JP2005351375A - Dynamic pressure bearing - Google Patents

Dynamic pressure bearing Download PDF

Info

Publication number
JP2005351375A
JP2005351375A JP2004172804A JP2004172804A JP2005351375A JP 2005351375 A JP2005351375 A JP 2005351375A JP 2004172804 A JP2004172804 A JP 2004172804A JP 2004172804 A JP2004172804 A JP 2004172804A JP 2005351375 A JP2005351375 A JP 2005351375A
Authority
JP
Japan
Prior art keywords
dynamic pressure
pressure groove
bearing
bearing sleeve
shaft member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004172804A
Other languages
Japanese (ja)
Inventor
Masaji Shimizu
政次 清水
Tomokazu Sonozaki
智和 園嵜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2004172804A priority Critical patent/JP2005351375A/en
Publication of JP2005351375A publication Critical patent/JP2005351375A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dynamic pressure bearing which can be used in regular and reverse rotation directions. <P>SOLUTION: A bearing sleeve 3 is formed out of sintered metal. A dynamic pressure groove zone A1 generating dynamic pressure action at a time of regular rotation and a dynamic pressure groove zone A2 generating dynamic pressure action at a time of reverse rotation are formed on an inner circumference of the bearing sleeve 3 in different shapes. Non-contact support in a radial direction of a shaft member 2 in the regular and reverse rotation direction is established by dynamic pressure action of fluid generated in a radial bearing gap between an outer circumference 2a of the shaft member 2 and the dynamic pressure groove zones A1, A2 on the inner circumference of the bearing sleeve 3 at a time of rotation of the shaft member 2. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、動圧軸受に関するものである。   The present invention relates to a dynamic pressure bearing.

動圧軸受は、高回転精度、高速回転、低コスト、低騒音等の特徴を有し、近年ではこれらの特徴を活かして、HDD、CD−ROM、DVD−ROM等のディスク装置のスピンドルモータ、あるいはレーザビームプリンタ(LBP)のポリゴンスキャナモータ、DLP方式のビデオプロジェクタ、その他軸流ファン等の小型モータ用の軸受として広く使用されている。   The hydrodynamic bearing has features such as high rotational accuracy, high speed rotation, low cost, and low noise. In recent years, these features have been utilized to make spindle motors for disk devices such as HDDs, CD-ROMs, DVD-ROMs, Or, it is widely used as a bearing for small motors such as polygon scanner motors of laser beam printers (LBP), DLP video projectors, and other axial fans.

この動圧軸受は、軸受スリーブの内周に軸部材を挿入し、軸受スリーブの内周と軸部材の外周との間のラジアル軸受隙間に動圧溝の動圧作用で流体圧力を発生させ、この圧力で軸部材を非接触支持するものである。   In this dynamic pressure bearing, a shaft member is inserted into the inner periphery of the bearing sleeve, and fluid pressure is generated by the dynamic pressure action of the dynamic pressure groove in the radial bearing gap between the inner periphery of the bearing sleeve and the outer periphery of the shaft member. The shaft member is non-contact supported by this pressure.

この動圧軸受において、動圧溝は軸受スリーブの内周あるいは軸部材の外周に形成されるが、特に軸受スリーブの内周に動圧溝を形成する場合、複雑な形状を有する動圧溝を精度良くかつ能率的に形成することは一般に難しい。従来では、軟質金属製の軸受スリーブの内周に特殊な治具を挿入して動圧溝を転造する方法が主流であり、その一例が特開2000−312943号公報(特許文献1)に記載されている。
特開2000−312943号公報
In this dynamic pressure bearing, the dynamic pressure groove is formed on the inner periphery of the bearing sleeve or the outer periphery of the shaft member. Particularly when the dynamic pressure groove is formed on the inner periphery of the bearing sleeve, the dynamic pressure groove having a complicated shape is formed. It is generally difficult to form accurately and efficiently. Conventionally, a method of rolling a dynamic pressure groove by inserting a special jig into the inner periphery of a soft metal bearing sleeve has been mainly used, and an example thereof is disclosed in Japanese Patent Laid-Open No. 2000-312943 (Patent Document 1). Has been described.
JP 2000-312943 A

ところで、従来の動圧軸受は、軸部材の回転方向が一方向(正回転)に限定されているが、これを逆回転方向でも使用可能とすれば、動圧軸受の用途のさらなる拡大に有益である。   By the way, in the conventional dynamic pressure bearing, the rotation direction of the shaft member is limited to one direction (forward rotation), but if this can be used in the reverse rotation direction, it is beneficial for further expansion of the application of the dynamic pressure bearing. It is.

その一方、逆回転でも使用可能とするためには、正回転用の動圧溝とは別に、これとは逆向きに傾斜した動圧溝を新たに形成する必要がある。従来では、動圧溝を転造成形しているため、より複雑な形状となる正逆両回転用の動圧溝を成形することは困難で、上記要請に応えることは難しかった。仮に正逆両回転用の動圧溝を成形できたとしても、軸受スリーブがソリッドな金属材料で形成されている場合には、正回転時に逆回転用の動圧溝から負圧が発生するため、これがホワールの発生や油漏れの要因となるおそれがある。   On the other hand, in order to be able to be used even in reverse rotation, it is necessary to newly form a dynamic pressure groove inclined in the opposite direction separately from the dynamic pressure groove for forward rotation. Conventionally, since the dynamic pressure grooves are formed by rolling, it is difficult to form the dynamic pressure grooves for forward and reverse rotation that have a more complicated shape, and it is difficult to meet the above requirements. Even if the dynamic pressure groove for forward and reverse rotation can be formed, if the bearing sleeve is made of a solid metal material, negative pressure is generated from the reverse rotation dynamic pressure groove during forward rotation. This may cause the occurrence of whirl and oil leakage.

そこで、本発明は、正逆両回転方向に使用可能の動圧軸受を提供することを目的とする。   Accordingly, an object of the present invention is to provide a dynamic pressure bearing that can be used in both forward and reverse rotational directions.

上記目的の達成のため、本発明では、内周に、複数の動圧溝を円周方向に配列した動圧溝領域を有する軸受スリーブと、軸受スリーブの内周に挿入された軸部材とを備え、軸部材と軸受スリーブの相対回転時に、軸部材の外周と軸受スリーブの内周との間のラジアル軸受隙間に生じた流体の動圧作用で軸部材をラジアル方向に非接触支持する動圧軸受において、軸受スリーブを焼結金属製とし、軸受スリーブの内周に正回転時の動圧溝領域および逆回転時の動圧溝領域をそれぞれ形成すると共に、両動圧溝領域を異なる形状とし、かつこれら動圧溝領域を有する軸受スリーブの内周面を型成形された面とした。   In order to achieve the above object, in the present invention, a bearing sleeve having a dynamic pressure groove region in which a plurality of dynamic pressure grooves are arranged in a circumferential direction on an inner periphery, and a shaft member inserted in the inner periphery of the bearing sleeve are provided. Dynamic pressure that supports the shaft member in the radial direction by the dynamic pressure action of the fluid generated in the radial bearing gap between the outer periphery of the shaft member and the inner periphery of the bearing sleeve during relative rotation of the shaft member and the bearing sleeve In the bearing, the bearing sleeve is made of sintered metal, and a dynamic pressure groove region during forward rotation and a dynamic pressure groove region during reverse rotation are formed on the inner periphery of the bearing sleeve, and both dynamic pressure groove regions have different shapes. In addition, the inner peripheral surface of the bearing sleeve having these dynamic pressure groove regions is a die-formed surface.

動圧溝領域は、正回転もしくは逆回転時に、回転方向に応じて動圧作用を生じる部分であり、少なくとも動圧溝と、隣接する動圧溝間の背の部分とを含む領域で構成される。正回転時の動圧溝領域と逆回転時の動圧溝領域は、それぞれ独立分離して形成する他(図1参照)、その少なくとも一部を重複させた形で形成することもできる(図5、図6参照)。   The dynamic pressure groove region is a portion that generates a dynamic pressure action according to the rotation direction during forward rotation or reverse rotation, and is configured by a region including at least a dynamic pressure groove and a back portion between adjacent dynamic pressure grooves. The The dynamic pressure groove region at the time of forward rotation and the dynamic pressure groove region at the time of reverse rotation are formed separately from each other (see FIG. 1), and can also be formed by overlapping at least a part thereof (see FIG. 1). 5, see FIG.

このように軸受スリーブを焼結金属製とすれば、動圧溝領域は、これに対応する凹凸形状を有する溝型を軸受スリーブの内周に配置し、軸受スリーブに圧迫力を付与して軸受スリーブの内周面を溝型に押し付けることにより形成することができる。この場合、軸受スリーブの内周面が塑性変形を起こして溝型の凹凸形状が軸受スリーブの内周面に転写されるため、当該内周面に型成形した動圧溝領域が形成される。この型成形であれば、正回転時と逆回転時の二種類の動圧溝領域を備えた複雑形状の軸受スリーブ内周面を精度良く、かつ能率的に成形することができ、正逆両回転方向に使用可能の動圧軸受が提供可能となる。また、正回転時に逆回転用の動圧溝で負圧が発生した際にも、軸受スリーブ内部から表面開孔を通じてラジアル軸受隙間に油が滲み出でるため、負圧を低減しあるいは相殺することができる。このとき、軸受スリーブの内周面、特に正逆両回転用の動圧溝領域の表面開孔率は2〜20%の範囲に設定するのが望ましい。2%を下回ると負圧の低減効果が不十分となり、20%を越えると十分な動圧作用が得られないからである。   If the bearing sleeve is made of sintered metal in this way, the dynamic pressure groove region is provided with a groove shape having an uneven shape corresponding to this, and a bearing force is applied to the bearing sleeve by applying a pressing force to the bearing sleeve. It can be formed by pressing the inner peripheral surface of the sleeve against the groove mold. In this case, the inner peripheral surface of the bearing sleeve undergoes plastic deformation, and the groove-shaped irregularities are transferred to the inner peripheral surface of the bearing sleeve, so that a dynamic pressure groove region molded on the inner peripheral surface is formed. With this mold forming, it is possible to accurately and efficiently form an inner peripheral surface of a bearing sleeve having a complex shape with two types of dynamic pressure groove regions during forward rotation and reverse rotation. A dynamic pressure bearing that can be used in the rotational direction can be provided. Also, when negative pressure is generated in the reverse rotation dynamic pressure groove during forward rotation, oil oozes out from the bearing sleeve through the surface opening into the radial bearing gap, so that the negative pressure can be reduced or offset. Can do. At this time, it is desirable to set the surface area ratio of the inner peripheral surface of the bearing sleeve, particularly the dynamic pressure groove region for both forward and reverse rotations, in the range of 2 to 20%. This is because if it is less than 2%, the effect of reducing the negative pressure becomes insufficient, and if it exceeds 20%, sufficient dynamic pressure action cannot be obtained.

特に本発明のように、正回転時の動圧溝領域と逆回転時の動圧溝領域とを異なる形状とした場合、動圧作用で生じる流体の圧力が正回転時および逆回転時で異なる大きさになる。従って、正逆回転のうち、何れか一方の回転時に流体圧力を高めることも可能となり、モータで駆動対象を上下運動させる機構(例えばパワーウィンド機構)のように、駆動対象を上昇させる時に高いモータトルクを要し、下降させる時にこれよりも低いモータトルクで足りる場合にも、当該モータの回転軸を支持する軸受として使用することが可能となる。   In particular, as in the present invention, when the dynamic pressure groove region during forward rotation and the dynamic pressure groove region during reverse rotation have different shapes, the fluid pressure generated by the dynamic pressure action differs between forward rotation and reverse rotation. It becomes size. Accordingly, it is possible to increase the fluid pressure during either one of the forward and reverse rotations, and a motor that is high when the drive target is raised, such as a mechanism that moves the drive target up and down with a motor (for example, a power window mechanism). Even when a torque is required and a lower motor torque is sufficient when the motor is lowered, it can be used as a bearing for supporting the rotating shaft of the motor.

なお、ここでいう「異なる形状」とは、正回転時の動圧溝領域および逆回転時の動圧溝領域の形状が鏡像関係にないことを意味する。両動圧溝領域の一部又は全部が重複している場合、異なる形状であるか否かは、正回転時に動圧溝領域になる部分と、逆回転時に動圧溝領域になる部分とが鏡像関係にあるか否かで判断される。   Here, “different shapes” means that the shapes of the dynamic pressure groove region during forward rotation and the dynamic pressure groove region during reverse rotation are not mirror images. When part or all of both dynamic pressure groove regions overlap, whether or not they have different shapes depends on whether they are a dynamic pressure groove region during forward rotation or a dynamic pressure groove region during reverse rotation. Judgment is made based on whether or not they are mirror images.

正回転時と逆回転時の各動圧溝領域は、その軸方向位置をずらして配置する他、その軸方向位置を同じにして配置することができる。   The dynamic pressure groove regions at the time of forward rotation and reverse rotation can be arranged with the same axial position in addition to being shifted in the axial position.

上記例示したモータ(例えばパワーウィンドモータ)に本発明を適用する場合、上記軸部材をモータの回転軸として使用することができる。   When the present invention is applied to the motor exemplified above (for example, a power window motor), the shaft member can be used as a rotating shaft of the motor.

以上から、本発明によれば、正逆両回転を支持することができ、しかも両回転方向で軸受性能の異なる動圧軸受を低コストに得ることができ、動圧軸受のさらなる用途拡大に寄与することができる。   As described above, according to the present invention, it is possible to support both forward and reverse rotations and to obtain a hydrodynamic bearing having different bearing performance in both rotational directions at low cost, contributing to further expansion of applications of the hydrodynamic bearing. can do.

以下、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described.

図2に示すように本発明にかかる動圧軸受1は、軸部材2と、軸部材2を内周に挿入した円筒状の軸受スリーブ3とを主要構成要素とする。   As shown in FIG. 2, the hydrodynamic bearing 1 according to the present invention includes a shaft member 2 and a cylindrical bearing sleeve 3 in which the shaft member 2 is inserted on the inner periphery as main components.

軸部材2はステンレス鋼等の金属材料で形成され、軸受スリーブ3の内周と対向する外周面2aは平滑な円筒面状に形成される。軸受スリーブ3は、焼結金属、例えば銅あるいは鉄、もしくは双方を主成分とする焼結金属に潤滑油(又は潤滑グリース)を含浸させた含油焼結金属で形成される。軸受スリーブの内周面には、図1に示すように、複数の動圧溝4を円周方向に配列した動圧溝領域A1,A2が軸方向の複数箇所(図示例では4箇所)に形成される。   The shaft member 2 is formed of a metal material such as stainless steel, and the outer peripheral surface 2a facing the inner periphery of the bearing sleeve 3 is formed into a smooth cylindrical surface. The bearing sleeve 3 is formed of a sintered metal, such as copper or iron, or an oil-containing sintered metal obtained by impregnating a lubricating metal (or lubricating grease) with a sintered metal mainly composed of both. On the inner peripheral surface of the bearing sleeve, as shown in FIG. 1, dynamic pressure groove regions A1 and A2 in which a plurality of dynamic pressure grooves 4 are arranged in the circumferential direction are provided at a plurality of axial positions (four positions in the illustrated example). It is formed.

各動圧溝領域A1,A2は、回転方向に応じて動圧作用を生じる領域であり、軸方向に対して傾斜し、円周方向の複数箇所に配列された動圧溝4と、隣接する動圧溝4の間に形成された背の部分6とを少なくとも含む。図1は、この動圧溝領域の一例として、いわゆるヘリングボーン形を例示している。但し、この配列は例示にすぎず、これ以外の形状の動圧溝領域を形成することもできる。   Each of the dynamic pressure groove regions A1 and A2 is a region that generates a dynamic pressure action according to the rotation direction, and is adjacent to the dynamic pressure grooves 4 that are inclined with respect to the axial direction and arranged at a plurality of locations in the circumferential direction. And at least a back portion 6 formed between the dynamic pressure grooves 4. FIG. 1 illustrates a so-called herringbone shape as an example of the dynamic pressure groove region. However, this arrangement is merely an example, and dynamic pressure groove regions having other shapes can be formed.

図1では、軸方向で隣り合う動圧溝4間に背の部分6と同じ高さの環状の平滑部5を設け、この平滑部5で区画することにより、軸方向で隣り合う動圧溝4同士を非連続とした非連続タイプの動圧溝領域A1,A2を例示している。この非連続型では、動圧溝4と背の部分6の他、平滑部5も動圧溝領域A1,A2の構成要素となる。この他、平滑部5を廃し、軸方向で隣り合う動圧溝4同士を連続させた連続型の動圧溝領域A1,A2を使用することもできる。   In FIG. 1, an annular smooth portion 5 having the same height as the back portion 6 is provided between the dynamic pressure grooves 4 adjacent in the axial direction, and the dynamic pressure grooves adjacent in the axial direction are partitioned by the smooth portion 5. The non-continuous type dynamic pressure groove area | region A1, A2 which made 4 discontinuous is illustrated. In this discontinuous type, in addition to the dynamic pressure groove 4 and the back portion 6, the smooth portion 5 is also a component of the dynamic pressure groove regions A1 and A2. In addition, it is also possible to use the continuous dynamic pressure groove regions A1 and A2 in which the smooth portion 5 is eliminated and the dynamic pressure grooves 4 adjacent in the axial direction are made continuous.

本発明では、動圧溝領域A1,A2として、正回転時に動圧作用を生じる領域A1(正回転時の動圧溝領域)と逆回転時に動圧作用を生じる領域A2(逆回転時の動圧溝領域)の二種類が設けられ、この点が正回転時の動圧溝領域A1のみを有する従来品(図7参照)と異なる点となる。正回転時の動圧溝領域A1の動圧溝4(以下、正回転用の動圧溝41と表す)は正回転方向に縮小した部分を備え、逆回転時の動圧溝領域A2の動圧溝4(以下、逆回転用の動圧溝42と表す)は逆回転方向に縮小した部分を備える。本発明において、正回転時の動圧溝領域A1と逆回転時の動圧溝領域A2とは、鏡像関係にない異なる形状である。この実施形態では、正回転用の動圧溝41の数を逆回転用の動圧溝42よりも多くすることにより、両領域A1,A2の形状を異ならせている。   In the present invention, as the dynamic pressure groove regions A1 and A2, a region A1 (dynamic pressure groove region during normal rotation) that generates a dynamic pressure during normal rotation and a region A2 (dynamic movement during reverse rotation) that generates a dynamic pressure during reverse rotation. There are two types of pressure groove regions), and this point is different from the conventional product (see FIG. 7) having only the dynamic pressure groove region A1 during forward rotation. The dynamic pressure groove 4 in the dynamic pressure groove area A1 during forward rotation (hereinafter referred to as the dynamic pressure groove 41 for forward rotation) has a portion that is reduced in the forward rotation direction, and the dynamic pressure groove area A2 during reverse rotation The pressure groove 4 (hereinafter referred to as a reverse rotation dynamic pressure groove 42) includes a portion reduced in the reverse rotation direction. In the present invention, the dynamic pressure groove region A1 during forward rotation and the dynamic pressure groove region A2 during reverse rotation have different shapes that are not mirror images. In this embodiment, the shapes of the two regions A1 and A2 are made different by increasing the number of the dynamic pressure grooves 41 for forward rotation as compared with the dynamic pressure grooves 42 for reverse rotation.

この動圧軸受において、軸部材2と軸受スリーブ3のうち、一方(例えば軸受スリーブ3)を固定して他方(例えば軸部材2)を正方向に回転すると、動圧溝41で生じた動圧作用により、正回転時の動圧溝領域A1とこれに対向する軸部材2の外周面2aとの間のラジアル軸受隙間に油等の潤滑流体の圧力が発生し、この圧力によって軸部材2と軸受スリーブ3とが非接触に保持される。逆方向に回転させた場合も同様に、動圧溝42で生じた動圧作用により、逆回転時の動圧溝領域A2とこれに対向する軸部材2の外周面2aとの間のラジアル軸受隙間に潤滑流体の圧力が発生し、この圧力によって軸部材2と軸受スリーブ3とが非接触に保持される。そのため、一つの動圧軸受1で正逆両方向の回転を支持することが可能となる。   In this dynamic pressure bearing, when one of the shaft member 2 and the bearing sleeve 3 (for example, the bearing sleeve 3) is fixed and the other (for example, the shaft member 2) is rotated in the forward direction, the dynamic pressure generated in the dynamic pressure groove 41 is obtained. Due to the action, pressure of a lubricating fluid such as oil is generated in the radial bearing gap between the dynamic pressure groove region A1 during forward rotation and the outer peripheral surface 2a of the shaft member 2 facing the dynamic pressure groove region A1, and this pressure causes the shaft member 2 and The bearing sleeve 3 is held in a non-contact manner. Similarly, when rotating in the reverse direction, the radial bearing between the dynamic pressure groove region A2 at the time of reverse rotation and the outer peripheral surface 2a of the shaft member 2 facing the same due to the dynamic pressure action generated in the dynamic pressure groove 42 is also provided. The pressure of the lubricating fluid is generated in the gap, and the shaft member 2 and the bearing sleeve 3 are held in non-contact by this pressure. Therefore, it is possible to support rotation in both forward and reverse directions with one dynamic pressure bearing 1.

図示のように正回転時の動圧溝領域A1と逆回転時の動圧溝領域A2の軸方向位置をずらし、それぞれ独立して形成した場合、何れかの方向の回転時における二種類の動圧溝領域A1,A2での動圧作用の相互干渉を抑制できるという利点が得られる。   As shown in the figure, when the axial positions of the dynamic pressure groove area A1 during forward rotation and the dynamic pressure groove area A2 during reverse rotation are shifted and formed independently, two types of movement during rotation in either direction are shown. There is an advantage that the mutual interference of the dynamic pressure action in the pressure groove regions A1 and A2 can be suppressed.

この軸受スリーブ3内周の動圧溝領域A1,A2は、型成形で形成することができる。図3は、この型成形工程の一例を示すものである。この工程は、図示のように、円筒状の焼結金属素材3’の内周に、軸受スリーブ3の内周面形状に対応する形状の溝型11aを外周面に形成したコアロッド11を挿入した状態で、軸受スリーブ3をその軸方向両端面をパンチ12a,12bで拘束してダイス13に押し入れることにより行われる。ダイス12内では焼結金属素材3’にパンチ12a,12bおよびダイス12から圧迫力が付与され、その内周面がコアロッド11の溝型11aに押し付けられる。これにより、焼結金属素材3'の内周面が塑性変形を起こして溝型11aの凹凸形状が転写され、各動圧溝領域A1,A2が型成形される。この際、動圧溝領域A1,A2の動圧溝4、背の部分6、さらには平滑部5は溝型11aの凹凸によって同時成形される。   The dynamic pressure groove regions A1 and A2 on the inner periphery of the bearing sleeve 3 can be formed by molding. FIG. 3 shows an example of this mold forming process. In this process, as shown in the drawing, a core rod 11 having a groove die 11a having a shape corresponding to the inner peripheral surface shape of the bearing sleeve 3 is inserted into the inner periphery of a cylindrical sintered metal material 3 ′. In this state, the bearing sleeve 3 is pushed into the die 13 by restraining both end surfaces in the axial direction with the punches 12a and 12b. In the die 12, a pressing force is applied to the sintered metal material 3 ′ from the punches 12 a and 12 b and the die 12, and the inner peripheral surface thereof is pressed against the groove die 11 a of the core rod 11. As a result, the inner peripheral surface of the sintered metal material 3 ′ undergoes plastic deformation, the irregular shape of the groove mold 11 a is transferred, and the dynamic pressure groove areas A 1 and A 2 are molded. At this time, the dynamic pressure grooves 4, the back portion 6, and the smooth portion 5 of the dynamic pressure groove regions A1 and A2 are simultaneously formed by the unevenness of the groove mold 11a.

成形終了後に焼結金属素材3’をダイス13から取り出すと、素材3’のスプリングバックによってその内周面が拡径するため、溝型11aと成形後の動圧溝領域A1,A2とを干渉させることなく、スムーズに焼結金属素材3’を脱型することができる。脱型した焼結金属素材3’に真空含浸等の手段で潤滑油を含浸させることにより、軸受スリーブ3が得られる。   When the sintered metal material 3 ′ is taken out from the die 13 after the forming is completed, the inner peripheral surface thereof is enlarged by the spring back of the material 3 ′, so that the groove mold 11a and the hydrodynamic groove regions A1 and A2 after forming interfere with each other. The sintered metal material 3 ′ can be removed smoothly without causing it. The bearing sleeve 3 is obtained by impregnating the demolded sintered metal material 3 ′ with lubricating oil by means such as vacuum impregnation.

特に本発明では、正逆両回転時の動圧溝領域A1,A2を異なる形状にしているので、正逆両回転方向で異なる軸受性能が求められる場合にも対応することができる。例えば図1に示す実施形態のように、正回転時の動圧溝領域A1における動圧溝41の数を、逆回転時の動圧溝領域A2における動圧溝42の数よりも多くすれば、動圧作用で生じる流体の圧力は正回転時の方が大きくなるので、正回転時により高面圧を受ける軸部材2を支持することができる。   In particular, in the present invention, the dynamic pressure groove regions A1 and A2 at the time of both forward and reverse rotations have different shapes, so that it is possible to cope with cases where different bearing performance is required in both the forward and reverse rotation directions. For example, as in the embodiment shown in FIG. 1, if the number of dynamic pressure grooves 41 in the dynamic pressure groove area A1 during forward rotation is greater than the number of dynamic pressure grooves 42 in the dynamic pressure groove area A2 during reverse rotation. Since the pressure of the fluid generated by the dynamic pressure action is greater during the forward rotation, the shaft member 2 that receives a higher surface pressure during the forward rotation can be supported.

図4は、自動車等の車両に装備されるパワーウィンド機構の概略構成を示すものである。図示のように、この機構では、モータ16の駆動力が軸部材2を介してウォームギヤ17、さらにはこれに噛み合うギヤ18に伝達される。ギヤ18の正逆回転により、図示しないリンクを介してウィンドウが昇降する。従来のパワーウィンドウ機構では、ハウジング15と軸部材2との間に介在させた転がり軸受で軸部材2の回転を支持していたが、転がり軸受はコスト高であると共に、スペースも嵩む傾向にある。転がり軸受に代えて上記動圧軸受1を使用することにより、低コスト化、および機構のコンパクト化を達成することができる。   FIG. 4 shows a schematic configuration of a power window mechanism installed in a vehicle such as an automobile. As shown in the figure, in this mechanism, the driving force of the motor 16 is transmitted to the worm gear 17 and further to the gear 18 engaged therewith via the shaft member 2. As the gear 18 rotates forward and backward, the window moves up and down via a link (not shown). In the conventional power window mechanism, the rotation of the shaft member 2 is supported by the rolling bearing interposed between the housing 15 and the shaft member 2, but the rolling bearing is expensive and tends to increase space. . By using the dynamic pressure bearing 1 in place of the rolling bearing, the cost can be reduced and the mechanism can be made compact.

上述のように、本発明の動圧軸受1は軸部材2の正逆回転を支持することができ、しかも正回転時にはより高面圧を支持することができる。パワーウィンド機構では、重力の関係でウィンドウが上昇する際にその下降時よりも軸部材2がより高面圧で駆動される。従って、各動圧軸受1の正回転方向をウィンドウ上昇時の軸部材2の回転方向と一致させることにより、ウィンドウの上昇・下降を問わず軸部材2を確実に非接触支持することができ、ウィンドウを安定して上昇・下降させることが可能となる。   As described above, the hydrodynamic bearing 1 of the present invention can support forward and reverse rotation of the shaft member 2 and can support higher surface pressure during forward rotation. In the power window mechanism, when the window rises due to gravity, the shaft member 2 is driven at a higher surface pressure than when the window is lowered. Therefore, by making the positive rotation direction of each dynamic pressure bearing 1 coincide with the rotation direction of the shaft member 2 when the window is raised, the shaft member 2 can be reliably supported in a non-contact manner regardless of whether the window is raised or lowered. It is possible to raise and lower the window stably.

以下、図5および図6に基いて、本発明の他の実施形態を説明する。   Hereinafter, another embodiment of the present invention will be described with reference to FIGS. 5 and 6.

図5に示す実施形態は、図1に示す実施形態において、正回転用の動圧溝領域A1を、軸受スリーブ3の内周面を円周方向等ピッチに分割してできる一部領域であって、円周方向に離隔した複数(望ましくは三以上)の領域に形成したものである。逆回転用の動圧溝領域A2も同様の態様で配置されているが、その円周方向の位相は正回転用の動圧溝領域A1とずらしている。両動圧溝領域A1,A2の円周方向両端では、軸方向で対向する背の部分を共通化している(共通化した背の部分を符号6’で示す)。図1に示す実施形態と同様に、正回転時の動圧溝領域A1と逆回転時の動圧溝領域A2とは異なる形状であり、具体的には正回転時の動圧溝領域A1における動圧溝41の数は、逆回転時の動圧溝領域A2における動圧溝42の数よりも多い。従って、図1の実施形態と同様に、正回転時にラジアル軸受隙間で生じる流体の圧力を逆回転時よりも大きくすることができ、図1に示す実施形態と同様の効果が得られる。   The embodiment shown in FIG. 5 is a partial region obtained by dividing the dynamic pressure groove region A1 for forward rotation in the embodiment shown in FIG. 1 by dividing the inner peripheral surface of the bearing sleeve 3 at a constant pitch in the circumferential direction. Thus, it is formed in a plurality of (preferably three or more) regions separated in the circumferential direction. The reverse rotation dynamic pressure groove region A2 is also arranged in the same manner, but its circumferential phase is shifted from the normal rotation dynamic pressure groove region A1. At both ends in the circumferential direction of both the dynamic pressure groove regions A1 and A2, the back portions facing each other in the axial direction are made common (the common back portion is indicated by reference numeral 6 '). As in the embodiment shown in FIG. 1, the dynamic pressure groove area A1 during forward rotation and the dynamic pressure groove area A2 during reverse rotation have different shapes. Specifically, in the dynamic pressure groove area A1 during forward rotation. The number of the dynamic pressure grooves 41 is larger than the number of the dynamic pressure grooves 42 in the dynamic pressure groove region A2 during reverse rotation. Therefore, similarly to the embodiment of FIG. 1, the pressure of the fluid generated in the radial bearing gap during forward rotation can be made larger than during reverse rotation, and the same effect as the embodiment shown in FIG. 1 can be obtained.

図1および図5に示す実施形態は、正回転時における動圧溝領域A1と逆回転時における動圧溝領域A2との軸方向位置をずらしたものであるのに対し、図6に示す実施形態は、隣接する両動圧溝領域A1,A2をその軸方向位置を一致させて配置することにより、両動圧溝領域A1,A2を完全に重複させたものである。重複した動圧溝領域A1,A2は、軸受スリーブ3内周面の軸方向両端に設けられている。この場合、図1や図5に示す実施形態に比べて、同種の動圧溝領域間の軸方向ピッチPが増すため、軸受のモーメント剛性をより高めることができる。   In the embodiment shown in FIGS. 1 and 5, the axial positions of the dynamic pressure groove area A1 during forward rotation and the dynamic pressure groove area A2 during reverse rotation are shifted, whereas the embodiment shown in FIG. The configuration is such that the two dynamic pressure groove regions A1 and A2 are completely overlapped by arranging the adjacent dynamic pressure groove regions A1 and A2 so that their axial positions coincide with each other. The overlapping dynamic pressure groove regions A1 and A2 are provided at both axial ends of the inner peripheral surface of the bearing sleeve 3. In this case, as compared with the embodiment shown in FIGS. 1 and 5, the axial pitch P between the dynamic pressure groove regions of the same type is increased, so that the moment rigidity of the bearing can be further increased.

この動圧溝領域A1,A2では、正回転用の動圧溝41と逆回転用の動圧溝41とが同一円周上に配列されている。動圧溝41、正回転用の背の部分61、および平滑部5で形成される正回転時の動圧溝領域A1と、動圧溝42、逆回転用の背の部分62、および平滑部5で形成される逆回転時の動圧溝領域A2とは、鏡像関係にない異なる形状であり、具体的には正回転用の動圧溝41の数が逆回転用の動圧溝41の数よりも多くなっている。従って図1に示す実施形態と同様に、正回転時に発生する圧力を逆回転時よりも高めることができる。特に本実施形態では、動圧溝領域の形成スペースに制限があり、正回転時と逆回転時の動圧溝領域を独立して形成できない場合でも、回転方向に応じて発生する圧力を調整することができるという利点を有する。   In the dynamic pressure groove regions A1 and A2, the dynamic pressure groove 41 for forward rotation and the dynamic pressure groove 41 for reverse rotation are arranged on the same circumference. The dynamic pressure groove 41, the back portion 61 for forward rotation, and the dynamic pressure groove region A1 during forward rotation formed by the smooth portion 5, the dynamic pressure groove 42, the back portion 62 for reverse rotation, and the smooth portion The dynamic pressure groove region A2 at the time of reverse rotation formed at 5 has a different shape that is not mirror-image-related. Specifically, the number of the dynamic pressure grooves 41 for forward rotation is the number of the dynamic pressure grooves 41 for reverse rotation. More than the number. Accordingly, as in the embodiment shown in FIG. 1, the pressure generated during forward rotation can be increased as compared with reverse rotation. In particular, in the present embodiment, the formation space of the dynamic pressure groove region is limited, and even when the dynamic pressure groove region during forward rotation and reverse rotation cannot be formed independently, the pressure generated according to the rotation direction is adjusted. Has the advantage of being able to.

本発明の第一の実施形態を示すもので、軸受スリーブの断面図である。1 is a cross-sectional view of a bearing sleeve according to a first embodiment of the present invention. 図1に示す軸受スリーブを使用した動圧軸受の断面図である。It is sectional drawing of the dynamic pressure bearing using the bearing sleeve shown in FIG. 動圧溝領域の成形工程を示す断面図である。It is sectional drawing which shows the formation process of a dynamic pressure groove area | region. 図2に示す動圧軸受を使用したパワーウィンドウ機構の断面図である。It is sectional drawing of the power window mechanism using the dynamic pressure bearing shown in FIG. 本発明の第二の実施形態を示す断面図である。It is sectional drawing which shows 2nd embodiment of this invention. 本発明の第三の実施形態を示す断面図である。It is sectional drawing which shows 3rd embodiment of this invention. 従来の動圧溝領域の形態を示す断面図である。It is sectional drawing which shows the form of the conventional dynamic pressure groove area | region.

符号の説明Explanation of symbols

1 動圧軸受
2 軸部材
2a 外周面
3 軸受スリーブ
4 動圧溝
41 正回転用の動圧溝
42 逆回転用の動圧溝
5 平滑部
6 背の部分
11 コアロッド
11a 溝型
12a,12b パンチ
13 ダイス
15 ハウジング
16 モータ
A1 動圧溝領域(正回転時)
A2 動圧溝領域(逆回転時)
DESCRIPTION OF SYMBOLS 1 Dynamic pressure bearing 2 Shaft member 2a Outer peripheral surface 3 Bearing sleeve 4 Dynamic pressure groove 41 Dynamic pressure groove 42 for normal rotation 42 Dynamic pressure groove for reverse rotation 5 Smoothing part 6 Back part 11 Core rod 11a Groove type 12a, 12b Punch 13 Die 15 Housing 16 Motor A1 Dynamic pressure groove area (during forward rotation)
A2 Dynamic pressure groove area (during reverse rotation)

Claims (6)

内周に、複数の動圧溝を円周方向に配列した動圧溝領域を有する軸受スリーブと、軸受スリーブの内周に挿入された軸部材とを備え、軸部材と軸受スリーブの相対回転時に、軸部材の外周と軸受スリーブの内周との間のラジアル軸受隙間に生じた流体の動圧作用で軸部材をラジアル方向に非接触支持する動圧軸受において、
軸受スリーブが焼結金属製で、軸受スリーブの内周に正回転時の動圧溝領域および逆回転時の動圧溝領域がそれぞれ形成されると共に、両動圧溝領域が異なる形状をなし、かつこれら動圧溝領域を有する軸受スリーブの内周面が型成形された面であることを特徴とする動圧軸受。
A bearing sleeve having a dynamic pressure groove region in which a plurality of dynamic pressure grooves are arranged in a circumferential direction on an inner periphery, and a shaft member inserted in the inner periphery of the bearing sleeve, and when the shaft member and the bearing sleeve are relatively rotated In the hydrodynamic bearing that supports the shaft member in the radial direction by the hydrodynamic action of the fluid generated in the radial bearing gap between the outer periphery of the shaft member and the inner periphery of the bearing sleeve,
The bearing sleeve is made of sintered metal, and a dynamic pressure groove region at the time of forward rotation and a dynamic pressure groove region at the time of reverse rotation are formed on the inner periphery of the bearing sleeve, respectively, and both dynamic pressure groove regions have different shapes, A hydrodynamic bearing characterized in that the inner peripheral surface of the bearing sleeve having these hydrodynamic groove regions is a molded surface.
正回転時および逆回転時の各動圧溝領域を、その軸方向位置をずらして配置した請求項1記載の動圧軸受。   The hydrodynamic bearing according to claim 1, wherein the dynamic pressure groove regions during forward rotation and reverse rotation are arranged with their axial positions shifted. 正回転時と逆回転時の各動圧溝領域を、その軸方向位置を同じにして配置した請求項1記載の動圧軸受。   2. The hydrodynamic bearing according to claim 1, wherein each of the dynamic pressure groove regions during forward rotation and reverse rotation is disposed with the same axial position. 軸受スリーブの内周面の表面開孔率を2〜20%にした請求項1記載の動圧軸受装置。   2. The hydrodynamic bearing device according to claim 1, wherein the surface opening ratio of the inner peripheral surface of the bearing sleeve is 2 to 20%. 軸部材をモータの回転軸として使用する請求項1〜4何れか記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 1, wherein the shaft member is used as a rotating shaft of a motor. モータがパワーウィンド用モータである請求項5記載の動圧軸受装置。   6. The hydrodynamic bearing device according to claim 5, wherein the motor is a power window motor.
JP2004172804A 2004-06-10 2004-06-10 Dynamic pressure bearing Withdrawn JP2005351375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004172804A JP2005351375A (en) 2004-06-10 2004-06-10 Dynamic pressure bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004172804A JP2005351375A (en) 2004-06-10 2004-06-10 Dynamic pressure bearing

Publications (1)

Publication Number Publication Date
JP2005351375A true JP2005351375A (en) 2005-12-22

Family

ID=35586012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004172804A Withdrawn JP2005351375A (en) 2004-06-10 2004-06-10 Dynamic pressure bearing

Country Status (1)

Country Link
JP (1) JP2005351375A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8562219B2 (en) * 2006-03-24 2013-10-22 Ntn Corporation Fluid dynamic bearing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8562219B2 (en) * 2006-03-24 2013-10-22 Ntn Corporation Fluid dynamic bearing device

Similar Documents

Publication Publication Date Title
JP4159332B2 (en) Hydrodynamic bearing device
JP5674495B2 (en) Fluid dynamic bearing device
WO2005121574A1 (en) Dynamic pressure bearing
JP2008175384A (en) Shaft member for fluid bearing device, and its manufacturing method
JP2005351375A (en) Dynamic pressure bearing
JP2011047005A (en) Method of manufacturing bearing sleeve and fluid dynamic bearing device
JP6151488B2 (en) Fluid dynamic bearing device
US7789565B2 (en) Fluid dynamic bearing apparatus
JP2005351377A (en) Dynamic pressure bearing
JP2005127524A (en) Dynamic-pressure bearing device
JP5132887B2 (en) Shaft member for hydrodynamic bearing device
JP2006329391A (en) Dynamic pressure bearing arrangement
JP2007218379A (en) Shaft member for hydrodynamic bearing device and its manufacturing method
JP2005351376A (en) Dynamic pressure bearing
JP2009085232A (en) Method of fixing plain bearing
JP2004340385A (en) Dynamic pressure type bearing unit
JP3782900B2 (en) Hydrodynamic bearing and hydrodynamic bearing unit
JP2005265180A (en) Dynamic pressure bearing device
JP5143435B2 (en) Manufacturing method of shaft member for hydrodynamic bearing device, and shaft member manufactured by the method
JPH11190344A (en) Manufacture of dynamic pressure type sintered oil retaining bearing
JP2007100803A (en) Method for manufacturing oil impregnated sintered bearing, and sizing pin to be used for the method
WO2013038913A1 (en) Fluid dynamic bearing device and motor equipped with same
JP2008275132A (en) Fluid bearing device
JP2004308921A (en) Dynamic pressure type bearing unit
JP4509922B2 (en) Hydrodynamic sintered oil-impregnated bearing for information equipment spindle motor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070904