JP7076266B2 - Manufacturing method of sintered oil-impregnated bearing - Google Patents

Manufacturing method of sintered oil-impregnated bearing Download PDF

Info

Publication number
JP7076266B2
JP7076266B2 JP2018071600A JP2018071600A JP7076266B2 JP 7076266 B2 JP7076266 B2 JP 7076266B2 JP 2018071600 A JP2018071600 A JP 2018071600A JP 2018071600 A JP2018071600 A JP 2018071600A JP 7076266 B2 JP7076266 B2 JP 7076266B2
Authority
JP
Japan
Prior art keywords
sintered body
peripheral surface
bearing
outer peripheral
dynamic pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018071600A
Other languages
Japanese (ja)
Other versions
JP2019183868A (en
Inventor
正志 山郷
冬木 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2018071600A priority Critical patent/JP7076266B2/en
Publication of JP2019183868A publication Critical patent/JP2019183868A/en
Application granted granted Critical
Publication of JP7076266B2 publication Critical patent/JP7076266B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、焼結含油軸受に関し、特に、流体動圧軸受装置に組み込まれる焼結含油軸受に関する。 The present invention relates to a sintered oil-impregnated bearing, and more particularly to a sintered oil-impregnated bearing incorporated in a fluid dynamic pressure bearing device.

流体動圧軸受装置は、軸受部材とその内周に挿入された軸部材との相対回転により、軸部材の外周面と軸受部材の内周面との間のラジアル軸受隙間に満たされた潤滑油の圧力を高め、この圧力(動圧作用)で軸部材を相対回転自在に非接触支持するものである。流体動圧軸受装置は、回転精度及び静粛性に優れるという特性から、HDDのディスク駆動装置のスピンドルモータ等に好適に使用される。 The hydrodynamic bearing device is a lubricating oil filled in the radial bearing gap between the outer peripheral surface of the shaft member and the inner peripheral surface of the bearing member by the relative rotation between the bearing member and the shaft member inserted in the inner circumference thereof. The pressure of the bearing is increased, and the shaft member is rotatably and non-contactly supported by this pressure (dynamic action). The fluid dynamic bearing device is suitably used for a spindle motor or the like of an HDD disk drive device because of its excellent rotational accuracy and quietness.

流体動圧軸受装置に組み込まれる軸受部材として、焼結体の内部気孔に油を含浸させてなる焼結含油軸受が用いられることがある。しかし、焼結含油軸受は、表面に無数の微小な開孔部を有するため、ラジアル軸受隙間に満たされた潤滑油の圧力が高まると、焼結含油軸受の内周面の開孔部から内部気孔に潤滑油が浸入し、ラジアル軸受隙間の潤滑油の圧力(油膜強度)が低下する恐れがある。このような現象は「動圧抜け」と呼ばれ、焼結含油軸受を用いた流体動圧軸受装置において回避すべき課題とされる。 As a bearing member incorporated in a fluid dynamic bearing device, a sintered oil-impregnated bearing formed by impregnating the internal pores of a sintered body with oil may be used. However, since the sintered oil-impregnated bearing has innumerable minute openings on the surface, when the pressure of the lubricating oil filled in the radial bearing gap increases, the inside is formed from the opening on the inner peripheral surface of the sintered oil-impregnated bearing. Lubricating oil may enter the pores and the pressure (oil film strength) of the lubricating oil in the radial bearing gap may decrease. Such a phenomenon is called "dynamic pressure release" and is a problem to be avoided in a fluid dynamic pressure bearing device using a sintered oil-impregnated bearing.

動圧抜けを防止する手段として、焼結体の内周面に回転サイジングを施して表面開孔を減じる方法が知られている(例えば、下記の特許文献1参照)。 As a means for preventing dynamic pressure release, a method is known in which the inner peripheral surface of the sintered body is subjected to rotational sizing to reduce surface openings (see, for example, Patent Document 1 below).

また、下記の特許文献2には、焼結体の表面に開口した気孔に封止剤(樹脂)を含浸させて封孔する方法が示されている。 Further, Patent Document 2 below discloses a method of impregnating pores opened on the surface of a sintered body with a sealing agent (resin) to seal the pores.

また、下記の特許文献3には、鉄粉の周囲に微細な銅粉を拡散付着させた部分拡散合金粉を含む原料粉を用いることで、焼結体の内部気孔を均一に分散させて粗大気孔の形成を防止する方法が示されている。 Further, in Patent Document 3 below, by using a raw material powder containing a partially diffused alloy powder in which fine copper powder is diffused and adhered around the iron powder, the internal pores of the sintered body are uniformly dispersed and coarse. A method of preventing the formation of pores is shown.

特開平10-306827号公報Japanese Unexamined Patent Publication No. 10-306827 特開2010-60098号公報Japanese Unexamined Patent Publication No. 2010-6098 特開2017-150596号公報Japanese Unexamined Patent Publication No. 2017-150596

しかし、回転サイジングだけでは、軸受面に粗大気孔が残存することがあり、動圧抜けを確実に防止できるとは言えない。また、焼結体の表面に封止剤による封孔処理を施す場合、封止剤およびこれを含浸する工程を要するため、コスト高は避けられない。また、部分拡散合金粉のような特殊な粉末を使用すると、材料コスト高を招くおそれがある。 However, it cannot be said that the dynamic pressure release can be reliably prevented because the coarse air holes may remain on the bearing surface only by the rotational sizing. Further, when the surface of the sintered body is to be sealed with a sealing agent, a sealing agent and a step of impregnating the sealing agent are required, so that high cost is unavoidable. In addition, the use of special powders such as partial diffusion alloy powders may lead to high material costs.

そこで、本発明は、製造コストを抑えつつ、動圧抜けを確実に防止することを目的とする。 Therefore, an object of the present invention is to surely prevent dynamic pressure release while suppressing the manufacturing cost.

前記課題を解決するために、本発明は、銅を25質量%以上含む原料粉末を圧縮して圧粉体を成形する工程と、前記圧粉体を焼結して焼結体を得る工程と、前記焼結体の外周面を、0μmより大きく50μm以下の圧縮代で圧縮する工程と、前記焼結体の内周面に動圧発生部を型成形する工程とを有する焼結含油軸受の製造方法を提供する。 In order to solve the above problems, the present invention comprises a step of compressing a raw material powder containing 25% by mass or more of copper to form a green compact, and a step of sintering the green compact to obtain a sintered body. A sintered oil-impregnated bearing having a step of compressing the outer peripheral surface of the sintered body with a compression allowance of more than 0 μm and 50 μm or less, and a step of molding a dynamic pressure generating portion on the inner peripheral surface of the sintered body. Provide a manufacturing method.

このように、本発明では、焼結体の内周面に動圧発生部を型成形する工程(動圧溝サイジング)の前に、焼結体の外周面を50μm以下の微小な圧縮代で圧縮する工程(軽サイジング)を施す。この軽サイジングにより、焼結体の表面(外周面)に露出した銅が塑性変形して焼結体の外周面の粗大気孔に入り込み、焼結体の表面の粗大気孔が減じられる。その後、表面の粗大気孔が減じられた焼結体に対して動圧溝サイジングを施すことにより、焼結体の外周面の粗大気孔がさらに減じられ、軽サイジングを施さずに動圧溝サイジングを施した同密度の焼結体と比べて、焼結体の通油度が大幅に低減される。 As described above, in the present invention, before the step of molding the dynamic pressure generating portion on the inner peripheral surface of the sintered body (dynamic pressure groove sizing), the outer peripheral surface of the sintered body is subjected to a minute compression allowance of 50 μm or less. Perform a compression process (light sizing). Due to this light sizing, the copper exposed on the surface (outer peripheral surface) of the sintered body is plastically deformed and enters the coarse air holes on the outer peripheral surface of the sintered body, and the coarse air holes on the surface of the sintered body are reduced. After that, by applying dynamic pressure groove sizing to the sintered body with reduced rough air holes on the surface, the coarse air holes on the outer peripheral surface of the sintered body are further reduced, and the dynamic pressure groove sizing is performed without light sizing. The oil permeability of the sintered body is significantly reduced as compared with the sintered body of the same density.

ところで、従来の焼結含油軸受の製造方法として、動圧溝サイジングの前に、焼結体の寸法を整える寸法サイジングを施すことがある。この寸法サイジングは、焼結体の寸法がねらい値よりも大幅にずれている場合に、焼結体を圧縮して所定の寸法範囲内に収めることを目的とするものである。具体的に、寸法サイジングにおける金型は、図9に示すように、ダイ101、コアロッド102、上パンチ103、および下パンチ104を備える。ダイ101の内径D2’は、焼結体の許容最大外径とされる。コアロッドの外径D3’は、焼結体の許容最小内径とされる。上パンチ103と下パンチ104との軸方向間隔W’は、焼結体の許容最大軸方向幅とされる。以上のようなダイ101、コアロッド102、上パンチ103、および下パンチ104で区画される空間に焼結体110を押し込むことで、焼結体110の寸法(外径、内径、軸方向幅)の何れかが許容範囲を超えている場合に、許容範囲内となるように成形される。 By the way, as a conventional method for manufacturing a sintered oil-impregnated bearing, dimensional sizing for adjusting the dimensions of the sintered body may be performed before the dynamic pressure groove sizing. This dimensional sizing is intended to compress the sintered body into a predetermined dimensional range when the size of the sintered body deviates significantly from the target value. Specifically, the die for dimensional sizing includes a die 101, a core rod 102, an upper punch 103, and a lower punch 104, as shown in FIG. The inner diameter D2'of the die 101 is the maximum allowable outer diameter of the sintered body. The outer diameter D3'of the core rod is the minimum allowable inner diameter of the sintered body. The axial distance W'between the upper punch 103 and the lower punch 104 is the maximum allowable axial width of the sintered body. By pushing the sintered body 110 into the space partitioned by the die 101, the core rod 102, the upper punch 103, and the lower punch 104 as described above, the dimensions (outer diameter, inner diameter, axial width) of the sintered body 110 can be determined. If any of them exceeds the allowable range, it is molded so as to be within the allowable range.

この場合、例えば図示のように、寸法サイジング前の焼結体110の外径D1’が、ダイ101の内径D2’よりも小さければ、焼結体110の外周面110dがダイ101で圧縮されることはない。このように、寸法サイジングでは、焼結体110の外周面110dが圧縮されないことがある。これに対し、本発明の軽サイジングは、焼結体の外周面を、製品ごとの寸法のバラつきに関わらず必ず0μmより大きい圧縮代(好ましくは5μm以上の圧縮代)で圧縮するものであり、従来の寸法サイジングとは異なるものである。 In this case, for example, as shown in the figure, if the outer diameter D1'of the sintered body 110 before dimensional sizing is smaller than the inner diameter D2' of the die 101, the outer peripheral surface 110d of the sintered body 110 is compressed by the die 101. There is no such thing. As described above, in the dimensional sizing, the outer peripheral surface 110d of the sintered body 110 may not be compressed. On the other hand, in the light sizing of the present invention, the outer peripheral surface of the sintered body is always compressed with a compression allowance larger than 0 μm (preferably a compression allowance of 5 μm or more) regardless of the variation in dimensions for each product. It is different from the conventional dimensional sizing.

上記のような製造方法により、外周面の粗大気孔が減じられた焼結含油軸受が得られる。具体的には、銅を25質量%以上含み、内周面に動圧発生部が型成形された焼結体からなる焼結含油軸受であって、前記焼結体の外周面における表面開孔率が2%以上15%以下であり、前記焼結体の外周面に開口した各気孔の面積が0.01mm以下であることを特徴とする焼結含油軸受が得られる。 By the manufacturing method as described above, a sintered oil-impregnated bearing having reduced coarse air holes on the outer peripheral surface can be obtained. Specifically, it is a sintered oil-impregnated bearing made of a sintered body containing 25% by mass or more of copper and having a dynamic pressure generating portion molded on the inner peripheral surface, and has surface openings on the outer peripheral surface of the sintered body. A sintered oil-impregnated bearing is obtained, wherein the ratio is 2% or more and 15% or less, and the area of each pore opened on the outer peripheral surface of the sintered body is 0.01 mm 2 or less.

上記の焼結含油軸受の通油度は、例えば0.1g/10min以下とされる。尚、通油度は、焼結体の軸方向両端面に開口した気孔を密封した状態で、焼結体の内周に満たした油に所定圧力(ここでは0.4MPa)を負荷し、この状態で10分間保持したときに、焼結体の外周面に開口した気孔から滲み出した油の総重量とする。 The oil permeability of the sintered oil-impregnated bearing is, for example, 0.1 g / 10 min or less. The degree of oil flow is determined by applying a predetermined pressure (here, 0.4 MPa) to the oil filled in the inner circumference of the sintered body with the pores opened on both end faces in the axial direction of the sintered body sealed. It is the total weight of the oil exuded from the pores opened on the outer peripheral surface of the sintered body when the sintered body is held for 10 minutes.

焼結含油軸受と、前記焼結含油軸受の内周に挿入された軸部材と、前記焼結含油軸受の内周面と前記軸部材の外周面との間のラジアル軸受隙間に生じる油膜の動圧で前記軸部材を支持するラジアル軸受部とを備えた流体動圧軸受装置は、焼結含油軸受の内周面からの動圧抜けが抑えられるため、優れた軸受剛性及び回転精度を有する。 The movement of the oil film generated in the radial bearing gap between the sintered oil-impregnated bearing, the shaft member inserted in the inner circumference of the sintered oil-impregnated bearing, and the inner peripheral surface of the sintered oil-impregnated bearing and the outer peripheral surface of the shaft member. The fluid dynamic bearing device provided with the radial bearing portion that supports the shaft member by pressure has excellent bearing rigidity and rotational accuracy because the dynamic pressure release from the inner peripheral surface of the sintered oil-impregnated bearing is suppressed.

以上のように、焼結体に、動圧溝サイジングの前に軽サイジングを施すことで、封孔処理や特殊な材料を要することなく、焼結体の通油度を低減して動圧抜けを防止することができる。 As described above, by applying light sizing to the sintered body before the dynamic pressure groove sizing, the oil permeability of the sintered body is reduced and the dynamic pressure is released without the need for sealing treatment or special materials. Can be prevented.

スピンドルモータの断面図である。It is sectional drawing of a spindle motor. 流体動圧軸受装置の断面図である。It is sectional drawing of the fluid dynamic pressure bearing apparatus. 本発明の実施形態に係る焼結含油軸受の断面図である。It is sectional drawing of the sintered oil-impregnated bearing which concerns on embodiment of this invention. 上記焼結含油軸受の下面図である。It is a bottom view of the above-mentioned sintered oil-impregnated bearing. (A)(B)は、軽サイジング工程を示す断面図である。(A) and (B) are sectional views showing a light sizing process. (A)は、軽サイジング前の焼結体の表層の断面図であり、(B)は軽サイジング後の焼結体の表層の断面図である。(A) is a cross-sectional view of the surface layer of the sintered body before light sizing, and (B) is a cross-sectional view of the surface layer of the sintered body after light sizing. (A)(B)は、動圧溝サイジング工程を示す断面図である。(A) and (B) are sectional views showing a dynamic pressure groove sizing process. 焼結体の通油度の試験結果を示すグラフである。It is a graph which shows the test result of the oil permeability degree of a sintered body. 従来の寸法サイジング工程を示す断面図である。It is sectional drawing which shows the conventional dimension sizing process.

以下、本発明の実施の形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に示すスピンドルモータは、HDD等のディスク駆動装置に用いられるものであり、軸部材2を回転自在に非接触支持する流体動圧軸受装置1と、軸部材2に装着されたディスクハブ3と、半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5とを備えている。ステータコイル4はケーシング6に取付けられ、ロータマグネット5はディスクハブ3に取付けられる。流体動圧軸受装置1のハウジング7は、ケーシング6の内周に装着される。ディスクハブ3には、磁気ディスク等のディスクDが所定枚数(図示例では2枚)保持される。ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間の電磁力が発生し、この電磁力によってディスクハブ3および軸部材2が一体となって回転する。 The spindle motor shown in FIG. 1 is used for a disk drive device such as an HDD, and is a fluid dynamic bearing device 1 that rotatably and non-contactly supports the shaft member 2 and a disc hub 3 mounted on the shaft member 2. And a stator coil 4 and a rotor magnet 5 which are opposed to each other through a gap in the radial direction. The stator coil 4 is attached to the casing 6, and the rotor magnet 5 is attached to the disc hub 3. The housing 7 of the fluid dynamic bearing device 1 is mounted on the inner circumference of the casing 6. A predetermined number of discs D such as magnetic disks (two in the illustrated example) are held in the disc hub 3. When the stator coil 4 is energized, an electromagnetic force is generated between the stator coil 4 and the rotor magnet 5, and the electromagnetic force causes the disc hub 3 and the shaft member 2 to rotate together.

図2に示すように、流体動圧軸受装置1は、軸部材2と、本実施形態に係る焼結含油軸受としての軸受部材8と、軸受部材8を内周に保持するハウジング7と、ハウジング7の軸方向一端の開口部に設けられたシール部9と、ハウジング7の軸方向他端を閉塞する蓋部10とを有する。尚、以下の説明では、便宜上、軸方向でハウジング7の閉塞側を下側、ハウジング7の開口側を上側と言うが、これは流体動圧軸受装置1の使用態様を限定する趣旨ではない。 As shown in FIG. 2, the fluid dynamic bearing device 1 includes a shaft member 2, a bearing member 8 as a sintered oil-impregnated bearing according to the present embodiment, a housing 7 for holding the bearing member 8 on the inner circumference, and a housing. It has a seal portion 9 provided in the opening at one end in the axial direction of the housing 7, and a lid portion 10 for closing the other end in the axial direction of the housing 7. In the following description, for convenience, the closed side of the housing 7 is referred to as the lower side and the opening side of the housing 7 is referred to as the upper side in the axial direction, but this does not mean that the usage mode of the fluid dynamic bearing device 1 is limited.

軸部材2は、軸部2aと、軸部2aの下端に設けられたフランジ部2bとを備える。軸部材2は、ステンレス鋼等の金属材料で形成され、本実施形態では、軸部2aおよびフランジ部2bを含む軸部材2全体が一体に形成される。尚、軸部2aとフランジ部2bを別体に形成することもできる。 The shaft member 2 includes a shaft portion 2a and a flange portion 2b provided at the lower end of the shaft portion 2a. The shaft member 2 is made of a metal material such as stainless steel, and in the present embodiment, the entire shaft member 2 including the shaft portion 2a and the flange portion 2b is integrally formed. The shaft portion 2a and the flange portion 2b can be formed separately.

軸部2aの外周面には、軸方向に離隔する2箇所に形成された円筒面2a1と、2箇所の円筒面2a1の間に設けられ、円筒面2a1よりも小径な環状凹部2a2とが設けられる。円筒面2a1は、軸受部材8の内周面8aの軸受面8a1と半径方向で対向する軸受対向面として機能する。 On the outer peripheral surface of the shaft portion 2a, a cylindrical surface 2a1 formed at two locations separated in the axial direction and an annular recess 2a2 provided between the two cylindrical surfaces 2a1 and having a diameter smaller than that of the cylindrical surface 2a1 are provided. Be done. The cylindrical surface 2a1 functions as a bearing facing surface that faces the bearing surface 8a1 of the inner peripheral surface 8a of the bearing member 8 in the radial direction.

ハウジング7は、樹脂あるいは金属で円筒状に形成される。ハウジング7の内周面7aには、軸受部材8の外周面8dが、接着や圧入等の適宜の手段で固定される。 The housing 7 is made of resin or metal and is formed in a cylindrical shape. The outer peripheral surface 8d of the bearing member 8 is fixed to the inner peripheral surface 7a of the housing 7 by an appropriate means such as adhesion or press fitting.

軸受部材8は円筒状をなし、内周面8aにラジアル軸受面が設けられる。図示例では、軸受部材8の内周面8aの軸方向に離隔した2箇所にラジアル軸受面8a1が形成される。各ラジアル軸受面8a1には動圧発生部が形成され、本実施形態では、図3に示すように、各ラジアル軸受面8a1に動圧溝、具体的にはへリングボーン形状に配列された動圧溝G1,G2が設けられる。図中クロスハッチングで示す領域は、周囲より盛り上がった丘部を示している(図4においても同様)。上側の動圧溝G1は軸方向で非対称な形状を成し、下側の動圧溝G2は軸方向で対称な形状を成している。ラジアル軸受面8a1の軸方向間領域には、動圧溝G1、G2の溝底面と連続した円筒面8a2が設けられる。 The bearing member 8 has a cylindrical shape, and a radial bearing surface is provided on the inner peripheral surface 8a. In the illustrated example, radial bearing surfaces 8a1 are formed at two locations separated in the axial direction from the inner peripheral surface 8a of the bearing member 8. A dynamic pressure generating portion is formed on each radial bearing surface 8a1, and in the present embodiment, as shown in FIG. 3, dynamic pressure grooves, specifically, dynamic pressure grooves arranged in a herringbone shape are arranged on each radial bearing surface 8a1. Pressure grooves G1 and G2 are provided. The area shown by cross-hatching in the figure indicates a hill portion that rises from the surroundings (the same applies to FIG. 4). The upper dynamic pressure groove G1 has an asymmetrical shape in the axial direction, and the lower dynamic pressure groove G2 has a symmetrical shape in the axial direction. A cylindrical surface 8a2 continuous with the bottom surfaces of the dynamic pressure grooves G1 and G2 is provided in the axially interaxial region of the radial bearing surface 8a1.

尚、上下の動圧溝G1,G2の双方を軸方向対称形状としてもよい。また、上下の動圧溝G1,G2を軸方向で連続させたり、上下の動圧溝G1,G2の一方を省略したりしてもよい。また、動圧発生部として、スパイラル形状等の他の形状の動圧溝や、複数の円筒面を組み合わせた多円弧軸受、あるいは複数の軸方向溝を周方向等間隔に配したステップ軸受等を形成してもよい。 Both the upper and lower dynamic pressure grooves G1 and G2 may have axially symmetrical shapes. Further, the upper and lower dynamic pressure grooves G1 and G2 may be made continuous in the axial direction, or one of the upper and lower dynamic pressure grooves G1 and G2 may be omitted. Further, as the dynamic pressure generating part, a dynamic pressure groove having another shape such as a spiral shape, a multi-arc bearing in which a plurality of cylindrical surfaces are combined, or a step bearing in which a plurality of axial grooves are arranged at equal intervals in the circumferential direction, etc. are used. It may be formed.

軸受部材8の下側端面8bにはスラスト軸受面が設けられる。スラスト軸受面には、図4に示すようなポンプインタイプのスパイラル形状の動圧溝G3が形成される。尚、動圧溝G3の形状として、ヘリングボーン形状や放射溝形状等を採用しても良い。また、軸受部材8の下側端面8bを平坦面として、軸部材2のフランジ部2bの上側端面2b1に動圧溝を形成してもよい。 A thrust bearing surface is provided on the lower end surface 8b of the bearing member 8. A pump-in type spiral-shaped dynamic pressure groove G3 as shown in FIG. 4 is formed on the thrust bearing surface. As the shape of the dynamic pressure groove G3, a herringbone shape, a radial groove shape, or the like may be adopted. Further, the lower end surface 8b of the bearing member 8 may be used as a flat surface, and a dynamic pressure groove may be formed on the upper end surface 2b1 of the flange portion 2b of the shaft member 2.

軸受部材8の上側端面8cには、図3に示すように、環状溝8c1と、環状溝8c1の内径側に設けられた複数の半径方向溝8c2とが形成される。軸受部材8の外周面8dには、複数の軸方向溝8d1が円周方向等間隔に設けられる。これらの軸方向溝8d1、環状溝8c1、及び半径方向溝8c2等を介して、軸部材2のフランジ部2bの外径側の空間がシール空間Sと連通することで、この空間における負圧の発生が防止される。尚、特に必要が無ければ、環状溝8c1や半径方向溝8c2を省略して、軸受部材8の上側端面8cを平坦面としてもよい。 As shown in FIG. 3, an annular groove 8c1 and a plurality of radial grooves 8c2 provided on the inner diameter side of the annular groove 8c1 are formed on the upper end surface 8c of the bearing member 8. A plurality of axial grooves 8d1 are provided on the outer peripheral surface 8d of the bearing member 8 at equal intervals in the circumferential direction. The space on the outer diameter side of the flange portion 2b of the shaft member 2 communicates with the seal space S through the axial groove 8d1, the annular groove 8c1, the radial groove 8c2, etc., so that the negative pressure in this space can be reduced. Occurrence is prevented. If there is no particular need, the annular groove 8c1 and the radial groove 8c2 may be omitted, and the upper end surface 8c of the bearing member 8 may be a flat surface.

軸受部材8は、銅を25質量%以上含む焼結体で形成され、本実施形態では、銅及び鉄をそれぞれ25質量%以上含む焼結体で形成される。軸受部材8の真密度比は85~95%である。尚、真密度比は、以下の式で定義される。ρ1は軸受部材の密度であり、ρ0は、その軸受部材に気孔が無いと仮定した場合の密度(真密度)である。
真密度比[%]=(ρ1/ρ0)×100
The bearing member 8 is formed of a sintered body containing 25% by mass or more of copper, and in the present embodiment, it is formed of a sintered body containing 25% by mass or more of copper and iron, respectively. The true density ratio of the bearing member 8 is 85 to 95%. The true density ratio is defined by the following equation. ρ1 is the density of the bearing member, and ρ0 is the density (true density) assuming that the bearing member has no pores.
True density ratio [%] = (ρ1 / ρ0) × 100

軸受部材8の外周面8dのうち、軸方向溝8d1を除く円筒面領域における表面開孔率は、外周面に軽サイジング(詳細は後述する)を施さない従来品よりも小さくなっている。本実施形態では、軸受部材8の外周面8dの円筒面領域における表面開孔率が、軸受部材8のラジアル軸受面8a1における表面開孔率と同程度となっており、具体的には2~15%となっている。 Of the outer peripheral surface 8d of the bearing member 8, the surface opening ratio in the cylindrical surface region excluding the axial groove 8d1 is smaller than that of the conventional product in which the outer peripheral surface is not lightly sized (details will be described later). In the present embodiment, the surface opening ratio in the cylindrical surface region of the outer peripheral surface 8d of the bearing member 8 is about the same as the surface opening ratio in the radial bearing surface 8a1 of the bearing member 8, and specifically, 2 to 2. It is 15%.

軸受部材8の外周面8dの円筒面領域には、粗大気孔がほとんど形成されておらず、軸受部材8の外周面8dの円筒面領域に開口した気孔の大きさは、外周面に軽サイジングを施さない従来品よりも小さくなっている。本実施形態では、軸受部材8の外周面8dの円筒面領域に開口した各気孔の面積が、軸受部材8のラジアル軸受面8a1における各気孔の面積と同程度となっており、具体的には0.01mm以下となっている。 Almost no coarse air holes are formed in the cylindrical surface region of the outer peripheral surface 8d of the bearing member 8, and the size of the pores opened in the cylindrical surface region of the outer peripheral surface 8d of the bearing member 8 is lightly sized on the outer peripheral surface. It is smaller than the conventional product without bearings. In the present embodiment, the area of each pore opened in the cylindrical surface region of the outer peripheral surface 8d of the bearing member 8 is about the same as the area of each pore on the radial bearing surface 8a1 of the bearing member 8. It is 0.01 mm 2 or less.

シール部9は、図2に示すように、ハウジング7の上端から内径側に突出している。本実施形態では、シール部9がハウジング7と一体に形成されているが、シール部9をハウジング7に対して別体にすることもできる。シール部9の内周面9aは、下方に向けて漸次縮径したテーパ状を成す。シール部9の内周面9aと軸部2aの外周面との間には、下方に向けて半径方向幅を徐々に狭めた断面楔形のシール空間Sが形成される。この他、シール部9の内周面を円筒面とする一方で、軸部2aの外周面に上方に向けて漸次縮径するテーパ面を設け、これらの間に断面楔形のシール空間Sを形成してもよい。シール部9の下側端面9bには、軸受部材8の上側端面8cが当接している。 As shown in FIG. 2, the seal portion 9 projects from the upper end of the housing 7 toward the inner diameter side. In the present embodiment, the seal portion 9 is integrally formed with the housing 7, but the seal portion 9 can be separated from the housing 7. The inner peripheral surface 9a of the seal portion 9 has a tapered shape whose diameter is gradually reduced downward. Between the inner peripheral surface 9a of the seal portion 9 and the outer peripheral surface of the shaft portion 2a, a seal space S having a wedge-shaped cross section is formed in which the radial width is gradually narrowed downward. In addition, while the inner peripheral surface of the seal portion 9 is a cylindrical surface, a tapered surface whose diameter is gradually reduced upward is provided on the outer peripheral surface of the shaft portion 2a, and a seal space S having a wedge-shaped cross section is formed between them. You may. The upper end surface 8c of the bearing member 8 is in contact with the lower end surface 9b of the seal portion 9.

蓋部10は、黄銅等の金属や樹脂で形成され、ハウジング7の内周面7aの下端部に、圧入、接着等の適宜の手段で固定される。これによりハウジング7の内部の空間がシール空間Sでのみ大気に開放された密閉空間となる。蓋部10は、ハウジング7と一体に形成することもできる。 The lid portion 10 is made of a metal such as brass or a resin, and is fixed to the lower end portion of the inner peripheral surface 7a of the housing 7 by an appropriate means such as press fitting or adhesion. As a result, the space inside the housing 7 becomes a closed space open to the atmosphere only in the seal space S. The lid portion 10 can also be formed integrally with the housing 7.

蓋部10の端面10aにはスラスト軸受面が形成される。このスラスト軸受面には、例えばポンプインタイプのスパイラル形状の動圧溝が形成される(図示省略)。尚、動圧溝の形状として、ヘリングボーン形状や放射溝形状等を採用しても良い。また、蓋部10の端面10aを平坦面として、軸部材2のフランジ部2bの下側端面2b2に動圧溝を形成してもよい。 A thrust bearing surface is formed on the end surface 10a of the lid portion 10. For example, a pump-in type spiral-shaped dynamic pressure groove is formed on the thrust bearing surface (not shown). As the shape of the dynamic pressure groove, a herringbone shape, a radial groove shape, or the like may be adopted. Further, the end surface 10a of the lid portion 10 may be used as a flat surface, and a dynamic pressure groove may be formed in the lower end surface 2b2 of the flange portion 2b of the shaft member 2.

上記の構成の流体動圧軸受装置1の内部に油が注入され、シール空間S内に油面が形成される(図2参照)。本実施形態の流体動圧軸受装置1は、ハウジング7の内周の空間(シール空間Sよりも内部側の空間)が、軸受部材8の内部気孔を含めて油で満たされた、いわゆるフルフィルタイプである。 Oil is injected into the fluid dynamic pressure bearing device 1 having the above configuration, and an oil level is formed in the seal space S (see FIG. 2). The fluid dynamic pressure bearing device 1 of the present embodiment is a so-called full-fill type in which the space around the inner circumference of the housing 7 (the space on the inner side of the seal space S) is filled with oil including the internal pores of the bearing member 8. Is.

軸部材2が回転すると、軸受部材8の内周面8aのラジアル軸受面8a1と軸部2aの外周面(円筒面2a1)との間にラジアル軸受隙間が形成され、動圧溝G1,G2によりラジアル軸受隙間の油膜の圧力が高められることで、軸部材2がラジアル方向に非接触支持する第1ラジアル軸受部R1及び第2ラジアル軸受部R2が構成される。これと同時に、軸受部材8の下側端面8bとフランジ部2bの上側端面2b1との間、及び、蓋部10の端面10aとフランジ部2bの下側端面2b2との間に、それぞれスラスト軸受隙間が形成される。そして、軸受部材8の下側端面8bの動圧溝G3及び蓋部10の端面10aの動圧溝により、各スラスト軸受隙間に形成された油膜の圧力が高められ、これにより軸部材を両スラスト方向に非接触支持する第1スラスト軸受部T1及び第2スラスト軸受部T2が構成される。 When the shaft member 2 rotates, a radial bearing gap is formed between the radial bearing surface 8a1 on the inner peripheral surface 8a of the bearing member 8 and the outer peripheral surface (cylindrical surface 2a1) of the shaft portion 2a. By increasing the pressure of the oil film in the radial bearing gap, the first radial bearing portion R1 and the second radial bearing portion R2 are configured in which the shaft member 2 non-contactly supports in the radial direction. At the same time, there are thrust bearing gaps between the lower end surface 8b of the bearing member 8 and the upper end surface 2b1 of the flange portion 2b, and between the end surface 10a of the lid portion 10 and the lower end surface 2b2 of the flange portion 2b. Is formed. Then, the pressure of the oil film formed in each thrust bearing gap is increased by the dynamic pressure groove G3 of the lower end surface 8b of the bearing member 8 and the dynamic pressure groove of the end surface 10a of the lid portion 10, thereby causing both thrusts of the shaft member. A first thrust bearing portion T1 and a second thrust bearing portion T2 that are non-contactly supported in the direction are configured.

以下、上記の軸受部材8の製造方法を説明する。軸受部材8は、主に原料粉末混合工程、フォーミング工程、焼結工程、軽サイジング工程、回転サイジング工程、および、動圧溝サイジング工程を順に経て製造される。以下、各工程について詳細に説明する。 Hereinafter, a method for manufacturing the bearing member 8 will be described. The bearing member 8 is mainly manufactured through a raw material powder mixing step, a forming step, a sintering step, a light sizing step, a rotary sizing step, and a dynamic pressure groove sizing step in this order. Hereinafter, each step will be described in detail.

原料粉末混合工程では、複数種の粉末を混合することにより、軸受部材8の原料粉末を作製する。原料粉末は、金属粉末として、例えば鉄系粉末と、銅系粉末と、低融点金属粉末とを含む。この原料粉末には、必要に応じて、各種成形潤滑剤(例えば、離型性向上のための潤滑剤)や固体潤滑剤(例えば黒鉛粉)等を添加しても良い。 In the raw material powder mixing step, the raw material powder for the bearing member 8 is produced by mixing a plurality of types of powder. The raw material powder includes, for example, an iron-based powder, a copper-based powder, and a low melting point metal powder as metal powder. Various molding lubricants (for example, lubricants for improving releasability), solid lubricants (for example, graphite powder) and the like may be added to the raw material powder, if necessary.

鉄系粉末としては、鉄粉(純鉄粉)の他、鉄合金粉(例えばステンレス鋼粉)を用いることができる。鉄粉としては、還元鉄粉やアトマイズ鉄粉を使用することができる。銅系粉末としては、銅粉(純銅粉)の他、銅合金粉を用いることができる。銅粉としては、電解銅粉やアトマイズ銅粉を使用することができる。低融点金属粉としては、錫、亜鉛、リン等を含む粉末を使用することができ、本実施形態では錫粉が用いられる。 As the iron-based powder, iron alloy powder (for example, stainless steel powder) can be used in addition to iron powder (pure iron powder). As the iron powder, reduced iron powder or atomized iron powder can be used. As the copper-based powder, in addition to copper powder (pure copper powder), copper alloy powder can be used. As the copper powder, electrolytic copper powder or atomized copper powder can be used. As the low melting point metal powder, a powder containing tin, zinc, phosphorus and the like can be used, and in this embodiment, tin powder is used.

原料粉末は、金属粉末として、25質量%以上の銅を含み、例えば鉄及び銅をそれぞれ25質量%以上含む。本実施形態の原料粉末中の金属粉末が、25~70質量%の銅粉、1~3質量%の錫粉を含み、残部を鉄粉(あるいは鉄合金粉)及び不可避不純物とされる。 The raw material powder contains 25% by mass or more of copper as a metal powder, and for example, iron and copper are contained in an amount of 25% by mass or more, respectively. The metal powder in the raw material powder of the present embodiment contains 25 to 70% by mass of copper powder and 1 to 3% by mass of tin powder, and the balance is iron powder (or iron alloy powder) and unavoidable impurities.

フォーミング工程では、フォーミング金型(図示省略)のキャビティに上記の原料粉末を投入して圧縮することにより、図3に示す軸受部材8に近似した円筒形状の圧粉体を得る。フォーミング工程において、圧粉体の外周面には軸方向溝8d1(図3参照)が形成される。 In the forming step, the raw material powder is charged into the cavity of the forming die (not shown) and compressed to obtain a cylindrical compact powder similar to the bearing member 8 shown in FIG. In the forming step, an axial groove 8d1 (see FIG. 3) is formed on the outer peripheral surface of the green compact.

焼結工程では、圧粉体を所定の焼結温度で焼結して、焼結体を得る。原料粉末に流体潤滑剤等の各種成形潤滑剤を添加した場合、成形潤滑剤は焼結に伴って揮散する。 In the sintering step, the green compact is sintered at a predetermined sintering temperature to obtain a sintered body. When various molding lubricants such as fluid lubricants are added to the raw material powder, the molding lubricant volatilizes with sintering.

軽サイジング工程では、図5に示す軽サイジング金型20により、焼結体28のうち、少なくとも外周面28dを圧縮する。本実施形態では、図5(A)に示すように、焼結体28の内周にコアロッド21を極微小な隙間を介して挿入した状態で、図5(B)に示すように、焼結体28を上パンチ22で下方に押し込んでダイ24の内周に圧入する。これにより、ダイ24により焼結体28の外周面28dが圧縮されると共に、焼結体28の内周面28aがコアロッド21の円筒面状の外周面に押し付けられて圧迫される。 In the light sizing step, at least the outer peripheral surface 28d of the sintered body 28 is compressed by the light sizing mold 20 shown in FIG. In the present embodiment, as shown in FIG. 5 (A), the core rod 21 is inserted into the inner circumference of the sintered body 28 through a very small gap, and as shown in FIG. 5 (B), the core rod 21 is sintered. The body 28 is pushed downward by the upper punch 22 and press-fitted into the inner circumference of the die 24. As a result, the outer peripheral surface 28d of the sintered body 28 is compressed by the die 24, and the inner peripheral surface 28a of the sintered body 28 is pressed against the cylindrical outer peripheral surface of the core rod 21 and pressed.

軽サイジング工程における焼結体28の外周面28dの圧縮代、すなわち、軽サイジング前の焼結体28の外径D1とダイ24の内径D2との差は、後述する動圧溝サイジング工程における焼結体28の外周面28dの圧縮代よりもはるかに小さく、例えば1/5程度とされる。本実施形態では、軽サイジング工程における焼結体28の外周面28dの圧縮代が50μm以下、好ましくは30μm以下、さらに好ましくは20μm以下とされる。また、軽サイジング工程では、焼結体28の製品ごとの寸法公差を踏まえて、焼結体28の外周面28dが必ず0μmより大きい圧縮代、好ましくは5μm以上の圧縮代で圧縮されるように、ダイ24の内径D2が設定される。尚、図5では、軽サイジング金型20による焼結体28の外周面28dの圧縮代の大きさを誇張して示している。 The compression allowance of the outer peripheral surface 28d of the sintered body 28 in the light sizing step, that is, the difference between the outer diameter D1 of the sintered body 28 and the inner diameter D2 of the die 24 before the light sizing is the baking in the dynamic pressure groove sizing step described later. It is much smaller than the compression allowance of the outer peripheral surface 28d of the body 28, for example, about 1/5. In the present embodiment, the compression allowance of the outer peripheral surface 28d of the sintered body 28 in the light sizing step is 50 μm or less, preferably 30 μm or less, and more preferably 20 μm or less. Further, in the light sizing step, the outer peripheral surface 28d of the sintered body 28 is always compressed with a compression allowance larger than 0 μm, preferably a compression allowance of 5 μm or more, based on the dimensional tolerance of each product of the sintered body 28. , The inner diameter D2 of the die 24 is set. In FIG. 5, the size of the compression allowance of the outer peripheral surface 28d of the sintered body 28 by the light sizing mold 20 is exaggerated.

焼結体28の内周面28aとコアロッド21の外周面との間の隙間は、なるべく小さく設定される。具体的には、焼結体28の外周面28dがダイ24の内周面で圧縮されたときに、焼結体28の製品ごとの寸法公差を踏まえて、焼結体28の内周面28aが必ずコアロッド21の外周面に押し付けられて圧迫されるように、コアロッド21の外径D3が設定される。この他、コアロッド21の外径D3を焼結体28の許容最小外径に設定し、焼結体28の内径がコアロッド21の外径D3よりも小さい場合のみに、焼結体28の内周面28aをコアロッド21の外周面で圧迫するようにしてもよい。 The gap between the inner peripheral surface 28a of the sintered body 28 and the outer peripheral surface of the core rod 21 is set as small as possible. Specifically, when the outer peripheral surface 28d of the sintered body 28 is compressed by the inner peripheral surface of the die 24, the inner peripheral surface 28a of the sintered body 28 is taken into consideration based on the dimensional tolerance of each product of the sintered body 28. The outer diameter D3 of the core rod 21 is set so that is always pressed against the outer peripheral surface of the core rod 21 and pressed. In addition, the inner circumference of the sintered body 28 is set only when the outer diameter D3 of the core rod 21 is set to the allowable minimum outer diameter of the sintered body 28 and the inner diameter of the sintered body 28 is smaller than the outer diameter D3 of the core rod 21. The surface 28a may be pressed by the outer peripheral surface of the core rod 21.

本実施形態では、上パンチ22と下パンチ23とで、焼結体28が軸方向両側から圧迫される。具体的には、焼結体28の製品ごとの寸法公差を踏まえて、上パンチ22と下パンチ23とで焼結体28が軸方向両側から必ず圧迫されるように、軽サイジング完了時の上パンチ22と下パンチ23との軸方向間隔Wが設定される。尚、上下パンチ22,23の軸方向間隔Wを焼結体28の許容最小軸方向幅に設定し、焼結体28の軸方向幅が上下パンチ22,23の軸方向幅よりも大きい場合のみに、上下パンチ22,23で焼結体28を軸方向両側から圧迫するようにしてもよい。 In the present embodiment, the sintered body 28 is pressed from both sides in the axial direction by the upper punch 22 and the lower punch 23. Specifically, based on the dimensional tolerance of each product of the sintered body 28, the upper punch 22 and the lower punch 23 always press the sintered body 28 from both sides in the axial direction when the light sizing is completed. The axial distance W between the punch 22 and the lower punch 23 is set. Only when the axial spacing W of the upper and lower punches 22 and 23 is set to the allowable minimum axial width of the sintered body 28 and the axial width of the sintered body 28 is larger than the axial width of the upper and lower punches 22 and 23. In addition, the sintered body 28 may be pressed from both sides in the axial direction by the upper and lower punches 22 and 23.

以上のように、焼結体28を、外周側、内周側、および軸方向両側の全方向から圧迫することで、焼結体28の体積(みかけ体積)が減少する。この体積減少は、焼結体28の内部気孔で吸収される。 As described above, by pressing the sintered body 28 from all directions of the outer peripheral side, the inner peripheral side, and both sides in the axial direction, the volume (apparent volume) of the sintered body 28 is reduced. This volume reduction is absorbed by the internal pores of the sintered body 28.

軽サイジング前の焼結体28の表面(外周面28d)には、図6(A)に示すように、鉄粉11及び銅粉12が露出しており、比較的大きな気孔(粗大気孔P)が形成されている。そして、焼結体28に軽サイジングを施して外周面28dを微小な圧縮代で圧縮することにより、図6(B)に示すように、焼結体28の外周面28dに露出した銅粉12が塑性流動して、粗大気孔Pに入り込む。こうして、焼結体28の外周面28dに開口した粗大気孔が減じられることで、外周面28dにおける表面開孔率、および、外周面28dに開口した各気孔の面積が低減される。尚、図6(A)(B)の鎖線は、軽サイジング後の焼結体28の表面(外周面28d)を表している。 As shown in FIG. 6A, iron powder 11 and copper powder 12 are exposed on the surface (outer peripheral surface 28d) of the sintered body 28 before light sizing, and relatively large pores (coarse air pores P) are exposed. Is formed. Then, by lightly sizing the sintered body 28 and compressing the outer peripheral surface 28d with a minute compression allowance, as shown in FIG. 6B, the copper powder 12 exposed on the outer peripheral surface 28d of the sintered body 28 Plasticly flows and enters the crude atmosphere pore P. In this way, the coarse air pores opened in the outer peripheral surface 28d of the sintered body 28 are reduced, so that the surface opening ratio in the outer peripheral surface 28d and the area of each pore opened in the outer peripheral surface 28d are reduced. The chain line in FIGS. 6A and 6B represents the surface (outer peripheral surface 28d) of the sintered body 28 after light sizing.

回転サイジング工程では、治具(サイジングピン)を焼結体の内周面に締め代をもって押し付け、この状態で、焼結体の内周面の周方向に沿って治具を回転させる(図示省略)。これにより、焼結体の内周面の表層の材料が冶具で圧延され、内周面の開孔部が押しつぶされ、内周面における表面開孔率、及び、内周面に開口した各気孔の面積が低減される。 In the rotary sizing step, a jig (sizing pin) is pressed against the inner peripheral surface of the sintered body with a tightening margin, and in this state, the jig is rotated along the circumferential direction of the inner peripheral surface of the sintered body (not shown). ). As a result, the material of the surface layer on the inner peripheral surface of the sintered body is rolled by a jig, the pores on the inner peripheral surface are crushed, the surface opening rate on the inner peripheral surface, and the pores opened on the inner peripheral surface. Area is reduced.

動圧溝サイジング工程では、図7に示す動圧溝サイジング金型30により、焼結体28の内周面28aに動圧溝を型成形する。具体的には、図7(A)に示すように、焼結体28の内周にコアロッド31を極微小な隙間を介して挿入すると共に、焼結体28の軸方向幅を上下パンチ32,33で拘束する。この状態を維持しながら、図7(B)に示すように、焼結体28をダイ34の内周に圧入する。これにより、焼結体28が外周から圧迫され、焼結体28の内周面28aが、コアロッド31の外周面に形成された成形型31aに押し付けられ、焼結体28の内周面28aに成形型31aの形状が転写されて動圧溝G1,G2(図3参照)が成形される。その後、焼結体28、コアロッド31、及び上下パンチ32,33を上昇させ、ダイ34の内周から焼結体28及びコアロッド31を取り出す。このとき、焼結体28の内周面28aがスプリングバックにより拡径し、コアロッド31の外周面の成形型31aから剥離する。そして、焼結体28の内周からコアロッド31を引き抜く。 In the dynamic pressure groove sizing step, the dynamic pressure groove is formed on the inner peripheral surface 28a of the sintered body 28 by the dynamic pressure groove sizing mold 30 shown in FIG. Specifically, as shown in FIG. 7A, the core rod 31 is inserted into the inner circumference of the sintered body 28 through a very small gap, and the axial width of the sintered body 28 is set to the upper and lower punches 32. Restrain at 33. While maintaining this state, as shown in FIG. 7B, the sintered body 28 is press-fitted into the inner circumference of the die 34. As a result, the sintered body 28 is pressed from the outer periphery, and the inner peripheral surface 28a of the sintered body 28 is pressed against the molding die 31a formed on the outer peripheral surface of the core rod 31 and is pressed against the inner peripheral surface 28a of the sintered body 28. The shape of the molding die 31a is transferred to form the dynamic pressure grooves G1 and G2 (see FIG. 3). After that, the sintered body 28, the core rod 31, and the upper and lower punches 32, 33 are raised, and the sintered body 28 and the core rod 31 are taken out from the inner circumference of the die 34. At this time, the inner peripheral surface 28a of the sintered body 28 is expanded in diameter by the spring back, and is peeled off from the molding mold 31a on the outer peripheral surface of the core rod 31. Then, the core rod 31 is pulled out from the inner circumference of the sintered body 28.

動圧溝サイジング工程では、焼結体28の内周面28aをコアロッド31の外周面に押し付ける必要があるため、動圧溝サイジング金型30による焼結体28の外周面28dの圧縮代、すなわち、動圧溝サイジング前の焼結体28の外径D4とダイ34の内径D5との差が、軽サイジング金型20における焼結体28の外周面28dの圧縮代よりも大きな値に設定され、例えば100~200μmとされる。尚、図7では、動圧溝サイジング金型30による焼結体28の外周面28dの圧縮代の大きさを誇張して示している。 In the dynamic pressure groove sizing step, since it is necessary to press the inner peripheral surface 28a of the sintered body 28 against the outer peripheral surface of the core rod 31, the compression allowance of the outer peripheral surface 28d of the sintered body 28 by the dynamic pressure groove sizing mold 30, that is, The difference between the outer diameter D4 of the sintered body 28 and the inner diameter D5 of the die 34 before the dynamic pressure groove sizing is set to a value larger than the compression allowance of the outer peripheral surface 28d of the sintered body 28 in the light sizing mold 20. For example, it is set to 100 to 200 μm. In FIG. 7, the size of the compression allowance of the outer peripheral surface 28d of the sintered body 28 by the dynamic pressure groove sizing mold 30 is exaggerated.

上記のように、軽サイジング工程で、焼結体28の外周面28dを微小な圧縮代で圧縮して粗大気孔を減じた後、この焼結体28に、比較的大きい圧縮代による動圧溝サイジングを施すことで、焼結体28の外周面28dに開口した粗大気孔がさらに減じられる。これにより、軽サイジングを施さずに動圧溝サイジングを施した焼結体と比べて、焼結体28の通油度が大幅に(例えば35%以上)低減され、例えば0.1g/10min以下とされる。 As described above, in the light sizing step, the outer peripheral surface 28d of the sintered body 28 is compressed with a minute compression allowance to reduce the coarse air pores, and then the sintered body 28 has a dynamic pressure groove due to a relatively large compression allowance. By applying the sizing, the coarse air holes opened in the outer peripheral surface 28d of the sintered body 28 are further reduced. As a result, the oil permeability of the sintered body 28 is significantly reduced (for example, 35% or more) as compared with the sintered body that has been subjected to dynamic pressure groove sizing without light sizing, for example, 0.1 g / 10 min or less. It is said that.

こうして形成された焼結体28の内部気孔に真空含浸等の手法で潤滑油を含浸させると、図1に示す軸受部材8が完成する。 When the internal pores of the sintered body 28 formed in this way are impregnated with lubricating oil by a method such as vacuum impregnation, the bearing member 8 shown in FIG. 1 is completed.

本発明は上記の実施形態に限られない。例えば、以上の実施形態では、ハウジング7の内部空間が潤滑油で満たされた、いわゆるフルフィル構造の流体動圧軸受装置1を示したが、これに限らず、ハウジング7の内部空間に潤滑油で満たされていない空隙部を設けたパーシャルフィル構造の流体動圧軸受装置に本発明を適用してもよい(図示省略)。 The present invention is not limited to the above embodiment. For example, in the above embodiment, the fluid dynamic bearing device 1 having a so-called full-fill structure in which the internal space of the housing 7 is filled with lubricating oil is shown, but the present invention is not limited to this, and the internal space of the housing 7 is filled with lubricating oil. The present invention may be applied to a fluid dynamic bearing device having a partial fill structure provided with unfilled voids (not shown).

また、以上の実施形態では、軸部材2を回転側、ハウジング7及び軸受部材8を固定側とした場合を示したが、これとは逆に、軸部材2を固定側、ハウジング7及び軸受部材8を回転側としてもよい。 Further, in the above embodiment, the case where the shaft member 2 is on the rotating side and the housing 7 and the bearing member 8 are on the fixed side is shown. On the contrary, the shaft member 2 is on the fixed side, the housing 7 and the bearing member. 8 may be the rotation side.

また、以上の実施形態では、流体動圧軸受装置1をHDD等のディスク駆動装置のスピンドルモータに適用した場合を示したが、これに限らず、例えばレーザビームプリンタのポリゴンスキャナモータや、電子機器の冷却ファンモータ等に、本発明に係る流体動圧軸受装置を適用することもできる。 Further, in the above embodiment, the case where the fluid dynamic bearing device 1 is applied to the spindle motor of a disk drive device such as an HDD is shown, but the present invention is not limited to this, for example, a polygon scanner motor of a laser beam printer or an electronic device. The fluid dynamic bearing device according to the present invention can also be applied to the cooling fan motor and the like.

本発明の効果を確認するために、材質の異なる3種類の原料粉末を用いて、それぞれ上記の実施形態の製造方法(軽サイジング有)で作製した試験片(実施例1~3)と、上記の実施形態の製造方法のうち、軽サイジング工程を省略した試験片(比較例1~3)とを用意して、各試験片の通油度の評価を行った。軽サイジングにおける焼結体の外周面の圧縮代は20μmとし、動圧溝サイジングにおける焼結体の外周面の圧縮代は200μmとした。各試験片の組成、真密度比、および、通油度を下記の表1及び図8に示す。 In order to confirm the effect of the present invention, test pieces (Examples 1 to 3) prepared by the production method (with light sizing) of the above-described embodiment using three types of raw material powders made of different materials, and the above-mentioned Among the manufacturing methods of the above embodiment, test pieces (Comparative Examples 1 to 3) in which the light sizing step was omitted were prepared, and the oil permeability of each test piece was evaluated. The compression allowance of the outer peripheral surface of the sintered body in the light sizing was 20 μm, and the compression allowance of the outer peripheral surface of the sintered body in the dynamic pressure groove sizing was 200 μm. The composition, true density ratio, and oil permeability of each test piece are shown in Table 1 and FIG. 8 below.

Figure 0007076266000001
Figure 0007076266000001

表1及び図8に示すように、軽サイジングを施した実施例は、軽サイジングを施さなかった同じ組成の比較例と比べて、通油度が大幅に(35%以上)低減した。以上より、軽サイジングを施すことが、通油度の低減、ひいては動圧抜けの抑制に非常に有効であることが確認された。 As shown in Table 1 and FIG. 8, the light sizing example had a significantly (35% or more) reduction in oil permeability as compared with the comparative example having the same composition without the light sizing. From the above, it was confirmed that applying light sizing is extremely effective in reducing the degree of oil flow and, in turn, suppressing dynamic pressure release.

1 流体動圧軸受装置
2 軸部材
7 ハウジング
8 軸受部材(焼結含油軸受)
9 シール部
10 蓋部
11 鉄粉
12 銅粉
20 軽サイジング金型
21 コアロッド
22 上パンチ
23 下パンチ
24 ダイ
28 焼結体
30 動圧溝サイジング金型
G1,G2,G3 動圧溝(動圧発生部)
P 粗大気孔
R1,R2 ラジアル軸受部
T1,T2 スラスト軸受部
S シール空間
1 Fluid dynamic bearing device 2 Shaft member 7 Housing 8 Bearing member (sintered oil-impregnated bearing)
9 Seal part 10 Lid part 11 Iron powder 12 Copper powder 20 Light sizing mold 21 Core rod 22 Upper punch 23 Lower punch 24 Die 28 Sintered body 30 Dynamic pressure groove Sizing mold G1, G2, G3 Dynamic pressure groove (dynamic pressure generation) Department)
P Coarse atmosphere hole R1, R2 Radial bearing part T1, T2 Thrust bearing part S Seal space

Claims (2)

銅を25質量%以上含む原料粉末を圧縮して圧粉体を成形する工程と、前記圧粉体を焼結して焼結体を得る工程と、前記焼結体を外周側、内周側、及び軸方向両側の全方向から圧迫することで、前記焼結体の外周面を、製品ごとの寸法のバラつきに関わらず必ず0μmより大きく50μm以下の圧縮代で圧縮する工程と、前記焼結体の内周面に動圧発生部を型成形する工程とを有する焼結含油軸受の製造方法。 A step of compressing a raw material powder containing 25% by mass or more of copper to form a green compact, a step of sintering the green compact to obtain a sintered body, and a step of sintering the sintered body on the outer peripheral side and the inner peripheral side. And , by pressing from all directions on both sides in the axial direction, the outer peripheral surface of the sintered body is always compressed with a compression margin of more than 0 μm and 50 μm or less regardless of the variation in dimensions for each product, and the sintering. A method for manufacturing a sintered oil-impregnated bearing, which comprises a step of molding a dynamic pressure generating portion on the inner peripheral surface of the body. 前記圧縮代が5μm以上である請求項に記載の焼結含油軸受の製造方法。 The method for manufacturing a sintered oil-impregnated bearing according to claim 1 , wherein the compression allowance is 5 μm or more.
JP2018071600A 2018-04-03 2018-04-03 Manufacturing method of sintered oil-impregnated bearing Active JP7076266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018071600A JP7076266B2 (en) 2018-04-03 2018-04-03 Manufacturing method of sintered oil-impregnated bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018071600A JP7076266B2 (en) 2018-04-03 2018-04-03 Manufacturing method of sintered oil-impregnated bearing

Publications (2)

Publication Number Publication Date
JP2019183868A JP2019183868A (en) 2019-10-24
JP7076266B2 true JP7076266B2 (en) 2022-05-27

Family

ID=68339558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018071600A Active JP7076266B2 (en) 2018-04-03 2018-04-03 Manufacturing method of sintered oil-impregnated bearing

Country Status (1)

Country Link
JP (1) JP7076266B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024034792A (en) * 2022-09-01 2024-03-13 Ntn株式会社 Sintered oil-impregnated bearing

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016070380A (en) 2014-09-30 2016-05-09 Ntn株式会社 Slide member and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3607478B2 (en) * 1997-12-18 2005-01-05 Ntn株式会社 Dynamic pressure type porous oil-impregnated bearing
JP5585261B2 (en) * 2010-07-20 2014-09-10 ダイキン工業株式会社 Air conditioning controller
JP6836364B2 (en) * 2016-09-21 2021-03-03 Ntn株式会社 Sintered bearings and their manufacturing methods

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016070380A (en) 2014-09-30 2016-05-09 Ntn株式会社 Slide member and manufacturing method thereof

Also Published As

Publication number Publication date
JP2019183868A (en) 2019-10-24

Similar Documents

Publication Publication Date Title
JP5384014B2 (en) Sintered bearing
JP6199675B2 (en) Sintered metal bearing and fluid dynamic pressure bearing device provided with the bearing
JP6199106B2 (en) Sintered bearing, method for manufacturing the same, and fluid dynamic bearing device provided with the sintered bearing
WO2018037822A1 (en) Dynamic pressure bearing and method for manufacturing same
US10167899B2 (en) Sintered bearing, fluid dynamic bearing device provided with same, and sintered bearing manufacturing method
EP3421826B1 (en) Oil-impregnated sintered bearing and method for manufacturing same
JP7076266B2 (en) Manufacturing method of sintered oil-impregnated bearing
JP2006316896A (en) Method for manufacturing oil-impregnated sintered bearing and oil-impregnated sintered bearing
JP6347929B2 (en) Sintered metal bearing
JP6961332B2 (en) Dynamic pressure bearings and their manufacturing methods
WO2017159345A1 (en) Dynamic pressure bearing and method for manufacturing same
WO2024048202A1 (en) Sintered oil-impregnated bearing
JP2008039104A (en) Fluid bearing device
JP7094118B2 (en) Sintered metal dynamic pressure bearing
JP4188288B2 (en) Manufacturing method of dynamic pressure type porous oil-impregnated bearing
WO2023189389A1 (en) Oil-impregnated sintered bearing and fluid dynamic bearing device including same
JP4327038B2 (en) Spindle motor
JP6890405B2 (en) Dynamic pressure bearings and their manufacturing methods
JP6981900B2 (en) Fluid dynamic bearing device and motor equipped with it
US20240141953A1 (en) Oil-impregnated sintered bearing and fluid dynamic bearing device provided with the bearing
CN116888373A (en) Sintered oil-impregnated bearing and fluid dynamic bearing device provided with same
JP2022134339A (en) Sintered oil-containing bearing and fluid dynamic pressure bearing device comprising the same
JP2013044395A (en) Fluid dynamic-pressure bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220517

R150 Certificate of patent or registration of utility model

Ref document number: 7076266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150