JP2004176816A - Dynamic pressure bearing device - Google Patents

Dynamic pressure bearing device Download PDF

Info

Publication number
JP2004176816A
JP2004176816A JP2002343829A JP2002343829A JP2004176816A JP 2004176816 A JP2004176816 A JP 2004176816A JP 2002343829 A JP2002343829 A JP 2002343829A JP 2002343829 A JP2002343829 A JP 2002343829A JP 2004176816 A JP2004176816 A JP 2004176816A
Authority
JP
Japan
Prior art keywords
bearing
housing
peripheral surface
bearing sleeve
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002343829A
Other languages
Japanese (ja)
Other versions
JP4360482B2 (en
Inventor
Taketo Tamaoka
健人 玉岡
Ryoichi Nakajima
良一 中島
Tetsuya Kurimura
栗村  哲弥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Nidec Corp
Original Assignee
NTN Corp
Nidec Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, Nidec Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2002343829A priority Critical patent/JP4360482B2/en
Priority to US10/705,241 priority patent/US7005768B2/en
Priority to CN200710153530XA priority patent/CN101144499B/en
Priority to CNB2003101154704A priority patent/CN100348876C/en
Publication of JP2004176816A publication Critical patent/JP2004176816A/en
Application granted granted Critical
Publication of JP4360482B2 publication Critical patent/JP4360482B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Mounting Of Bearings Or Others (AREA)
  • Sealing Of Bearings (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the distribution of extra adhesive when an adhesive is used as a means for fixing a bearing sleeve to a housing. <P>SOLUTION: A recessed adhesive agent sump U is formed in the inner peripheral surface 7c of the housing 7. The adhesive agent sump U is formed in the inner peripheral surface 7c of the housing 7 in a circumferential groove shape, and its both side areas in the axial direction are formed of tapered surfaces U1. Since the adhesive agent sump U is provided in the inner peripheral surface 7c of the housing 7, even when the extra amount of the adhesive agent T is produced depending upon a coated amount, its extra adhesive agent is caught by the recessed adhesive agent sump U, and the distribution of the adhesive agent T which affects the positioning of the bearing sleeve 8 and affecting a bearing performance is prevented. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、軸受隙間に生じる潤滑油の動圧作用で軸部材を回転自在に非接触支持する動圧軸受装置に関する。この軸受装置は、情報機器、例えばHDD、FDD等の磁気ディスク装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置、MD、MO等の光磁気ディスク装置などのスピンドルモータ、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、あるいは電気機器、例えば軸流ファンなどの小型モータ用として好適である。
【0002】
【従来の技術】
上記各種モータには、高回転精度の他、高速化、低コスト化、低騒音化などが求められている。これらの要求性能を決定づける構成要素の一つに当該モータのスピンドルを支持する軸受があり、近年では、この種の軸受として、上記要求性能に優れた特性を有する動圧軸受の使用が検討され、あるいは実際に使用されている。
【0003】
例えば、HDD等のディスク駆動装置のスピンドルモータに組込まれる動圧軸受装置では、軸部材をラジアル方向に回転自在に非接触支持するラジアル軸受部と、軸部材をスラスト方向に回転自在に非接触支持するスラスト軸受部とが設けられ、ラジアル軸受部として、軸受スリーブの内周面又は軸部材の外周面に動圧発生用の溝(動圧溝)を設けた動圧軸受が用いられる。スラスト軸受部としては、例えば、軸部材のフランジ部の両端面、又は、これに対向する面(軸受スリーブの端面や、ハウジングに固定されるスラスト部材の端面等)に動圧溝を設けた動圧軸受が用いられる(例えば、特許文献1参照)。
【0004】
通常、軸受スリーブはハウジングの内周の所定位置に固定され、また、ハウジングの内部空間に注油した潤滑油が外部に漏れるのを防止するために、ハウジングの開口部にシール部を設ける場合が多い。
【0005】
【特許文献1】
特開2002―061641号公報
【0006】
【発明が解決しようとする課題】
上記ような動圧軸受装置において、軸受スリーブをハウジングに対して固定する手段として接着剤を使用する場合がある。この場合、例えばハウジングの内周面に予め接着剤を塗布しておき、軸受スリーブをハウジングの内周面に挿入して所定位置に位置決めした後、接着剤を固化させる。しかしながら、接着剤の塗布量によっては、軸受スリーブをハウジングの内周面に挿入して所定位置まで移動させる際に、接着剤の余剰分が軸受スリーブの移動方向前方側に回り込み、軸受スリーブの位置決めや軸受性能に好ましくない影響が生じる可能性がある。
【0007】
例えば、上記特許文献1に記載された動圧軸受装置では、ハウジングの一端部に設けたシール部(鍔部)の内側面に軸受スリーブの一端側端面を当接させることで、軸受スリーブのハウジングに対する位置決めを行うことができるが、余剰接着剤の回り込みがあると、軸受スリーブを最終位置まで移動させた時に、軸受スリーブの一端側端面とシールの内側面との間に接着剤が入り込み、軸受スリーブのハウジングに対する位置が精度良く決まらない場合がある。
【0008】
また、本出願人は、軸受スリーブの外周面に縦溝を形成すると共に、軸受スリーブの一端側端面にこの縦溝と軸受スリーブの内周面とを連通させる横溝を形成して、ハウジングの内部空間に充満された潤滑流体の循環路を形成した動圧軸受装置について既に出願している(特願2002―117297号)。この動圧軸受装置では、余剰接着剤の回り込みにより、横溝が接着剤によって閉塞されてしまう可能性がある。
【0009】
本発明の課題は、余剰接着剤の回り込みを防止し、また、余剰接着剤の回り込みによる影響を回避することである。
【0010】
【課題を解決するための手段】
上記課題を解決するため、本発明は、ハウジングと、ハウジングの内周面に接着剤で固定された軸受スリーブと、軸部材と、軸受スリーブと軸部材との間に設けられ、ラジアル軸受隙間に生じる潤滑油の動圧作用で軸部材をラジアル方向に非接触支持するラジアル軸受部とを備えた動圧軸受装置において、ハウジングの内周面と軸受スリーブの外周面との間に凹状の接着剤溜りを有する構成を提供する。
【0011】
上記構成によれば、塗布量によって接着剤の余剰分が生じる場合でも、その余剰接着剤が凹状の接着剤溜りによって捕捉され、軸受スリーブの位置決めや軸受性能に好ましくない影響を与える接着剤の回り込みが防止される。
【0012】
上記の接着剤溜りは、ハウジングの内周面または軸受スリーブの外周面に形成することができる。あるいは、ハウジングの内周面と軸受スリーブの外周面の双方に凹状部を相対向させて形成し、両者によって形成される凹状空間を上記の接着剤溜りとすることもできる。好ましくは、上記の接着剤溜りはハウジングの内周面に形成するのが良い。また、接着剤は複数箇所に設けても良い。
【0013】
上記の接着剤溜りの形状は特に限定されないが、軸方向両側に向かって漸次縮小する形状とするのが好ましい。軸受スリーブをハウジングの内周面に挿入する際、余剰分を越える量の接着剤が接着剤溜りに捕捉されてしまう場合が起こり得るが、このような場合でも、軸受スリーブの位置決め後、接着剤が固化するまでの間に、接着剤溜りに過剰に捕捉された接着剤が毛細管現象によって狭小となった軸方向両側に流動し、本来の固定部位(軸受スリーブの外周面とハウジングの内周面との間の充填隙間)に充填される。そのため、固定部位における接着剤量の過不足がなく、安定した固定状態が得られる。
【0014】
また、本発明は、ハウジングと、ハウジングの内周面に固定された軸受スリーブと、軸部およびフランジ部を有する軸部材と、ハウジングの一端部に設けられたシール部と、ハウジングの他端部に設けられたスラスト部と、軸受スリーブと軸部との間に設けられ、ラジアル軸受隙間に生じる潤滑油の動圧作用で軸部をラジアル方向に非接触支持するラジアル軸受部と、軸受スリーブ及びスラスト部とフランジ部との間に設けられ、スラスト軸受隙間に生じる潤滑油の動圧作用でフランジ部をスラスト方向に非接触支持するスラスト軸受部とを備え、ハウジングの内部空間に潤滑流体が充満された動圧軸受装置において、シール部の内側面は、その内径側領域で軸受スリーブの一端側端面の内径側領域と部分的に接触し、その外径側領域は軸受スリーブの一端側端面から離れるようにヌスミ部を形成している構成を提供する。
【0015】
上記構成によれば、ハウジングの内部空間に充満された潤滑流体を該内部空間で流動循環させることが可能となり、これにより、該内部空間内の潤滑油の圧力が局部的に負圧になる現象を防止して、負圧発生に伴う気泡の生成、気泡の生成に起因する潤滑油の漏れや振動の発生等の問題を解消することができる。
【0016】
また、軸受スリーブをハウジングの内周面に接着剤で固定する場合において、接着剤の回り込みが生じたとしても、シール部の内側面の外径側領域と軸受スリーブの一端側端面との間に所要の空間容積をもったヌスミ部があるため、接着剤が半径方向溝の方向に流動しにくくなる。これにより、半径方向溝が接着剤によって閉塞されてしまう事態を回避することができる。
【0017】
以上の構成において、軸受スリーブは焼結金属で形成することができる。
【0018】
【発明の実施の形態】
以下、本発明の実施形態について説明する。
【0019】
図1は、この実施形態に係る動圧軸受装置1を組み込んだ情報機器用スピンドルモータの一構成例を示している。このスピンドルモータは、HDD等のディスク駆動装置に用いられるもので、軸部材2を回転自在に非接触支持する動圧軸受装置1と、軸部材2に装着されたロータ(ディスクハブ)3と、例えば半径方向のギャップを介して対向させたステータ4およびロータマグネット5とを備えている。ステータ4はブラケット6の外周に取付けられ、ロータマグネット5はディスクハブ3の内周に取付けられる。動圧軸受装置1のハウジング7は、ブラケット6の内周に装着される。ディスクハブ3には、磁気ディスク等のディスクDが一又は複数枚保持される。ステータ4に通電すると、ステータ4とロータマグネット5との間の電磁力でロータマグネット5が回転し、それによって、ディスクハブ3および軸部材2が一体となって回転する。
【0020】
図2は、動圧軸受装置1を示している。この動圧軸受装置1は、ハウジング7と、ハウジング7に固定された軸受スリーブ8およびスラスト部材10と、軸部材2とを構成部品して構成される。
【0021】
軸受スリーブ8の内周面8aと軸部材2の軸部2aの外周面2a1との間に第1ラジアル軸受部R1と第2ラジアル軸受部R2とが軸方向に離隔して設けられる。また、軸受スリーブ8の下側端面8cと軸部材2のフランジ部2bの上側端面2b1との間に第1スラスト軸受部S1が設けられ、スラスト部材10の端面10aとフランジ部2bの下側端面2b2との間に第2スラスト軸受部S2が設けられる。尚、説明の便宜上、スラスト部材10の側を下側、スラスト部材10と反対の側を上側として説明を進める。
【0022】
ハウジング7は、例えば、黄銅等の軟質金属材料や熱可塑性樹脂等の樹脂材料で形成され、円筒状の側部7bと、側部7bの上端から内径側に一体に延びた環状のシール部7aとを備えている。シール部7aの内周面7a1は、軸部2aの外周に設けられたテーパ面2a2と所定のシール空間Sを介して対向する。尚、軸部2aのテーパ面2a2は上側(ハウジング7に対して外部側)に向かって漸次縮径し、軸部材2の回転により遠心力シールとしても機能する。
【0023】
軸部材2は、例えば、ステンレス鋼等の金属材料で形成され、軸部2aと、軸部2aの下端に一体又は別体に設けられたフランジ部2bとを備えている。
【0024】
軸受スリーブ8は、例えば、焼結金属からなる多孔質体、特に銅を主成分とする燒結金属の多孔質体で円筒状に形成され、ハウジング7の内周面7cの所定位置に固定される。
【0025】
この焼結金属で形成された軸受スリーブ8の内周面8aには、第1ラジアル軸受部R1と第2ラジアル軸受部R2のラジアル軸受面となる上下2つの領域が軸方向に離隔して設けられ、該2つの領域には、例えば図3(a)に示すようなヘリングボーン形状の動圧溝8a1、8a2がそれぞれ形成される。上側の動圧溝8a1は、軸方向中心m(上下の傾斜溝間領域の軸方向中央)に対して軸方向非対称に形成されており、軸方向中心mより上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっている。また、軸受スリーブ8の外周面8dには、1又は複数本の軸方向溝8d1が軸方向全長に亙って形成される。この例では、3本の軸方向溝8d1を円周等間隔に形成している。また、上側端面8bと下側端面8cの外周角部に、それぞれ、チャンファ8e、8fが形成される。
【0026】
第1スラスト軸受部S1のスラスト軸受面となる、軸受スリーブ8の下側端面8cには、例えば図3(b)に示すようなスパイラル形状の動圧溝8c1が形成される。尚、動圧溝の形状として、ヘリングボーン形状や放射溝形状等を採用しても良い。
【0027】
図3(c)に示すように、軸受スリーブ8の上側端面8bは、半径方向の略中央部に設けられたV字断面の円周溝8b1により、内径側領域8b2と外径側領域8b3に区画され、内径側領域8b2には、1又は複数本の半径方向溝8b21が形成される。この例では、3本の半径方向溝8b21を円周等間隔に形成している。
【0028】
図2に示すように、この実施形態では、ハウジング7の内周面7cに凹状の接着剤溜りUが形成されている。接着剤溜りUは、例えば、ハウジング7の内周面7cに円周溝状に形成され、その軸方向両側領域はそれぞれテーパ面U1で構成される。そのため、接着剤溜りUは軸方向両側に向かって漸次縮小した形状を有する。
【0029】
また、シール部7aの内側面7a2は、その内径側領域7a21で軸受スリーブ8の上側端面8bの内径側領域8b2と部分的に接触し、その外径側領域7a22は、軸受スリーブ8の上側端面8bから離れるように傾斜状又は湾曲状に形成されている。そのため、内側面7a2の外径側領域7a22と上側端面8b(チャンファ8eを含む)との間に所要の空間容積をもったヌスミ部Pが形成される。ヌスミ部Pの内径側は円周溝8b1と連通し、外径側にはチャンファ8eとの間に形成されたテーパ状空間がある。
【0030】
スラスト部材10は、例えば、黄銅等の金属材料で形成され、ハウジング7の内周面7cの下端部に固定される。図4に示すように、第2スラスト軸受部S2のスラスト軸受面となる、スラスト部材10の端面10aには、例えばヘリングボーン形状の動圧溝10a1が形成される。尚、動圧溝の形状として、スパイラル形状や放射溝形状等を採用しても良い。
【0031】
この実施形態の動圧軸受装置1は、例えば、次のような工程で組立てる。
【0032】
まず、ハウジング7の内周面7cに接着剤を所定量塗布する。そして、軸受スリーブ8をハウジング7の内周面7cに挿入し、その上側端面8bをシール部7aの内側面7a2に当接させる。これにより、軸受スリーブ8がハウジング7に対して位置決めされる。この状態を保持して接着剤を固化させると、軸受スリーブ8がハウジング7に対して位置決めされた状態で固定される。
【0033】
この実施形態において、ハウジング7の内周面7cに接着剤溜りUが設けられているため、塗布量によって接着剤T(図2の円内拡大図を参照)の余剰分が生じる場合でも、その余剰接着剤が凹状の接着剤溜りUによって捕捉され、軸受スリーブ8の位置決めや軸受性能に好ましくない影響を与える接着剤Tの回り込みが防止される。また、接着剤溜りUは、テーパ面U1により、軸方向両側に向かって漸次縮小した形状を有するので、軸受スリーブ8の位置決め後、接着剤Tが固化するまでの間に、接着剤溜りUに過剰に捕捉された接着剤Tが毛細管現象によって狭小となった軸方向両側に流動し、本来の固定部位(軸受スリーブ8の外周面8dとハウジング7の内周面7cとの間の充填隙間)に充填される。そのため、軸受スリーブ8の固定部位における接着剤量の過不足がなく、安定した固定状態が得られる。
【0034】
また、シール部7aの内側面7a2の外径側領域7a22と軸受スリーブ8の上側端面8b(チャンファ8eを含む)との間に所要の空間容積をもったヌスミ部Pが形成されているため、接着剤の回り込みが生じたとしても、接着剤Tが半径方向溝8b21の方向に流動しにくくなる。特に、この実施形態では、ヌスミ部Pの外径側にテーパ状空間(チャンファ8eとの間に形成される)があり、ヌスミ部P内の接着剤Tがテーパ状空間の毛細管現象によって上記固定部位(軸受スリーブ8の外周面8dとハウジング7の内周面7cとの間の充填隙間)の方向に引き寄せられるので、半径方向溝8b21の方向への流動が一層効果的に防止される。これにより、半径方向溝8b21が接着剤Tによって閉塞されてしまう事態が回避される。
【0035】
つぎに、軸部材2を軸受スリーブ8に装着する。尚、軸受スリーブ8をハウジング7に固定した状態でその内径寸法を測定しておき、軸部2aの外径寸法(予め測定しておく。)との寸法マッチングを行うことにより、ラジアル軸受隙間を精度良く設定することができる。
【0036】
その後、スラスト部材10をハウジング7の内周面7cの下端部に装着し、所定位置に位置決めした後、接着剤等の適宜の手段で固定する。
【0037】
上記のようにして組立が完了すると、軸部材2の軸部2aは軸受スリーブ8の内周面8aに挿入され、フランジ部2bは軸受スリーブ8の下側端面8cとスラスト部材10の端面10aとの間の空間部に収容された状態となる。その後、シール部7aで密封されたハウジング7の内部空間に、軸受スリーブ8の内部気孔を含め、潤滑流体、例えば潤滑油を充満させる。潤滑油の油面は、シール空間Sの範囲内に維持される。
【0038】
軸部材2の回転時、軸受スリーブ8の内周面8aのラジアル軸受面となる領域(上下2箇所の領域)は、それぞれ、軸部2aの外周面2a1とラジアル軸受隙間を介して対向する。また、軸受スリーブ8の下側端面8cのスラスト軸受面となる領域はフランジ部2bの上側端面2b1とスラスト軸受隙間を介して対向し、スラスト部材10の端面10aのスラスト軸受面となる領域はフランジ部2bの下側端面2b2とスラスト軸受隙間を介して対向する。そして、軸部材2の回転に伴い、上記ラジアル軸受隙間に潤滑油の動圧が発生し、軸部材2の軸部2aが上記ラジアル軸受隙間内に形成される潤滑油の油膜によってラジアル方向に回転自在に非接触支持される。これにより、軸部材2をラジアル方向に回転自在に非接触支持する第1ラジアル軸受部R1と第2ラジアル軸受部R2とが構成される。同時に、上記スラスト軸受隙間に潤滑油の動圧が発生し、軸部材2のフランジ部2bが上記スラスト軸受隙間内に形成される潤滑油の油膜によって両スラスト方向に回転自在に非接触支持される。これにより、軸部材2をスラスト方向に回転自在に非接触支持する第1スラスト軸受部S1と第2スラスト軸受部S2とが構成される。
【0039】
前述したように、第1ラジアル軸受部R1の動圧溝8a1は、軸方向中心mに対して軸方向非対称に形成されており、軸方向中心mより上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっている{図3(a)}。そのため、軸部材2の回転時、動圧溝8a1による潤滑油の引き込み力(ポンピング力)は上側領域が下側領域に比べて相対的に大きくなる。そして、この引き込み力の差圧によって、軸受スリーブ8の内周面8aと軸部2aの外周面2a1との間の隙間に満たされた潤滑油が下方に流動し、第1スラスト軸受部S1のスラスト軸受隙間→軸方向溝8d1→ヌスミ部P→円周溝8b1→半径方向溝8b21という経路を循環して、軸受スリーブ8の内周面8aと軸部2aの外周面2a1との間の隙間に戻り、第1ラジアル軸受部R1のラジアル軸受隙間に再び引き込まれる。このように、潤滑油がハウジング7の内部空間を流動循環するように構成することで、内部空間内の潤滑油の圧力が局部的に負圧になる現象を防止して、負圧発生に伴う気泡の生成、気泡の生成に起因する潤滑油の漏れや振動の発生等の問題を解消することができる。また、何らかの理由で潤滑油中に気泡が混入した場合でも、気泡が潤滑油に伴って循環する際にシール空間S内の潤滑油の油面(気液界面)から外気に排出されるので、気泡による悪影響はより一層効果的に防止される。
【0040】
【発明の効果】
本発明は、以下に示す効果を奏する。
(1)ハウジングの内周面と軸受スリーブの外周面との間に凹状の接着剤溜りを有するので、塗布量によって接着剤の余剰分が生じる場合でも、その余剰接着剤が凹状の接着剤溜りによって捕捉され、軸受スリーブの位置決めや軸受性能に好ましくない影響を与える接着剤の回り込みが防止される。
(2)接着剤溜りを軸方向両側に向かって漸次縮小する形状とすることにより、接着剤溜りに過剰に捕捉された接着剤が毛細管現象によって狭小となった軸方向両側に流動し、本来の固定部位(軸受スリーブの外周面とハウジングの内周面との間の充填隙間)に充填されるので、軸受スリーブの固定部位における接着剤量の過不足がなく、安定した固定状態が得られる。
(3)ヌスミ部、半径方向溝、軸方向溝により、ハウジングの内部空間に充満された潤滑流体を該内部空間で流動循環させる構成とすることにより、該内部空間内の潤滑油の圧力が局部的に負圧になる現象を防止して、負圧発生に伴う気泡の生成、気泡の生成に起因する潤滑油の漏れや振動の発生等の問題を解消することができる。また、軸受スリーブをハウジングの内周面に接着剤で固定する場合において、接着剤の回り込みが生じたとしても、ヌスミ部により、接着剤が半径方向溝の方向に流動しにくくなるため、半径方向溝が接着剤によって閉塞されてしまう事態を回避することができる。
【図面の簡単な説明】
【図1】本発明に係る動圧軸受装置を使用した情報機器用スピンドルモータの断面図である。
【図2】本発明に係る動圧軸受装置の一実施形態を示す断面図である。
【図3】軸受スリーブの断面図{図3(a)}、下側端面{図3(b)}、上側端面{図3(c)}を示す図である。
【図4】スラスト部材の端面を示す図である。
【符号の説明】
1 動圧軸受装置
2 軸部材
2a 軸部
2b フランジ部
7 ハウジング
7a シール部
7a2 内側面
7a21 内径側領域
7a22 外径側領域
7c 内周面
8 軸受スリーブ
8a 内周面
8b 上側端面
8b1 円周溝
8b2 内径側領域
8b21 半径方向溝
8c 下側端面
8d 外周面
8d1 軸方向溝
R1 ラジアル軸受部
R2 ラジアル軸受部
S1 スラスト軸受部
S2 スラスト軸受部
U 接着剤溜り
P ヌスミ部
10 スラスト部材
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a dynamic bearing device that rotatably supports a shaft member in a non-contact manner by a dynamic pressure action of lubricating oil generated in a bearing gap. This bearing device is a spindle for information equipment, for example, a magnetic disk device such as an HDD or FDD, an optical disk device such as a CD-ROM, a CD-R / RW, a DVD-ROM / RAM, or a magneto-optical disk device such as an MD or MO. It is suitable for a motor, a polygon scanner motor of a laser beam printer (LBP), or a small motor such as an electric device such as an axial fan.
[0002]
[Prior art]
The above various motors are required to have high speed, low cost, low noise, etc. in addition to high rotational accuracy. One of the components that determine these required performances is a bearing that supports the spindle of the motor, and in recent years, as this type of bearing, the use of a dynamic pressure bearing having characteristics excellent in the required performance has been studied. Or it is actually used.
[0003]
For example, in a hydrodynamic bearing device incorporated in a spindle motor of a disk drive device such as an HDD, a radial bearing portion that rotatably supports a shaft member in a radial direction in a non-contact manner, and a non-contact support rotatably supports a shaft member in a thrust direction. A thrust bearing portion is provided, and as the radial bearing portion, a dynamic pressure bearing in which a groove (dynamic pressure groove) for generating dynamic pressure is provided on the inner peripheral surface of the bearing sleeve or the outer peripheral surface of the shaft member is used. As the thrust bearing portion, for example, a dynamic pressure groove provided on both end surfaces of a flange portion of a shaft member or a surface opposed thereto (an end surface of a bearing sleeve, an end surface of a thrust member fixed to a housing, or the like). A pressure bearing is used (for example, see Patent Document 1).
[0004]
Usually, the bearing sleeve is fixed at a predetermined position on the inner periphery of the housing, and a seal portion is often provided at the opening of the housing to prevent the lubricating oil injected into the internal space of the housing from leaking outside. .
[0005]
[Patent Document 1]
JP-A-2002-061641
[Problems to be solved by the invention]
In such a dynamic pressure bearing device, an adhesive may be used as a means for fixing the bearing sleeve to the housing. In this case, for example, an adhesive is applied in advance to the inner peripheral surface of the housing, and the bearing sleeve is inserted into the inner peripheral surface of the housing to be positioned at a predetermined position, and then the adhesive is solidified. However, depending on the amount of the adhesive applied, when the bearing sleeve is inserted into the inner peripheral surface of the housing and moved to a predetermined position, an excess amount of the adhesive wraps around to the front in the moving direction of the bearing sleeve, and the positioning of the bearing sleeve is performed. And undesired effects on bearing performance.
[0007]
For example, in the dynamic pressure bearing device described in Patent Document 1, the end surface of one end of the bearing sleeve is brought into contact with the inner surface of a seal portion (flange portion) provided at one end of the housing, so that the housing of the bearing sleeve is provided. However, if the surplus adhesive wraps around, when the bearing sleeve is moved to the final position, the adhesive enters between the one end surface of the bearing sleeve and the inner surface of the seal, and The position of the sleeve with respect to the housing may not be determined with high accuracy.
[0008]
In addition, the present applicant has formed a vertical groove on the outer peripheral surface of the bearing sleeve, and formed a horizontal groove on the one end side of the bearing sleeve to communicate the vertical groove with the inner peripheral surface of the bearing sleeve. An application has already been filed for a hydrodynamic bearing device that forms a circulation path for a lubricating fluid filled in a space (Japanese Patent Application No. 2002-117297). In this hydrodynamic bearing device, there is a possibility that the lateral groove may be closed by the adhesive due to the surplus adhesive flowing around.
[0009]
An object of the present invention is to prevent surplus adhesive from wrapping around and to avoid the influence of surplus adhesive wrapping around.
[0010]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a housing, a bearing sleeve fixed to an inner peripheral surface of the housing with an adhesive, a shaft member, and a shaft member, provided between the bearing sleeve and the shaft member. In a hydrodynamic bearing device provided with a radial bearing portion for supporting a shaft member in a non-contact manner in a radial direction by a dynamic pressure action of generated lubricating oil, a concave adhesive is provided between an inner peripheral surface of a housing and an outer peripheral surface of a bearing sleeve. An arrangement having a reservoir is provided.
[0011]
According to the above configuration, even when an excess amount of the adhesive occurs due to the applied amount, the excess adhesive is captured by the concave adhesive pool, and the adhesive wraps around the bearing, which adversely affects the positioning of the bearing sleeve and the bearing performance. Is prevented.
[0012]
The above-mentioned adhesive reservoir can be formed on the inner peripheral surface of the housing or the outer peripheral surface of the bearing sleeve. Alternatively, concave portions may be formed on both the inner peripheral surface of the housing and the outer peripheral surface of the bearing sleeve so as to face each other, and the concave space formed by the both may be used as the adhesive reservoir. Preferably, the adhesive reservoir is formed on the inner peripheral surface of the housing. The adhesive may be provided at a plurality of locations.
[0013]
The shape of the above-mentioned adhesive reservoir is not particularly limited, but it is preferable that the shape is gradually reduced toward both sides in the axial direction. When the bearing sleeve is inserted into the inner peripheral surface of the housing, an excess amount of the adhesive may be trapped in the adhesive pool, but even in such a case, after the positioning of the bearing sleeve, the adhesive may be removed. Until the solidification occurs, the excess adhesive trapped in the adhesive pool flows to both sides in the axial direction, which has been narrowed by capillary action, and the original fixing portion (the outer peripheral surface of the bearing sleeve and the inner peripheral surface of the housing) And the filling gap between them). For this reason, there is no excess or deficiency in the amount of the adhesive at the fixing portion, and a stable fixing state can be obtained.
[0014]
Further, the present invention provides a housing, a bearing sleeve fixed to an inner peripheral surface of the housing, a shaft member having a shaft portion and a flange portion, a seal portion provided at one end of the housing, and another end portion of the housing. A radial bearing portion, which is provided between the bearing sleeve and the shaft portion and is provided between the bearing sleeve and the shaft portion to support the shaft portion in a non-contact manner in the radial direction by the dynamic pressure action of the lubricating oil generated in the radial bearing gap; A thrust bearing portion provided between the thrust portion and the flange portion for supporting the flange portion in a non-contact manner in the thrust direction by a dynamic pressure action of lubricating oil generated in a thrust bearing gap, and the lubricating fluid is filled in the internal space of the housing. In the hydrodynamic bearing device described above, the inner surface of the seal portion partially contacts the inner diameter region of the one end surface of the bearing sleeve at the inner diameter region, and the outer diameter region thereof Providing a structure that forms a grinding undercut portion away from the one end face of the sleeve.
[0015]
According to the above configuration, the lubricating fluid filled in the internal space of the housing can flow and circulate in the internal space, whereby the pressure of the lubricating oil in the internal space locally becomes negative. Thus, problems such as generation of air bubbles due to the generation of negative pressure, leakage of lubricating oil and generation of vibration due to generation of air bubbles can be solved.
[0016]
In addition, when the bearing sleeve is fixed to the inner peripheral surface of the housing with an adhesive, even if the adhesive wraps around, the outer peripheral side area of the inner surface of the seal portion and the one end side end surface of the bearing sleeve. Since there is a slim part having a required space volume, the adhesive hardly flows in the direction of the radial groove. Thereby, the situation where the radial groove is closed by the adhesive can be avoided.
[0017]
In the above configuration, the bearing sleeve can be formed of a sintered metal.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0019]
FIG. 1 shows an example of a configuration of a spindle motor for information equipment incorporating a hydrodynamic bearing device 1 according to this embodiment. The spindle motor is used in a disk drive device such as an HDD, and includes a hydrodynamic bearing device 1 that rotatably supports a shaft member 2 in a non-contact manner, a rotor (disk hub) 3 mounted on the shaft member 2, For example, a stator 4 and a rotor magnet 5 are provided facing each other via a radial gap. The stator 4 is attached to the outer periphery of the bracket 6, and the rotor magnet 5 is attached to the inner periphery of the disk hub 3. The housing 7 of the hydrodynamic bearing device 1 is mounted on the inner periphery of the bracket 6. The disk hub 3 holds one or more disks D such as magnetic disks. When the stator 4 is energized, the rotor magnet 5 rotates by the electromagnetic force between the stator 4 and the rotor magnet 5, whereby the disk hub 3 and the shaft member 2 rotate integrally.
[0020]
FIG. 2 shows the dynamic pressure bearing device 1. The hydrodynamic bearing device 1 includes a housing 7, a bearing sleeve 8 and a thrust member 10 fixed to the housing 7, and a shaft member 2.
[0021]
A first radial bearing portion R1 and a second radial bearing portion R2 are provided between the inner peripheral surface 8a of the bearing sleeve 8 and the outer peripheral surface 2a1 of the shaft portion 2a of the shaft member 2 so as to be separated in the axial direction. Further, a first thrust bearing portion S1 is provided between a lower end surface 8c of the bearing sleeve 8 and an upper end surface 2b1 of the flange portion 2b of the shaft member 2, and an end surface 10a of the thrust member 10 and a lower end surface of the flange portion 2b. The second thrust bearing portion S2 is provided between the second thrust bearing portion S2 and the second thrust bearing portion S2. For the sake of convenience, the description will be made with the side of the thrust member 10 being the lower side and the side opposite to the thrust member 10 being the upper side.
[0022]
The housing 7 is made of, for example, a soft metal material such as brass or a resin material such as a thermoplastic resin, and has a cylindrical side portion 7b and an annular seal portion 7a integrally extending from the upper end of the side portion 7b to the inner diameter side. And An inner peripheral surface 7a1 of the seal portion 7a faces a tapered surface 2a2 provided on an outer periphery of the shaft portion 2a via a predetermined seal space S. The tapered surface 2a2 of the shaft portion 2a gradually decreases in diameter toward the upper side (outside of the housing 7), and also functions as a centrifugal force seal by the rotation of the shaft member 2.
[0023]
The shaft member 2 is formed of, for example, a metal material such as stainless steel, and includes a shaft portion 2a and a flange portion 2b provided integrally or separately at a lower end of the shaft portion 2a.
[0024]
The bearing sleeve 8 is formed of, for example, a porous body made of a sintered metal, particularly a porous body of a sintered metal containing copper as a main component, and is formed in a cylindrical shape, and is fixed at a predetermined position on an inner peripheral surface 7c of the housing 7. .
[0025]
On the inner peripheral surface 8a of the bearing sleeve 8 formed of this sintered metal, two upper and lower regions serving as radial bearing surfaces of a first radial bearing portion R1 and a second radial bearing portion R2 are provided axially separated. In these two regions, for example, herringbone-shaped dynamic pressure grooves 8a1 and 8a2 as shown in FIG. The upper dynamic pressure groove 8a1 is formed asymmetrically in the axial direction with respect to the axial center m (the axial center of the region between the upper and lower inclined grooves), and the axial dimension X1 of the upper region is lower than the axial center m. It is larger than the axial dimension X2 of the side region. One or more axial grooves 8d1 are formed on the outer peripheral surface 8d of the bearing sleeve 8 over the entire length in the axial direction. In this example, three axial grooves 8d1 are formed at equal circumferential intervals. Further, chamfers 8e and 8f are formed at the outer peripheral corners of the upper end face 8b and the lower end face 8c, respectively.
[0026]
For example, a spiral dynamic pressure groove 8c1 as shown in FIG. 3B is formed on the lower end surface 8c of the bearing sleeve 8, which is the thrust bearing surface of the first thrust bearing portion S1. The shape of the dynamic pressure groove may be a herringbone shape, a radial groove shape, or the like.
[0027]
As shown in FIG. 3C, the upper end surface 8b of the bearing sleeve 8 is divided into an inner diameter side region 8b2 and an outer diameter side region 8b3 by a V-shaped cross-sectional circumferential groove 8b1 provided at a substantially central portion in the radial direction. One or more radial grooves 8b21 are formed in the divided inner diameter side region 8b2. In this example, three radial grooves 8b21 are formed at equal circumferential intervals.
[0028]
As shown in FIG. 2, in this embodiment, a concave adhesive reservoir U is formed on the inner peripheral surface 7c of the housing 7. The adhesive reservoir U is formed, for example, in the shape of a circumferential groove on the inner peripheral surface 7c of the housing 7, and both axial regions are each formed of a tapered surface U1. Therefore, the adhesive reservoir U has a shape gradually reduced toward both sides in the axial direction.
[0029]
Further, the inner surface 7a2 of the seal portion 7a partially contacts the inner diameter region 8b2 of the upper end surface 8b of the bearing sleeve 8 at its inner diameter region 7a21, and the outer diameter region 7a22 thereof contacts the upper end surface of the bearing sleeve 8. 8b is formed in a slanted or curved shape so as to be separated from 8b. Therefore, a slim part P having a required space volume is formed between the outer diameter side region 7a22 of the inner side surface 7a2 and the upper end surface 8b (including the chamfer 8e). The inner diameter side of the slim part P communicates with the circumferential groove 8b1, and the outer diameter side has a tapered space formed between the slim part P and the chamfer 8e.
[0030]
The thrust member 10 is formed of, for example, a metal material such as brass, and is fixed to a lower end portion of the inner peripheral surface 7c of the housing 7. As shown in FIG. 4, for example, a herringbone-shaped dynamic pressure groove 10a1 is formed on an end face 10a of the thrust member 10, which serves as a thrust bearing surface of the second thrust bearing portion S2. The dynamic pressure groove may have a spiral shape, a radial groove shape, or the like.
[0031]
The hydrodynamic bearing device 1 of this embodiment is assembled in the following steps, for example.
[0032]
First, a predetermined amount of an adhesive is applied to the inner peripheral surface 7c of the housing 7. Then, the bearing sleeve 8 is inserted into the inner peripheral surface 7c of the housing 7, and its upper end surface 8b is brought into contact with the inner surface 7a2 of the seal portion 7a. Thereby, the bearing sleeve 8 is positioned with respect to the housing 7. When the adhesive is solidified while maintaining this state, the bearing sleeve 8 is fixed while being positioned with respect to the housing 7.
[0033]
In this embodiment, since the adhesive pool U is provided on the inner peripheral surface 7c of the housing 7, even if the adhesive T (see the enlarged view in the circle in FIG. 2) is generated due to the applied amount, the amount of the adhesive T is reduced. Excess adhesive is trapped by the concave adhesive reservoir U, so that the adhesive T, which adversely affects the positioning of the bearing sleeve 8 and the bearing performance, is prevented. Further, the adhesive reservoir U has a shape gradually reduced toward both sides in the axial direction due to the tapered surface U1, so that after the positioning of the bearing sleeve 8, the adhesive T is solidified until the adhesive T is solidified. The excessively trapped adhesive T flows to both sides in the axial direction narrowed by the capillary action, and is originally fixed (the filling gap between the outer peripheral surface 8d of the bearing sleeve 8 and the inner peripheral surface 7c of the housing 7). Is filled. Therefore, the amount of the adhesive at the fixing portion of the bearing sleeve 8 is not excessive or insufficient, and a stable fixing state can be obtained.
[0034]
Further, since a slim part P having a required space volume is formed between the outer diameter side region 7a22 of the inner side surface 7a2 of the seal part 7a and the upper end surface 8b (including the chamfer 8e) of the bearing sleeve 8, Even if the adhesive wraps around, it becomes difficult for the adhesive T to flow in the direction of the radial groove 8b21. In particular, in this embodiment, there is a tapered space (formed between the chamfer 8e) on the outer diameter side of the threaded portion P, and the adhesive T in the threaded portion P is fixed by the capillary action of the tapered space. Since it is drawn in the direction of the portion (the filling gap between the outer peripheral surface 8d of the bearing sleeve 8 and the inner peripheral surface 7c of the housing 7), the flow in the direction of the radial groove 8b21 is more effectively prevented. This avoids the situation where the radial groove 8b21 is closed by the adhesive T.
[0035]
Next, the shaft member 2 is mounted on the bearing sleeve 8. Note that the inner diameter of the bearing sleeve 8 is measured in a state where the bearing sleeve 8 is fixed to the housing 7, and dimension matching with the outer diameter of the shaft portion 2a (measured in advance) is performed to reduce the radial bearing gap. It can be set with high accuracy.
[0036]
After that, the thrust member 10 is mounted on the lower end of the inner peripheral surface 7c of the housing 7, positioned at a predetermined position, and fixed by an appropriate means such as an adhesive.
[0037]
When assembly is completed as described above, the shaft portion 2a of the shaft member 2 is inserted into the inner peripheral surface 8a of the bearing sleeve 8, and the flange portion 2b is connected to the lower end surface 8c of the bearing sleeve 8 and the end surface 10a of the thrust member 10. In the space between them. Thereafter, the internal space of the housing 7 sealed with the seal portion 7a is filled with a lubricating fluid, for example, lubricating oil, including the internal pores of the bearing sleeve 8. The oil level of the lubricating oil is maintained within the range of the seal space S.
[0038]
When the shaft member 2 rotates, the regions (two upper and lower regions) of the inner peripheral surface 8a of the bearing sleeve 8 to be radial bearing surfaces respectively oppose the outer peripheral surface 2a1 of the shaft portion 2a via the radial bearing gap. Further, a region of the lower end surface 8c of the bearing sleeve 8 serving as a thrust bearing surface is opposed to an upper end surface 2b1 of the flange portion 2b via a thrust bearing gap, and a region of the end surface 10a of the thrust member 10 serving as a thrust bearing surface is a flange. It faces the lower end surface 2b2 of the portion 2b via the thrust bearing gap. Then, with the rotation of the shaft member 2, a dynamic pressure of the lubricating oil is generated in the radial bearing gap, and the shaft portion 2a of the shaft member 2 is rotated in the radial direction by an oil film of the lubricating oil formed in the radial bearing gap. Freely supported in a non-contact manner. Thus, a first radial bearing portion R1 and a second radial bearing portion R2 that rotatably support the shaft member 2 in the radial direction in a non-contact manner are configured. At the same time, a dynamic pressure of lubricating oil is generated in the thrust bearing gap, and the flange portion 2b of the shaft member 2 is rotatably and non-contactly supported in both thrust directions by a lubricating oil film formed in the thrust bearing gap. . Thus, a first thrust bearing portion S1 and a second thrust bearing portion S2 that rotatably support the shaft member 2 in the thrust direction in a non-contact manner are configured.
[0039]
As described above, the dynamic pressure groove 8a1 of the first radial bearing portion R1 is formed so as to be asymmetric in the axial direction with respect to the axial center m, and the axial dimension X1 of the region above the axial center m is the lower region. (FIG. 3A). Therefore, when the shaft member 2 rotates, the lubricating oil drawing force (pumping force) by the dynamic pressure groove 8a1 is relatively larger in the upper region than in the lower region. The lubricating oil filled in the gap between the inner peripheral surface 8a of the bearing sleeve 8 and the outer peripheral surface 2a1 of the shaft portion 2a flows downward due to the differential pressure of the pulling force, and the lubricating oil of the first thrust bearing portion S1 The gap between the inner peripheral surface 8a of the bearing sleeve 8 and the outer peripheral surface 2a1 of the shaft portion 2a circulates through the path of the thrust bearing gap → the axial groove 8d1 → the threaded portion P → the circumferential groove 8b1 → the radial groove 8b21. And is drawn again into the radial bearing gap of the first radial bearing portion R1. In this way, by configuring the lubricating oil to flow and circulate in the internal space of the housing 7, it is possible to prevent a phenomenon in which the pressure of the lubricating oil in the internal space is locally reduced to a negative pressure. Problems such as generation of air bubbles, leakage of lubricating oil and generation of vibration due to the generation of air bubbles can be solved. Further, even if bubbles are mixed in the lubricating oil for some reason, the bubbles are discharged from the oil surface (gas-liquid interface) of the lubricating oil in the seal space S to the outside air when circulating with the lubricating oil. The adverse effects of air bubbles are more effectively prevented.
[0040]
【The invention's effect】
The present invention has the following effects.
(1) Since there is a concave adhesive reservoir between the inner peripheral surface of the housing and the outer peripheral surface of the bearing sleeve, even if an excess amount of adhesive is generated depending on the amount of application, the excess adhesive is deposited in a concave adhesive reservoir. This prevents the adhesive from being entrapped and adversely affecting the positioning of the bearing sleeve and the bearing performance.
(2) By forming the adhesive reservoir into a shape that is gradually reduced toward both sides in the axial direction, the adhesive excessively captured in the adhesive reservoir flows to both sides in the axial direction narrowed by the capillary action, thereby reducing the original size. Since the fixing portion (filling gap between the outer peripheral surface of the bearing sleeve and the inner peripheral surface of the housing) is filled, the amount of the adhesive in the fixing portion of the bearing sleeve is not excessive or insufficient, and a stable fixing state can be obtained.
(3) The lubricating fluid filled in the internal space of the housing is caused to flow and circulate in the internal space by the slim portion, the radial groove, and the axial groove, so that the pressure of the lubricating oil in the internal space is locally reduced. By preventing the phenomenon of negative pressure from being generated, it is possible to solve problems such as generation of bubbles due to the generation of the negative pressure, leakage of lubricating oil and generation of vibration due to the generation of the bubbles. Further, when the bearing sleeve is fixed to the inner peripheral surface of the housing with an adhesive, even if the adhesive wraps around, the adhesive does not easily flow in the direction of the radial groove due to the slim portion, so that the radial direction The situation in which the groove is closed by the adhesive can be avoided.
[Brief description of the drawings]
FIG. 1 is a sectional view of a spindle motor for information equipment using a hydrodynamic bearing device according to the present invention.
FIG. 2 is a cross-sectional view showing one embodiment of a hydrodynamic bearing device according to the present invention.
3 is a sectional view of the bearing sleeve {FIG. 3 (a)}, a lower end surface {FIG. 3 (b)}, and an upper end surface {FIG. 3 (c)}.
FIG. 4 is a view showing an end surface of a thrust member.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Dynamic-pressure bearing device 2 Shaft member 2a Shaft part 2b Flange part 7 Housing 7a Seal part 7a2 Inner side surface 7a21 Inner diameter side region 7a22 Outer diameter side region 7c Inner peripheral surface 8 Bearing sleeve 8a Inner peripheral surface 8b Upper end surface 8b2 Circular groove 8b2 Inner diameter side region 8b21 Radial groove 8c Lower end surface 8d Outer peripheral surface 8d1 Axial groove R1 Radial bearing portion R2 Radial bearing portion S1 Thrust bearing portion S2 Thrust bearing portion U Adhesive accumulation P Nusumi portion 10 Thrust member

Claims (7)

ハウジングと、該ハウジングの内周面に固定された軸受スリーブと、軸部材と、前記軸受スリーブと軸部材との間に設けられ、ラジアル軸受隙間に生じる潤滑油の動圧作用で前記軸部材をラジアル方向に非接触支持するラジアル軸受部とを備えた動圧軸受装置において、
前記軸受スリーブは前記ハウジングの内周面に接着剤で固定され、前記ハウジングの内周面と前記軸受スリーブの外周面との間に凹状の接着剤溜りが設けられていることを特徴とする動圧軸受装置。
A housing, a bearing sleeve fixed to an inner peripheral surface of the housing, a shaft member, and a shaft member, and the shaft member is provided between the bearing sleeve and the shaft member by a dynamic pressure action of lubricating oil generated in a radial bearing gap. In a hydrodynamic bearing device having a radial bearing portion for non-contact support in the radial direction,
The bearing sleeve is fixed to an inner peripheral surface of the housing with an adhesive, and a concave adhesive reservoir is provided between an inner peripheral surface of the housing and an outer peripheral surface of the bearing sleeve. Pressure bearing device.
前記接着剤溜りは前記ハウジングの内周面に設けられていることを特徴とする請求項1に記載の動圧軸受装置。The dynamic pressure bearing device according to claim 1, wherein the adhesive reservoir is provided on an inner peripheral surface of the housing. 前記接着剤溜りは軸方向両側に向かって漸次縮小する形状を有することを特徴とする請求項1又は2に記載の動圧軸受装置。The dynamic pressure bearing device according to claim 1, wherein the adhesive reservoir has a shape that gradually decreases toward both sides in the axial direction. ハウジングと、該ハウジングの内周面に固定された軸受スリーブと、軸部およびフランジ部を有する軸部材と、前記ハウジングの一端部に設けられたシール部と、前記ハウジングの他端部に設けられたスラスト部と、前記軸受スリーブと軸部との間に設けられ、ラジアル軸受隙間に生じる潤滑油の動圧作用で前記軸部をラジアル方向に非接触支持するラジアル軸受部と、前記軸受スリーブ及びスラスト部とフランジ部との間に設けられ、スラスト軸受隙間に生じる潤滑油の動圧作用で前記フランジ部をスラスト方向に非接触支持するスラスト軸受部とを備え、前記ハウジングの内部空間に潤滑流体が充満された動圧軸受装置において、
前記シール部の内側面は、その内径側領域で前記軸受スリーブの一端側端面の内径側領域と部分的に接触し、その外径側領域は前記軸受スリーブの一端側端面から離れるようにヌスミ部を形成していることを特徴とする動圧軸受装置。
A housing, a bearing sleeve fixed to the inner peripheral surface of the housing, a shaft member having a shaft portion and a flange portion, a seal portion provided at one end portion of the housing, and provided at the other end portion of the housing. A thrust portion, a radial bearing portion provided between the bearing sleeve and the shaft portion and supporting the shaft portion in a non-contact manner in a radial direction by a dynamic pressure action of lubricating oil generated in a radial bearing gap; and A thrust bearing portion provided between the thrust portion and the flange portion for supporting the flange portion in a non-contact manner in the thrust direction by a dynamic pressure action of lubricating oil generated in a thrust bearing gap; In a dynamic bearing device filled with
The inner surface of the seal portion partially contacts the inner diameter region of the one end surface of the bearing sleeve at its inner diameter region, and the outer portion of the outer diameter region is separated from the one end surface of the bearing sleeve. A hydrodynamic bearing device characterized by forming:
前記軸受スリーブは前記ハウジングの内周面に接着剤で固定されていることを特徴とする請求項4に記載の動圧軸受装置。The dynamic bearing device according to claim 4, wherein the bearing sleeve is fixed to an inner peripheral surface of the housing with an adhesive. 前記軸受スリーブは焼結金属で形成されていることを特徴とする請求項1から5の何れかに記載の動圧軸受装置。The dynamic bearing device according to any one of claims 1 to 5, wherein the bearing sleeve is formed of a sintered metal. 請求項1〜6の何れかに記載の動圧軸受装置を備えたことを特徴とするモータ。A motor comprising the dynamic pressure bearing device according to claim 1.
JP2002343829A 2002-11-26 2002-11-27 Hydrodynamic bearing device Expired - Lifetime JP4360482B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002343829A JP4360482B2 (en) 2002-11-27 2002-11-27 Hydrodynamic bearing device
US10/705,241 US7005768B2 (en) 2002-11-26 2003-11-12 Dynamic bearing device, producing method thereof, and motor using the same
CN200710153530XA CN101144499B (en) 2002-11-26 2003-11-26 Dynamic pressure bearing device and motor using the same
CNB2003101154704A CN100348876C (en) 2002-11-26 2003-11-26 Dynamic pressure bearing, mfg method and motor using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002343829A JP4360482B2 (en) 2002-11-27 2002-11-27 Hydrodynamic bearing device

Publications (2)

Publication Number Publication Date
JP2004176816A true JP2004176816A (en) 2004-06-24
JP4360482B2 JP4360482B2 (en) 2009-11-11

Family

ID=32705518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002343829A Expired - Lifetime JP4360482B2 (en) 2002-11-26 2002-11-27 Hydrodynamic bearing device

Country Status (1)

Country Link
JP (1) JP4360482B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006194416A (en) * 2005-01-17 2006-07-27 Ntn Corp Fluid bearing device
JP2008039064A (en) * 2006-08-07 2008-02-21 Nippon Densan Corp Sleeve, sleeve unit, motor, and methods for manufacturing sleeve and sleeve unit
JP2009281464A (en) * 2008-05-21 2009-12-03 Ntn Corp Fluid bearing device
KR100948530B1 (en) * 2007-05-21 2010-03-18 알파나 테크놀로지 가부시키가이샤 Bearing device and motor comprising the same
US7866047B2 (en) 2005-03-18 2011-01-11 Nidec Corporation Sleeve-unit manufacturing method
US7988810B2 (en) 2006-09-20 2011-08-02 Nidec Corporation Sleeve unit, method of manufacturing thereof, and motor using the sleeve unit
US8007175B2 (en) 2007-11-08 2011-08-30 Panasonic Corporation Hydrodynamic bearing device, and spindle motor and information apparatus equipped with same
US8186061B2 (en) 2006-11-06 2012-05-29 Gast Japan Co., Ltd. Manufacturing method of bearing, bearing unit, rotary apparatus, and manufacturing method of sliding member
JP2016037977A (en) * 2014-08-05 2016-03-22 Ntn株式会社 Fluid dynamic pressure bearing device and motor having the same
US9341214B2 (en) 2013-07-24 2016-05-17 Nidec Corporation Sleeve, fluid dynamic pressure bearing including the sleeve, spindle motor including the fluid dynamic pressure bearing and electronic equipment including the spindle motor
JP2018038260A (en) * 2017-11-09 2018-03-08 ミネベアミツミ株式会社 motor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006194416A (en) * 2005-01-17 2006-07-27 Ntn Corp Fluid bearing device
US7431505B2 (en) 2005-01-17 2008-10-07 Ntn Corporation Fluid lubrication bearing apparatus
JP4672379B2 (en) * 2005-01-17 2011-04-20 Ntn株式会社 Hydrodynamic bearing device
US7866047B2 (en) 2005-03-18 2011-01-11 Nidec Corporation Sleeve-unit manufacturing method
JP2008039064A (en) * 2006-08-07 2008-02-21 Nippon Densan Corp Sleeve, sleeve unit, motor, and methods for manufacturing sleeve and sleeve unit
US7988810B2 (en) 2006-09-20 2011-08-02 Nidec Corporation Sleeve unit, method of manufacturing thereof, and motor using the sleeve unit
US8186061B2 (en) 2006-11-06 2012-05-29 Gast Japan Co., Ltd. Manufacturing method of bearing, bearing unit, rotary apparatus, and manufacturing method of sliding member
KR100948530B1 (en) * 2007-05-21 2010-03-18 알파나 테크놀로지 가부시키가이샤 Bearing device and motor comprising the same
US7931404B2 (en) 2007-05-21 2011-04-26 Alphana Technology Co., Ltd. Bearing device and motor mounted with the bearing device
US8007175B2 (en) 2007-11-08 2011-08-30 Panasonic Corporation Hydrodynamic bearing device, and spindle motor and information apparatus equipped with same
JP2009281464A (en) * 2008-05-21 2009-12-03 Ntn Corp Fluid bearing device
US9341214B2 (en) 2013-07-24 2016-05-17 Nidec Corporation Sleeve, fluid dynamic pressure bearing including the sleeve, spindle motor including the fluid dynamic pressure bearing and electronic equipment including the spindle motor
JP2016037977A (en) * 2014-08-05 2016-03-22 Ntn株式会社 Fluid dynamic pressure bearing device and motor having the same
JP2018038260A (en) * 2017-11-09 2018-03-08 ミネベアミツミ株式会社 motor

Also Published As

Publication number Publication date
JP4360482B2 (en) 2009-11-11

Similar Documents

Publication Publication Date Title
JP3942482B2 (en) DYNAMIC PRESSURE BEARING DEVICE AND MOTOR HAVING THE SAME
US7005768B2 (en) Dynamic bearing device, producing method thereof, and motor using the same
JP2004116667A (en) Dynamic pressure bearing device
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
JP4360482B2 (en) Hydrodynamic bearing device
JP2007024267A (en) Fluid bearing device and motor equipped with the same
US20100166346A1 (en) Dynamic bearing device
JP2008051133A (en) Bearing unit and motor equipped therewith
JP3686630B2 (en) Hydrodynamic bearing device
JP4657734B2 (en) Hydrodynamic bearing device
JP2005337490A (en) Dynamic pressure bearing device
JP4309642B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP4633388B2 (en) Hydrodynamic bearing device
JP5490396B2 (en) Hydrodynamic bearing device
JP2010106994A (en) Fluid bearing device
JP2006112614A (en) Dynamic pressure bearing device
JP3184795B2 (en) Spindle motor and rotating device using the spindle motor as a driving source of the rotating body
JP2004176778A (en) Dynamic pressure bearing device, method of manufacturing the same, and motor using the same
JP2003065324A (en) Hydrodyanamic type bearing apparatus
JP2006329391A (en) Dynamic pressure bearing arrangement
JP2000352416A (en) Dynamic pressure type bearing unit and its manufacture
JP2005163903A (en) Dynamic bearing device
JP2004116623A (en) Fluid bearing device
JP2004316926A (en) Dynamic pressure-type bearing unit and method for manufacturing the same
JP2004108546A (en) Hydrodynamic bearing device and spindle motor using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090805

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4360482

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term