、正回転用動圧溝領域A11,A12および逆回転用動圧溝領域A21、A22のうち、何れか一方(例えば逆回転用動圧溝領域A21,A22)の動圧溝4の数を相手側の動圧溝4よりも減らした例である。この場合、動圧溝数の少ない逆回転用動圧溝領域A21、A22での動圧作用が減じられ、動圧溝数の多い動圧溝領域A11,A12での動圧作用が増加するため、正回転時にはラジアル軸受隙間により多くの圧力を発生させることができ、特に逆回転時に比べて正回転時によりトルクが必要となる用途に好適となる。 FIG. 11 shows the configuration of FIG. 10, in which one of the normal rotation dynamic pressure groove regions A11, A12 and the reverse rotation dynamic pressure groove regions A21, A22 (for example, the reverse rotation dynamic pressure groove regions A21, A22 ). This is an example in which the number of the dynamic pressure grooves 4 is smaller than that of the other dynamic pressure grooves 4. In this case, the dynamic pressure action in the reverse rotation dynamic pressure groove areas A21 and A22 having a small number of dynamic pressure grooves is reduced , and the dynamic pressure action in the dynamic pressure groove areas A11 and A12 having a large number of dynamic pressure grooves is increased. In the forward rotation, a large amount of pressure can be generated by the radial bearing gap, which is particularly suitable for an application that requires more torque during forward rotation than during reverse rotation.

本発明の第一の実施形態を示すもので、軸受スリーブの断面図である。1 is a cross-sectional view of a bearing sleeve according to a first embodiment of the present invention. 図1に示す軸受スリーブを使用した動圧軸受の断面図である。It is sectional drawing of the dynamic pressure bearing using the bearing sleeve shown in FIG. 軸受スリーブ内周に形成した動圧溝領域の他形態を示す断面図である。It is sectional drawing which shows the other form of the dynamic pressure groove area | region formed in the bearing sleeve inner periphery. 動圧溝領域の成形工程を示す断面図である。It is sectional drawing which shows the formation process of a dynamic pressure groove area | region. 図2に示す動圧軸受を使用した動圧軸受装置の断面図である。It is sectional drawing of the dynamic pressure bearing apparatus which uses the dynamic pressure bearing shown in FIG. 本発明の第二の実施形態を示す断面図である。It is sectional drawing which shows 2nd embodiment of this invention. 本発明の第三の実施形態を示す断面図である。It is sectional drawing which shows 3rd embodiment of this invention. 本発明の第四の実施形態を示す断面図である。It is sectional drawing which shows 4th embodiment of this invention. 本発明の第五の実施形態を示す断面図である。It is sectional drawing which shows 5th embodiment of this invention. 本発明の第六の実施形態を示す断面図である。It is sectional drawing which shows the 6th embodiment of this invention. 本発明の第七の実施形態を示す断面図である。It is sectional drawing which shows 7th embodiment of this invention. 従来の動圧溝領域の形態を示す断面図である。It is sectional drawing which shows the form of the conventional dynamic pressure groove area | region.

1 動圧軸受
2 軸部材
2a 外周面
3 軸受スリーブ
4 動圧溝
5 平滑部
6 背の部分
11 コアロッド
11a 溝型
12a,12b パンチ
13 ダイス
15 ハウジング
15a 底部
16 モータ
A11,A12 動圧溝領域(正回転用)
A21,A22 動圧溝領域(逆回転用)
DESCRIPTION OF SYMBOLS 1 Dynamic pressure bearing 2 Shaft member 2a Outer peripheral surface 3 Bearing sleeve 4 Dynamic pressure groove 5 Smooth part 6 Back part 11 Core rod 11a Groove type 12a, 12b Punch 13 Dies 15 Housing 15a Bottom part 16 Motor
A11, A12 dynamic pressure groove area (For forward rotation)
A21, A22 dynamic pressure groove area (for reverse rotation)

Claims (5)

内周に、複数の動圧溝を円周方向に配列した動圧溝領域を有する軸受スリーブと、軸受スリーブの内周に挿入された軸部材とを備え、軸部材と軸受スリーブの相対回転時に、軸部材の外周と軸受スリーブの内周との間のラジアル軸受隙間に生じた流体の動圧作用で軸部材をラジアル方向に非接触支持する動圧軸受において、
軸受スリーブが焼結金属製で、軸受スリーブの内周に、動圧溝領域を間に介在させることなく軸方向に分離して形成された軸方向一方側の第1の正回転用の動圧溝領域A11と軸方向他方側の第1の逆回転用の動圧溝領域A21とを有し、これら動圧溝領域を有する軸受スリーブの内周面が型成形された面であり、前記第1の正回転用の動圧溝領域A11と第1の逆回転用の動圧溝領域A21とが、それぞれ軸方向に対して傾斜する動圧溝と、これとは逆向きに傾斜する動圧溝とを軸方向の別位置に備え、前記第1の正回転用の動圧溝領域A11と前記第1の逆回転用の動圧溝領域A21のそれぞれ、相手側の動圧溝領域との最接近部の前記動圧溝を、何れも同方向に傾斜させたことを特徴とする動圧軸受。
A bearing sleeve having a dynamic pressure groove region in which a plurality of dynamic pressure grooves are arranged in a circumferential direction on an inner periphery, and a shaft member inserted in the inner periphery of the bearing sleeve, and when the shaft member and the bearing sleeve are relatively rotated In the hydrodynamic bearing that supports the shaft member in the radial direction by the hydrodynamic action of the fluid generated in the radial bearing gap between the outer periphery of the shaft member and the inner periphery of the bearing sleeve,
The bearing sleeve is made of sintered metal, and is formed on the inner periphery of the bearing sleeve by separating it in the axial direction without interposing a dynamic pressure groove region therebetween. A groove region A11 and a first dynamic pressure groove region A21 for reverse rotation on the other side in the axial direction, and an inner peripheral surface of a bearing sleeve having these dynamic pressure groove regions is a molded surface, The first dynamic pressure groove region A11 for forward rotation and the first dynamic pressure groove region A21 for reverse rotation are each inclined with respect to the axial direction, and the dynamic pressure is inclined in the opposite direction. a groove provided in a different position in the axial direction, in each dynamic pressure generating groove area A21 of the first and hydrodynamic groove area A11 of the forward rotation for first reverse rotation, the counterpart of the dynamic groove region A hydrodynamic bearing characterized in that all of the hydrodynamic grooves of the closest approach are inclined in the same direction .
前記第1の正回転用の動圧溝領域A11の前記軸方向一方側に第2の逆回転用の動圧溝領域A22を有すると共に、前記第1の逆回転用の動圧溝領域A21の前記軸方向他方側に第2の正回転用A12の動圧溝領域を有する請求項1記載の動圧軸受。   The first normal rotation dynamic pressure groove region A11 has a second reverse rotation dynamic pressure groove region A22 on one axial side, and the first reverse rotation dynamic pressure groove region A21 The hydrodynamic bearing according to claim 1, further comprising a second hydrodynamic groove region for positive rotation A12 on the other axial side. 前記第1の正回転用の動圧溝領域A11と前記第2の逆回転用の動圧溝領域A22とを軸方向で一部重複させると共に、前記第1の逆回転用の動圧溝領域A21と前記第2の正回転用の動圧溝領域A12とを軸方向で一部重複させた請求項2記載の動圧軸受装置。   The first normal rotation dynamic pressure groove region A11 and the second reverse rotation dynamic pressure groove region A22 partially overlap in the axial direction, and the first reverse rotation dynamic pressure groove region A22 The hydrodynamic bearing device according to claim 2, wherein A21 and the second hydrodynamic groove region A12 for positive rotation partially overlap in the axial direction. 2つの正回転用動圧溝領域A11,A12の領域間ピッチと、2つの逆回転用動圧溝領域A21,A22の領域間ピッチとを同じにした請求項2または3記載の動圧軸受。   4. The hydrodynamic bearing according to claim 2 or 3, wherein the pitch between the two positive rotation dynamic pressure groove regions A11, A12 is the same as the pitch between the two reverse rotation dynamic pressure groove regions A21, A22. 軸受スリーブの内周面の表面開孔率を2〜20%にした請求項1〜4何れか1項に記載の動圧軸受装置。   The hydrodynamic bearing device according to any one of claims 1 to 4, wherein a surface opening ratio of an inner peripheral surface of the bearing sleeve is 2 to 20%.
JP2004172796A 2004-06-10 2004-06-10 Hydrodynamic bearing Expired - Fee Related JP4606781B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004172796A JP4606781B2 (en) 2004-06-10 2004-06-10 Hydrodynamic bearing
PCT/JP2005/010604 WO2005121574A1 (en) 2004-06-10 2005-06-09 Dynamic pressure bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004172796A JP4606781B2 (en) 2004-06-10 2004-06-10 Hydrodynamic bearing

Publications (2)

Publication Number Publication Date
JP2005351374A JP2005351374A (en) 2005-12-22
JP4606781B2 true JP4606781B2 (en) 2011-01-05

Family

ID=35503132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004172796A Expired - Fee Related JP4606781B2 (en) 2004-06-10 2004-06-10 Hydrodynamic bearing

Country Status (2)

Country Link
JP (1) JP4606781B2 (en)
WO (1) WO2005121574A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007014845B4 (en) * 2007-03-28 2019-05-16 Minebea Mitsumi Inc. Fluid dynamic bearing
WO2012043575A1 (en) * 2010-09-28 2012-04-05 Ntn株式会社 Fluid dynamic bearing device and assembly method thereof
JP5674495B2 (en) 2011-01-31 2015-02-25 Ntn株式会社 Fluid dynamic bearing device
CN103185130B (en) * 2011-12-31 2017-10-24 德昌电机(深圳)有限公司 Drive device and its gear
JP6151488B2 (en) * 2012-07-25 2017-06-21 Ntn株式会社 Fluid dynamic bearing device
CN104141688B (en) * 2014-04-23 2017-09-01 河北工程大学 hydrodynamic sliding bearing device with automatic cleaning function
CN104141687B (en) * 2014-04-28 2017-07-07 石家庄铁道大学 A kind of hydrodynamic sliding bearing device with automatic cleaning function
JP6618757B2 (en) * 2015-10-15 2019-12-11 株式会社三共製作所 Fluid dynamic bearing
TWI784568B (en) * 2021-06-11 2022-11-21 東培工業股份有限公司 Dynamic pressure bearing structure with double cutting edges

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01206110A (en) * 1988-02-12 1989-08-18 Matsushita Electric Works Ltd Dynamical pressure bearing
JPH06280858A (en) * 1993-03-29 1994-10-07 Koyo Seiko Co Ltd Dynamic pressure bearing
JPH09209982A (en) * 1996-02-08 1997-08-12 Matsushita Seiko Co Ltd Bearing device fof motor for electric fan
JPH09264318A (en) * 1996-03-28 1997-10-07 Tokyo Parts Ind Co Ltd Dynamic pressure bearing structure of small-sized motor
JPH109260A (en) * 1996-06-20 1998-01-13 Matsushita Electric Ind Co Ltd Dynamic pressure type fluid bearing device
JPH11336760A (en) * 1998-05-28 1999-12-07 Ntn Corp Dynamic pressure type sintered oil-impregnated bearing
JP2000145765A (en) * 1998-11-12 2000-05-26 Sankyo Seiki Mfg Co Ltd Kinetic pressure bearing device
JP2000232753A (en) * 1999-02-10 2000-08-22 Toshiba Corp Motor
JP2002168237A (en) * 2000-11-28 2002-06-14 Fuji Xerox Co Ltd Radial dynamic-pressure air bearing, light deflector and exposure device
JP2002206534A (en) * 1997-03-06 2002-07-26 Ntn Corp Dynamic pressure type multiporous oil retaining bearing and manufacturing method therefor
JP2003299306A (en) * 2002-03-27 2003-10-17 Jianzhun Electric Mach Ind Co Ltd Structure of lubricating oil line of inner diameter surface of bearing

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001241429A (en) * 2000-02-25 2001-09-07 Seiko Instruments Inc Fluid dynamic pressure bearing and spindle motor

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01206110A (en) * 1988-02-12 1989-08-18 Matsushita Electric Works Ltd Dynamical pressure bearing
JPH06280858A (en) * 1993-03-29 1994-10-07 Koyo Seiko Co Ltd Dynamic pressure bearing
JPH09209982A (en) * 1996-02-08 1997-08-12 Matsushita Seiko Co Ltd Bearing device fof motor for electric fan
JPH09264318A (en) * 1996-03-28 1997-10-07 Tokyo Parts Ind Co Ltd Dynamic pressure bearing structure of small-sized motor
JPH109260A (en) * 1996-06-20 1998-01-13 Matsushita Electric Ind Co Ltd Dynamic pressure type fluid bearing device
JP2002206534A (en) * 1997-03-06 2002-07-26 Ntn Corp Dynamic pressure type multiporous oil retaining bearing and manufacturing method therefor
JPH11336760A (en) * 1998-05-28 1999-12-07 Ntn Corp Dynamic pressure type sintered oil-impregnated bearing
JP2000145765A (en) * 1998-11-12 2000-05-26 Sankyo Seiki Mfg Co Ltd Kinetic pressure bearing device
JP2000232753A (en) * 1999-02-10 2000-08-22 Toshiba Corp Motor
JP2002168237A (en) * 2000-11-28 2002-06-14 Fuji Xerox Co Ltd Radial dynamic-pressure air bearing, light deflector and exposure device
JP2003299306A (en) * 2002-03-27 2003-10-17 Jianzhun Electric Mach Ind Co Ltd Structure of lubricating oil line of inner diameter surface of bearing

Also Published As

Publication number Publication date
WO2005121574A1 (en) 2005-12-22
JP2005351374A (en) 2005-12-22

Similar Documents

Publication Publication Date Title
JP4159332B2 (en) Hydrodynamic bearing device
WO2005121574A1 (en) Dynamic pressure bearing
JP5674495B2 (en) Fluid dynamic bearing device
KR20000023014A (en) Hydrodynamic type bearing and hydrodynamic type bearing unit
WO2004038240A1 (en) Hydrodynamic bearing device
JPH10306827A (en) Dynamic pressure type oil-impregnated sintered bearing and manufacture thereof
JP3607661B2 (en) Hydrodynamic porous oil-impregnated bearing and method for producing the same
JP2005351377A (en) Dynamic pressure bearing
US7789565B2 (en) Fluid dynamic bearing apparatus
JP2005351376A (en) Dynamic pressure bearing
JP4219903B2 (en) Hydrodynamic bearing device
JP6151488B2 (en) Fluid dynamic bearing device
JP2005351375A (en) Dynamic pressure bearing
JP2004340385A (en) Dynamic pressure type bearing unit
JP3782900B2 (en) Hydrodynamic bearing and hydrodynamic bearing unit
JP3784690B2 (en) Dynamic pressure type porous oil-impregnated bearing and manufacturing method thereof
JP3625637B2 (en) Manufacturing method of hydrodynamic bearing
JP2004308921A (en) Dynamic pressure type bearing unit
JPH11190344A (en) Manufacture of dynamic pressure type sintered oil retaining bearing
JP2009085232A (en) Method of fixing plain bearing
JP2004316924A (en) Dynamic pressure-type oil-impregnated sintered bearing unit
JP5172213B2 (en) Hydrodynamic bearing device and method for manufacturing shaft member thereof
JP4509922B2 (en) Hydrodynamic sintered oil-impregnated bearing for information equipment spindle motor
JP4246217B2 (en) Hydrodynamic bearing unit
JP2004316925A (en) Dynamic pressure-type oil-impregnated sintered bearing unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070412

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100323

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100712

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101006

R150 Certificate of patent or registration of utility model

Ref document number: 4606781

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees