JP6981900B2 - Fluid dynamic bearing device and motor equipped with it - Google Patents

Fluid dynamic bearing device and motor equipped with it Download PDF

Info

Publication number
JP6981900B2
JP6981900B2 JP2018041842A JP2018041842A JP6981900B2 JP 6981900 B2 JP6981900 B2 JP 6981900B2 JP 2018041842 A JP2018041842 A JP 2018041842A JP 2018041842 A JP2018041842 A JP 2018041842A JP 6981900 B2 JP6981900 B2 JP 6981900B2
Authority
JP
Japan
Prior art keywords
bearing
bearing member
oil
radial
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018041842A
Other languages
Japanese (ja)
Other versions
JP2019066030A (en
Inventor
正志 山郷
元霜 宋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to PCT/JP2018/035651 priority Critical patent/WO2019065719A1/en
Publication of JP2019066030A publication Critical patent/JP2019066030A/en
Application granted granted Critical
Publication of JP6981900B2 publication Critical patent/JP6981900B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Description

本発明は、流体動圧軸受装置およびこれを備えるモータに関する。 The present invention relates to a fluid dynamic bearing device and a motor including the same.

周知のように、流体動圧軸受装置は、高速回転、高回転精度および低騒音等の特長を有する。このため、流体動圧軸受装置は、例えば、HDD等のディスク駆動装置に組み込まれるスピンドルモータ用、PC等に組み込まれるファンモータ用、あるいはレーザビームプリンタ(LBP)に組み込まれるポリゴンスキャナモータ用の軸受装置などとして使用されている。 As is well known, the fluid dynamic bearing device has features such as high speed rotation, high rotation accuracy and low noise. Therefore, the hydrodynamic bearing device is, for example, a bearing for a spindle motor incorporated in a disk drive device such as an HDD, a fan motor incorporated in a PC or the like, or a polygon scanner motor incorporated in a laser beam printer (LBP). It is used as a device.

流体動圧軸受装置には、軸受部材等を収容したハウジングの内部空間全域を潤滑油で満たしたフルフィルタイプと、ハウジングの内部空間の一部領域に潤滑油を介在させた(内部空間に潤滑油と空気を混在させた)パーシャルフィルタイプとがあり、例えば下記の特許文献1には、パーシャルフィルタイプの流体動圧軸受装置の一例が開示されている。 The hydrodynamic bearing device is a full-fill type in which the entire internal space of the housing containing the bearing members is filled with lubricating oil, and the lubricating oil is interposed in a part of the internal space of the housing (lubricating oil in the internal space). There is a partial fill type (a mixture of air and air). For example, Patent Document 1 below discloses an example of a partial fill type hydraulic pressure bearing device.

特許文献1の流体動圧軸受装置は、含油焼結金属からなり、支持すべき軸との間にラジアル軸受隙間を形成する軸受部材と、軸方向一方側の端部が開口すると共に軸方向他方側の端部が閉塞された有底筒状をなし、軸受部材を収容したハウジングと、ハウジングの一端開口部をシールするためのシール隙間を形成するシール部材と、軸、軸受部材およびハウジングの底部で画成される密閉空間をシール隙間を介して外気に開放する通気路とを備え、通気路の一部は、軸受部材の一端外周部とハウジングの筒部との間に設けられた環状の油溜り部(保油空間)に開口している。また、軸受部材の一端面とシール部材の他端面との間には、径方向外側および径方向内側の端部が保油空間およびシール隙間にそれぞれ開口した(保油空間とシール隙間とを連通させる)軸方向隙間が形成されている。 The hydrodynamic bearing device of Patent Document 1 is made of an oil-impregnated sintered metal, and has a bearing member that forms a radial bearing gap with a shaft to be supported, and an end portion on one side in the axial direction is opened and the other end in the axial direction is opened. A bottomed tubular shape with a closed end on the side, a housing that houses the bearing member, a sealing member that forms a sealing gap to seal one end opening of the housing, and a shaft, bearing member, and bottom of the housing. It is provided with a ventilation path that opens the sealed space defined by the above to the outside air through a seal gap, and a part of the ventilation path is an annular shape provided between the outer peripheral portion of one end of the bearing member and the cylinder portion of the housing. It is open to the oil reservoir (oil holding space). Further, between one end surface of the bearing member and the other end surface of the seal member, the ends of the radial outer side and the radial inner side are opened in the oil retention space and the seal gap (the oil retention space and the seal gap are communicated with each other). An axial gap is formed.

特許文献1の流体動圧軸受装置では、上記の軸方向隙間を設けたことにより、軸受装置の運転中に軸受部材から滲み出た潤滑油が通気路を介してハウジング開口側に押し上げられて保油空間に溜まった場合でも、保油空間に溜まった潤滑油の油面とシール部材(の他端面)との離間距離を稼ぐことができるので、潤滑油とシール部材との接触に起因した油漏れを防止できる、としている。 In the hydrodynamic bearing device of Patent Document 1, by providing the above axial gap, the lubricating oil exuded from the bearing member during the operation of the bearing device is pushed up to the housing opening side through the ventilation path and held. Even if the oil collects in the oil space, the distance between the oil level of the lubricating oil accumulated in the oil holding space and the sealing member (the other end surface) can be increased, so the oil caused by the contact between the lubricating oil and the sealing member can be obtained. It is said that leakage can be prevented.

特許第4481475号公報Japanese Patent No. 4481475

特許文献1の流体動圧軸受装置では、環状の保油空間の軸方向一方側(ハウジング開口側)の端部が全周に亘って軸方向隙間の径方向外側の端部と繋がっている。そのため、流体動圧軸受装置が傾斜姿勢で使用(運転)される場合や、運転中の流体動圧軸受装置に衝撃荷重が負荷された場合には、保油空間で保持すべき潤滑油が、軸方向隙間に流入し易く、また、軸方向隙間を介して保油空間と繋がったシール隙間に到達し易い。この場合、シール隙間を形成する対向二面の少なくとも一方に撥油剤を塗布するといった追加の油漏れ防止対策を講じていても、油漏れの発生リスクを低減できるとは言い難い。特に、軸受装置の連続運転時には、潤滑油が熱膨張し、また、潤滑油の粘度が低下して潤滑油の流動性が増すため、油漏れの発生リスクが高まる。 In the fluid dynamic bearing device of Patent Document 1, one end of the annular oil-retaining space in the axial direction (housing opening side) is connected to the outer end of the axial gap over the entire circumference. Therefore, when the fluid dynamic bearing device is used (operated) in an inclined posture or when an impact load is applied to the fluid dynamic bearing device during operation, the lubricating oil to be held in the oil retention space is It easily flows into the axial gap and easily reaches the seal gap connected to the oil holding space through the axial gap. In this case, it cannot be said that the risk of oil leakage can be reduced even if additional oil leakage prevention measures such as applying an oil repellent agent to at least one of the two facing surfaces forming the seal gap can be taken. In particular, during continuous operation of the bearing device, the lubricating oil expands thermally, the viscosity of the lubricating oil decreases, and the fluidity of the lubricating oil increases, so that the risk of oil leakage increases.

係る実情に鑑み、本発明は、油漏れの発生リスクが低く、所望の軸受性能を安定的に発揮することのできる流体動圧軸受装置(パーシャルフィルタイプの流体動圧軸受装置)を提供することを目的とする。 In view of such circumstances, the present invention provides a fluid dynamic pressure bearing device (partial fill type fluid dynamic pressure bearing device) capable of stably exhibiting desired bearing performance with a low risk of oil leakage. With the goal.

上記の目的を達成するために創案された本発明は、潤滑油を含浸させた多孔質体からなり、支持すべき軸の外周面との間にラジアル軸受隙間を形成する軸受部材と、軸方向の一端が開口すると共に他端が閉塞された有底筒状をなし、軸受部材を収容したハウジングと、ハウジングの開口部をシールするシール隙間と、軸、軸受部材およびハウジングの底部で画成される密閉空間を外気に開放する通気路と、軸受部材の一端外周部とハウジングの筒部との間に設けられ、潤滑油の油面を保持可能な筒状の保油空間とを備え、通気路が、密閉空間と保油空間とに開口した第1通路と、軸受部材の一端面で形成され、径方向内側の端部がシール隙間に繋がった軸方向隙間とを含んで構成される流体動圧軸受装置において、軸受部材の一端面と当接した環状部が設けられ、保油空間と軸方向隙間は、軸受部材の一端面およびこれに当接する環状部の他端面の少なくとも一方に設けた溝部で形成される第2通路を介して連通していることを特徴とする。 The present invention, which was devised to achieve the above object, comprises a bearing member made of a porous body impregnated with lubricating oil and forming a radial bearing gap between the outer peripheral surface of the shaft to be supported, and a bearing member in the axial direction. It has a bottomed tubular shape with one end open and the other end closed, and is defined by a housing that houses the bearing member, a seal gap that seals the opening of the housing, and the shaft, bearing member, and bottom of the housing. It has a ventilation path that opens the closed space to the outside air, and a tubular oil retention space that is provided between the outer peripheral portion of one end of the bearing member and the cylinder portion of the housing and can hold the oil level of the lubricating oil. A fluid formed by a path including a first passage opened in a closed space and an oil-retaining space, and an axial gap formed by one end surface of a bearing member and having a radial inner end connected to a sealing gap. In the hydraulic bearing device, an annular portion that is in contact with one end surface of the bearing member is provided, and an oil holding space and an axial gap are provided in at least one of one end surface of the bearing member and the other end surface of the annular portion that is in contact with the one end surface. It is characterized in that it communicates through a second passage formed by the groove portion.

上記構成によれば、密閉空間とシール隙間とが、第1通路、筒状の保油空間、第2通路および軸方向隙間を有する通気路を介して連通し、この通気路のうち、保油空間と軸方向隙間は、上記第2通路を介して周方向の一部領域で連通する。この場合、例えば、傾斜姿勢の流体動圧軸受装置の運転中に軸受部材から滲み出た潤滑油が保油空間に溜まった場合や、保油空間に潤滑油が溜まった状態で流体動圧軸受装置に衝撃荷重が負荷された場合でも、保油空間に溜まった潤滑油の軸方向隙間への流入量を従来構成に比べて大幅に減じることができる。そのため、シール隙間を介しての油漏れの発生リスクを効果的に低減することができる。 According to the above configuration, the closed space and the seal gap are communicated with each other through a ventilation path having a first passage, a tubular oil retention space, a second passage, and an axial gap, and the oil retention of the ventilation passages. The space and the axial gap communicate with each other in a partial region in the circumferential direction via the second passage. In this case, for example, when the lubricating oil exuded from the bearing member is accumulated in the oil holding space during the operation of the fluid dynamic bearing device in an inclined posture, or when the lubricating oil is accumulated in the oil holding space, the fluid dynamic bearing is used. Even when an impact load is applied to the device, the amount of lubricating oil accumulated in the oil holding space flowing into the axial gap can be significantly reduced as compared with the conventional configuration. Therefore, the risk of oil leakage through the seal gap can be effectively reduced.

保油空間に、径方向寸法が軸方向他方側(ハウジングの底部側)から軸方向一方側(ハウジングの開口側)に向けて徐々に拡大した拡径部を設け、流体動圧軸受装置の運転中における潤滑油の油面を拡径部の軸方向範囲に保持するようにしておけば、保油空間内に介在する潤滑油を毛細管力によってハウジング底部側に引き込むことができる。これにより、保油空間から軸方向隙間への潤滑油の流入量を一層低減し、シール隙間を介しての油漏れの発生リスクを一層効果的に低減することができる。 The oil-retaining space is provided with an enlarged diameter portion whose radial dimension gradually expands from the other side in the axial direction (bottom side of the housing) to the one side in the axial direction (opening side of the housing) to operate the hydraulic pressure bearing device. If the oil level of the lubricating oil inside is held in the axial range of the enlarged diameter portion, the lubricating oil interposed in the oil-retaining space can be drawn to the bottom side of the housing by the capillary force. As a result, the inflow amount of the lubricating oil from the oil holding space to the axial gap can be further reduced, and the risk of oil leakage through the seal gap can be further reduced.

保油空間に設けるべき拡径部は、例えば、ハウジングの筒部の内周面に軸方向他方側から軸方向一方側に向けて徐々に拡径した拡径面を設け、この拡径面と軸受部材の円筒状外周面とで形成することができる。 The diameter-expanded portion to be provided in the oil-retaining space is, for example, provided on the inner peripheral surface of the cylinder portion of the housing with a diameter-expanded surface gradually increased from the other side in the axial direction to one side in the axial direction. It can be formed from the cylindrical outer peripheral surface of the bearing member.

多孔質体からなる軸受部材の一端面に上記溝部(第2通路を形成する溝部)を設ける場合には、この溝部を形成する面の表面開孔率を、軸受部材の一端面のうち溝部を形成する面を除く領域の表面開孔率よりも大きくすることができる。係る構成を採用した場合、流体動圧軸受装置の運転時等、装置内部温度の上昇時には、軸受部材に含浸させた潤滑油が溝部の形成面を介して上記軸方向隙間に滲み出し易くなる。このため、特に、上記溝部に、径方向内側の端部が軸受部材の一端内周縁部に設けた面取りに繋がった径方向溝又は環状溝を設けておけば、上記軸方向隙間に滲み出た潤滑油を、上記面取りで形成される環状空間を介してラジアル軸受隙間に供給し易くなる。この場合、ラジアル軸受隙間の油膜切れを防止する上で有利となる。 When the groove portion (groove portion forming the second passage) is provided on one end surface of the bearing member made of a porous body, the surface opening ratio of the surface forming the groove portion is set to the groove portion of the one end surface of the bearing member. It can be made larger than the surface opening rate of the region excluding the surface to be formed. When such a configuration is adopted, when the internal temperature of the device rises, such as when the hydrodynamic bearing device is in operation, the lubricating oil impregnated in the bearing member tends to seep into the axial gap through the groove forming surface. For this reason, in particular, if the groove portion is provided with a radial groove or an annular groove in which the inner end portion in the radial direction is connected to the chamfer provided on the inner peripheral edge portion at one end of the bearing member, the groove portion seeps into the axial gap. Lubricating oil can be easily supplied to the radial bearing gap through the annular space formed by the chamfer. In this case, it is advantageous in preventing the oil film from running out in the radial bearing gap.

以上の構成を有する流体動圧軸受装置に、ラジアル軸受隙間に介在する潤滑油に動圧作用を発生させる動圧発生部(ラジアル動圧発生部)をさらに設けておけば、軸をラジアル方向に支持するラジアル軸受部を、軸受性能に優れた動圧軸受で構成することができる。このとき、動圧発生部を、ラジアル軸受隙間に介在する潤滑油をハウジングの底部側(軸方向他方側)に押し込む形状に形成しておけば、上記軸方向隙間に介在する潤滑油を、ラジアル軸受隙間に引き込み易くなるので、ラジアル軸受隙間の油膜切れを防止する上で一層有利となる。 If the fluid dynamic pressure bearing device having the above configuration is further provided with a dynamic pressure generating portion (radial dynamic pressure generating portion) that generates a dynamic pressure action on the lubricating oil interposed in the radial bearing gap, the shaft can be moved in the radial direction. The supporting radial bearing portion can be composed of a dynamic pressure bearing having excellent bearing performance. At this time, if the dynamic pressure generating portion is formed in a shape that pushes the lubricating oil that is interposed in the radial bearing gap into the bottom side (the other side in the axial direction) of the housing, the lubricating oil that is interposed in the axial clearance is radial. Since it is easily pulled into the bearing gap, it is more advantageous in preventing the oil film from running out in the radial bearing gap.

シール隙間を形成する対向二面の少なくとも一方に撥油膜を形成しておけば、シール隙間を介しての油漏れの発生リスクをより一層低減することができる。 If an oil-repellent film is formed on at least one of the two facing surfaces forming the seal gap, the risk of oil leakage through the seal gap can be further reduced.

軸受部材を、ハウジングの底部を構成する蓋部材と上記環状部とで軸方向両側から挟持すれば、軸受部材をハウジングに対して容易にかつ精度良く位置決め固定することができる。 If the bearing member is sandwiched between the lid member constituting the bottom of the housing and the annular portion from both sides in the axial direction, the bearing member can be easily and accurately positioned and fixed to the housing.

本発明に係る流体動圧軸受装置は、前述したような特徴を有することから、例えばディスク駆動装置用のスピンドルモータ、PC用のファンモータ、LBP用のポリゴンスキャナモータ等の各種電気機器用モータに組み込んで好適に使用することができる。 Since the hydrodynamic bearing device according to the present invention has the above-mentioned characteristics, it can be used as a motor for various electric devices such as a spindle motor for a disk drive device, a fan motor for a PC, and a polygon scanner motor for an LBP. It can be incorporated and used suitably.

以上より、本発明によれば、油漏れの発生リスクが低く、所望の軸受性能を長期間に亘って安定的に発揮することができる流体動圧軸受装置を提供することができる。 From the above, according to the present invention, it is possible to provide a fluid dynamic bearing device capable of stably exhibiting desired bearing performance over a long period of time with a low risk of oil leakage.

ファンモータの一構成例を概念的に示す断面図である。It is sectional drawing which shows one structural example of a fan motor conceptually. 本発明の一実施形態に係る流体動圧軸受装置の縦断面図である。It is a vertical sectional view of the fluid dynamic pressure bearing device which concerns on one Embodiment of this invention. 軸受部材の縦断面図である。It is a vertical sectional view of a bearing member. 軸受部材の上端面を示す平面図である。It is a top view which shows the upper end surface of a bearing member. 図2の部分拡大図である。It is a partially enlarged view of FIG. 他の実施形態に係る流体動圧軸受装置の部分拡大断面図である。It is a partially enlarged sectional view of the fluid dynamic bearing apparatus which concerns on other embodiment. 他の実施形態に係る流体動圧軸受装置の部分拡大断面図である。It is a partially enlarged sectional view of the fluid dynamic bearing apparatus which concerns on other embodiment. 他の実施形態に係る軸受部材の上端面の平面図である。It is a top view of the upper end surface of the bearing member which concerns on other embodiment. (a)図は、他の実施形態に係る軸受部材の上端面の平面図であり、(b)図は、(a)図に示す軸受部材を採用した場合の流体動圧軸受装置の部分拡大断面図である。(A) is a plan view of an upper end surface of a bearing member according to another embodiment, and (b) is a partial enlargement of a fluid dynamic pressure bearing device when the bearing member shown in (a) is adopted. It is a sectional view.

以下、本発明の実施の形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に、本発明の実施形態に係る流体動圧軸受装置1が組み込まれたファンモータの一構成例を概念的に示す。同図に示すファンモータは、流体動圧軸受装置1と、モータの静止側を構成するモータベース6と、モータベース6に取り付けられたステータコイル5と、羽根(図示省略)を有する回転部材としてのロータ3と、ロータ3に取り付けられ、ステータコイル5と半径方向のギャップを介して対向するロータマグネット4とを備える。流体動圧軸受装置1のハウジング7は、モータベース6の内周に固定され、ロータ3は、流体動圧軸受装置1の軸部材2の一端に固定されている。このように構成されたファンモータにおいて、ステータコイル5に通電すると、ステータコイル5とロータマグネット4との間の電磁力でロータマグネット4が回転し、これに伴って軸部材2、および軸部材2に固定されたロータ3が一体に回転する。 FIG. 1 conceptually shows an example of a configuration of a fan motor incorporating the fluid dynamic pressure bearing device 1 according to the embodiment of the present invention. The fan motor shown in the figure is a rotating member having a hydrodynamic bearing device 1, a motor base 6 constituting the stationary side of the motor, a stator coil 5 attached to the motor base 6, and blades (not shown). The rotor 3 is provided with a rotor magnet 4 attached to the rotor 3 and facing the stator coil 5 via a radial gap. The housing 7 of the fluid dynamic bearing device 1 is fixed to the inner circumference of the motor base 6, and the rotor 3 is fixed to one end of the shaft member 2 of the fluid dynamic bearing device 1. In the fan motor configured in this way, when the stator coil 5 is energized, the rotor magnet 4 is rotated by the electromagnetic force between the stator coil 5 and the rotor magnet 4, and the shaft member 2 and the shaft member 2 are accompanied by this rotation. The rotor 3 fixed to the rotor 3 rotates integrally.

ロータ3が回転すると、ロータ3に設けられた羽根の形態に応じて図中上向き又は下向きに風が送られる。このため、ロータ3の回転中にはこの送風作用の反力として、流体動圧軸受装置1の軸部材2に図中下向き又は上向きの推力が作用する。ステータコイル5とロータマグネット4との間には、この推力を打ち消す方向の磁力(斥力)を作用させており、上記推力と磁力の大きさの差により生じたスラスト荷重が流体動圧軸受装置1のスラスト軸受部Tで支持される。上記推力を打ち消す方向の磁力は、例えば、ステータコイル5とロータマグネット4とを軸方向にずらして配置することにより発生させることができる(詳細な図示は省略)。また、ロータ3の回転時には、流体動圧軸受装置1の軸部材2にラジアル荷重が作用する。このラジアル荷重は、流体動圧軸受装置1のラジアル軸受部R1,R2で支持される。 When the rotor 3 rotates, wind is sent upward or downward in the figure depending on the form of the blades provided on the rotor 3. Therefore, during the rotation of the rotor 3, a downward or upward thrust in the figure acts on the shaft member 2 of the fluid dynamic pressure bearing device 1 as a reaction force of this blowing action. A magnetic force (repulsive force) in a direction that cancels this thrust is applied between the stator coil 5 and the rotor magnet 4, and the thrust load generated by the difference in magnitude between the thrust and the magnetic force is applied to the fluid dynamic bearing device 1. It is supported by the thrust bearing portion T of. The magnetic force in the direction of canceling the thrust can be generated, for example, by arranging the stator coil 5 and the rotor magnet 4 so as to be displaced in the axial direction (detailed illustration is omitted). Further, when the rotor 3 is rotated, a radial load acts on the shaft member 2 of the fluid dynamic bearing device 1. This radial load is supported by the radial bearing portions R1 and R2 of the fluid dynamic bearing device 1.

図2に、本発明の一実施形態に係る流体動圧軸受装置1の縦断面図を示す。この流体動圧軸受装置1は、軸方向の一端が開口すると共に軸方向の他端が閉塞された有底筒状のハウジング7と、ハウジング7に収容された軸受部材8と、軸受部材8の内周に挿入された軸部材2と、ハウジング7の一端開口部をシールするシール部材9とを備える。以下、説明の便宜上、シール部材9が配置された側(ハウジング7の開口側)を上側とし、その軸方向反対側を下側とするが、流体動圧軸受装置1の運転時における姿勢を限定するわけではない。 FIG. 2 shows a vertical cross-sectional view of the hydrodynamic bearing device 1 according to the embodiment of the present invention. The fluid dynamic bearing device 1 includes a bottomed tubular housing 7 in which one end in the axial direction is opened and the other end in the axial direction is closed, a bearing member 8 housed in the housing 7, and a bearing member 8. A shaft member 2 inserted into the inner circumference and a sealing member 9 for sealing an opening at one end of the housing 7 are provided. Hereinafter, for convenience of explanation, the side on which the seal member 9 is arranged (the opening side of the housing 7) is set as the upper side, and the side opposite to the axial direction thereof is set as the lower side, but the posture of the fluid dynamic bearing device 1 during operation is limited. I don't do it.

ハウジング7は、円筒状の筒部71a、および筒部71aの上端部から径方向内側に張り出した環状部71bを一体に有する筒状部材71と、筒部71aの下端開口を閉塞する蓋部材72とを接着や圧入等の適宜の手段で結合一体化することで有底筒状に形成されている。蓋部材72は、短円筒部72a、および短円筒部72aの下端開口を閉塞する円板状の底部72bを一体に有する有底筒状をなす。本実施形態では、非多孔質の金属材料で形成された蓋部材72の底部72bの上側に樹脂材料で形成されたスラストプレート10を配置し、スラストプレート10の上端面10aでハウジング7の内底面を構成している。スラストプレート10は必ずしも設ける必要はなく、省略しても構わない。 The housing 7 includes a cylindrical member 71a having a cylindrical tubular portion 71a and an annular portion 71b integrally protruding inward in the radial direction from the upper end portion of the tubular portion 71a, and a lid member 72 for closing the lower end opening of the tubular portion 71a. It is formed into a bottomed cylinder shape by connecting and integrating with and by appropriate means such as adhesion and press fitting. The lid member 72 has a bottomed tubular shape integrally having a short cylindrical portion 72a and a disc-shaped bottom portion 72b that closes the lower end opening of the short cylindrical portion 72a. In the present embodiment, the thrust plate 10 made of a resin material is arranged on the upper side of the bottom 72b of the lid member 72 made of a non-porous metal material, and the inner bottom surface of the housing 7 is arranged on the upper end surface 10a of the thrust plate 10. Consists of. The thrust plate 10 does not necessarily have to be provided and may be omitted.

ハウジング7の内部空間には潤滑油11(図2中、密な散点ハッチングで示す)が介在するが、その量は、流体動圧軸受装置1の運転中に、軸部材2をラジアル方向に非接触支持するラジアル軸受部R1,R2が形成されるラジアル軸受隙間Gr(図5参照)と、軸部材2をスラスト一方向に支持するスラスト軸受部Tが形成される密閉空間12(軸部材2、軸受部材8およびハウジング7の底部で画成される空間)とを満たすことができる程度に調整される。すなわち、潤滑油11はハウジング7の内部空間全域を満たしておらず、例えば、後述する軸方向隙間22には、潤滑油11が介在する場合と介在しない場合とがある。 Lubricating oil 11 (indicated by dense scattered point hatching in FIG. 2) is interposed in the internal space of the housing 7, and the amount thereof is measured in the radial direction of the shaft member 2 during the operation of the hydrodynamic bearing device 1. A sealed space 12 (shaft member 2) in which the radial bearing gap Gr (see FIG. 5) in which the radial bearing portions R1 and R2 that support non-contact are formed and the thrust bearing portion T that supports the shaft member 2 in one direction of the thrust are formed. , The space defined by the bottom of the bearing member 8 and the housing 7) is adjusted to the extent that it can be satisfied. That is, the lubricating oil 11 does not fill the entire internal space of the housing 7, and for example, the lubricating oil 11 may or may not intervene in the axial gap 22 described later.

軸部材2は、ステンレス鋼等の高剛性の金属材料で形成され、その外周面2aは凹凸のない平滑な円筒面に、またその下端面2bは凸球面に形成されている。軸部材2の上端には、羽根を有するロータ3(図1参照)が固定される。 The shaft member 2 is made of a highly rigid metal material such as stainless steel, and its outer peripheral surface 2a is formed on a smooth cylindrical surface without unevenness, and its lower end surface 2b is formed on a convex spherical surface. A rotor 3 having blades (see FIG. 1) is fixed to the upper end of the shaft member 2.

軸受部材8は、多孔質体、ここでは銅および鉄を主成分とする焼結金属の多孔質体で円筒状に形成され、その内部気孔には潤滑油11が含浸されている。軸受部材8は、焼結金属以外の多孔質体、例えば多孔質樹脂で形成することもできる。 The bearing member 8 is formed in a cylindrical shape with a porous body, here, a porous body of a sintered metal containing copper and iron as main components, and the internal pores thereof are impregnated with the lubricating oil 11. The bearing member 8 can also be formed of a porous body other than the sintered metal, for example, a porous resin.

軸受部材8の内周面8aには、対向する軸部材2の外周面2aとの間にラジアル軸受部R1,R2のラジアル軸受隙間Grを形成する円筒状のラジアル軸受面が軸方向の二箇所に離間して設けられる。図3に示すように、各ラジアル軸受面には、ラジアル軸受隙間Grに介在する潤滑油11に動圧作用を発生させるための動圧発生部(ラジアル動圧発生部)A1,A2がそれぞれ形成される。本実施形態のラジアル動圧発生部A1,A2は、それぞれ、互いに反対方向に傾斜し、かつ軸方向に離間して設けられた複数の上側動圧溝Aa1および下側動圧溝Aa2と、両動圧溝Aa1,Aa2を区画する凸状の丘部とを有し、丘部は全体としてヘリングボーン形状を呈する。すなわち、丘部は、周方向で隣り合う動圧溝間に設けられた傾斜丘部Abと、上下の動圧溝Aa1,Aa2間に設けられ、傾斜丘部Abと略同径の環状丘部Acとからなる。 On the inner peripheral surface 8a of the bearing member 8, two cylindrical radial bearing surfaces forming a radial bearing gap Gr of the radial bearing portions R1 and R2 with the outer peripheral surface 2a of the opposing shaft member 2 are provided at two locations in the axial direction. It is provided apart from each other. As shown in FIG. 3, dynamic pressure generating portions (radial dynamic pressure generating portions) A1 and A2 for generating a dynamic pressure action on the lubricating oil 11 interposed in the radial bearing gap Gr are formed on each radial bearing surface, respectively. Will be done. The radial dynamic pressure generating portions A1 and A2 of the present embodiment are inclined in opposite directions to each other and are provided apart from each other in the axial direction, and both the upper dynamic pressure groove Aa1 and the lower dynamic pressure groove Aa2. It has a convex hill portion that divides the dynamic pressure grooves Aa1 and Aa2, and the hill portion exhibits a herringbone shape as a whole. That is, the hill portion is provided between the inclined hill portion Ab provided between the adjacent dynamic pressure grooves in the circumferential direction and the upper and lower dynamic pressure grooves Aa1 and Aa2, and the annular hill portion having substantially the same diameter as the inclined hill portion Ab. It consists of Ac.

上側のラジアル動圧発生部A1においては、上側動圧溝Aa1の軸方向寸法X1が下側動圧溝Aa2の軸方向寸法X2よりも大きく設定され(X1>X2)、下側のラジアル動圧発生部A2においては、上側動圧溝Aa1および下側動圧溝Aa2の軸方向寸法が、上側のラジアル動圧発生部A1の下側動圧溝Aa2の軸方向寸法X2と同一に設定されている。そのため、軸部材2の回転時、軸部材2の外周面2aと軸受部材8の内周面8aの間の半径方向隙間(ラジアル軸受隙間Gr)に介在する潤滑油11は下側(ハウジング7の底部72b側)に押し込まれる。 In the upper dynamic pressure generating portion A1, the axial dimension X 1 of the upper dynamic pressure groove Aa1 is set to be larger than the axial dimension X 2 of the lower dynamic pressure groove Aa2 (X 1 > X 2 ), and the lower side. In the radial dynamic pressure generating portion A2 of the above, the axial dimensions of the upper dynamic pressure groove Aa1 and the lower dynamic pressure groove Aa2 are the axial dimensions X 2 of the lower dynamic pressure groove Aa2 of the upper radial dynamic pressure generating portion A1. It is set to be the same. Therefore, when the shaft member 2 is rotated, the lubricating oil 11 interposed in the radial gap (radial bearing gap Gr) between the outer peripheral surface 2a of the shaft member 2 and the inner peripheral surface 8a of the bearing member 8 is on the lower side (housing 7). It is pushed into the bottom 72b side).

なお、ラジアル動圧発生部A1,A2の形態は上記のものに限定されない。例えば、ラジアル動圧発生部A1,A2の何れか一方又は双方は、スパイラル形状の動圧溝を円周方向に複数配列したものとしても良い。また、ラジアル動圧発生部A1,A2の何れか一方又は双方は、対向する軸部材2の外周面2aに形成しても良い。 The form of the radial dynamic pressure generating portions A1 and A2 is not limited to the above. For example, one or both of the radial dynamic pressure generating portions A1 and A2 may have a plurality of spiral-shaped dynamic pressure grooves arranged in the circumferential direction. Further, either one or both of the radial dynamic pressure generating portions A1 and A2 may be formed on the outer peripheral surface 2a of the opposing shaft member 2.

図3および図4に示すように、軸受部材8の上端面8cの径方向中央部には断面V字状の環状溝8c1が設けられている。また、軸受部材8の上端面8cには、径方向内側の端部が環状溝8c1に開口すると共に、径方向外側の端部が軸受部材8の上端外周縁部に設けた面取り8eに開口した径方向溝8c2が周方向に離間した複数箇所(本実施形態では3箇所)に設けられている。さらに、軸受部材8の外周面8dには、上端部が上記面取り8eに開口すると共に、下端部が軸受部材8の下端外周縁部に設けた面取りに開口した軸方向溝8d1が周方向に離間した複数箇所(本実施形態では3箇所)に設けられている。本実施形態では、周方向で隣り合う2つの径方向溝8c2の間に軸方向溝8d1が配置されている。 As shown in FIGS. 3 and 4, an annular groove 8c1 having a V-shaped cross section is provided at the radial center portion of the upper end surface 8c of the bearing member 8. Further, on the upper end surface 8c of the bearing member 8, the radial inner end portion is opened in the annular groove 8c1, and the radial outer end portion is opened in the chamfer 8e provided on the upper end outer peripheral edge portion of the bearing member 8. The radial grooves 8c2 are provided at a plurality of locations (three locations in the present embodiment) separated in the circumferential direction. Further, on the outer peripheral surface 8d of the bearing member 8, the upper end portion opens in the chamfer 8e, and the axial groove 8d1 having the lower end portion opened in the chamfer provided in the lower end outer peripheral edge portion of the bearing member 8 is separated in the circumferential direction. It is provided at a plurality of locations (three locations in the present embodiment). In the present embodiment, the axial groove 8d1 is arranged between two radial grooves 8c2 adjacent to each other in the circumferential direction.

以上の構成を有する軸受部材8は、その上端部をハウジング7の環状部71bに当接させた状態、すなわち上端面8cをハウジング7の環状部71bの下端面71b1に当接させた状態でハウジング7の内周に固定されている。 The bearing member 8 having the above configuration has a housing in which the upper end portion thereof is in contact with the annular portion 71b of the housing 7, that is, the upper end surface 8c is in contact with the lower end surface 71b1 of the annular portion 71b of the housing 7. It is fixed to the inner circumference of 7.

軸受部材8は、圧入、接着、圧入接着(圧入と接着の併用)等の適宜の手段でハウジング7に対して固定し得るが、本実施形態では、環状部71bと蓋部材72とで軸受部材8をその軸方向両側から挟持することにより、軸受部材8をハウジング7の内周に固定している。従って、軸受部材8の下端面8bは短円筒部72aの上端面72a1と当接し、軸受部材8の上端面8cは環状部71bの下端面71b1と当接している。このようにすれば、ハウジング7を形成(筒状部材71と蓋部材72とを固定)するのと同時に、軸受部材8をハウジング7に固定することができるので、部材同士の組み付けに要する手間を軽減することができる。また、例えば、軸受部材8をハウジング7の筒部71aの内周に大きな締め代をもって圧入すると、圧入に伴う軸受部材8の変形が軸受部材8の内周面8aに波及し、ラジアル軸受隙間の幅精度、ひいてはラジアル軸受部R1,R2の軸受性能に悪影響が及ぶ可能性がある。これに対し、上記の固定方法ではこのような弊害が可及的に防止される。 The bearing member 8 can be fixed to the housing 7 by appropriate means such as press-fitting, bonding, and press-fitting (combined use of press-fitting and bonding), but in the present embodiment, the bearing member is formed by the annular portion 71b and the lid member 72. The bearing member 8 is fixed to the inner circumference of the housing 7 by sandwiching the 8 from both sides in the axial direction. Therefore, the lower end surface 8b of the bearing member 8 is in contact with the upper end surface 72a1 of the short cylindrical portion 72a, and the upper end surface 8c of the bearing member 8 is in contact with the lower end surface 71b1 of the annular portion 71b. By doing so, the housing 7 can be formed (the tubular member 71 and the lid member 72 are fixed), and at the same time, the bearing member 8 can be fixed to the housing 7, so that the labor required for assembling the members can be reduced. Can be mitigated. Further, for example, when the bearing member 8 is press-fitted into the inner circumference of the tubular portion 71a of the housing 7 with a large tightening allowance, the deformation of the bearing member 8 due to the press-fitting spreads to the inner peripheral surface 8a of the bearing member 8 and the radial bearing gap is formed. The width accuracy and, by extension, the bearing performance of the radial bearing portions R1 and R2 may be adversely affected. On the other hand, in the above fixing method, such an adverse effect is prevented as much as possible.

軸受部材8の上端外周部とハウジング7の筒部71aとの間には、流体動圧軸受装置1の運転時(軸部材2の回転時)に、潤滑油11の油面を保持可能な筒状の保油空間13が設けられている。保油空間13は、軸受部材8の上端外周部を肉取りすることにより、あるいはハウジング7の筒部71aの上端内周部を肉取りすることにより形成することができるが、軸受部材8の上端外周部を肉取りすると、軸受部材8の上端面8cとハウジング7の環状部71bとを適切に当接させることが難しくなる。そのため、ここでは、ハウジング7の筒部71aの上端内周部を肉取りすることによって保油空間13を形成している。 A cylinder capable of holding the oil level of the lubricating oil 11 between the outer peripheral portion of the upper end of the bearing member 8 and the cylinder portion 71a of the housing 7 during operation of the hydrodynamic bearing device 1 (when the shaft member 2 is rotating). An oil-retaining space 13 is provided. The oil retention space 13 can be formed by thinning the outer peripheral portion of the upper end of the bearing member 8 or by thinning the inner peripheral portion of the upper end of the tubular portion 71a of the housing 7, but the upper end of the bearing member 8 can be formed. If the outer peripheral portion is lightened, it becomes difficult to properly bring the upper end surface 8c of the bearing member 8 and the annular portion 71b of the housing 7 into contact with each other. Therefore, here, the oil-retaining space 13 is formed by removing the inner peripheral portion of the upper end of the tubular portion 71a of the housing 7.

図2および図5に示すように、本実施形態の保油空間13は、下側から上側に向けて径方向寸法が徐々に拡大した拡径部13aと、拡径部13aの上側に隣接配置された径一定の円筒状部13bとを備えるが、拡径部13aのみで構成しても構わない。拡径部13aは、ハウジング7の筒部71aの内周面71a1に、下側から上側に向けて徐々に拡径した拡径面(テーパ面)71a2を設けることで形成され、円筒状部13bは、ハウジング7の筒部71aの内周面71a1に円筒状の大径内周面71a3を設けることで形成される。本実施形態では、流体動圧軸受装置1の運転時における潤滑油11の油面が拡径部13aの軸方向範囲内に位置するように保油空間13が形成される。 As shown in FIGS. 2 and 5, the oil holding space 13 of the present embodiment is arranged adjacent to the enlarged diameter portion 13a whose radial dimension gradually expands from the lower side to the upper side and the upper side of the enlarged diameter portion 13a. Although it is provided with a cylindrical portion 13b having a constant diameter, it may be composed of only the enlarged diameter portion 13a. The enlarged diameter portion 13a is formed by providing an enlarged diameter surface (tapered surface) 71a2 gradually increasing in diameter from the lower side to the upper side on the inner peripheral surface 71a1 of the tubular portion 71a of the housing 7, and the cylindrical portion 13b. Is formed by providing a cylindrical large-diameter inner peripheral surface 71a3 on the inner peripheral surface 71a1 of the tubular portion 71a of the housing 7. In the present embodiment, the oil holding space 13 is formed so that the oil level of the lubricating oil 11 during operation of the fluid dynamic bearing device 1 is located within the axial range of the enlarged diameter portion 13a.

シール部材9は、金属材料又は樹脂材料で円環状に形成され、ハウジング7の環状部71bの内周に適宜の手段で固定される。図5を参照して説明すると、本実施形態の環状部71bは、小径内周面71b2、大径内周面71b3および両内周面71b2,71b3を接続する段差面71b4を有し、シール部材9はその上端面9cを段差面71b4に当接させた状態で大径内周面71b3に固定されている。シール部材9の下端面9bは、対向する軸受部材8の上端面8cとの間に軸方向隙間22を形成し、シール部材9の内周面9aは、対向する軸部材2の外周面2aとの間にシール隙間Sを形成している。本実施形態では、軸方向隙間22の隙間幅は、例えば8mm以下程度に、また、シール隙間Sの隙間幅(半径値)は、例えば0.3mm以下程度に設定される。 The sealing member 9 is formed in an annular shape from a metal material or a resin material, and is fixed to the inner circumference of the annular portion 71b of the housing 7 by an appropriate means. Explaining with reference to FIG. 5, the annular portion 71b of the present embodiment has a small diameter inner peripheral surface 71b2, a large diameter inner peripheral surface 71b3, and a stepped surface 71b4 connecting both inner peripheral surfaces 71b2 and 71b3, and is a sealing member. 9 is fixed to the large-diameter inner peripheral surface 71b3 in a state where the upper end surface 9c is in contact with the stepped surface 71b4. The lower end surface 9b of the seal member 9 forms an axial gap 22 with the upper end surface 8c of the facing bearing member 8, and the inner peripheral surface 9a of the seal member 9 is with the outer peripheral surface 2a of the opposite shaft member 2. A seal gap S is formed between the two. In the present embodiment, the gap width of the axial gap 22 is set to, for example, about 8 mm or less, and the gap width (radius value) of the seal gap S is set to, for example, about 0.3 mm or less.

以上の構成を有する流体動圧軸受装置1において、軸部材2と軸受部材8が相対回転する(本実施形態では軸部材2が回転する)と、軸受部材8の内周面8aの上下2箇所に離間して設けられたラジアル軸受面と、これに対向する軸部材2の外周面2aとの間にラジアル軸受隙間Grがそれぞれ形成される。また、軸部材2が回転すると、軸部材2の回転に伴う圧力(負圧)の発生と昇温による潤滑油11の熱膨張により、軸受部材8の内部気孔に含浸させた潤滑油11が軸受部材8の表面開孔を介して軸受部材8の外部に次々と滲み出す。軸受部材8から滲み出た潤滑油11(の一部)は、ラジアル軸受隙間Gr内で油膜を形成し、この油膜の圧力がラジアル動圧発生部A1,A2の動圧作用によって高められる。これにより、軸部材2をラジアル方向に非接触支持するラジアル軸受部R1,R2が軸方向の二箇所に離間して形成される。 In the hydrodynamic bearing device 1 having the above configuration, when the shaft member 2 and the bearing member 8 rotate relative to each other (in the present embodiment, the shaft member 2 rotates), the inner peripheral surface 8a of the bearing member 8 is rotated at two locations above and below. A radial bearing gap Gr is formed between the radial bearing surface provided apart from the bearing surface and the outer peripheral surface 2a of the shaft member 2 facing the radial bearing surface. Further, when the shaft member 2 rotates, the lubricating oil 11 impregnated into the internal pores of the bearing member 8 is bearing due to the generation of pressure (negative pressure) accompanying the rotation of the shaft member 2 and the thermal expansion of the lubricating oil 11 due to the temperature rise. It exudes one after another to the outside of the bearing member 8 through the surface opening of the member 8. The lubricating oil 11 (a part of) exuded from the bearing member 8 forms an oil film in the radial bearing gap Gr, and the pressure of this oil film is increased by the dynamic pressure action of the radial dynamic pressure generating portions A1 and A2. As a result, the radial bearing portions R1 and R2 that non-contactly support the shaft member 2 in the radial direction are formed at two positions apart from each other in the axial direction.

また、これと同時に、ハウジング7の内底面(スラストプレート10の上端面10a)で軸部材2をスラスト一方向に接触支持するスラスト軸受部Tが形成される。なお、前述したとおり、軸部材2には、軸部材2を下方に押し付ける(軸部材2をスラスト他方向に支持する)ための磁力を作用させている。従って、軸部材2の回転に伴って、スラスト軸受部Tが形成される密閉空間12内の圧力が高まった場合でも、軸部材2が過浮上するのを可及的に防止することができる。但し、軸部材2を下方に押し付けるための外力としての磁力は必ずしも作用させる必要はなく、必要に応じて作用させれば良い。すなわち、送風作用の反力としての推力が十分に大きく、この推力のみで軸部材2を下方に押し付けることができるような場合には、上記磁力を軸部材2に作用させる必要はない。 At the same time, a thrust bearing portion T that contacts and supports the shaft member 2 in one direction of the thrust is formed on the inner bottom surface of the housing 7 (the upper end surface 10a of the thrust plate 10). As described above, the shaft member 2 is subjected to a magnetic force for pressing the shaft member 2 downward (supporting the shaft member 2 in the thrust and other directions). Therefore, even when the pressure in the closed space 12 in which the thrust bearing portion T is formed increases with the rotation of the shaft member 2, it is possible to prevent the shaft member 2 from overfloating as much as possible. However, it is not always necessary to act the magnetic force as an external force for pressing the shaft member 2 downward, and it may be allowed to act as necessary. That is, when the thrust as a reaction force of the blowing action is sufficiently large and the shaft member 2 can be pressed downward only by this thrust, it is not necessary to apply the magnetic force to the shaft member 2.

以上で説明した流体動圧軸受装置1は、通常、ハウジング7、軸受部材8およびシール部材9を組み付けたアセンブリを作製した後、軸受部材8の内周に軸部材2を挿入する、といった手順を踏んで組み立てられる。軸部材2の挿入時には、軸部材2の挿入性向上や、スラスト軸受部Tが形成される密閉空間12に所定量の潤滑油11を介在させること等を目的として、軸受部材8の内周に所定量の潤滑油11が予め充填される。このとき、軸部材2の挿入に伴って、軸部材2の下端面2bと軸受部材8の内周に充填された潤滑油11との間に介在する空気が圧縮されるが、軸受部材8の内周面8aと軸部材2の外周面2aとの間の半径方向隙間(ラジアル軸受隙間Gr)の隙間幅は数μm程度の微小幅に設定されることから、上記の空気(圧縮空気)を軸部材2と軸受部材8の間の半径方向隙間やシール隙間Sを介して装置外部に排出するのは困難である。軸部材2の挿入に伴って圧縮空気を装置外部に排出できない場合、軸部材2を適切に挿入することが難しくなる。 The fluid dynamic pressure bearing device 1 described above usually has a procedure of assembling an assembly in which the housing 7, the bearing member 8 and the sealing member 9 are assembled, and then inserting the shaft member 2 into the inner circumference of the bearing member 8. It is assembled by stepping on it. When inserting the shaft member 2, the inner circumference of the bearing member 8 is provided with a predetermined amount of lubricating oil 11 for the purpose of improving the insertability of the shaft member 2 and interposing a predetermined amount of lubricating oil 11 in the closed space 12 in which the thrust bearing portion T is formed. A predetermined amount of lubricating oil 11 is pre-filled. At this time, with the insertion of the shaft member 2, the air interposed between the lower end surface 2b of the shaft member 2 and the lubricating oil 11 filled in the inner circumference of the bearing member 8 is compressed, but the bearing member 8 Since the clearance width of the radial clearance (radial bearing clearance Gr) between the inner peripheral surface 8a and the outer peripheral surface 2a of the shaft member 2 is set to a minute width of about several μm, the above air (compressed air) is used. It is difficult to discharge the material to the outside of the device through the radial gap between the shaft member 2 and the bearing member 8 and the seal gap S. If the compressed air cannot be discharged to the outside of the device due to the insertion of the shaft member 2, it becomes difficult to properly insert the shaft member 2.

本実施形態の流体動圧軸受装置1は、軸受部材8の外周面8d等で形成され、密閉空間12を外気に開放する(密閉空間12と軸受装置1の外部空間とを連通させる)通気路20を有する。通気路20は、ハウジング7と軸受部材8の間に形成される第1通路21、保油空間13および第2通路23と、軸受部材8とシール部材9の間に形成される軸方向隙間22と、シール隙間Sとで構成される。このような通気路20が設けられていることにより、軸部材2の挿入時には、上記の圧縮空気を装置外部に適切に排出することができる。 The hydrodynamic bearing device 1 of the present embodiment is formed by an outer peripheral surface 8d or the like of the bearing member 8 and opens the closed space 12 to the outside air (communicate between the closed space 12 and the external space of the bearing device 1). Has 20. The ventilation passage 20 has a first passage 21, an oil retention space 13 and a second passage 23 formed between the housing 7 and the bearing member 8, and an axial gap 22 formed between the bearing member 8 and the seal member 9. And the seal gap S. By providing such a ventilation path 20, the compressed air can be appropriately discharged to the outside of the device when the shaft member 2 is inserted.

第1通路21は、密閉空間12および保油空間13に開口して両空間12,13を連通させる通路であり、本実施形態では、蓋部材72の短円筒部72aの上端面72a1に設けた径方向溝72a2で形成される径方向通路と、軸受部材8の下端外周縁部に設けた面取りで形成される環状通路と、軸受部材8の外周面8dに設けた軸方向溝8d1で形成される軸方向通路とで構成される。上記の径方向通路は、密閉空間12と上記の環状通路とを連通させ得るものであれば良く、例えば軸受部材8の下端面8bに径方向溝を設けることで形成することもできる。また、上記の軸方向通路は、ハウジング7の筒部71aの内周面71a1に軸方向溝を設けることで形成することもできる。 The first passage 21 is a passage that opens into the closed space 12 and the oil holding space 13 to communicate the two spaces 12 and 13, and is provided on the upper end surface 72a1 of the short cylindrical portion 72a of the lid member 72 in the present embodiment. It is formed by a radial passage formed by the radial groove 72a2, an annular passage formed by chamfering on the outer peripheral edge of the lower end of the bearing member 8, and an axial groove 8d1 provided on the outer peripheral surface 8d of the bearing member 8. It is composed of an axial passage. The radial passage may be any as long as it can communicate the closed space 12 and the annular passage, and may be formed, for example, by providing a radial groove on the lower end surface 8b of the bearing member 8. Further, the axial passage may be formed by providing an axial groove on the inner peripheral surface 71a1 of the tubular portion 71a of the housing 7.

第2通路23は、保油空間13と軸方向隙間22に開口して保油空間13と軸方向隙間22とを周方向の一部領域で連通させる通路であり、本実施形態では、軸受部材8の上端面8cに上記の環状溝8c1および径方向溝8c2を設けることで形成される。従って、ここでは、環状溝8c1および径方向溝8c2が本発明でいう「溝部」を構成する。 The second passage 23 is a passage that opens into the oil-retaining space 13 and the axial gap 22 to communicate the oil-retaining space 13 and the axial gap 22 in a partial region in the circumferential direction. In the present embodiment, the bearing member It is formed by providing the above-mentioned annular groove 8c1 and radial groove 8c2 on the upper end surface 8c of 8. Therefore, here, the annular groove 8c1 and the radial groove 8c2 form the "groove portion" in the present invention.

前述したとおり、流体動圧軸受装置1の運転時には、軸受部材8の内部気孔に含浸させた潤滑油11が軸受部材8の外部に滲み出すため、軸受部材8の内周面8aで形成される径方向隙間(ラジアル軸受隙間Gr)や、軸受部材8の下端面8bで形成される密閉空間12等に介在する油量が増加する。そのため、流体動圧軸受装置1の運転時には、ハウジング7の内部空間に介在する潤滑油11(の一部)が、通気路20を流通してハウジング7の開口側に押し上げられ、保油空間13の軸方向範囲内に溜まる。このとき、従来構成の流体動圧軸受装置のように、軸受部材8の上端外周部で形成される保油空間13と、軸受部材8の上端面8cで形成される軸方向隙間22とが全周に亘って繋がった構成を採用すると、たとえ保油空間13や軸方向隙間22の容積が十分に確保されていたとしても、流体動圧軸受装置1が傾斜姿勢で使用される場合や、運転中の流体動圧軸受装置1に衝撃荷重が負荷された場合には、保油空間13に溜まった潤滑油が軸方向隙間22に流入し易く、従って、軸方向隙間22およびシール隙間Sを介しての油漏れの発生リスクが高いという問題がある。 As described above, during the operation of the hydrodynamic bearing device 1, the lubricating oil 11 impregnated into the internal pores of the bearing member 8 seeps out to the outside of the bearing member 8, so that the lubricating oil 11 is formed on the inner peripheral surface 8a of the bearing member 8. The amount of oil intervening in the radial gap (radial bearing gap Gr), the closed space 12 formed by the lower end surface 8b of the bearing member 8, and the like increases. Therefore, during the operation of the hydrodynamic bearing device 1, (a part of) the lubricating oil 11 interposed in the internal space of the housing 7 flows through the ventilation passage 20 and is pushed up to the opening side of the housing 7, and the oil holding space 13 is used. Accumulates within the axial range of. At this time, the oil-retaining space 13 formed in the outer peripheral portion of the upper end of the bearing member 8 and the axial gap 22 formed in the upper end surface 8c of the bearing member 8 are all formed as in the conventional hydrodynamic bearing device. If a configuration connected over the circumference is adopted, even if the oil retention space 13 and the axial gap 22 have sufficient volumes, the fluid dynamic bearing device 1 may be used in an inclined posture or may be operated. When an impact load is applied to the fluid dynamic bearing device 1 inside, the lubricating oil accumulated in the oil holding space 13 easily flows into the axial gap 22, and therefore, through the axial gap 22 and the seal gap S. There is a problem that the risk of oil leakage is high.

これに対し、本発明に係る流体動圧軸受装置1では、軸受部材8の上端面8cと当接する環状部71bを設け、軸受部材8の上端面8cおよびこれに当接する環状部71bの下端面71b1の少なくとも一方に設けた溝部(本実施形態では上端面8cの環状溝8c1および径方向溝8c2)で形成される第2通路23を介して保油空間13と軸方向隙間22とを連通させている。このような構成によれば、保油空間13と軸方向隙間22とは、上記の第2通路23を介して周方向の一部領域で連通する。この場合、例えば、傾斜姿勢の流体動圧軸受装置1の運転中に軸受部材8から滲み出た潤滑油11が保油空間13に溜まった場合や、保油空間13に潤滑油11が溜まった状態で流体動圧軸受装置1に衝撃荷重が負荷された場合でも、保油空間13に溜まった潤滑油11の軸方向隙間22への流入量を従来構成に比べて大幅に減じることができる。そのため、シール隙間Sを介しての油漏れの発生リスクを効果的に低減することができる。 On the other hand, in the fluid dynamic bearing device 1 according to the present invention, the annular portion 71b that abuts on the upper end surface 8c of the bearing member 8 is provided, and the upper end surface 8c of the bearing member 8 and the lower end surface of the annular portion 71b that abuts on the upper end surface 8c are provided. The oil-retaining space 13 and the axial gap 22 are communicated with each other via a second passage 23 formed by a groove portion provided on at least one of 71b1 (in this embodiment, the annular groove 8c1 and the radial groove 8c2 on the upper end surface 8c). ing. According to such a configuration, the oil holding space 13 and the axial gap 22 communicate with each other in a partial region in the circumferential direction via the second passage 23 described above. In this case, for example, when the lubricating oil 11 exuded from the bearing member 8 is accumulated in the oil holding space 13 during the operation of the fluid dynamic bearing device 1 in an inclined posture, the lubricating oil 11 is accumulated in the oil holding space 13. Even when an impact load is applied to the hydrodynamic bearing device 1 in this state, the amount of inflow of the lubricating oil 11 accumulated in the oil holding space 13 into the axial gap 22 can be significantly reduced as compared with the conventional configuration. Therefore, the risk of oil leakage through the seal gap S can be effectively reduced.

また、本実施形態では、流体動圧軸受装置1の運転時における潤滑油11の油面が、保油空間13のうち、拡径部13aの軸方向範囲内に位置するように保油空間13が形成される。この場合、保油空間13に介在する潤滑油11に毛細管力によるハウジング7底部側への引き込み力が作用するので、シール隙間Sを介しての油漏れの発生リスクを一層効果的に低減することができる。 Further, in the present embodiment, the oil holding space 13 is located so that the oil level of the lubricating oil 11 during operation of the hydrodynamic bearing device 1 is located within the axial range of the enlarged diameter portion 13a in the oil holding space 13. Is formed. In this case, since the pulling force to the bottom side of the housing 7 due to the capillary force acts on the lubricating oil 11 interposed in the oil holding space 13, the risk of oil leakage through the seal gap S is further effectively reduced. Can be done.

なお、シール隙間Sを介しての油漏れ防止効果を高めるため、シール隙間Sを形成する対向二面(本実施形態ではシール部材9の内周面9aおよび軸部材2の外周面2a)の何れか一方又は双方には撥油膜を形成するのが好ましい。図6は、その一例を示しており、シール部材9の内周面9aおよび軸部材2の外周面2aの双方に撥油膜30を形成している。 In addition, in order to enhance the effect of preventing oil leakage through the seal gap S, any of the two facing surfaces (in the present embodiment, the inner peripheral surface 9a of the seal member 9 and the outer peripheral surface 2a of the shaft member 2) forming the seal gap S. It is preferable to form an oil-repellent film on one or both of them. FIG. 6 shows an example thereof, in which an oil-repellent film 30 is formed on both the inner peripheral surface 9a of the seal member 9 and the outer peripheral surface 2a of the shaft member 2.

以上により、本発明の一実施形態に係る流体動圧軸受装置1、より具体的には、ハウジング7の内部空間に潤滑油11が部分充填された(ハウジング7の内部空間に潤滑油11と空気が混在する)パーシャルフィルタイプの流体動圧軸受装置1は、油漏れの発生リスクが低く、所望の軸受性能を長期間に亘って安定的に発揮することができる、という特徴を有する。 As described above, the fluid dynamic bearing device 1 according to the embodiment of the present invention, more specifically, the internal space of the housing 7 is partially filled with the lubricating oil 11 (the internal space of the housing 7 is partially filled with the lubricating oil 11 and air). The partial fill type hydrodynamic bearing device 1 has a feature that the risk of oil leakage is low and the desired bearing performance can be stably exhibited for a long period of time.

以上、本発明の一実施形態に係る流体動圧軸受装置1について説明を行ったが、流体動圧軸受装置1には、本発明の要旨を逸脱しない範囲で種々の変更を施すことができる。 Although the fluid dynamic pressure bearing device 1 according to the embodiment of the present invention has been described above, various changes can be made to the fluid dynamic pressure bearing device 1 without departing from the gist of the present invention.

例えば、軸部材2の下端を支持するスラスト軸受部Tは、いわゆる動圧軸受で構成することができる。詳細な図示は省略するが、この場合、軸部材2の下端面2bは、軸線と直交する方向の平坦面に形成される。このとき、軸部材2の下端面2bおよびこれに対向するハウジング7の内底面の何れか一方には、複数の動圧溝およびこれを区画する凸状の丘部からなる動圧発生部(スラスト動圧発生部)が形成される。 For example, the thrust bearing portion T that supports the lower end of the shaft member 2 can be formed of a so-called dynamic pressure bearing. Although detailed illustration is omitted, in this case, the lower end surface 2b of the shaft member 2 is formed on a flat surface in a direction orthogonal to the axis line. At this time, on either the lower end surface 2b of the shaft member 2 or the inner bottom surface of the housing 7 facing the lower end surface 2b, a dynamic pressure generating portion (thrust) composed of a plurality of dynamic pressure grooves and a convex hill portion for partitioning them is provided. Dynamic pressure generating part) is formed.

また、以上では、ハウジング7の環状部71bに固定したシール部材9の内周面9aと軸部材2の外周面2aとの間にシール隙間Sを形成したが、図7に示すように、シール部材9は省略しても構わない。この場合、環状部71bの内周面(小径内周面)71b2と軸部材2の外周面2aとの間にシール隙間Sを形成することができる。また、この場合、軸方向隙間22は、軸受部材8の上端面8cとこれに対向する環状部71bの下端面との間に形成される。図示は省略しているが、係る構成を採用する場合においても、シール隙間Sを形成する対向二面の少なくとも一方に撥油膜30(図6参照)を形成するのが好ましい。 Further, in the above, the seal gap S is formed between the inner peripheral surface 9a of the seal member 9 fixed to the annular portion 71b of the housing 7 and the outer peripheral surface 2a of the shaft member 2, but as shown in FIG. 7, the seal is formed. The member 9 may be omitted. In this case, a seal gap S can be formed between the inner peripheral surface (small diameter inner peripheral surface) 71b2 of the annular portion 71b and the outer peripheral surface 2a of the shaft member 2. Further, in this case, the axial gap 22 is formed between the upper end surface 8c of the bearing member 8 and the lower end surface of the annular portion 71b facing the upper end surface 8c. Although not shown, it is preferable to form the oil repellent film 30 (see FIG. 6) on at least one of the two facing surfaces forming the seal gap S even when such a configuration is adopted.

また、以上では、保油空間13と軸方向隙間22とを連通させる第2通路23を、図3および図4に示すように、軸受部材8の上端面8cに環状溝8c1および径方向溝8c2を設けることで形成したが、第2通路23は、例えば、軸受部材8の上端面8cに径方向溝8c2のみを設けることで形成することも可能である。その一例が図8に示すものであり、同図に示す実施形態では、径方向外側の端部が軸受部材8の上端外周縁部に設けた面取り8eに開口すると共に、径方向内側の端部が軸受部材8の上端内周縁部に設けた面取り8fに開口するように径方向溝8c2を設けている。 Further, in the above, as shown in FIGS. 3 and 4, the second passage 23 for communicating the oil retention space 13 and the axial gap 22 is provided on the upper end surface 8c of the bearing member 8 with an annular groove 8c1 and a radial groove 8c2. However, the second passage 23 can be formed, for example, by providing only the radial groove 8c2 on the upper end surface 8c of the bearing member 8. An example thereof is shown in FIG. 8, and in the embodiment shown in the figure, the radial outer end portion is opened to the chamfer 8e provided on the upper end outer peripheral edge portion of the bearing member 8 and the radial inner end portion is provided. A radial groove 8c2 is provided so as to open in the chamfer 8f provided on the inner peripheral edge portion of the upper end of the bearing member 8.

また、第2通路23は、図9(a)(b)に示す態様で軸受部材8の上端面8cに環状溝8c1および径方向溝8c2を設けることで形成することもできる。すなわち、この実施形態では、環状溝8c1の径方向内側の端部を軸受部材8の上端内周縁部に設けた面取り8fに繋げている点(環状溝8c1の溝幅を拡大した点)において、図2〜図6に示す実施形態と構成を異にしている。 Further, the second passage 23 can also be formed by providing the annular groove 8c1 and the radial groove 8c2 on the upper end surface 8c of the bearing member 8 in the embodiment shown in FIGS. 9A and 9B. That is, in this embodiment, at the point where the radially inner end of the annular groove 8c1 is connected to the chamfer 8f provided on the inner peripheral edge of the upper end of the bearing member 8 (the point where the groove width of the annular groove 8c1 is expanded). The configuration is different from the embodiment shown in FIGS. 2 to 6.

このような構成によれば、軸受部材8の上端面8cで形成される軸方向隙間22の隙間幅を図2等に示す実施形態に比べて拡大することができるので、軸方向隙間22における保油量を増加させることができる。そのため、軸方向隙間22内に潤滑油11が流入等した場合でも、シール隙間Sを介しての油漏れを防止する上で有利となる。また、環状溝8c1の径方向内側の端部が軸受部材8の上端内周縁部に設けた面取り8fに繋がっているので、環状溝8c1内に潤滑油11が介在する場合、この潤滑油11を軸受部材8の内周面8aと軸部材2の外周面2aとの間の径方向隙間(ラジアル軸受隙間Gr)に供給し易くなる。特に、図3に示すように、ラジアル軸受隙間Grに介在する潤滑油11をハウジング7の底部側に押し込む形状を有するラジアル動圧発生部A1を設けた場合には、ラジアル軸受部R1のラジアル軸受隙間Grの上側に介在する潤滑油11をラジアル軸受部R1のラジアル軸受隙間Grに引き込み易くなる。このため、シール隙間Sを介しての油漏れを防止する上で、また、ラジアル軸受隙間Grにおける油膜切れを防止する上で有利となる。 According to such a configuration, the gap width of the axial gap 22 formed by the upper end surface 8c of the bearing member 8 can be expanded as compared with the embodiment shown in FIG. The amount of oil can be increased. Therefore, even when the lubricating oil 11 flows into the axial gap 22, it is advantageous in preventing oil leakage through the seal gap S. Further, since the radially inner end of the annular groove 8c1 is connected to the chamfer 8f provided on the inner peripheral edge of the upper end of the bearing member 8, when the lubricating oil 11 intervenes in the annular groove 8c1, the lubricating oil 11 is used. It becomes easy to supply to the radial gap (radial bearing gap Gr) between the inner peripheral surface 8a of the bearing member 8 and the outer peripheral surface 2a of the shaft member 2. In particular, as shown in FIG. 3, when the radial dynamic pressure generating portion A1 having a shape of pushing the lubricating oil 11 interposed in the radial bearing gap Gr toward the bottom side of the housing 7 is provided, the radial bearing of the radial bearing portion R1 is provided. The lubricating oil 11 interposed above the gap Gr can be easily drawn into the radial bearing gap Gr of the radial bearing portion R1. Therefore, it is advantageous in preventing oil leakage through the seal gap S and in preventing the oil film from running out in the radial bearing gap Gr.

また、以上では特に言及していないが、焼結金属製の軸受部材8の上端面8cに設けた環状溝8c1および/または径方向溝8c2を形成する面(溝形成面)の表面開孔率は、軸受部材8の上端面8cのうち、上記溝形成面を除く領域の表面開孔率よりも大きくすることができる。このようにすれば、流体動圧軸受装置1の運転時等には、軸受部材8の内部気孔に含浸させた潤滑油11が環状溝8c1および/または径方向溝8c2内に滲み出し易くなる。そのため、図8に示す態様で径方向溝8c2を設けた場合や、図9(a)に示す態様で環状溝8c1および径方向溝8c2を設けた場合には、溝8c1,8c2に滲み出た潤滑油11をラジアル軸受部R1のラジアル軸受隙間Grに供給し易くなる。そのため、ラジアル軸受隙間Grの油膜切れに起因したラジアル軸受部R1,R2の軸受性能低下を防止する上で有利となる。 Further, although not particularly mentioned above, the surface opening ratio of the surface (groove forming surface) forming the annular groove 8c1 and / or the radial groove 8c2 provided on the upper end surface 8c of the sintered metal bearing member 8. Can be made larger than the surface opening rate of the region of the upper end surface 8c of the bearing member 8 excluding the groove forming surface. By doing so, when the fluid dynamic bearing device 1 is in operation or the like, the lubricating oil 11 impregnated into the internal pores of the bearing member 8 tends to seep into the annular groove 8c1 and / or the radial groove 8c2. Therefore, when the radial groove 8c2 is provided in the embodiment shown in FIG. 8 or when the annular groove 8c1 and the radial groove 8c2 are provided in the embodiment shown in FIG. 9A, the grooves 8c1 and 8c2 are exuded. It becomes easy to supply the lubricating oil 11 to the radial bearing gap Gr of the radial bearing portion R1. Therefore, it is advantageous in preventing deterioration of the bearing performance of the radial bearing portions R1 and R2 due to the oil film running out of the radial bearing gap Gr.

上記のように、溝形成面の表面開孔率と溝形成面を除く領域の表面開孔率とを異ならせるための手段としては、例えば以下のような手順で軸受部材8を製造することが考えられる。まず、金属粉末を主成分とする原料粉末の圧粉体を圧縮成形するのと同時に、圧粉体の一端面に溝8c1,8c2を型成形してから、この圧粉体を加熱・焼結して焼結体を得る。その後、焼結体をサイジング金型に投入して軸方向に圧縮することにより、焼結体を完成品形状に仕上げる(焼結体の内周面にラジアル動圧発生部A1,A2を型成形すると共に焼結体の寸法精度を矯正する)際、溝8c1,8c2が型成形された面を、平坦面に形成されたパンチの加圧面で加圧する。要するに、溝8c1,8c2の形成面は、サイジング金型によって成形しない非成形面とする一方で、溝形成面を除く領域は、サイジング金型による成形面とする。このようにすれば、ラジアル動圧発生部A1,A2を有する焼結金属製の軸受部材8を製造するのに必要最低限の工程を実施する間に、溝形成面の表面開孔率と、溝形成面を除く領域の表面開孔率との間に差を設けることができる。 As described above, as a means for making the surface opening rate of the groove forming surface different from the surface opening rate of the region other than the groove forming surface, for example, the bearing member 8 can be manufactured by the following procedure. Conceivable. First, the green compact of the raw material powder containing the metal powder as the main component is compression-molded, and at the same time, the grooves 8c1 and 8c2 are molded on one end surface of the green compact, and then the green compact is heated and sintered. To obtain a sintered body. After that, the sintered body is put into a sizing mold and compressed in the axial direction to finish the sintered body into a finished product shape (radial dynamic pressure generating portions A1 and A2 are molded on the inner peripheral surface of the sintered body. At the same time, the dimensional accuracy of the sintered body is corrected), the surface on which the grooves 8c1 and 8c2 are formed is pressed by the pressure surface of the punch formed on the flat surface. In short, the formed surface of the grooves 8c1 and 8c2 is a non-molded surface that is not molded by the sizing mold, while the region other than the groove forming surface is a molded surface by the sizing mold. By doing so, while carrying out the minimum steps necessary for manufacturing the bearing member 8 made of sintered metal having the radial dynamic pressure generating portions A1 and A2, the surface opening rate of the groove forming surface and the surface opening rate are determined. It is possible to provide a difference from the surface opening rate of the region other than the groove forming surface.

なお、上記のようにして軸受部材8の上端面8c内で表面開孔率に差を設ける場合、溝8c1,8c2の溝深さが浅過ぎると、サイジング金型で焼結体を軸方向に圧縮するのに伴って溝8c1,8c2が消失等する可能性がある。そのため、圧粉体に型成形する溝8c1,8c2の溝深さは0.05mm以上とするのが好ましい。また、軸受部材8の上端面8cにおいて、溝8c1,8c2の占有面積が大き過ぎると、焼結体を軸方向に圧縮する際に、焼結体を適切に軸方向に圧縮することができず、ラジアル動圧発生部A1,A2の成形精度や、軸受部材8の形状精度に悪影響が及ぶ可能性がある。そのため、軸受部材8の上端面8cに占める溝8c1,8c2の面積比は50%以下とするのが好ましい。 When the surface opening ratio is different in the upper end surface 8c of the bearing member 8 as described above, if the groove depths of the grooves 8c1 and 8c2 are too shallow, the sintered body is axially moved by the sizing mold. The grooves 8c1 and 8c2 may disappear as the compression is performed. Therefore, it is preferable that the groove depths of the grooves 8c1 and 8c2 to be molded into the green compact are 0.05 mm or more. Further, if the occupied area of the grooves 8c1 and 8c2 on the upper end surface 8c of the bearing member 8 is too large, the sintered body cannot be appropriately compressed in the axial direction when the sintered body is compressed in the axial direction. The molding accuracy of the radial dynamic pressure generating portions A1 and A2 and the shape accuracy of the bearing member 8 may be adversely affected. Therefore, the area ratio of the grooves 8c1 and 8c2 to the upper end surface 8c of the bearing member 8 is preferably 50% or less.

溝形成面の表面開孔率と溝形成面を除く領域の表面開孔率に差をもたせるための技術手段は上記のものに限定されず、例えば、溝形成面を除く領域に封孔処理を施すことも考えられる。但し、この場合には、封孔処理を施すための別工程が必要となるので、軸受部材8の製造コストが増加する。そのため、上記のように、焼結金属製の軸受部材8を得る上で必要最低限の工程(圧縮成形工程、焼結工程およびサイジング工程)を実施する間に、軸受部材8の上端面8c内で表面開孔率に差を設けるのが好ましい。 The technical means for making a difference between the surface opening rate of the groove-forming surface and the surface opening rate of the region other than the groove-forming surface is not limited to the above, and for example, the sealing treatment is performed in the region other than the groove-forming surface. It is also possible to apply. However, in this case, a separate process for performing the hole sealing treatment is required, which increases the manufacturing cost of the bearing member 8. Therefore, as described above, while performing the minimum necessary steps (compression molding step, sintering step, and sizing step) for obtaining the bearing member 8 made of sintered metal, the inside of the upper end surface 8c of the bearing member 8 It is preferable to provide a difference in the surface opening rate.

また、以上では、第2通路23を、軸受部材8の上端面8cに径方向溝8c2や環状溝8c1を設けることで形成したが、第2通路23は、軸受部材8の上端面8cに設けた径方向溝8c2や環状溝8c1に替え、あるいはこれに加え、軸受部材8の上端面8cに当接するハウジング7の環状部71b1に径方向溝等を設けることで形成することもできる。 Further, in the above, the second passage 23 is formed by providing the radial groove 8c2 and the annular groove 8c1 on the upper end surface 8c of the bearing member 8, but the second passage 23 is provided on the upper end surface 8c of the bearing member 8. It can be formed by replacing the radial groove 8c2 or the annular groove 8c1 or by providing a radial groove or the like in the annular portion 71b1 of the housing 7 that abuts on the upper end surface 8c of the bearing member 8.

また、以上では、軸受部材8の上端面8cと当接する環状部71bが、ハウジング7の筒部71aと一体に設けられた流体動圧軸受装置1に本発明を適用した場合について説明したが、本発明は、上記環状部71bがハウジング7の筒部71aと別体に設けられる場合にも適用することができる。この場合、図示は省略するが、例えば、上記の筒部71aおよび蓋部材72に相当する部分を一体に有する有底筒状のハウジングの内周に軸受部材8を配置してから、このハウジングの上端部に、下端面の外径側領域が軸受部材8の上端面8cと当接して軸受部材8との間に第2通路23を形成すると共に、下端面の内径側領域が軸受部材8の上端面8cとの間に軸方向隙間22を形成するような環状部材(例えばシール部材9)を固定すれば、以上で説明した実施形態と同様の作用効果を奏し得る流体動圧軸受装置1が得られる。 Further, in the above, the case where the present invention is applied to the fluid dynamic pressure bearing device 1 in which the annular portion 71b in contact with the upper end surface 8c of the bearing member 8 is provided integrally with the tubular portion 71a of the housing 7 has been described. The present invention can also be applied when the annular portion 71b is provided separately from the tubular portion 71a of the housing 7. In this case, although not shown, for example, after arranging the bearing member 8 on the inner circumference of the bottomed tubular housing having the portion corresponding to the tubular portion 71a and the lid member 72, the bearing member 8 is arranged. At the upper end, the outer diameter side region of the lower end surface abuts on the upper end surface 8c of the bearing member 8 to form a second passage 23 with the bearing member 8, and the inner diameter side region of the lower end surface is the bearing member 8. If an annular member (for example, a seal member 9) that forms an axial gap 22 is fixed to the upper end surface 8c, the fluid dynamic bearing device 1 that can exert the same operation and effect as that of the embodiment described above can be obtained. can get.

また、ラジアル軸受部R1,R2の何れか一方又は双方は、いわゆる多円弧軸受、ステップ軸受、および波型軸受等、公知のその他の動圧軸受で構成することもできる他、動圧発生部を有さない、いわゆる真円軸受で構成することもできる。また、ラジアル軸受部は、以上で説明したように軸方向に離間した二箇所に設ける他、軸方向の一箇所、あるいは軸方向に相互に離間した三箇所以上に設けることもできる。 Further, either one or both of the radial bearing portions R1 and R2 may be composed of other known dynamic pressure bearings such as so-called multi-arc bearings, step bearings, and corrugated bearings, and the dynamic pressure generating portion may be formed. It can also be configured with a so-called perfect circular bearing that does not exist. Further, the radial bearing portions may be provided at two locations separated in the axial direction as described above, or may be provided at one location in the axial direction or at three or more locations separated from each other in the axial direction.

また、以上では、回転部材として、羽根を有するロータ3が軸部材2に固定される流体動圧軸受装置1に本発明を適用した場合について説明を行ったが、本発明は、回転部材として、ディスク搭載面を有するディスクハブ、あるいはポリゴンミラーが軸部材2に固定される流体動圧軸受装置1にも好ましく適用することができる。すなわち、本発明は、図1に示すようなファンモータのみならず、ディスク装置用のスピンドルモータや、レーザビームプリンタ(LBP)用のポリゴンスキャナモータ等、その他の電気機器用モータに組み込まれる流体動圧軸受装置1にも好ましく適用することができる。 Further, in the above, the case where the present invention is applied to the fluid dynamic pressure bearing device 1 in which the rotor 3 having blades is fixed to the shaft member 2 as the rotating member has been described, but the present invention has been described as the rotating member. It can also be preferably applied to a disc hub having a disc mounting surface or a fluid dynamic bearing device 1 in which a polygon mirror is fixed to a shaft member 2. That is, the present invention is not only a fan motor as shown in FIG. 1, but also a fluid motion incorporated in a spindle motor for a disk device, a polygon scanner motor for a laser beam printer (LBP), and other motors for electric devices. It can also be preferably applied to the pressure bearing device 1.

1 流体動圧軸受装置
2 軸部材
7 ハウジング
8 軸受部材
8c 上端面(一端面)
8c1 環状溝
8c2 径方向溝
8e,8f 面取り
9 シール部材
10 スラストプレート
11 潤滑油
12 密閉空間
13 保油空間
13a 拡径部
20 通気路
21 第1通路
22 軸方向隙間
23 第2通路
30 撥油膜
71 筒状部材
71a 筒部
71b 環状部
72 蓋部材
A1、A2 ラジアル動圧発生部
Gr ラジアル軸受隙間
R1、R2 ラジアル軸受部
T スラスト軸受部
1 Fluid dynamic bearing device 2 Shaft member 7 Housing 8 Bearing member 8c Upper end surface (one end surface)
8c1 annular groove 8c2 radial groove 8e, 8f chamfer 9 Seal member 10 Thrust plate 11 Lubricating oil 12 Sealed space 13 Oil retention space 13a Expansion part 20 Ventilation passage 21 First passage 22 Axial gap 23 Second passage 30 Oil repellent film 71 Cylindrical member 71a Cylindrical portion 71b Circular portion 72 Lid member A1, A2 Radial dynamic pressure generating portion Gr Radial bearing gap R1, R2 Radial bearing portion T Thrust bearing portion

Claims (8)

潤滑油を含浸させた多孔質体からなり、支持すべき軸の外周面との間にラジアル軸受隙間を形成する軸受部材と、軸方向の一端が開口すると共に他端が閉塞された有底筒状をなし、軸受部材を収容したハウジングと、ハウジングの開口部をシールするシール隙間と、軸、軸受部材およびハウジングの底部で画成される密封空間を外気に開放する通気路と、軸受部材の一端外周部とハウジングの筒部との間に設けられ、潤滑油の油面を保持可能な筒状の保油空間とを備え、通気路が、密閉空間と保油空間とに開口した第1通路と、軸受部材の一端面で形成され、径方向内側の端部がシール隙間に繋がった軸方向隙間とを含んで構成される流体動圧軸受装置において、
軸受部材の一端面と当接した環状部が設けられ、保油空間と軸方向隙間は、軸受部材の一端面およびこれに当接する前記環状部の他端面の少なくとも一方に設けた溝部で形成される第2通路を介して連通しており、
保油空間は、径方向寸法が軸方向他方側から軸方向一方側に向けて徐々に拡大した拡径部を有し、流体動圧軸受装置の運転時における潤滑油の油面が前記拡径部の軸方向範囲内に保持されることを特徴とする流体動圧軸受装置。
A bearing member made of a porous body impregnated with lubricating oil and forming a radial bearing gap with the outer peripheral surface of the shaft to be supported, and a bottomed cylinder with one end in the axial direction open and the other end closed. A housing that has a shape and houses the bearing member, a seal gap that seals the opening of the housing, a ventilation path that opens the sealing space defined by the shaft, the bearing member, and the bottom of the housing to the outside air, and the bearing member. A first, which is provided between the outer peripheral portion of one end and the tubular portion of the housing, has a tubular oil-retaining space capable of holding the oil level of the lubricating oil, and has a ventilation path opened in the closed space and the oil-retaining space. In a hydrodynamic bearing device formed by a passage and one end surface of a bearing member and including an axial gap in which a radial inner end is connected to a seal gap.
An annular portion abutting on one end surface of the bearing member is provided, and an oil retention space and an axial gap are formed by a groove provided on at least one of one end surface of the bearing member and the other end surface of the annular portion abutting on the one end surface. It communicates through the second passage ,
The oil holding space has a diameter-expanded portion whose radial dimension gradually expands from the other side in the axial direction to one side in the axial direction, and the oil level of the lubricating oil during operation of the hydrodynamic bearing device expands in diameter. fluid dynamic bearing device according to claim Rukoto held in the axial extent of the parts.
ハウジングの筒部の内周面に軸方向他方側から軸方向一方側に向けて徐々に拡径した拡径面が設けられ、この拡径面と軸受部材の円筒状外周面とで前記拡径部が形成された請求項に記載の流体動圧軸受装置。 The inner peripheral surface of the tubular portion of the housing is provided with a diameter-expanded surface that gradually increases in diameter from the other side in the axial direction to one side in the axial direction. The fluid dynamic bearing device according to claim 1 , wherein the portion is formed. 軸受部材の一端面に前記溝部が設けられており、この溝部を形成する面の表面開孔率が、軸受部材の一端面のうち前記溝部を形成する面を除く領域の表面開孔率よりも大きい請求項1又は2に記載の流体動圧軸受装置。 The groove is provided on one end surface of the bearing member, and the surface opening rate of the surface forming the groove is higher than the surface opening rate of the region of one end surface of the bearing member excluding the surface forming the groove. The hydrodynamic bearing device according to claim 1 or 2. 前記溝部は、径方向内側の端部が、軸受部材の一端内周縁部に設けた面取りに繋がった径方向溝又は環状溝を有する請求項に記載の流体動圧軸受装置。 The fluid dynamic pressure bearing device according to claim 3 , wherein the groove portion has a radial groove or an annular groove whose inner end portion is connected to a chamfer provided on the inner peripheral edge portion of one end of the bearing member. ラジアル軸受隙間に介在する潤滑油に動圧作用を発生させる動圧発生部をさらに有し、該動圧発生部は、ラジアル軸受隙間に介在する潤滑油をハウジングの底部側に押し込む形状を有する請求項1〜の何れか一項に記載の流体動圧軸受装置。 A claim having a dynamic pressure generating portion that causes a dynamic pressure action on the lubricating oil interposed in the radial bearing gap, and the dynamic pressure generating portion having a shape of pushing the lubricating oil interposed in the radial bearing gap toward the bottom side of the housing. Item 5. The hydrodynamic bearing device according to any one of Items 1 to 4. シール隙間を形成する対向二面の少なくとも一方に撥油膜が形成されている請求項1〜の何れか一項に記載の流体動圧軸受装置。 The fluid dynamic bearing device according to any one of claims 1 to 5, wherein an oil-repellent film is formed on at least one of two facing surfaces forming a seal gap. 軸受部材が、ハウジングの底部を構成する蓋部材と前記環状部とで軸方向両側から挟持されている請求項1〜の何れか一項に記載の流体動圧軸受装置。 The fluid dynamic pressure bearing device according to any one of claims 1 to 6 , wherein the bearing member is sandwiched between the lid member constituting the bottom portion of the housing and the annular portion from both sides in the axial direction. 請求項1〜の何れか一項に記載の流体動圧軸受装置を備えたモータ。 A motor provided with the hydrodynamic bearing device according to any one of claims 1 to 7.
JP2018041842A 2017-09-28 2018-03-08 Fluid dynamic bearing device and motor equipped with it Active JP6981900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/035651 WO2019065719A1 (en) 2017-09-28 2018-09-26 Fluid dynamic pressure bearing device and motor having same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017188454 2017-09-28
JP2017188454 2017-09-28

Publications (2)

Publication Number Publication Date
JP2019066030A JP2019066030A (en) 2019-04-25
JP6981900B2 true JP6981900B2 (en) 2021-12-17

Family

ID=66339386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018041842A Active JP6981900B2 (en) 2017-09-28 2018-03-08 Fluid dynamic bearing device and motor equipped with it

Country Status (1)

Country Link
JP (1) JP6981900B2 (en)

Also Published As

Publication number Publication date
JP2019066030A (en) 2019-04-25

Similar Documents

Publication Publication Date Title
JP6189589B2 (en) Fluid dynamic bearing device and motor including the same
JP5951365B2 (en) Fluid dynamic bearing device and motor including the same
KR20160058765A (en) Sintered metal bearing and fluid-dynamic bearing device provided with said bearing
JP2008267531A (en) Method for manufacturing dynamic pressure bearing device
JP6981900B2 (en) Fluid dynamic bearing device and motor equipped with it
JP6877185B2 (en) Fluid dynamic bearing device and motor equipped with it
WO2019139007A1 (en) Fluid dynamic bearing device and motor equipped with same
JP2009168147A (en) Dynamic pressure bearing device and its manufacturing method
JP7076266B2 (en) Manufacturing method of sintered oil-impregnated bearing
JP2011112075A (en) Fluid dynamic pressure bearing device
WO2019065719A1 (en) Fluid dynamic pressure bearing device and motor having same
JP2008039104A (en) Fluid bearing device
JP2009228873A (en) Fluid bearing device
JP2003065324A (en) Hydrodyanamic type bearing apparatus
WO2023189389A1 (en) Oil-impregnated sintered bearing and fluid dynamic bearing device including same
JP7094118B2 (en) Sintered metal dynamic pressure bearing
JP2009014121A (en) Dynamic pressure bearing device and its manufacturing method
JP7184583B2 (en) Intermediate manufacturer of hydrodynamic bearing devices, motors and bearings
WO2019159787A1 (en) Fluid dynamic pressure bearing device and motor provided with same
CN116888373A (en) Sintered oil-impregnated bearing and fluid dynamic bearing device provided with same
JP4738835B2 (en) Hydrodynamic bearing device
JP4739247B2 (en) Hydrodynamic bearing device
JP2024053879A (en) Dynamic pressure bearing and fluid dynamic pressure bearing device including the same
JP6502036B2 (en) Fluid dynamic bearing device and motor including the same
CN117628053A (en) Sintered oil-impregnated bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211118

R150 Certificate of patent or registration of utility model

Ref document number: 6981900

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150