JP2003065324A - Hydrodyanamic type bearing apparatus - Google Patents

Hydrodyanamic type bearing apparatus

Info

Publication number
JP2003065324A
JP2003065324A JP2001256552A JP2001256552A JP2003065324A JP 2003065324 A JP2003065324 A JP 2003065324A JP 2001256552 A JP2001256552 A JP 2001256552A JP 2001256552 A JP2001256552 A JP 2001256552A JP 2003065324 A JP2003065324 A JP 2003065324A
Authority
JP
Japan
Prior art keywords
dynamic pressure
housing
lubricant
peripheral surface
radial bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001256552A
Other languages
Japanese (ja)
Inventor
Tetsuya Kurimura
栗村  哲弥
Natsuhiko Mori
夏比古 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2001256552A priority Critical patent/JP2003065324A/en
Publication of JP2003065324A publication Critical patent/JP2003065324A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent leakage of lubricant filled the inside of a housing toward the outside, to improve high speed rotation performance, and to reduce a cost. SOLUTION: A tapered surface 2a2 of a shaft part 2a faces an inside peripheral surface 10a of a sealing member 10 with a predetermined clearance. As a result, a taper shape sealing space S gradually expanding toward the outside is formed between the tapered surface 2a2 and the inside peripheral surface 10a. An inside space (including air bubbles inside a bearing member 8) of a housing 7 sealed by the sealing member 10 is filled with the lubricant and a fluid surface of the lubricant is located within the sealing space S.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、動圧型軸受装置に
関する。この軸受装置は、情報機器、例えばHDD、F
DD等の磁気ディスク装置、CD−ROM、DVD−R
OM等の光ディスク装置、MD、MO等の光磁気ディス
ク装置などのスピンドルモータ、レーザビームプリンタ
(LBP)のポリゴンスキャナモータ、あるいは電気機
器、例えば軸流ファンなどの小型モータ用として好適で
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dynamic pressure type bearing device. This bearing device is an information device such as an HDD or an F.
Magnetic disk device such as DD, CD-ROM, DVD-R
It is suitable for optical disk devices such as OM, spindle motors for magneto-optical disk devices such as MD and MO, polygon scanner motors for laser beam printers (LBP), or small motors for electric devices such as axial fans.

【0002】[0002]

【従来の技術】上記各種モータには、高回転精度の他、
高速化、低コスト化、低騒音化などが求められている。
これらの要求性能を決定づける構成要素の一つに当該モ
ータのスピンドルを支持する軸受があり、近年では、こ
の種の軸受として、上記要求性能に優れた特性を有する
動圧型軸受の使用が検討され、あるいは実際に使用され
ている。
2. Description of the Related Art In addition to high rotation accuracy,
Higher speed, lower cost and lower noise are required.
One of the components that determines the required performance is a bearing that supports the spindle of the motor, and in recent years, as this type of bearing, the use of a dynamic pressure type bearing having excellent characteristics in the required performance has been studied, Or actually used.

【0003】例えば、HDD等のディスク装置のスピン
ドルモータに組込まれる動圧型軸受装置では、軸部材を
ラジアル方向に回転自在に非接触支持するラジアル軸受
部と、軸部材をスラスト方向に回転自在に非接触支持す
るスラスト軸受部とが設けられ、これら軸受部として、
軸受面に動圧発生用の溝(動圧溝)を有する動圧型軸受
が用いられる。ラジアル軸受部の動圧溝は、ハウジング
や軸受部材の内周面又は軸部材の外周面に形成され、ス
ラスト軸受部の動圧溝は、フランジ部を備えた軸部材を
用いる場合、そのフランジ部の両端面、又は、これに対
向する面(軸受部材の端面やハウジングの底面等)にそ
れぞれ形成される。
For example, in a dynamic pressure type bearing device incorporated in a spindle motor of a disk device such as an HDD, a radial bearing portion that rotatably supports a shaft member in a radial direction in a non-contact manner, and a shaft bearing member is rotatably supported in a thrust direction. A thrust bearing portion for contact support is provided, and as these bearing portions,
A dynamic pressure type bearing having a groove (dynamic pressure groove) for generating dynamic pressure on the bearing surface is used. The dynamic pressure groove of the radial bearing portion is formed on the inner peripheral surface of the housing or the bearing member or the outer peripheral surface of the shaft member, and the dynamic pressure groove of the thrust bearing portion uses the flange portion when the shaft member having the flange portion is used. Is formed on both end surfaces of the bearing or surfaces (faces of the bearing member, the bottom surface of the housing, and the like) opposed thereto.

【0004】[0004]

【発明が解決しようとする課題】軸部材および軸受部を
ハウジングの内部に収容し、ハウジングの内部空間に潤
滑剤を充満する動圧型軸受装置では、例えばハウジング
の開口部にシール部材を装着したり、潤滑剤の流出経路
に溌油剤を塗布する等して、ハウジング内部から外部へ
の潤滑剤の漏れ出しを防止している。しかしながら、こ
の種の軸受装置が使用される機器分野での著しい高速化
の傾向から、軸受装置に対してより高い高速回転性能が
求められており、この要求への対応策の一つとして、潤
滑剤の外部への漏れ出しを一層効果的に防止し得るシー
ル手段が必要になってきた。
In the dynamic pressure type bearing device in which the shaft member and the bearing portion are housed in the housing and the internal space of the housing is filled with the lubricant, for example, a seal member is attached to the opening portion of the housing. The lubricant is prevented from leaking from the inside of the housing to the outside by applying an oil-repellent agent to the outflow path of the lubricant. However, due to the tendency of extremely high speed in the equipment field where this type of bearing device is used, higher high-speed rotation performance is required for the bearing device, and one of the measures to meet this requirement is lubrication. There has been a need for a sealing means that can more effectively prevent the agent from leaking to the outside.

【0005】本発明の課題は、ハウジング内部に充満さ
れた潤滑剤の外部への漏れ出しを一層効果的に防止する
ことである。
An object of the present invention is to more effectively prevent the lubricant filled in the housing from leaking to the outside.

【0006】本発明の他の課題は、より高速回転性能に
優れた動圧型軸受装置を提供することである。
Another object of the present invention is to provide a dynamic pressure type bearing device which is superior in high speed rotation performance.

【0007】本発明の更なる課題は、より低コストな動
圧型軸受装置を提供することである。
A further object of the present invention is to provide a lower cost hydrodynamic bearing device.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、一端に開口部を有するハウジングと、ハ
ウジングに収容された軸部材と、ラジアル軸受隙間に生
じる潤滑剤の動圧作用で軸部材をラジアル方向に非接触
支持するラジアル軸受部と、ハウジングの開口部に配置
されたシール部材とを備えた動圧型軸受装置であって、
シール部材の内周面とこれに対向する軸部材の外周面と
の間にシール空間を有し、このシール空間はハウジング
の外部方向に向かって漸次拡大するテーパ形状をなし、
ハウジングの内部空間は潤滑剤で充満されており、この
潤滑剤の油面がシール空間内にある構成を提供する。
In order to solve the above-mentioned problems, the present invention provides a housing having an opening at one end, a shaft member housed in the housing, and a dynamic pressure action of a lubricant generated in a radial bearing gap. A dynamic pressure type bearing device comprising a radial bearing portion for supporting a shaft member in a radial direction in a non-contact manner, and a seal member arranged in an opening of a housing,
There is a seal space between the inner peripheral surface of the seal member and the outer peripheral surface of the shaft member facing the seal member, and the seal space has a tapered shape that gradually expands toward the outside of the housing.
The interior space of the housing is filled with a lubricant, providing an arrangement in which the oil surface of the lubricant is in the seal space.

【0009】上記シール空間内に潤滑剤の油面があるこ
とにより、シール空間内の潤滑剤はシール空間が狭くな
る方向(ハウジングの内部方向)に向けて毛細管力によ
って引き込まれる。そのため、ハウジング内部から外部
への潤滑剤の漏れ出しが効果的に防止される。
Since the oil surface of the lubricant is present in the seal space, the lubricant in the seal space is drawn in by the capillary force in the direction in which the seal space becomes narrow (inward direction of the housing). Therefore, leakage of the lubricant from the inside of the housing to the outside is effectively prevented.

【0010】上記シール空間は、例えば軸部材の外周面
およびシール部材の内周面のうち少なくとも一方にテー
パ面を設けることよって構成することができる。軸部材
の外周面にテーパ面を設けた場合、軸部材の回転時、シ
ール空間内の潤滑剤が遠心力を受け、テーパ面に沿って
シール空間が狭くなる方向(ハウジングの内部方向)に
向けて引き込まれる(いわゆる遠心力シール)。従っ
て、上記の毛細管力による引き込み作用に加え、遠心力
による引き込み作用もあるので、潤滑剤の漏れ出し防止
効果が一層高くなる。
The seal space can be constructed by providing a tapered surface on at least one of the outer peripheral surface of the shaft member and the inner peripheral surface of the seal member. When a taper surface is provided on the outer peripheral surface of the shaft member, the lubricant in the seal space receives centrifugal force when the shaft member rotates, and the seal space is narrowed along the taper surface (inward direction of the housing). Be pulled in (so-called centrifugal force seal). Therefore, in addition to the pulling action by the above-mentioned capillary force, there is also the pulling action by the centrifugal force, and the effect of preventing the lubricant from leaking out is further enhanced.

【0011】上記テーパ面のテーパ角θは3°≦θ≦2
5°の範囲に設定することが好ましい。テーパ面のテー
パ角θが3°未満であると、毛細管力によるシール効果
が十分に得られない。例えば、軸受装置を横向き姿勢
(軸部材を水平状態)にした場合、重力の作用により、
鉛直下方側の潤滑剤がシール空間から押し出されて外部
に漏れる心配がある。一方、テーパ面のテーパ角θが2
5°を超えると、潤滑剤の油面の位置での空間隙間が大
きくなりすぎ、衝撃等が加わった場合、潤滑剤が外部に
飛散する可能性がある。
The taper angle θ of the tapered surface is 3 ° ≦ θ ≦ 2
It is preferable to set in the range of 5 °. If the taper angle θ of the taper surface is less than 3 °, the sealing effect due to the capillary force cannot be sufficiently obtained. For example, when the bearing device is in a horizontal position (the shaft member is in a horizontal state), due to the action of gravity,
There is a concern that the lubricant on the vertically lower side will be pushed out of the seal space and leak to the outside. On the other hand, the taper angle θ of the tapered surface is 2
If it exceeds 5 °, the space gap at the oil surface position of the lubricant becomes too large, and if a shock or the like is applied, the lubricant may be scattered to the outside.

【0012】上記ラジアル軸受部は、ハウジングの内周
面に直接形成することもできるが、焼結金属からなる多
孔質の軸受部材に設けるのが好ましい。軸受部材の内部
の気孔内に潤滑剤を含浸させることにより、ハウジング
内部における潤滑剤の補油量を多くすることができ、ま
た、軸受部材の内部と外部との間で潤滑剤の循環が行わ
れるので、潤滑剤の経時劣化が少なく、高速回転で使用
された場合でも、優れた軸受機能が長期にわたって維持
される。また、多孔質の軸受部材を用いることにより、
製造コストの低減を図ることができる。例えば、本出願
人による特開平10−306827号(特願平10−4
7973号)に記載された製造方法を用いて、多孔質の
軸受部材素材の内周面にラジアル軸受部を簡易に低コス
トで成形することができる。ちなみに、特開平10−3
06827号に記載された製造方法は、動圧溝の形状に
対応した成形部を有する成形型を多孔質素材の内周面に
挿入し、多孔質素材に圧迫力を加え、多孔質素材の内周
面を成形型に加圧することにより、多孔質素材の内周面
に動圧溝を成形するものである。動圧溝の成形後、上記
圧迫力を解除することによる多孔質素材のスプリングバ
ックを利用して、成形型を多孔質素材の内周面から離型
することができる。
The radial bearing portion may be formed directly on the inner peripheral surface of the housing, but it is preferably provided on a porous bearing member made of sintered metal. By impregnating the pores inside the bearing member with the lubricant, the amount of lubricant supplemented inside the housing can be increased, and the lubricant can be circulated between the inside and the outside of the bearing member. As a result, the lubricant does not deteriorate with time, and the excellent bearing function is maintained for a long period of time even when used at high speeds. Also, by using a porous bearing member,
The manufacturing cost can be reduced. For example, Japanese Patent Application Laid-Open No. 10-306827 (Japanese Patent Application No. 10-4)
No. 7973), a radial bearing portion can be easily formed at low cost on the inner peripheral surface of a porous bearing member material. Incidentally, Japanese Patent Laid-Open No. 10-3
In the manufacturing method described in No. 06827, a molding die having a molding portion corresponding to the shape of the dynamic pressure groove is inserted into the inner peripheral surface of the porous material, and a compressive force is applied to the porous material so that A dynamic pressure groove is formed on the inner peripheral surface of the porous material by pressing the peripheral surface of the mold. After forming the dynamic pressure groove, the molding die can be released from the inner peripheral surface of the porous material by utilizing the springback of the porous material by releasing the pressing force.

【0013】上記ラジアル軸受部の動圧溝形状は特に限
定されないが、例えばヘリングボーン形状にすることが
でき、その場合、動圧溝を軸方向に非対称形状とし、か
つ、軸方向長さが長い溝領域をハウジングの開口部側に
位置させることができる。動圧溝を軸方向に非対称形状
とすることにより、ラジアル軸受部の軸方向両側部で潤
滑剤の引き込み力に違いが生じる。すなわち、軸方向長
さが長い溝領域は潤滑剤の引き込み力が大きく、軸方向
長さが短い溝領域は潤滑剤の引き込み力が小さくなる。
従って、軸方向長さが長い溝領域をハウジングの開口部
側に位置させ、軸方向長さが短い溝領域をハウジングの
内部側に位置させると、両溝領域の引き込み力の差圧に
よって、潤滑剤をハウジング内部方向に引き込む作用が
生じる。これにより、潤滑剤の漏れ出し防止効果がより
一層高まる。
The shape of the dynamic pressure groove of the radial bearing portion is not particularly limited, but may be, for example, a herringbone shape. In that case, the dynamic pressure groove has an asymmetric shape in the axial direction and has a long axial length. The groove area can be located on the opening side of the housing. By making the dynamic pressure groove asymmetrical in the axial direction, a difference occurs in the pull-in force of the lubricant on both sides in the axial direction of the radial bearing portion. That is, the groove area having a long axial length has a large drawing force of the lubricant, and the groove area having a short axial length has a small drawing force of the lubricant.
Therefore, when the groove area having the long axial length is located on the opening side of the housing and the groove area having the short axial length is located on the inner side of the housing, the differential pressure of the pulling force of both groove areas causes the lubrication. The action of drawing the agent toward the inside of the housing occurs. This further enhances the effect of preventing the lubricant from leaking out.

【0014】上記構成において、ラジアル軸受部を軸方
向に間隔をあけて複数配設する場合、ラジアル軸受部間
の間隔部に対向する軸部材の外周面にぬすみ溝を設ける
ことができる。これにより、上記間隔部と軸部材の外周
面との間の隙間をラジアル軸受隙間よりも大きくして、
軸受トルクの低減を図ることができる。一般的には、上
記間隔部をラジアル軸受部よりも大径に形成して同様の
効果を得ているが、軸部材の外周面にぬすみ溝を設ける
ことにより、ハウジング又は軸受部材の形状を簡素化で
きるという利点がある。特に、ラジアル軸受部間の間隔
部を、ラジアル軸受部の動圧溝の溝底と段差がない状態
で連続させることにより、ラジアル軸受から上記間隔部
へ、また、上記間隔部からラジアル軸受部への潤滑剤の
循環が円滑に行われるので、潤滑剤の経時劣化が生じに
くくなる。
In the above structure, when a plurality of radial bearing portions are arranged at intervals in the axial direction, a hollow groove can be provided on the outer peripheral surface of the shaft member facing the gap portion between the radial bearing portions. As a result, the gap between the spacing portion and the outer peripheral surface of the shaft member is made larger than the radial bearing gap,
The bearing torque can be reduced. Generally, the same effect is obtained by forming the above-mentioned spacing portion with a larger diameter than the radial bearing portion, but by providing a groove on the outer peripheral surface of the shaft member, the shape of the housing or bearing member can be simplified. There is an advantage that it can be realized. In particular, by making the gap between the radial bearings continuous with the groove bottom of the dynamic pressure groove of the radial bearing without any step, the radial bearing can be moved to the above gap and the gap can be changed from the radial bearing to the radial bearing. Since the lubricant is smoothly circulated, deterioration with time of the lubricant is less likely to occur.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施形態について
説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below.

【0016】図1は、この実施形態に係る動圧型軸受装
置1を組み込んだ情報機器用スピンドルモータの一構成
例を示している。このスピンドルモータは、HDD等の
ディスク駆動装置に用いられるもので、軸部材2を回転
自在に非接触支持する動圧型軸受装置1と、軸部材2に
装着されたディスクハブ3と、半径方向のギャップを介
して対向させたモータステータ4およびモータロータ5
とを備えている。ステータ4はケーシング6の外周に取
付けられ、ロータ5はディスクハブ3の内周に取付けら
れる。動圧型軸受装置1のハウジング7は、ケーシング
6の内周に装着される。ディスクハブ3には、磁気ディ
スク等のディスクDが一又は複数枚保持される。ステー
タ4に通電すると、ステータ4とロータ5との間の励磁
力でロータ5が回転し、それによって、ディスクハブ3
および軸部材2が一体となって回転する。
FIG. 1 shows an example of the configuration of a spindle motor for information equipment in which a dynamic pressure type bearing device 1 according to this embodiment is incorporated. This spindle motor is used for a disk drive device such as an HDD, and includes a dynamic pressure type bearing device 1 that rotatably supports a shaft member 2 in a non-contact manner, a disk hub 3 mounted on the shaft member 2, and a radial direction. Motor stator 4 and motor rotor 5 facing each other through a gap
It has and. The stator 4 is attached to the outer circumference of the casing 6, and the rotor 5 is attached to the inner circumference of the disc hub 3. The housing 7 of the dynamic pressure type bearing device 1 is mounted on the inner circumference of the casing 6. The disk hub 3 holds one or a plurality of disks D such as magnetic disks. When the stator 4 is energized, the exciting force between the stator 4 and the rotor 5 causes the rotor 5 to rotate, whereby the disk hub 3
And the shaft member 2 rotates integrally.

【0017】図2は、動圧型軸受装置1を示している。
動圧型軸受装置1は、一端に開口部7aを有する有底円
筒状のハウジング7と、ハウジング7の内周面に固定さ
れた円筒状の軸受部材8と、軸部材2と、ハウジング7
の開口部7aに固定されたシール部材10とを主要な構
成要素とする。
FIG. 2 shows a dynamic pressure type bearing device 1.
The hydrodynamic bearing device 1 includes a bottomed cylindrical housing 7 having an opening 7a at one end, a cylindrical bearing member 8 fixed to the inner peripheral surface of the housing 7, a shaft member 2, and a housing 7.
The seal member 10 fixed to the opening 7a of the above is used as a main component.

【0018】ハウジング7は、例えば真ちゅう等の軟質
金属材で形成され、円筒状の側部7bと底部7cとを備
えている。底部7cの内底面7c1の、スラスト軸受面
となる領域には、例えば図4に示すスパイラル形状の動
圧溝7c2が形成されている。尚、この実施形態におい
て、ハウジング7は、側部7bと底部7cとを別体構造
とし、底部7cとなる蓋状部材を底部7bの他端開口部
に加締め、接着等の手段で固定しているが、側部7bと
底部7cとを一体構造としても良い。
The housing 7 is made of a soft metal material such as brass and has a cylindrical side portion 7b and a bottom portion 7c. A spiral dynamic pressure groove 7c2 shown in FIG. 4, for example, is formed in a region of the inner bottom surface 7c1 of the bottom portion 7c which will be the thrust bearing surface. In this embodiment, the housing 7 has the side portion 7b and the bottom portion 7c as separate structures, and the lid-shaped member serving as the bottom portion 7c is fixed to the opening of the other end of the bottom portion 7b by caulking, adhering or the like. However, the side portion 7b and the bottom portion 7c may be integrated.

【0019】軸部材2は、例えば、ステンレス鋼(SU
S420J2)等の金属材で形成され、軸部2aと、軸
部2aの下端に一体又は別体に設けられたフランジ部2
bとを備えている。軸部2aの外周面には、ぬすみ溝2
a1と、テーパ面2a2とが設けられている。テーパ面
2a2は、同図で上方に向かって漸次縮径する方向のテ
ーパ角θをもっている。また、テーパ面2a2から上方
に連続して、円筒面2a3が設けられている。
The shaft member 2 is made of, for example, stainless steel (SU
S420J2) and the like, the shaft portion 2a and the flange portion 2 integrally or separately provided at the lower end of the shaft portion 2a.
and b. On the outer peripheral surface of the shaft portion 2a, the recessed groove 2
a1 and a tapered surface 2a2 are provided. The taper surface 2a2 has a taper angle θ in a direction in which the diameter is gradually reduced upward in FIG. A cylindrical surface 2a3 is provided continuously upward from the tapered surface 2a2.

【0020】軸受部材8は、例えば多孔質材、特に銅を
主成分とする燒結金属で形成され、その内部の気孔に潤
滑油又は潤滑グリースが含浸されて含油軸受とされる。
軸受部材8の内周面8aには、上下2つのラジアル軸受
面R1、R2が設けられ、ラジアル軸受面R1とR2は
間隔部R3を挟んで軸方向に離隔している。
The bearing member 8 is formed of, for example, a porous material, particularly a sintered metal containing copper as a main component, and the pores inside thereof are impregnated with lubricating oil or lubricating grease to form an oil-impregnated bearing.
Two upper and lower radial bearing surfaces R1 and R2 are provided on the inner peripheral surface 8a of the bearing member 8, and the radial bearing surfaces R1 and R2 are axially separated from each other with a gap R3 interposed therebetween.

【0021】図3に示すように、ラジアル軸受面R1は
ヘリングボーン形状の動圧溝を備え、例えば軸方向の一
方に傾斜した複数の動圧溝8a1が円周方向に配列され
た第1領域m1と、軸方向の他方に傾斜した複数の動圧
溝8a2が円周方向に配列された第2領域m2と、第1
領域m1と第2領域m2との間の環状部nとで構成され
る。第1領域m1の軸方向長さは第2領域m2よりも大
きく、第1領域m1の動圧溝8a1と第2領域m2の動
圧溝8a2とは、環状部nに対して軸方向非対称形状に
なっている。また、軸方向長さの長い第1領域m1が、
同図で上側(ハウジング7の開口部7a側)に位置し、
軸方向長さの短い第2領域m2が同図で下側(ハウジン
グ7の底部7c側)に位置している。ラジアル軸受面R
2も、同様に、ヘリングボーン形状の動圧溝を備え、軸
方向の一方に傾斜した複数の動圧溝8a3が円周方向に
配列された第1領域m1’と、軸方向の他方に傾斜した
複数の動圧溝8a4が円周方向に配列された第2領域m
2’と、第1領域m1’と第2領域m2’と間の環状部
n’とで構成される。第1領域m1’の軸方向長さは第
2領域m2’よりも大きく、第1領域m1’の動圧溝8
a3と第2領域m2’の動圧溝8a4とは、環状部n’
に対して軸方向非対称形状になっている。また、軸方向
長さが長い第1領域m1’が、同図で上側(ハウジング
7の開口部7a側)に位置し、軸方向長さの短い第2領
域m2’が同図で下側(ハウジング7の底部7c側)に
位置している。
As shown in FIG. 3, the radial bearing surface R1 is provided with a herringbone-shaped dynamic pressure groove, for example, a first region in which a plurality of dynamic pressure grooves 8a1 inclined in one axial direction are arranged in the circumferential direction. m1, a second region m2 in which a plurality of dynamic pressure grooves 8a2 inclined in the other axial direction are arranged in the circumferential direction,
It is composed of an annular portion n between the region m1 and the second region m2. The axial length of the first region m1 is larger than that of the second region m2, and the dynamic pressure groove 8a1 of the first region m1 and the dynamic pressure groove 8a2 of the second region m2 are axially asymmetrical with respect to the annular portion n. It has become. In addition, the first region m1 having a long axial length is
In the figure, it is located on the upper side (the opening 7a side of the housing 7),
A second region m2 having a short axial length is located on the lower side (on the bottom portion 7c side of the housing 7) in the figure. Radial bearing surface R
Similarly, 2 also includes a herringbone-shaped dynamic pressure groove, and a plurality of dynamic pressure grooves 8a3 inclined in one axial direction are arranged in the first region m1 ′ in the circumferential direction and inclined in the other axial direction. The second region m in which the plurality of dynamic pressure grooves 8a4 are arranged in the circumferential direction.
2'and an annular portion n'between the first region m1 'and the second region m2'. The axial length of the first region m1 ′ is larger than that of the second region m2 ′, and the dynamic pressure groove 8 of the first region m1 ′ is formed.
a3 and the dynamic pressure groove 8a4 in the second region m2 ′ form an annular portion n ′.
It has an axially asymmetrical shape with respect to. Further, the first region m1 ′ having a long axial length is located on the upper side (on the side of the opening 7a of the housing 7) in the figure, and the second region m2 ′ having a short axial length is on the lower side in the figure ( It is located on the bottom portion 7c side of the housing 7.

【0022】間隔部R3は軸部2aのぬすみ溝2a1と
対向し、両者の間の隙間はラジアル軸受隙間よりも大き
くなる。また、間隔部R3は、ラジアル軸受面R1の動
圧溝8a2の溝底およびラジアル軸受面R2の動圧溝8
a3の溝底と段差がない状態で連続している。
The gap R3 faces the recessed groove 2a1 of the shaft 2a, and the gap between them is larger than the radial bearing gap. In addition, the gap portion R3 has a groove bottom of the dynamic pressure groove 8a2 of the radial bearing surface R1 and a dynamic pressure groove 8 of the radial bearing surface R2.
It is continuous with the groove bottom of a3 without any step.

【0023】軸受部材8の上側端面8bには、上下方向
を識別するマークとしての円周溝8b1が形成されてい
る。また、軸受部材8の下側端面8cにはスパイラル形
状の動圧溝8c1が形成されている。
A circumferential groove 8b1 is formed on the upper end surface 8b of the bearing member 8 as a mark for identifying the vertical direction. A spiral dynamic pressure groove 8c1 is formed on the lower end surface 8c of the bearing member 8.

【0024】軸受部材8のラジアル軸受面R1、R2お
よび間隔部R3は、例えば本出願人による特開平10−
306827号(特願平10−47973号)に記載さ
れた製造方法を用いて簡易に低コストで成形することが
できる。例えば、円筒状の軸受部材素材に対して、ラジ
アル軸受面R1、R2および間隔部R3の形状に対応し
た成形部を有する成形型(コアロッド)を用いて、ラジ
アル軸受面R1、R2および間隔部R3を同時成形する
ことができる。また、成形後、軸受部材素材のスプリン
グバックを利用して、成形型(コアロッド)を離型する
ことができる。
The radial bearing surfaces R1 and R2 and the gap R3 of the bearing member 8 are, for example, disclosed in Japanese Patent Laid-Open No. 10-
Molding can be easily performed at low cost by using the manufacturing method described in Japanese Patent Application No. 306827 (Japanese Patent Application No. 10-47973). For example, for a cylindrical bearing member material, a molding die (core rod) having molding portions corresponding to the shapes of the radial bearing surfaces R1, R2 and the spacing portion R3 is used, and the radial bearing surfaces R1, R2 and the spacing portion R3 are used. Can be simultaneously molded. Further, after molding, the molding die (core rod) can be released by utilizing the spring back of the bearing member material.

【0025】図1に示すように、シール部材10は環状
のもので、ハウジング7の開口部7aの内周面に圧入、
接着等の手段で固定される。この実施形態において、シ
ール部材10の内周面10aは円筒状に形成され、シー
ル部材10の下側端面10bは軸受部材8の上側端面8
bと当接している。
As shown in FIG. 1, the seal member 10 is annular, and is press-fitted into the inner peripheral surface of the opening 7a of the housing 7,
It is fixed by means such as adhesion. In this embodiment, the inner peripheral surface 10a of the seal member 10 is formed in a cylindrical shape, and the lower end surface 10b of the seal member 10 is the upper end surface 8 of the bearing member 8.
It is in contact with b.

【0026】軸部材2の軸部2aは軸受部材8の内周面
8aに挿入され、フランジ部2bは軸受部材8の下側端
面8cとハウジング7の内底面7c1との間の空間部に
収容される。軸受部材8のラジアル軸受面R1、R2
は、それぞれ、軸部2aの外周面とラジアル軸受隙間を
介して対向する。また、軸受部材8の下側端面8cはフ
ランジ部2bの上側端面とスラスト軸受隙間を介して対
向し、ハウジング7の内底面7c1(動圧溝7c2が形
成されている領域)はフランジ部2bの下側端面とスラ
スト軸受隙間を介して対向する。軸部2aのぬすみ部2
a1と軸受部材8の間隔部R3との間には、ラジアル軸
受隙間よりも大きな隙間が設けられる。
The shaft portion 2a of the shaft member 2 is inserted into the inner peripheral surface 8a of the bearing member 8, and the flange portion 2b is housed in the space between the lower end surface 8c of the bearing member 8 and the inner bottom surface 7c1 of the housing 7. To be done. Radial bearing surfaces R1 and R2 of the bearing member 8
Respectively face the outer peripheral surface of the shaft portion 2a via a radial bearing gap. Further, the lower end surface 8c of the bearing member 8 faces the upper end surface of the flange portion 2b via a thrust bearing gap, and the inner bottom surface 7c1 of the housing 7 (a region where the dynamic pressure groove 7c2 is formed) of the flange portion 2b. It faces the lower end face with a thrust bearing gap. The slim portion 2 of the shaft portion 2a
A gap larger than the radial bearing gap is provided between a1 and the gap R3 of the bearing member 8.

【0027】軸部2aのテーパ面2a2はシール部材1
0の内周面10aと所定の隙間を介して対向し、これに
より、両者の間に、ハウジング7の外部方向(同図で上
方向)に向かって漸次拡大するテーパ形状のシール空間
Sが形成される。シール部材10で密封されたハウジン
グ7の内部空間(軸受部材8の内部の気孔も含む。)に
は潤滑剤(潤滑油)が充満され、その潤滑剤の油面はシ
ール空間S内にある。シール空間Sの容積は、ハウジン
グ7の内部空間に充満された潤滑剤の、使用温度範囲内
の温度変化に伴う容積変化量よりも大きくなるように設
定される。これにより、温度変化に伴う潤滑剤の容積変
化があった場合でも、潤滑剤の油面を、常に、シール空
間S内に維持することができる。
The tapered surface 2a2 of the shaft portion 2a is the seal member 1.
0 is opposed to the inner peripheral surface 10a through a predetermined gap, thereby forming a taper-shaped seal space S between the both, which gradually expands in the outer direction of the housing 7 (upward in the figure). To be done. A lubricant (lubricant oil) is filled in the internal space of the housing 7 (including the pores inside the bearing member 8) sealed by the seal member 10, and the oil surface of the lubricant is in the seal space S. The volume of the seal space S is set to be larger than the volume change amount of the lubricant filled in the internal space of the housing 7 due to the temperature change within the operating temperature range. As a result, even if the volume of the lubricant changes due to the temperature change, the oil level of the lubricant can be constantly maintained in the seal space S.

【0028】軸部材2が回転すると、上記ラジアル軸受
隙間に潤滑剤の動圧が発生し、軸部材2の軸部2aが上
記ラジアル軸受隙間内に形成される潤滑剤の油膜によっ
てラジアル方向に回転自在に非接触支持される。これに
より、軸部材2をラジアル方向に回転自在に非接触支持
するラジアル軸受部が構成される。同時に、上記スラス
ト軸受隙間に潤滑剤の動圧が発生し、軸部材2のフラン
ジ部2bが上記スラスト軸受隙間内に形成される潤滑油
の油膜によって両スラスト方向に回転自在に非接触支持
される。これにより、軸部材2をスラスト方向に回転自
在に非接触支持するスラスト軸受部が構成される。
When the shaft member 2 rotates, dynamic pressure of the lubricant is generated in the radial bearing gap, and the shaft portion 2a of the shaft member 2 rotates in the radial direction by the oil film of the lubricant formed in the radial bearing gap. Freely supported by non-contact. As a result, a radial bearing portion that rotatably supports the shaft member 2 in the radial direction in a non-contact manner is configured. At the same time, a dynamic pressure of the lubricant is generated in the thrust bearing gap, and the flange portion 2b of the shaft member 2 is rotatably supported in both thrust directions in a non-contact manner by an oil film of lubricating oil formed in the thrust bearing gap. . As a result, a thrust bearing portion that rotatably supports the shaft member 2 in the thrust direction in a non-contact manner is configured.

【0029】また、シール空間S内に潤滑剤の油面があ
ることにより、シール空間S内の潤滑剤が、毛細管力に
よってシール空間Sが狭くなる方向(ハウジング7の内
部方向:下方向)に向けて引き込まれる。そのため、ハ
ウジング7の内部から外部への潤滑剤の漏れ出しが効果
的に防止される。さらに、軸部2aの外周面にテーパ面
2a2を設けていることにより、軸部材2の回転時、シ
ール空間S内の潤滑剤が遠心力を受けて、テーパ面2a
2に沿ってシール空間Sが狭くなる方向(ハウジング7
の内部方向:下方向)に向けて引き込まれる。従って、
上記の毛細管力による引き込み作用に加え、遠心力によ
る引き込み作用もあるので、潤滑剤の漏れ出し防止効果
が一層高くなる。
Further, since there is an oil surface of the lubricant in the seal space S, the lubricant in the seal space S is narrowed by the capillary force (inward direction of the housing 7: downward direction). Be drawn towards. Therefore, leakage of the lubricant from the inside of the housing 7 to the outside is effectively prevented. Further, by providing the tapered surface 2a2 on the outer peripheral surface of the shaft portion 2a, when the shaft member 2 rotates, the lubricant in the seal space S receives a centrifugal force, and the tapered surface 2a
2 in the direction in which the seal space S becomes narrower (the housing 7
Inward direction: downward). Therefore,
In addition to the pulling action by the above-mentioned capillary force, there is also the pulling action by the centrifugal force, so that the effect of preventing the lubricant from leaking out is further enhanced.

【0030】ここで、軸部2aのテーパ面2a2のテー
パ角θは、上述した理由により、3°≦θ≦25°の範
囲に設定することが好ましい。
Here, the taper angle θ of the taper surface 2a2 of the shaft portion 2a is preferably set within the range of 3 ° ≦ θ ≦ 25 ° for the reason described above.

【0031】さらに、この実施形態では、ラジアル軸受
面R1、R2の動圧溝(8a1と8a2、8a3と8a
4)を軸方向に非対称形状とし、かつ、軸方向長さが長
い溝領域(m1、m1’)をハウジング7の開口部7a
側(上側)に位置させているので、次のような効果も得
られる。すなわち、特にハウジング7の開口部7a側
(上側)のラジアル軸受面R1において、軸方向長さが
長い溝領域m1をハウジング7の開口部7a側(上側)
に位置させることにより、潤滑剤の引き込み力の差圧に
よって(軸方向長さが長い溝領域m1は潤滑剤の引き込
み力が大きく、軸方向長さが短い溝領域m2は潤滑剤の
引き込み力が小さくなる。)、シール空間S内の潤滑剤
をハウジング7の内部方向(下方)に向けて引き込む作
用が得られる。これにより、潤滑剤の漏れ出し防止効果
がより一層高くなる。
Further, in this embodiment, the dynamic pressure grooves (8a1 and 8a2, 8a3 and 8a) on the radial bearing surfaces R1 and R2 are used.
4) has an axially asymmetrical shape, and the groove regions (m1, m1 ′) having a long axial length are formed in the opening 7a of the housing 7.
Since it is located on the side (upper side), the following effects are also obtained. That is, particularly in the radial bearing surface R1 on the opening 7a side (upper side) of the housing 7, the groove region m1 having a longer axial length is formed on the opening 7a side (upper side) of the housing 7.
Is located in the groove area m1 having a long axial length due to the differential pressure of the lubricant drawing force, and the groove area m2 having a short axial length has a large lubricant drawing force. The effect of drawing the lubricant in the seal space S toward the inside (downward) of the housing 7 is obtained. This further enhances the effect of preventing the lubricant from leaking out.

【0032】また、軸受部材8の下側端面8cおよびハ
ウジング7の内底面7c1に設けられているスパイラル
形状の動圧溝8c1、7c2により、潤滑剤が内径方向
に向けて引き込まれて上方に向いた圧力が発生するが、
この上方への圧力は、ラジアル軸受面R1における上記
の下向きの差圧、および、ラジアル軸受面R2における
同様の下向きの差圧によってバランスされる。
The lubricant is drawn toward the inside by the spiral dynamic pressure grooves 8c1 and 7c2 provided on the lower end surface 8c of the bearing member 8 and the inner bottom surface 7c1 of the housing 7. Generated pressure,
This upward pressure is balanced by the downward pressure difference on the radial bearing surface R1 and the same downward pressure difference on the radial bearing surface R2.

【0033】尚、シール空間Sに隣接する軸部2aの外
周面およびシール部材10の表面のうち少なくとも一方
に溌油剤を塗布することによって、潤滑剤の漏れ出し防
止効果を一層高めることができる。図2(b)に拡大し
て示す例では、軸部2aのテーパ面2a2の上側に位置
する円筒面2a3の一部領域、および、シール部材10
の上側端面10cの内径側領域(同図に破線で示す領
域)に溌油剤fを塗布している。
By applying an oil repellent to at least one of the outer peripheral surface of the shaft portion 2a adjacent to the seal space S and the surface of the seal member 10, the effect of preventing the lubricant from leaking can be further enhanced. In the example shown in an enlarged manner in FIG. 2B, a partial region of the cylindrical surface 2a3 located above the tapered surface 2a2 of the shaft portion 2a, and the seal member 10.
The oil repellent agent f is applied to the inner diameter side region (the region indicated by the broken line in the figure) of the upper end surface 10c of the.

【0034】また、テーパ状のシール空間を形成するテ
ーパ面は、シール部材10の内周面に設けても良い。あ
るいは、シール部材10の内周面と軸部2aの外周面の
双方に設けても良い。
The tapered surface forming the tapered seal space may be provided on the inner peripheral surface of the seal member 10. Alternatively, it may be provided on both the inner peripheral surface of the seal member 10 and the outer peripheral surface of the shaft portion 2a.

【0035】[0035]

【発明の効果】本発明は、以下に示す効果を奏する。The present invention has the following effects.

【0036】(1)テーパ形状のシール空間内に潤滑剤
の油面があることにより、シール空間内の潤滑剤はシー
ル空間が狭くなる方向(ハウジングの内部方向)に向け
て毛細管力によって引き込まれる。そのため、ハウジン
グ内部から外部への潤滑剤の漏れ出しが効果的に防止さ
れる。
(1) Since the oil surface of the lubricant is present in the tapered seal space, the lubricant in the seal space is drawn in by the capillary force in the direction in which the seal space becomes narrower (inward direction of the housing). . Therefore, leakage of the lubricant from the inside of the housing to the outside is effectively prevented.

【0037】(2)シール空間に面するテーパ面のテー
パ角θを3°≦θ≦25°とすることにより、十分なシ
ール効果を得ることができる。
(2) A sufficient sealing effect can be obtained by setting the taper angle θ of the tapered surface facing the sealing space to 3 ° ≦ θ ≦ 25 °.

【0038】(3)ラジアル軸受部を焼結金属からなる
多孔質の軸受部材に設けることにより、軸受部材の内部
の気孔にも潤滑剤を含浸させることができるので、ハウ
ジング内部における潤滑剤の補油量が多くなり、また、
軸受部材の内部と外部との間で潤滑剤の循環も行なわれ
る。そのため、ハウジング内部の潤滑剤の経時劣化が少
なく、高速回転で使用された場合でも、優れた軸受機能
が長期にわたって維持される。また、多孔質の軸受部材
を用いることにより、簡易かつ低コストでラジアル軸受
部を成形することが可能である。
(3) By providing the radial bearing portion on the porous bearing member made of sintered metal, the pores inside the bearing member can be impregnated with the lubricant, so that the lubricant inside the housing is supplemented. The amount of oil increases,
Circulation of the lubricant is also performed between the inside and the outside of the bearing member. Therefore, the deterioration of the lubricant inside the housing with time is small, and the excellent bearing function is maintained for a long time even when used at high speed rotation. Further, by using the porous bearing member, it is possible to mold the radial bearing portion easily and at low cost.

【0039】(4)ラジアル軸受部の動圧溝をヘリング
ボーン形状にすると共に、軸方向に非対称形状とし、か
つ、軸方向長さが長い溝領域をハウジングの開口部側に
位置させることにより、潤滑剤の漏れ出し防止効果をよ
り一層高めることができる。
(4) By making the dynamic pressure groove of the radial bearing portion into a herringbone shape and having an asymmetrical shape in the axial direction and having a groove area having a long axial length on the opening side of the housing, The effect of preventing lubricant from leaking out can be further enhanced.

【0040】(5)ラジアル軸受部を軸方向に間隔をあ
けて複数配設する場合、軸部材の外周面にぬすみ溝を設
けることにより、ハウジング又は軸受部材の形状を簡素
化して、製造コストの低減を図ることができる。
(5) When a plurality of radial bearing portions are arranged at intervals in the axial direction, a hollow groove is provided on the outer peripheral surface of the shaft member to simplify the shape of the housing or the bearing member and reduce the manufacturing cost. It can be reduced.

【0041】(6)ラジアル軸受部間の間隔部を、ラジ
アル軸受部の動圧溝の溝底と段差がない状態で連続させ
ることにより、ラジアル軸受から上記間隔部へ、また、
上記間隔部からラジアル軸受部への潤滑剤の循環が円滑
に行われる。そのため、ハウジング内部の潤滑剤の経時
劣化が少なく、高速回転で使用された場合でも、優れた
軸受機能が長期にわたって維持される。
(6) By making the gap between the radial bearings continuous with the groove bottom of the dynamic pressure groove of the radial bearing without any step, from the radial bearing to the gap described above,
The lubricant is smoothly circulated from the gap portion to the radial bearing portion. Therefore, the deterioration of the lubricant inside the housing with time is small, and the excellent bearing function is maintained for a long time even when used at high speed rotation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態に係る動圧型軸受装置を有す
るスピンドルモータの断面図である。
FIG. 1 is a sectional view of a spindle motor having a dynamic pressure type bearing device according to an embodiment of the present invention.

【図2】本発明の実施形態に係る動圧型軸受装置を示す
断面図である。
FIG. 2 is a cross-sectional view showing a dynamic pressure type bearing device according to an embodiment of the present invention.

【図3】軸受部材の断面図{図3(a)}、下側端面を
示す図{図3(b)}である。
FIG. 3 is a cross-sectional view of the bearing member {FIG. 3 (a)} and a view showing the lower end face {FIG. 3 (b)}.

【図4】ハウジングの内底面を示す図である。FIG. 4 is a diagram showing an inner bottom surface of a housing.

【符号の説明】[Explanation of symbols]

1 動圧型軸受装置 2 軸部材 2a 軸部 2a2 テーパ面 2b フランジ部 7 ハウジング 8 軸受部材 R1 ラジアル軸受部 R2 ラジアル軸受部 R3 間隔部 8a1 動圧溝 8a2 動圧溝 8a3 動圧溝 8a4 動圧溝 10 シール部材 10a 内周面 S シール空間 1 Dynamic pressure bearing device 2 shaft members 2a Shaft 2a2 taper surface 2b Flange part 7 housing 8 Bearing members R1 radial bearing R2 radial bearing R3 spacing part 8a1 dynamic pressure groove 8a2 dynamic pressure groove 8a3 dynamic pressure groove 8a4 dynamic pressure groove 10 Seal member 10a inner peripheral surface S seal space

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3J011 AA04 BA06 CA02 DA01 3J016 AA01 AA02 AA03 BB23 CA02 5H605 AA02 AA03 BB05 BB19 CC02 CC04 CC05 DD05 DD16 EB03 EB13 EB21 EB23 EB28 GG21 5H607 AA05 AA06 BB01 BB14 BB17 CC01 DD01 DD02 DD03 DD09 DD16 GG01 GG03 GG12 GG15 GG25 GG28 KK10    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 3J011 AA04 BA06 CA02 DA01                 3J016 AA01 AA02 AA03 BB23 CA02                 5H605 AA02 AA03 BB05 BB19 CC02                       CC04 CC05 DD05 DD16 EB03                       EB13 EB21 EB23 EB28 GG21                 5H607 AA05 AA06 BB01 BB14 BB17                       CC01 DD01 DD02 DD03 DD09                       DD16 GG01 GG03 GG12 GG15                       GG25 GG28 KK10

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 一端に開口部を有するハウジングと、該
ハウジングに収容された軸部材と、ラジアル軸受隙間に
生じる潤滑剤の動圧作用で前記軸部材をラジアル方向に
非接触支持するラジアル軸受部と、前記ハウジングの開
口部に配置されたシール部材とを備えた動圧型軸受装置
であって、 前記シール部材の内周面とこれに対向する前記軸部材の
外周面との間にシール空間を有し、該シール空間は前記
ハウジングの外部方向に向かって漸次拡大するテーパ形
状をなし、前記ハウジングの内部空間は潤滑剤で充満さ
れており、該潤滑剤の油面が前記シール空間内にあるこ
とを特徴とする動圧型軸受装置。
1. A housing having an opening at one end, a shaft member housed in the housing, and a radial bearing portion for supporting the shaft member in the radial direction in a non-contact manner by a dynamic pressure action of a lubricant generated in a radial bearing gap. And a seal member arranged in the opening of the housing, wherein a seal space is provided between an inner peripheral surface of the seal member and an outer peripheral surface of the shaft member facing the inner peripheral surface. The seal space has a taper shape that gradually expands toward the outside of the housing, the interior space of the housing is filled with a lubricant, and the oil surface of the lubricant is in the seal space. A dynamic pressure type bearing device characterized by the above.
【請求項2】 前記シール空間に面する、前記軸部材の
外周面および前記シール部材の内周面のうち少なくとも
一方がテーパ面であり、該テーパ面のテーパ角θが3°
≦θ≦25°であることを特徴とする請求項1記載の動
圧型軸受装置。
2. At least one of the outer peripheral surface of the shaft member and the inner peripheral surface of the seal member facing the seal space is a tapered surface, and the taper angle θ of the tapered surface is 3 °.
The dynamic pressure type bearing device according to claim 1, wherein ≦ θ ≦ 25 °.
【請求項3】 前記ラジアル軸受部が、焼結金属からな
る多孔質の軸受部材に設けられていることを特徴とする
請求項1記載の動圧型軸受装置。
3. The dynamic pressure type bearing device according to claim 1, wherein the radial bearing portion is provided on a porous bearing member made of sintered metal.
【請求項4】 前記ラジアル軸受部はヘリングボーン形
状の動圧溝を有し、該動圧溝は軸方向に非対称形状であ
り、軸方向長さが長い溝領域が前記ハウジングの開口部
側に位置することを特徴とする請求項1記載の動圧型軸
受装置。
4. The radial bearing portion has a herringbone-shaped dynamic pressure groove, and the dynamic pressure groove has an axially asymmetric shape, and a groove region having a long axial length is provided on the opening side of the housing. The hydrodynamic bearing device according to claim 1, wherein the hydrodynamic bearing device is located.
【請求項5】 前記ラジアル軸受部が軸方向に間隔をあ
けて複数配設されており、前記ラジアル軸受部間の間隔
部に対向する軸部材の外周面にぬすみ溝が設けられてい
ることを特徴とする請求項1記載の動圧型軸受装置。
5. A plurality of the radial bearing portions are arranged at intervals in the axial direction, and a hollow groove is provided on the outer peripheral surface of the shaft member facing the gap portion between the radial bearing portions. The dynamic pressure type bearing device according to claim 1, which is characterized in that.
【請求項6】 前記ラジアル軸受部間の間隔部は、前記
ラジアル軸受部の動圧溝の溝底と段差がない状態で連続
していることを特徴とする請求項5記載の動圧型軸受装
置。
6. A dynamic pressure type bearing device according to claim 5, wherein the gap between the radial bearing portions is continuous with the groove bottom of the dynamic pressure groove of the radial bearing portion without any step. .
JP2001256552A 2001-08-27 2001-08-27 Hydrodyanamic type bearing apparatus Pending JP2003065324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001256552A JP2003065324A (en) 2001-08-27 2001-08-27 Hydrodyanamic type bearing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001256552A JP2003065324A (en) 2001-08-27 2001-08-27 Hydrodyanamic type bearing apparatus

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2005042544A Division JP4738835B2 (en) 2005-02-18 2005-02-18 Hydrodynamic bearing device
JP2007027170A Division JP4739247B2 (en) 2007-02-06 2007-02-06 Hydrodynamic bearing device

Publications (1)

Publication Number Publication Date
JP2003065324A true JP2003065324A (en) 2003-03-05

Family

ID=19084353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001256552A Pending JP2003065324A (en) 2001-08-27 2001-08-27 Hydrodyanamic type bearing apparatus

Country Status (1)

Country Link
JP (1) JP2003065324A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008129675A1 (en) * 2007-04-18 2008-10-30 Fujitsu Limited Spindle motor, carriage assembly, and storage medium drive device
CN101326700B (en) * 2006-03-30 2011-07-20 剪式风能公司 Electric generator for wind and water turbines
US8113715B2 (en) 2006-03-28 2012-02-14 Ntn Corporation Fluid dynamic bearing device
JP2013148160A (en) * 2012-01-19 2013-08-01 Nsk Ltd Rolling bearing unit with encoder
US8782901B2 (en) 2004-04-09 2014-07-22 Ntn Corporation Dynamic bearing device
US11428266B2 (en) 2016-09-06 2022-08-30 Ntn Corporation Slide bearing

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8782901B2 (en) 2004-04-09 2014-07-22 Ntn Corporation Dynamic bearing device
US8113715B2 (en) 2006-03-28 2012-02-14 Ntn Corporation Fluid dynamic bearing device
CN101326700B (en) * 2006-03-30 2011-07-20 剪式风能公司 Electric generator for wind and water turbines
WO2008129675A1 (en) * 2007-04-18 2008-10-30 Fujitsu Limited Spindle motor, carriage assembly, and storage medium drive device
JP2013148160A (en) * 2012-01-19 2013-08-01 Nsk Ltd Rolling bearing unit with encoder
US11428266B2 (en) 2016-09-06 2022-08-30 Ntn Corporation Slide bearing

Similar Documents

Publication Publication Date Title
JP3942482B2 (en) DYNAMIC PRESSURE BEARING DEVICE AND MOTOR HAVING THE SAME
JP4481475B2 (en) Hydrodynamic bearing unit
KR20100089073A (en) Fluid dynamic-pressure bearing device
JP2008008368A (en) Hydrodynamic bearing device
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
JP2007024267A (en) Fluid bearing device and motor equipped with the same
JP2008064302A (en) Hydrodynamic bearing device
JP4360482B2 (en) Hydrodynamic bearing device
JP2001271828A (en) Dynamic pressure type oil-impregnated sintered bearing unit
JP2003065324A (en) Hydrodyanamic type bearing apparatus
JP2007107569A (en) Fluid bearing device and method for manufacturing the same
JP3799176B2 (en) Hydrodynamic sintered oil-impregnated bearing unit
JP4633388B2 (en) Hydrodynamic bearing device
JP2000352416A (en) Dynamic pressure type bearing unit and its manufacture
JP4738835B2 (en) Hydrodynamic bearing device
WO2019139007A1 (en) Fluid dynamic bearing device and motor equipped with same
JP2006329391A (en) Dynamic pressure bearing arrangement
JP4739247B2 (en) Hydrodynamic bearing device
JP3773721B2 (en) Hydrodynamic bearing
JP2001124059A (en) Dynamic pressure bearing unit
JP6981900B2 (en) Fluid dynamic bearing device and motor equipped with it
JP2005195180A (en) Dynamic oil-impregnated sintered bearing unit
JP2007040527A (en) Fluid bearing device
JP2006342926A (en) Thrust bearing unit for motor
JP2002061647A (en) Dynamic pressure type bearing unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061211