JP4633388B2 - Hydrodynamic bearing device - Google Patents

Hydrodynamic bearing device Download PDF

Info

Publication number
JP4633388B2
JP4633388B2 JP2004156421A JP2004156421A JP4633388B2 JP 4633388 B2 JP4633388 B2 JP 4633388B2 JP 2004156421 A JP2004156421 A JP 2004156421A JP 2004156421 A JP2004156421 A JP 2004156421A JP 4633388 B2 JP4633388 B2 JP 4633388B2
Authority
JP
Japan
Prior art keywords
housing
seal member
bearing
bearing sleeve
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004156421A
Other languages
Japanese (ja)
Other versions
JP2005337364A (en
Inventor
政治 堀
栗村  哲弥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2004156421A priority Critical patent/JP4633388B2/en
Priority to US11/134,501 priority patent/US7699528B2/en
Priority to CN 200510074400 priority patent/CN1702339B/en
Publication of JP2005337364A publication Critical patent/JP2005337364A/en
Priority to US12/721,053 priority patent/US20100166346A1/en
Application granted granted Critical
Publication of JP4633388B2 publication Critical patent/JP4633388B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、軸受隙間に生じる潤滑油の動圧作用で軸部材を回転自在に非接触支持する動圧軸受装置に関する。この軸受装置は、情報機器、例えばHDD、FDD等の磁気ディスク装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置、MD、MO等の光磁気ディスク装置などのスピンドルモータ、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、あるいは電気機器、例えば軸流ファンなどの小型モータ用として好適である。   The present invention relates to a hydrodynamic bearing device that rotatably supports a shaft member in a non-contact manner by the hydrodynamic action of lubricating oil generated in a bearing gap. This bearing device is a spindle of information equipment such as magnetic disk devices such as HDD and FDD, optical disk devices such as CD-ROM, CD-R / RW and DVD-ROM / RAM, and magneto-optical disk devices such as MD and MO. It is suitable for a motor, a polygon scanner motor of a laser beam printer (LBP), or an electric device such as a small motor such as an axial fan.

上記各種モータには、高回転精度の他、高速化、低コスト化、低騒音化などが求められている。これらの要求性能を決定づける構成要素の一つに当該モータのスピンドルを支持する軸受があり、近年では、この種の軸受として、上記要求性能に優れた特性を有する動圧軸受の使用が検討され、あるいは実際に使用されている。   In addition to high rotational accuracy, the various motors are required to have high speed, low cost, low noise, and the like. One of the components that determine the required performance is a bearing that supports the spindle of the motor, and in recent years, as this type of bearing, the use of a hydrodynamic bearing having characteristics excellent in the required performance has been studied. Or it is actually used.

例えば、HDD等のディスク駆動装置のスピンドルモータに組込まれる動圧軸受装置では、軸部材をラジアル方向に回転自在に非接触支持するラジアル軸受部と、軸部材をスラスト方向に回転自在に非接触支持するスラスト軸受部とが設けられ、ラジアル軸受部として、軸受スリーブの内周面又は軸部材の外周面に動圧発生用の溝(動圧溝)を設けた動圧軸受が用いられる。スラスト軸受部としては、例えば、軸部材のフランジ部の両端面、又は、これに対向する面(軸受スリーブの端面や、ハウジングに固定されるスラスト部材の端面等)に動圧溝を設けた動圧軸受が用いられる(例えば、特許文献1参照)。   For example, in a hydrodynamic bearing device incorporated in a spindle motor of a disk drive device such as an HDD, a radial bearing portion that rotatably supports a shaft member in a radial direction and a non-contact support that rotates a shaft member in a thrust direction. A dynamic bearing having a dynamic pressure generating groove (dynamic pressure groove) on the inner peripheral surface of the bearing sleeve or the outer peripheral surface of the shaft member is used as the radial bearing portion. As the thrust bearing portion, for example, a motion in which dynamic pressure grooves are provided on both end surfaces of the flange portion of the shaft member, or surfaces facing the flange portion (the end surface of the bearing sleeve, the end surface of the thrust member fixed to the housing, etc.). A pressure bearing is used (for example, refer to Patent Document 1).

通常、軸受スリーブはハウジングの内周の所定位置に固定される。また、ハウジングの内部空間に注油した潤滑油が外部に漏れるのを防止するために、ハウジングの一端側の開口部内周にシール部材を装着する場合がある。
特開2002―061641号公報
Usually, the bearing sleeve is fixed at a predetermined position on the inner periphery of the housing. Further, in order to prevent the lubricating oil injected into the internal space of the housing from leaking to the outside, a seal member may be attached to the inner periphery of the opening on one end side of the housing.
Japanese Patent Laid-Open No. 2002-061641

上記ような動圧軸受装置において、シール部材をハウジングの内周に固定するための一般的手段として圧入が考えられる。しかしながら、圧入では、これに伴うシール部材の外周とハウジングの内周との摺動摩擦によって摩耗粉をはじめ、微細な金属粉や樹脂粉等(以下、「摩耗粉」という。)が生成され、ハウジング内部に侵入する可能性がある。ハウジング内に侵入した摩耗粉は潤滑流体に混じって軸受部に入り、軸受の性能や寿命に好ましくない影響を与える。   In such a hydrodynamic bearing device, press fitting is considered as a general means for fixing the seal member to the inner periphery of the housing. However, in the press-fitting, wear powder, fine metal powder, resin powder and the like (hereinafter referred to as “wear powder”) are generated by sliding friction between the outer periphery of the seal member and the inner periphery of the housing, and the housing. There is a possibility of entering inside. Wear powder that has entered the housing is mixed with the lubricating fluid and enters the bearing portion, which adversely affects the performance and life of the bearing.

圧入以外の方法でシール部材を固定する場合でも、シール部材をハウジングの内周に押し込む際に、シール部材の外周とハウジングの内周との間にかじりを生じ、同様に摩耗粉を発生するおそれがある。   Even when the seal member is fixed by a method other than press fitting, when the seal member is pushed into the inner periphery of the housing, there is a risk of galling between the outer periphery of the seal member and the inner periphery of the housing, and similarly generating abrasion powder. There is.

本発明は、上記摩耗粉を確実に補足してハウジング内部への侵入を防止することを目的とする。   It is an object of the present invention to reliably capture the wear powder and prevent entry into the housing.

本発明は、一端が開口されると共に、他端が閉塞されたハウジングと、ハウジング内部に配置された軸受スリーブと、軸受スリーブに挿入された軸部材と、ハウジングの開口部をシールし、軸受スリーブの端面と当接するシール部材とを具備し、軸部材と軸受スリーブとの間のラジアル軸受隙間に生じる潤滑流体の動圧作用で軸部材と軸受スリーブとを非接触に保持する動圧軸受装置において、シール部材の外周をハウジングの内周に接着固定すると共に、シール部材の外周とハウジングの内周との間に、軸受スリーブと対向するシール部材の端面で開口し、かつハウジングの閉塞側で漸次拡大した、接着剤を保持する第一のテーパ状空間を介在させ、第一のテーパ状空間に保持された接着剤がシール部材の端面と当接する軸受スリーブの端面と接触しておらず、軸受スリーブとシール部材との当接部よりも外径側で、かつ第一のテーパ状空間よりも内径側に、シール部材の端面を軸受スリーブの端面から離隔させて、第一のテーパ状空間に連通するぬすみ部が設けられ、ぬすみ部およびラジアル軸受隙間を含むハウジングの内部空間を潤滑流体が循環流動することを特徴とするものである。ハウジングの他端を閉塞する部分は、ハウジングと一体に形成する他、別部品で形成することもできる。なお、テーパ状空間は、シール部材の両端面のうち少なくとも何れか一方で開口させることができる。 The present invention provides a housing in which one end is opened and the other end is closed, a bearing sleeve disposed inside the housing, a shaft member inserted into the bearing sleeve, and an opening of the housing is sealed. A hydrodynamic bearing device that includes a seal member that abuts against the end face of the shaft and holds the shaft member and the bearing sleeve in a non-contact manner by a hydrodynamic action of a lubricating fluid generated in a radial bearing gap between the shaft member and the bearing sleeve The outer periphery of the seal member is adhesively fixed to the inner periphery of the housing, and is opened between the outer periphery of the seal member and the inner periphery of the housing at the end surface of the seal member facing the bearing sleeve, and gradually on the closed side of the housing enlarged, a first tapered space for holding the adhesive is interposed, the end face and the end abutting the bearing sleeve of the adhesive held in the first tapered space seal member Not in contact with, outside diameter side than the contact portion between the bearing sleeve and the seal member, and the inner diameter side than the first tapered space, and the end face of the sealing member is spaced from the end face of the bearing sleeve In addition, a slimming portion that communicates with the first tapered space is provided, and the lubricating fluid circulates and flows in the internal space of the housing including the slackness portion and the radial bearing gap . The part that closes the other end of the housing may be formed integrally with the housing or may be formed as a separate part. The tapered space can be opened on at least one of both end faces of the seal member.

上記構成によれば、シール部材をハウジングの開口部内周に押し込む際に摩耗粉が生成されたとしても、その摩耗粉が接着剤によって捕捉され、接着剤の固化によって接着剤中に封じ込められる。そのため、シール部材とハウジングとの摺動に伴うハウジング内部への摩耗粉の侵入が防止される。また、シール部材をハウジング内周に押し込む際に接着剤が潤滑剤の役目をするので、摩耗粉の発生が低減され、また、押し込み作業も容易になる。   According to the above configuration, even if wear powder is generated when the seal member is pushed into the inner periphery of the opening of the housing, the wear powder is captured by the adhesive and is contained in the adhesive by solidifying the adhesive. Therefore, invasion of wear powder into the housing due to sliding between the seal member and the housing is prevented. Further, since the adhesive acts as a lubricant when the seal member is pushed into the inner periphery of the housing, the generation of wear powder is reduced and the push-in operation is facilitated.

また、第一のテーパ状空間の毛細管力によって接着剤が第一のテーパ状空間の縮小側に保持されるため、ハウジング内周とシール部材外周との間に確実に接着剤を介在させることができ、高い接着力が得られる。 In addition, since the adhesive is held on the reduced side of the first tapered space by the capillary force of the first tapered space, the adhesive can be reliably interposed between the inner periphery of the housing and the outer periphery of the seal member. And high adhesive strength can be obtained.

特にシール部材をハウジング内周に押し込む際には、シール部材の押し込み方向前方側
に接着剤が回り込む現象が生じ、その回り込みが顕著な場合には、接着剤が互いに当接す
るシール部材の端面と軸受スリーブの端面との間に入り込み、軸受性能に悪影響を与える
ことも予想される。この時、本願発明のように、第一のテーパ状空間が、ハウジングの閉塞側を漸次拡大させた形状であれば、シール部材の押し込み方向前方側に回り込んだ接着剤が、第一のテーパ状空間の毛細管力によってテーパ状部分の縮小側に保持されるため、押し込み方向前方側への接着剤の回り込みが阻止される。また、接着剤の保持効果が高まる結果、接着剤による摩耗粉の捕捉および封じ込め効果も高まる。
In particular, when the seal member is pushed into the inner periphery of the housing, the adhesive wraps around the front side in the push direction of the seal member. When the wraparound is remarkable, the end face of the seal member and the bearing where the adhesive contacts each other It is also expected that it will enter the end face of the sleeve and adversely affect the bearing performance. In this case, as in the present invention, the first tapered space, if a shape gradually to expand the occlusion side of the housing, the adhesive wrapping around the forward side pushing of the seal member, a first tapered Since the taper portion is held on the reduced side of the tapered portion by the capillary force of the cylindrical space, the adhesive is prevented from entering the front side in the pressing direction. In addition, as a result of increasing the adhesive holding effect, the effect of capturing and containing the abrasion powder by the adhesive is also increased.

上記発明において、シール部材の外周とハウジングの内周との間に、シール部材のハウジング開口側端面で開口し、かつハウジングの開口側で漸次拡大した、接着剤を保持する第二のテーパ状空間を介在させたものであれば、シール部材をハウジング内周に押し込んだ後は、第二のテーパ状空間の毛細管力で保持された接着剤により当該テーパ状空間よりもハウジングの閉塞側を封止することができるので、好ましい。この場合、特にハウジングの内周に、第二のテーパ状空間内に位置し、ハウジングの外部側に面した段部を設けておくと、シール部材の押し込み後に第二のテーパ状空間内に残る接着剤の量が多くなるので、封止効果が一層高まる。 In the above invention, the second tapered space holding the adhesive, which is open at the end surface on the housing opening side of the sealing member and gradually enlarged on the opening side of the housing, between the outer periphery of the sealing member and the inner periphery of the housing. as long as it is interposed, after shoved sealing member circumferentially within the housing, seals the closed side of the housing than the tapered space by the adhesive held in the capillary force of the second tapered space This is preferable . In this case, in particular, if a step portion located in the second tapered space and facing the outside of the housing is provided on the inner periphery of the housing, it remains in the second tapered space after the seal member is pushed in . Since the amount of the adhesive increases, the sealing effect is further enhanced.

以上に述べた各テーパ状空間は、シール部材の外周およびハウジングの内周のうち、少なくとも一方にテーパ面を設けることによって形成することができる。好ましくは、シール部材の外周にテーパ面を設けるのが良い。   Each tapered space described above can be formed by providing a tapered surface on at least one of the outer periphery of the seal member and the inner periphery of the housing. Preferably, a tapered surface is provided on the outer periphery of the seal member.

本発明によれば、シール部材をハウジング内周に押し込む際に摩耗粉が生成されたとしても、その摩耗粉が接着剤によって捕捉され、接着剤の固化によって接着剤中に封じ込められる。そのため、摩耗粉を確実に補足することができ、摩耗粉のハウジング内への侵入を防止することができる。また、接着剤が第一のテーパ状空間の毛細管力によってその縮小側に確実に保持されるため、高い固定力を得ることができる。 According to the present invention, even if wear powder is generated when the seal member is pushed into the inner periphery of the housing, the wear powder is captured by the adhesive and is contained in the adhesive by the solidification of the adhesive. Therefore, the wear powder can be reliably captured, and the wear powder can be prevented from entering the housing. Further, since the adhesive is reliably held on the reduced side by the capillary force of the first tapered space, a high fixing force can be obtained.

以下、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described.

図1は、この実施形態に係る動圧軸受装置1を組み込んだ情報機器用スピンドルモータの一構成例を示している。このスピンドルモータは、HDD等のディスク駆動装置に用いられるもので、軸部材2を回転自在に非接触支持する動圧軸受装置1と、軸部材2に装着されたロータ(ディスクハブ)3と、例えば半径方向のギャップを介して対向させたステータ4およびロータマグネット5とを備えている。ディスクハブ3は小径円筒部3aと大径円筒部3bとを備えており、小径円筒部の外周に図示しない磁気ディスク等のディスクが一または複数枚保持される。ステータ4はブラケット6の外周に取付けられ、ロータマグネット5はディスクハブ3の大径円筒部3b内周に取付けられる。動圧軸受装置1のハウジング7は、ブラケット6の内周に装着される。ステータ4に通電すると、ステータ4とロータマグネット5との間の電磁力でロータマグネット5が回転し、それによって、ディスクハブ3および軸部材2が一体となって回転する。   FIG. 1 shows a configuration example of a spindle motor for information equipment incorporating a fluid dynamic bearing device 1 according to this embodiment. This spindle motor is used in a disk drive device such as an HDD, and includes a hydrodynamic bearing device 1 that rotatably supports the shaft member 2 in a non-contact manner, a rotor (disk hub) 3 mounted on the shaft member 2, For example, a stator 4 and a rotor magnet 5 are provided to face each other with a gap in the radial direction. The disk hub 3 includes a small-diameter cylindrical portion 3a and a large-diameter cylindrical portion 3b, and one or more disks such as a magnetic disk (not shown) are held on the outer periphery of the small-diameter cylindrical portion. The stator 4 is attached to the outer periphery of the bracket 6, and the rotor magnet 5 is attached to the inner periphery of the large-diameter cylindrical portion 3 b of the disk hub 3. The housing 7 of the hydrodynamic bearing device 1 is attached to the inner periphery of the bracket 6. When the stator 4 is energized, the rotor magnet 5 is rotated by the electromagnetic force between the stator 4 and the rotor magnet 5, whereby the disk hub 3 and the shaft member 2 are rotated together.

図2は、動圧軸受装置1を示している。この動圧軸受装置1は、一端を開口すると共に、他端を閉塞した有底円筒状のハウジング7と、ハウジング7の内周に固定された軸受スリーブ8およびシール部材10と、軸部材2とを主要な構成部品して構成される。   FIG. 2 shows the hydrodynamic bearing device 1. The hydrodynamic bearing device 1 includes a bottomed cylindrical housing 7 that is open at one end and closed at the other end, a bearing sleeve 8 and a seal member 10 that are fixed to the inner periphery of the housing 7, and a shaft member 2. Consists of main components.

軸受スリーブ8の内周面8aと軸部材2の軸部2aの外周面2a1との間に第1ラジアル軸受部R1と第2ラジアル軸受部R2とが軸方向に離隔して設けられる。また、軸受スリーブ8の下側端面8cと軸部材2のフランジ部2bの上側端面2b1との間に第1スラスト軸受部S1が設けられ、ハウジング7の底部7cの内底面7c1とフランジ部2bの下側端面2b2との間に第2スラスト軸受部S2が設けられる。尚、説明の便宜上、ハウジング7の底部7cの側を下側、これと軸方向反対の側を上側として説明を進める。   Between the inner peripheral surface 8a of the bearing sleeve 8 and the outer peripheral surface 2a1 of the shaft portion 2a of the shaft member 2, the first radial bearing portion R1 and the second radial bearing portion R2 are provided apart from each other in the axial direction. A first thrust bearing portion S1 is provided between the lower end surface 8c of the bearing sleeve 8 and the upper end surface 2b1 of the flange portion 2b of the shaft member 2, and the inner bottom surface 7c1 and the flange portion 2b of the bottom portion 7c of the housing 7 are provided. A second thrust bearing portion S2 is provided between the lower end surface 2b2. For convenience of explanation, the description will proceed with the bottom 7c side of the housing 7 as the lower side and the side opposite to the axial direction as the upper side.

ハウジング7は、例えば、黄銅等の軟質金属材料や熱可塑性樹脂等の樹脂材料で形成され、円筒状の側部7bと、側部7bの下端に一体形成された底部7cとを備えている。側部7bの外周面のうち、その上方部分7b1は他所よりも小径に形成され、図1に示すように、この小径外周面7b1とディスクハブ3の小径円筒部3aの内周面3a1との間にラビリンスシールLが形成されている。底部7cは側部7bと別部材で形成することもできる。   The housing 7 is formed of, for example, a soft metal material such as brass or a resin material such as a thermoplastic resin, and includes a cylindrical side portion 7b and a bottom portion 7c formed integrally with a lower end of the side portion 7b. Of the outer peripheral surface of the side portion 7b, the upper portion 7b1 is formed with a smaller diameter than the other portion. As shown in FIG. 1, the small-diameter outer peripheral surface 7b1 and the inner peripheral surface 3a1 of the small-diameter cylindrical portion 3a of the disc hub 3 are formed. A labyrinth seal L is formed between them. The bottom 7c can also be formed as a separate member from the side 7b.

軸部材2は、例えば、ステンレス鋼等の金属材料で形成され、外周面2a1を円筒状とした軸部2aと、軸部2aの下端に一体又は別体に設けられたフランジ部2bとを備えている。   The shaft member 2 includes, for example, a shaft portion 2a formed of a metal material such as stainless steel and having an outer peripheral surface 2a1 in a cylindrical shape, and a flange portion 2b provided integrally or separately at the lower end of the shaft portion 2a. ing.

軸受スリーブ8は、例えば、焼結金属からなる多孔質体、特に銅を主成分とする燒結金属の多孔質体で円筒状に形成され、ハウジング7の内周面の所定位置に固定される。   The bearing sleeve 8 is formed in a cylindrical shape, for example, of a porous body made of sintered metal, particularly a sintered body of sintered metal mainly composed of copper, and is fixed to a predetermined position on the inner peripheral surface of the housing 7.

この焼結金属で形成された軸受スリーブ8の内周面8aには、第1ラジアル軸受部R1と第2ラジアル軸受部R2のラジアル軸受面となる上下2つの領域が軸方向に離隔して設けられ、該2つの領域には、例えば図3(a)に示すようなヘリングボーン形状の動圧溝8a1、8a2がそれぞれ形成される。上側の動圧溝8a1は、軸方向中心m(上下の傾斜溝間領域の軸方向中央)に対して軸方向非対称に形成されており、軸方向中心mより上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっている。また、軸受スリーブ8の外周面8dには、1又は複数本の軸方向溝8d1が軸方向全長に亙って形成される。この例では、3本の軸方向溝8d1を円周等間隔に形成している。また、軸受スリーブ8の上側端面8bと下側端面8cの外周角部に、それぞれ、チャンファ8e、8fが形成される。   On the inner peripheral surface 8a of the bearing sleeve 8 formed of this sintered metal, two upper and lower regions serving as radial bearing surfaces of the first radial bearing portion R1 and the second radial bearing portion R2 are provided apart in the axial direction. In these two regions, for example, herringbone-shaped dynamic pressure grooves 8a1 and 8a2 as shown in FIG. 3A are formed. The upper dynamic pressure groove 8a1 is formed axially asymmetric with respect to the axial center m (the axial center of the upper and lower inclined groove regions), and the axial dimension X1 of the upper region is lower than the axial center m. It is larger than the axial dimension X2 of the side region. Further, one or a plurality of axial grooves 8d1 are formed on the outer peripheral surface 8d of the bearing sleeve 8 over the entire axial length. In this example, three axial grooves 8d1 are formed at equal intervals around the circumference. Further, chamfers 8e and 8f are formed at the outer peripheral corners of the upper end surface 8b and the lower end surface 8c of the bearing sleeve 8, respectively.

第1スラスト軸受部S1のスラスト軸受面となる、軸受スリーブ8の下側端面8cには、例えば図3(b)に示すようなスパイラル形状の動圧溝8c1が形成される。第2スラスト軸受部S2のスラスト軸受面となる、ハウジング底部7cの内底面7c1にもスパイラル形状の動圧溝(図示せず)が形成される。何れのスラスト軸受面においても、動圧溝の形状として、ヘリングボーン形状や放射溝形状等を採用しても良い。動圧溝を有するスラスト軸受面は、軸部材2のフランジ部2bの両端面2b1、2b2に形成することもできる。   A spiral dynamic pressure groove 8c1 as shown in FIG. 3B, for example, is formed on the lower end surface 8c of the bearing sleeve 8 serving as a thrust bearing surface of the first thrust bearing portion S1. Spiral dynamic pressure grooves (not shown) are also formed on the inner bottom surface 7c1 of the housing bottom 7c, which is the thrust bearing surface of the second thrust bearing S2. In any thrust bearing surface, a herringbone shape, a radial groove shape, or the like may be employed as the shape of the dynamic pressure groove. Thrust bearing surfaces having dynamic pressure grooves can also be formed on both end surfaces 2 b 1 and 2 b 2 of the flange portion 2 b of the shaft member 2.

図3(c)に示すように、軸受スリーブ8の上側端面8bは、半径方向の略中央部に設けられたV字断面の円周溝8b1により、内径側領域8b2と外径側領域8b3に区画され、内径側領域8b2には、1又は複数本の半径方向溝8b21が形成される。この例では、3本の半径方向溝8b21を円周方向に等間隔で形成している。   As shown in FIG. 3C, the upper end surface 8b of the bearing sleeve 8 is formed into an inner diameter side region 8b2 and an outer diameter side region 8b3 by a circumferential groove 8b1 having a V-shaped cross section provided at a substantially central portion in the radial direction. One or a plurality of radial grooves 8b21 are formed in the inner diameter side region 8b2. In this example, three radial grooves 8b21 are formed at equal intervals in the circumferential direction.

シール部材10は、黄銅等の金属材料や樹脂材料で環状に形成され、ハウジング7の開口側となる側部7bの上端部内周に固定されている。シール部材10の内周面10aは、上方を漸次拡径させたテーパ面状をなし、この内周面10aと、これに対向する軸部2aの円筒状の外周面2a1との間にテーパ状のシール空間Aが形成される。シール空間Aは、毛細管力によってハウジング7内部の潤滑油を保持し、そのハウジング7外部への漏れ出しを規制する。図示例とは逆に、シール部材10の内周面を円筒面状にし、これに対向する軸部2aの外周面2a1をテーパ面状にすることでシール空間Aを形成することもできる。   The seal member 10 is formed in a ring shape from a metal material such as brass or a resin material, and is fixed to the inner periphery of the upper end portion of the side portion 7 b that is the opening side of the housing 7. The inner peripheral surface 10a of the seal member 10 has a tapered surface shape in which the diameter is gradually expanded upward, and a tapered shape is formed between the inner peripheral surface 10a and the cylindrical outer peripheral surface 2a1 of the shaft portion 2a facing the inner peripheral surface 10a. The sealing space A is formed. The seal space A retains the lubricating oil inside the housing 7 by capillary force, and restricts leakage to the outside of the housing 7. Contrary to the illustrated example, the seal space 10 can also be formed by making the inner peripheral surface of the seal member 10 into a cylindrical surface and forming the outer peripheral surface 2a1 of the shaft portion 2a facing this into a tapered surface.

図4に拡大して示すように、シール部材10の下側端面10bには段差があり、段差の内径側領域10b1が軸受スリーブ8の上側端面8bと接触し、その外径側領域10b2が軸受スリーブ8の上側端面8bから離隔して当該上側端面8bとの間にヌスミ部Pを形成する。   4, the lower end surface 10b of the seal member 10 has a step, the inner diameter side region 10b1 of the step contacts the upper end surface 8b of the bearing sleeve 8, and the outer diameter side region 10b2 is a bearing. A Nusumi portion P is formed between the sleeve 8 and the upper end surface 8b apart from the upper end surface 8b.

シール部材10の外周10cは、円筒面10c1と、円筒面10c1の下端から内径側傾斜方向に延びて下側端面10bに至るテーパ面10c2と、円筒面10c1の上端から内径側傾斜方向に延びて上側端面10dに至るテーパ面10c3とで構成される。円筒面10c1は軸線と平行であり、ハウジング開口部の内周7dに接着剤を介在させたすきま嵌めで嵌合されている。   An outer periphery 10c of the seal member 10 extends in a cylindrical surface 10c1, a tapered surface 10c2 extending from the lower end of the cylindrical surface 10c1 in the inner diameter side inclination direction to the lower end surface 10b, and extending from the upper end of the cylindrical surface 10c1 in the inner diameter side inclination direction. And a tapered surface 10c3 reaching the upper end surface 10d. The cylindrical surface 10c1 is parallel to the axis, and is fitted to the inner periphery 7d of the housing opening by a clearance fit with an adhesive interposed.

この実施形態の動圧軸受装置1は、例えば、次のような工程で組立てる。   The hydrodynamic bearing device 1 of this embodiment is assembled by the following process, for example.

まず、ハウジング7内に軸部材2を配し、次いで軸受スリーブ8をその内周孔に軸部2aを挿入しつつハウジング7の内周7dに押し込み、その下側端面8cをハウジング7の底部側に形成した段部7eに当接させる。これにより、軸受スリーブ8がハウジング7に対して軸方向に位置決めされる。尚、ハウジング7の内周7dに対する軸受スリーブ8の固定は、圧入、接着、圧入と接着の併用、その他の適宜の固定手段で行うことができる。   First, the shaft member 2 is arranged in the housing 7, and then the bearing sleeve 8 is pushed into the inner periphery 7 d of the housing 7 while the shaft portion 2 a is inserted into the inner peripheral hole thereof, and the lower end face 8 c is set to the bottom side of the housing 7. It is made to contact | abut to the step part 7e formed. As a result, the bearing sleeve 8 is positioned in the axial direction with respect to the housing 7. The bearing sleeve 8 can be fixed to the inner circumference 7d of the housing 7 by press-fitting, adhesion, combined use of press-fitting and adhesion, or other appropriate fixing means.

その後、シール部材10をハウジング7の一端側の開口部に押し込み、接着剤の介在の下で所定位置まで押し進め、接着剤の固化によりハウジング7に固定する。具体的には、ハウジング7の内周7dの上端部(シール部材10の固定領域)に接着剤を塗布し、その後、シール部材10をハウジング7の上端開口部から内周7dに押し込んで、シール部材10の下側端面10b(内径側領域10b1)を軸受スリーブ8の上側端面8bに当接させる。シール部材10を押し込む際、円筒面10c1と内周7dとの間に介在する接着剤が潤滑剤の役目をするので、摩耗粉の発生が低減され、また、押し込み作業も容易になる。 Thereafter, the seal member 10 is pushed into the opening on one end side of the housing 7, pushed forward to a predetermined position under the presence of an adhesive, and fixed to the housing 7 by solidification of the adhesive. Specifically, an adhesive is applied to the upper end portion (fixed region of the seal member 10) of the inner periphery 7d of the housing 7, and then the seal member 10 is pushed into the inner periphery 7d from the upper end opening of the housing 7 to seal the seal. The lower end surface 10 b (inner diameter side region 10 b 1) of the member 10 is brought into contact with the upper end surface 8 b of the bearing sleeve 8. When the seal member 10 is pushed in, the adhesive interposed between the cylindrical surface 10c1 and the inner periphery 7d serves as a lubricant, so that the generation of wear powder is reduced and the push-in operation is facilitated.

図4は、シール部材10の押し込みが完了した状態を示している。この状態では、シール部材10の外周10cの円筒面10c1がハウジング7の内周7dと図示しない接着剤を介して対向する。この部分よりもハウジング7の閉塞側で第一のテーパ状空間T1が隣接し、ハウジング7の開口側で第二のテーパ状空間T2が隣接している。第一のテーパ状空間T1は、シール部材10の外周10cの下側のテーパ面10c2とハウジング7の内周7dとの間に形成され、シール部材10の押し込み方向となる下側(ハウジング閉塞側)に向かって漸次拡大した形状を有する。また、第二のテーパ状空間T2は、シール部材10の外周10cの上側のテーパ面10c3とハウジング7の内周7dとの間に形成され、ハウジング7の開口側である上方に向かって漸次拡大した形状を有する。テーパ状空間T1、T2の何れもシール部材10の下側端面10bおよび上側端面10dに開口し、特に第一のテーパ状空間T1は、ヌスミ部Pおよび円周溝8b1とも連通している。   FIG. 4 shows a state where the pushing of the seal member 10 is completed. In this state, the cylindrical surface 10c1 of the outer periphery 10c of the seal member 10 faces the inner periphery 7d of the housing 7 via an adhesive (not shown). The first tapered space T1 is adjacent to the closed side of the housing 7 from this portion, and the second tapered space T2 is adjacent to the opening side of the housing 7. The first tapered space T1 is formed between the lower tapered surface 10c2 of the outer periphery 10c of the seal member 10 and the inner periphery 7d of the housing 7, and is a lower side (housing closed side) in which the seal member 10 is pushed in. It has a shape that gradually expands toward). The second tapered space T2 is formed between the upper tapered surface 10c3 of the outer periphery 10c of the seal member 10 and the inner periphery 7d of the housing 7, and gradually expands upward toward the opening side of the housing 7. Has the shape. Both of the tapered spaces T1 and T2 open to the lower end surface 10b and the upper end surface 10d of the seal member 10, and the first tapered space T1 is in particular in communication with the pusmy part P and the circumferential groove 8b1.

シール部材10の押し込みに伴って、シール部材10の圧入方向前方側に回り込んだ接着剤Mは、第一のテーパ状空間T1の毛細管力によって保持される。押し込みの際、シール部材10とハウジング内周7dとのかじり等によって発生した摩耗粉は、第一のテーパ状空間T1内の接着剤Mによって捕捉され、接着剤Mの固化によって接着剤M中に封じ込められる。第一のテーパ状空間T1による接着剤Mの保持効果により、接着剤Mの軸受スリーブ8の端面8b側への流動が阻止されると共に、接着剤Mによる摩耗粉の捕捉および封じ込め効果も高められる。   As the seal member 10 is pushed in, the adhesive M that wraps around the front side in the press-fitting direction of the seal member 10 is held by the capillary force of the first tapered space T1. At the time of pushing in, wear powder generated by galling between the seal member 10 and the housing inner periphery 7d is captured by the adhesive M in the first tapered space T1, and the adhesive M solidifies into the adhesive M. Contained. Due to the holding effect of the adhesive M by the first tapered space T1, the flow of the adhesive M toward the end face 8b of the bearing sleeve 8 is prevented, and the effect of capturing and containing the abrasion powder by the adhesive M is also enhanced. .

また、第二のテーパ状空間T2の毛細管力によって接着剤Mが保持され、その接着剤Mによって、これよりもハウジング内部側でシール部材外周10cとハウジング内周7dとの間の隙間が確実に封止される。特にこの場合、図4に破線で示すように、第二のテーパ状空間T2に面するハウジング7の内周7dに段部12を設けておくと、シール部材10の装着後に第二のテーパ状空間T2内に残る接着剤Mの量が多くなるので、封止効果が一層高まる。   In addition, the adhesive M is held by the capillary force of the second tapered space T2, and the adhesive M ensures a gap between the seal member outer periphery 10c and the housing inner periphery 7d on the inner side of the housing. Sealed. Particularly in this case, as shown by a broken line in FIG. 4, if the step portion 12 is provided on the inner periphery 7 d of the housing 7 facing the second tapered space T <b> 2, the second tapered shape after the seal member 10 is mounted. Since the amount of the adhesive M remaining in the space T2 increases, the sealing effect is further enhanced.

以上の実施形態では、シール部材10をハウジング7の内周7dにすきま嵌めで押し込む場合を例示したが、シール部材10をハウジング7の内周に接着剤の介在の下で圧入して固定することもできる。圧入の場合、ハウジング内周7dとの摺動で摩耗粉の発生量も多くなるが、その場合でも摩耗粉のハウジング7の内部への侵入を確実に防止することができる。   In the above embodiment, the case where the seal member 10 is pushed into the inner periphery 7d of the housing 7 with a clearance fit is illustrated. However, the seal member 10 is press-fitted and fixed to the inner periphery of the housing 7 under the presence of an adhesive. You can also. In the case of press-fitting, the amount of generated abrasion powder increases due to sliding with the housing inner periphery 7d, but even in that case, the entry of abrasion powder into the housing 7 can be reliably prevented.

また、以上の実施形態では、第一のテーパ状空間T1および第二のテーパ状空間T2の双方を設ける場合を例示しているが、必要に応じて何れか一方のテーパ状空間のみを設けることもできる。   Moreover, although the above embodiment illustrates the case where both the first tapered space T1 and the second tapered space T2 are provided, only one of the tapered spaces is provided as necessary. You can also.

上記のようにして組立が完了すると、軸部材2の軸部2aは軸受スリーブ8の
内周面8aに挿入され、フランジ部2bは軸受スリーブ8の下側端面8cとハウジング7の内底面7c1との間の空間部に収容された状態となる。その後、シール部材10でシールされたハウジング7の内部空間に、軸受スリーブ8の内部気孔を含め、潤滑流体、例えば潤滑油を充満させる。潤滑油の油面は、シール空
間Aの範囲内に維持される。
When the assembly is completed as described above, the shaft portion 2a of the shaft member 2 is inserted into the inner peripheral surface 8a of the bearing sleeve 8, and the flange portion 2b is connected to the lower end surface 8c of the bearing sleeve 8 and the inner bottom surface 7c1 of the housing 7. It will be in the state accommodated in the space part between. Thereafter, the internal space of the housing 7 sealed with the seal member 10 is filled with a lubricating fluid, for example, lubricating oil, including the internal pores of the bearing sleeve 8. The oil level of the lubricating oil is maintained within the range of the seal space A.

軸部材2の回転時、軸受スリーブ8の内周面8aのラジアル軸受面となる領域(上下2箇所の領域)は、それぞれ、軸部2aの外周面2a1とラジアル軸受隙間を介して対向する。また、軸受スリーブ8の下側端面8cのスラスト軸受面となる領域はフランジ部2bの上側端面2b1とスラスト軸受隙間を介して対向し、ハウジング7の内底面7c1のスラスト軸受面となる領域はフランジ部2bの下側端面2b2とスラスト軸受隙間を介して対向する。そして、軸部材2の回転に伴い、上記ラジアル軸受隙間に潤滑油の動圧が発生し、軸部材2の軸部2aが上記ラジアル軸受隙間内に形成される潤滑油の油膜によってラジアル方向に回転自在に非接触支持される。これにより、軸部材2をラジアル方向に回転自在に非接触支持する第1ラジアル軸受部R1と第2ラジアル軸受部R2とが構成される。同時に、上記スラスト軸受隙間に潤滑油の動圧が発生し、軸部材2のフランジ部2bが上記スラスト軸受隙間内に形成される潤滑油の油膜によって両スラスト方向に回転自在に非接触支持される。これにより、軸部材2をスラスト方向に回転自在に非接触支持する第1スラスト軸受部S1と第2スラスト軸受部S2とが構成される。 When the shaft member 2 rotates, the regions (two upper and lower regions) of the inner peripheral surface 8a of the bearing sleeve 8 are opposed to the outer peripheral surface 2a1 of the shaft portion 2a via the radial bearing gap. Further, the region serving as the thrust bearing surface of the lower end surface 8c of the bearing sleeve 8 faces the upper end surface 2b1 of the flange portion 2b via the thrust bearing gap, and the region serving as the thrust bearing surface of the inner bottom surface 7c1 of the housing 7 is the flange. It faces the lower end surface 2b2 of the portion 2b via a thrust bearing gap. As the shaft member 2 rotates, the dynamic pressure of the lubricating oil is generated in the radial bearing gap, and the shaft portion 2a of the shaft member 2 is rotated in the radial direction by the lubricating oil film formed in the radial bearing gap. It is supported non-contact freely. Thus, the first radial bearing portion R1 and the second radial bearing portion R2 that support the shaft member 2 in a non-contact manner so as to be rotatable in the radial direction are configured. At the same time, the dynamic pressure of the lubricating oil is generated in the thrust bearing gap, and the flange portion 2b of the shaft member 2 is rotatably supported in both thrust directions by the oil film of the lubricating oil formed in the thrust bearing gap. . Thereby, the first thrust bearing portion S1 and the second thrust bearing portion S2 that support the shaft member 2 in a non-contact manner so as to be rotatable in the thrust direction are configured.

前述したように、第1ラジアル軸受部R1の動圧溝8a1は、軸方向中心mに
対して軸方向非対称に形成されており、軸方向中心mより上側領域の軸方向寸法
X1が下側領域の軸方向寸法X2よりも大きくなっている{図3(a)}。その
ため、軸部材2の回転時、動圧溝8a1による潤滑油の引き込み力(ポンピング
力)は上側領域が下側領域に比べて相対的に大きくなる。そして、この引き込み
力の差圧によって、軸受スリーブ8の内周面8aと軸部2aの外周面2a1との
間の隙間に満たされた潤滑油が下方に流動し、第1スラスト軸受部S1のスラス
ト軸受隙間→軸方向溝8d1→ヌスミ部P→円周溝8b1→半径方向溝8b21
という経路を循環して、軸受スリーブ8の内周面8aと軸部2aの外周面2a1
との間の隙間に戻り、第1ラジアル軸受部R1のラジアル軸受隙間に再び引き込
まれる。このように、潤滑油がハウジング7の内部空間を流動循環するように構
成することで、内部空間内の潤滑油の圧力が局部的に負圧になる現象を防止して
、負圧発生に伴う気泡の生成、気泡の生成に起因する潤滑油の漏れや振動の発生
等の問題を解消することができる。また、何らかの理由で潤滑油中に気泡が混入
した場合でも、気泡が潤滑油に伴って循環する際にシール空間A内の潤滑油の油
面(気液界面)から外気に排出されるので、気泡による悪影響はより一層効果的
に防止される。
As described above, the dynamic pressure groove 8a1 of the first radial bearing portion R1 is formed to be axially asymmetric with respect to the axial center m, and the axial dimension X1 of the upper region from the axial center m is the lower region. It is larger than the axial dimension X2 of {Fig. 3 (a)}. Therefore, when the shaft member 2 rotates, the lubricating oil pulling force (pumping force) by the dynamic pressure groove 8a1 is relatively larger in the upper region than in the lower region. Then, due to the differential pressure of the pulling force, the lubricating oil filled in the gap between the inner peripheral surface 8a of the bearing sleeve 8 and the outer peripheral surface 2a1 of the shaft portion 2a flows downward, and the first thrust bearing portion S1 Thrust bearing gap → axial groove 8d1 → Nusumi part P → circumferential groove 8b1 → radial groove 8b21
The inner circumferential surface 8a of the bearing sleeve 8 and the outer circumferential surface 2a1 of the shaft portion 2a are circulated through the path.
Is returned to the radial bearing gap of the first radial bearing portion R1. In this way, the structure in which the lubricating oil flows and circulates in the internal space of the housing 7 prevents a phenomenon in which the pressure of the lubricating oil in the internal space becomes a negative pressure locally, resulting in the generation of negative pressure. Problems such as generation of bubbles, leakage of lubricating oil and generation of vibration due to generation of bubbles can be solved. Even if bubbles are mixed in the lubricating oil for some reason, when the bubbles circulate along with the lubricating oil, it is discharged from the oil surface (gas-liquid interface) of the lubricating oil in the seal space A to the outside air. The adverse effects due to the bubbles are more effectively prevented.

なお、各軸受部R1・R2、T1・T2の軸受構造は以上の例示には限定されず、種々の軸受構造に変更することができる。例えば、ラジアル軸受部R1、R2は円弧軸受やステップ軸受で構成することができ、スラスト軸受部T1、T2は軸部材2の軸端をハウジング底部7cで接触支持するピボット軸受で構成することもできる。   In addition, the bearing structure of each bearing part R1 * R2 and T1 * T2 is not limited to the above illustration, It can change into various bearing structures. For example, the radial bearing portions R1 and R2 can be constituted by arc bearings or step bearings, and the thrust bearing portions T1 and T2 can also be constituted by pivot bearings that contact and support the shaft end of the shaft member 2 at the housing bottom portion 7c. .

本発明に係る動圧軸受装置を使用した情報機器用スピンドルモータの断面図である。1 is a cross-sectional view of a spindle motor for information equipment using a fluid dynamic bearing device according to the present invention. 本発明に係る動圧軸受装置の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the hydrodynamic bearing apparatus which concerns on this invention. 軸受スリーブの断面図{図3(a)}、下側端面{図3(b)}、上側端面{図3(c)}を示す図である。It is a figure which shows sectional drawing {FIG. 3 (a)}, a lower end surface {FIG. 3 (b)}, and an upper end surface {FIG. 3 (c)} of a bearing sleeve. ハウジングの上端側内周の周辺を示す部分拡大断面図である。It is a partial expanded sectional view which shows the periphery of the upper end side inner periphery of a housing.

符号の説明Explanation of symbols

1 動圧軸受装置
2 軸部材
2a 軸部
2b フランジ部
7 ハウジング
7c 底部
7c1 内底面
8 軸受スリーブ
8a 内周面
10 シール部材
10c 外周
10c1 円筒面
10c2 テーパ面
10c3 テーパ面
R1 ラジアル軸受部
R2 ラジアル軸受部
S1 スラスト軸受部
S2 スラスト軸受部
M 接着剤
T1 テーパ状空間(第一のテーパ状空間)
T2 テーパ状空間(第二のテーパ状空間)
DESCRIPTION OF SYMBOLS 1 Dynamic pressure bearing apparatus 2 Shaft member 2a Shaft part 2b Flange part 7 Housing 7c Bottom part 7c1 Inner bottom surface 8 Bearing sleeve 8a Inner peripheral surface 10 Seal member 10c Outer periphery 10c1 Cylindrical surface 10c2 Tapered surface 10c3 Taper surface R1 Radial bearing part R2 Radial bearing part S1 Thrust bearing portion S2 Thrust bearing portion M Adhesive T1 Tapered space (first tapered space)
T2 Tapered space (second tapered space)

Claims (4)

一端が開口されると共に、他端が閉塞されたハウジングと、ハウジング内部に配置された軸受スリーブと、軸受スリーブに挿入された軸部材と、ハウジングの開口部をシールし、軸受スリーブの端面と当接するシール部材とを具備し、軸部材と軸受スリーブとの間のラジアル軸受隙間に生じる潤滑流体の動圧作用で軸部材と軸受スリーブとを非接触に保持する動圧軸受装置において、
シール部材の外周をハウジングの内周に接着固定すると共に、シール部材の外周とハウジングの内周との間に、軸受スリーブと対向するシール部材の端面で開口し、かつハウジングの閉塞側で漸次拡大した、接着剤を保持する第一のテーパ状空間を介在させ、
第一のテーパ状空間に保持された接着剤がシール部材の端面と当接する軸受スリーブの端面と接触しておらず、
軸受スリーブとシール部材との当接部よりも外径側で、かつ第一のテーパ状空間よりも内径側に、シール部材の端面を軸受スリーブの端面から離隔させて、第一のテーパ状空間に連通するぬすみ部が設けられ、
ぬすみ部およびラジアル軸受隙間を含むハウジングの内部空間を潤滑流体が循環流動することを特徴とする動圧軸受装置。
A housing having one end opened and the other end closed, a bearing sleeve disposed inside the housing, a shaft member inserted into the bearing sleeve, and an opening of the housing are sealed to contact the end surface of the bearing sleeve. A hydrodynamic bearing device comprising a sealing member in contact with the shaft member and the bearing sleeve in a non-contact manner by a hydrodynamic action of a lubricating fluid generated in a radial bearing gap between the shaft member and the bearing sleeve;
The outer periphery of the seal member is bonded and fixed to the inner periphery of the housing. The seal member opens between the outer periphery of the seal member and the inner periphery of the housing at the end face of the seal member facing the bearing sleeve, and gradually expands on the closed side of the housing. The first tapered space holding the adhesive is interposed,
The adhesive held in the first tapered space is not in contact with the end surface of the bearing sleeve that contacts the end surface of the seal member,
The end face of the seal member is separated from the end face of the bearing sleeve on the outer diameter side of the contact portion between the bearing sleeve and the seal member and on the inner diameter side of the first taper space. There is a thin section that communicates with the
A hydrodynamic bearing device, characterized in that a lubricating fluid circulates and flows in an internal space of a housing including a relief portion and a radial bearing gap .
シール部材の外周とハウジングの内周との間に、シール部材のハウジング開口側端面で開口し、かつハウジングの開口側で漸次拡大した、接着剤を保持する第二のテーパ状空間を介在させた請求項1に記載の動圧軸受装置。   Between the outer periphery of the seal member and the inner periphery of the housing, a second tapered space that holds the adhesive and that opens at the housing opening side end surface of the seal member and gradually expands at the opening side of the housing is interposed. The hydrodynamic bearing device according to claim 1. シール部材の外周に、請求項1又は2に記載したテーパ状空間を形成するテーパ面を設けた動圧軸受装置。   A hydrodynamic bearing device in which a tapered surface forming a tapered space according to claim 1 or 2 is provided on an outer periphery of a seal member. 請求項1〜3の何れか一項に記載の動圧軸受装置を備えるモータ。   A motor provided with the hydrodynamic bearing apparatus as described in any one of Claims 1-3.
JP2004156421A 2004-05-26 2004-05-26 Hydrodynamic bearing device Active JP4633388B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004156421A JP4633388B2 (en) 2004-05-26 2004-05-26 Hydrodynamic bearing device
US11/134,501 US7699528B2 (en) 2004-05-26 2005-05-23 Dynamic bearing device
CN 200510074400 CN1702339B (en) 2004-05-26 2005-05-26 Dynamic bearing device
US12/721,053 US20100166346A1 (en) 2004-05-26 2010-03-10 Dynamic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004156421A JP4633388B2 (en) 2004-05-26 2004-05-26 Hydrodynamic bearing device

Publications (2)

Publication Number Publication Date
JP2005337364A JP2005337364A (en) 2005-12-08
JP4633388B2 true JP4633388B2 (en) 2011-02-16

Family

ID=35491161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004156421A Active JP4633388B2 (en) 2004-05-26 2004-05-26 Hydrodynamic bearing device

Country Status (2)

Country Link
JP (1) JP4633388B2 (en)
CN (1) CN1702339B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017022801A (en) * 2015-07-07 2017-01-26 ミネベア株式会社 motor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009197933A (en) * 2008-02-22 2009-09-03 Nok Corp Seal structure for metal fitting parts
JP2012225386A (en) 2011-04-18 2012-11-15 Ntn Corp Fluid dynamic pressure bearing device
WO2019112057A1 (en) * 2017-12-08 2019-06-13 Ntn株式会社 Fluid dynamic bearing device
JP7023754B2 (en) * 2017-12-08 2022-02-22 Ntn株式会社 Fluid dynamic bearing equipment
CN109538308B (en) * 2019-01-25 2023-09-19 沈阳航空航天大学 Brush type sealing structure with wedge block capable of adjusting radial clearance between brush filament bundle and rotor surface

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09217736A (en) * 1996-02-09 1997-08-19 Sankyo Seiki Mfg Co Ltd Dynamic pressure bearing device
JP2003056555A (en) * 2001-08-14 2003-02-26 Nippon Densan Corp Dynamic pressure bearing device, and method for fixing thrust plate to shaft
JP2003139132A (en) * 2001-11-07 2003-05-14 Matsushita Electric Ind Co Ltd Dynamic pressure bearing device and its manufacturing method
JP2003301835A (en) * 2002-04-10 2003-10-24 Koyo Seiko Co Ltd Hydrodynamic bearing
JP2003336636A (en) * 2002-05-21 2003-11-28 Ntn Corp Dynamic pressure bearing device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5580175A (en) * 1995-09-07 1996-12-03 Quantum Corporation Bearing with particle trap
US5743655A (en) * 1997-03-12 1998-04-28 Patent Translation And Consulting Co., Inc. Self-acting fluid dynamic bearing support and method of assembling thereof
US6390681B1 (en) * 1999-04-05 2002-05-21 Ntn Corporation Dynamic pressure bearing-unit
JP2005045924A (en) * 2003-07-22 2005-02-17 Nippon Densan Corp Spindle motor, method of manufacturing rotor applied to the spindle motor, and hard disc drive equipped with the spindle motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09217736A (en) * 1996-02-09 1997-08-19 Sankyo Seiki Mfg Co Ltd Dynamic pressure bearing device
JP2003056555A (en) * 2001-08-14 2003-02-26 Nippon Densan Corp Dynamic pressure bearing device, and method for fixing thrust plate to shaft
JP2003139132A (en) * 2001-11-07 2003-05-14 Matsushita Electric Ind Co Ltd Dynamic pressure bearing device and its manufacturing method
JP2003301835A (en) * 2002-04-10 2003-10-24 Koyo Seiko Co Ltd Hydrodynamic bearing
JP2003336636A (en) * 2002-05-21 2003-11-28 Ntn Corp Dynamic pressure bearing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017022801A (en) * 2015-07-07 2017-01-26 ミネベア株式会社 motor

Also Published As

Publication number Publication date
JP2005337364A (en) 2005-12-08
CN1702339A (en) 2005-11-30
CN1702339B (en) 2011-01-26

Similar Documents

Publication Publication Date Title
JP4481475B2 (en) Hydrodynamic bearing unit
JP3942482B2 (en) DYNAMIC PRESSURE BEARING DEVICE AND MOTOR HAVING THE SAME
JP2008008368A (en) Hydrodynamic bearing device
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
JP2007024267A (en) Fluid bearing device and motor equipped with the same
JP2008064302A (en) Hydrodynamic bearing device
US20100166346A1 (en) Dynamic bearing device
JP4360482B2 (en) Hydrodynamic bearing device
JP4633388B2 (en) Hydrodynamic bearing device
JP2005337490A (en) Dynamic pressure bearing device
JP4309642B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP4657734B2 (en) Hydrodynamic bearing device
JP4754418B2 (en) Hydrodynamic bearing device
JP2006112614A (en) Dynamic pressure bearing device
JP2005163903A (en) Dynamic bearing device
JPH11311253A (en) Dynamic pressure type oil-impregnated sintered bearing unit
JP2003065324A (en) Hydrodyanamic type bearing apparatus
JP2006329391A (en) Dynamic pressure bearing arrangement
JP2004176778A (en) Dynamic pressure bearing device, method of manufacturing the same, and motor using the same
JP2008075687A (en) Fluid bearing device
JP2007040527A (en) Fluid bearing device
JP2009103179A (en) Fluid bearing device
JP2004197889A (en) Dynamic-pressure bearing device
JP2004116623A (en) Fluid bearing device
JP4738835B2 (en) Hydrodynamic bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091002

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100806

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101117

R150 Certificate of patent or registration of utility model

Ref document number: 4633388

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250