JP2008039104A - Fluid bearing device - Google Patents

Fluid bearing device Download PDF

Info

Publication number
JP2008039104A
JP2008039104A JP2006215758A JP2006215758A JP2008039104A JP 2008039104 A JP2008039104 A JP 2008039104A JP 2006215758 A JP2006215758 A JP 2006215758A JP 2006215758 A JP2006215758 A JP 2006215758A JP 2008039104 A JP2008039104 A JP 2008039104A
Authority
JP
Japan
Prior art keywords
bearing
dynamic pressure
region
porosity
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006215758A
Other languages
Japanese (ja)
Inventor
Kazuto Shimizu
一人 清水
Seiji Hori
政治 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2006215758A priority Critical patent/JP2008039104A/en
Publication of JP2008039104A publication Critical patent/JP2008039104A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Motor Or Generator Frames (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Sliding-Contact Bearings (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluid bearing device capable of accurately and freely controlling the porosity of a sintered bearing sleeve to thereby exhibit high bearing performance, and being reducible size. <P>SOLUTION: A bearing member 8 formed of a sintered metal is formed by integrating a first area 81 and a second area 82 which are composed of powder having different particle sizes. The porosity of the first area 81 is higher than that of the second area 82, and a radial bearing surface forming a radial bearing clearance described below with a shaft 31 is formed on the inside surface 83 of the first area 81. The integration of the first area 81 and the second area 82 is performed by molding a first compact 11 corresponding to the first area 81 and a second compact 12 corresponding to the second area 82 by powder compacting, respectively, and sintering them in a combined state. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、流体軸受装置に関する。   The present invention relates to a hydrodynamic bearing device.

流体軸受装置は、軸受隙間に生じる流体の流体膜で軸部材を相対回転可能に支持するものである。この種の軸受装置は、高速回転、高回転精度、低騒音等の特徴を備えるものであり、情報機器をはじめ種々の電気機器に搭載されるモータ用の軸受装置として、より具体的にはHDD等の磁気ディスク装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置、MD、MO等の光磁気ディスク装置等におけるディスクドライブのスピンドルモータ用の軸受装置として、あるいはレーザビームプリンタ(LBP)のポリゴンスキャナモータ、プロジェクタのカラーホイールモータ、ファンモータなどのモータ用軸受装置として好適に使用される。   The hydrodynamic bearing device supports a shaft member so as to be relatively rotatable with a fluid film of a fluid generated in a bearing gap. This type of bearing device has features such as high-speed rotation, high rotation accuracy, and low noise, and more specifically as a bearing device for motors installed in various electrical equipment including information equipment. As a bearing device for a spindle motor of a disk drive in an optical disk device such as a magnetic disk device such as CD-ROM, CD-R / RW, DVD-ROM / RAM, or a magneto-optical disk device such as MD or MO, or a laser It is preferably used as a bearing device for a motor such as a polygon scanner motor of a beam printer (LBP), a color wheel motor of a projector, or a fan motor.

例えば、HDD用スピンドルモータに組み込まれる流体軸受装置においては、軸部材をラジアル方向に支持するラジアル軸受部と、軸部材をスラスト方向に支持するスラスト軸受部の一方または双方を動圧軸受で構成する場合がある。この場合、軸受スリーブの内周面と、これに対向する軸部材の外周面との何れか一方に動圧発生部を構成する動圧溝が形成されると共に、両面間のラジアル軸受隙間にラジアル軸受部が形成されることが多い。(例えば、特許文献1を参照)。   For example, in a hydrodynamic bearing device incorporated in an HDD spindle motor, one or both of a radial bearing portion that supports a shaft member in the radial direction and a thrust bearing portion that supports the shaft member in a thrust direction are configured by a dynamic pressure bearing. There is a case. In this case, a dynamic pressure groove that forms a dynamic pressure generating portion is formed on either the inner peripheral surface of the bearing sleeve or the outer peripheral surface of the shaft member facing the bearing sleeve, and the radial bearing gap between the two surfaces is radial. A bearing part is often formed. (For example, see Patent Document 1).

上記軸受を構成する軸受スリーブは、例えば潤滑油を上記軸受隙間に循環供給し、安定した軸受性能を得るため焼結金属で形成される場合が多い。通常、この種の軸受スリーブは、金属粉末を所定の形状(多くは円筒状)に圧縮成形した後、焼結することで形成され、内部空孔に潤滑油を含浸させた状態で使用される(例えば、特許文献2を参照)。   The bearing sleeve constituting the bearing is often formed of sintered metal in order to circulate and supply, for example, lubricating oil to the bearing gap and obtain stable bearing performance. Usually, this type of bearing sleeve is formed by compressing and molding metal powder into a predetermined shape (mostly cylindrical) and then sintering, and is used in a state where the internal holes are impregnated with lubricating oil. (For example, see Patent Document 2).

また、この種の流体軸受装置においては、通常、軸受隙間等を満たした潤滑油が外部に漏れ出すのを防止するために、ハウジングの開口部にシール部材が配設され、対向する軸部材の外周面との間にシール空間が形成される。この種のシール空間には、いわゆるオイルバッファを兼ね備えたものがあり、ハウジングの内部空間に充填された潤滑油が使用温度範囲内での熱膨張あるいは収縮によって容積変化する量よりもシール空間の容積が大きくなるように設定される。従って、温度変化に伴う潤滑油の容積変化があった場合でも、潤滑油の油面は常にシール空間内に維持され、少なくとも雰囲気温度の変化により潤滑油が外部に漏れ出ることはない(例えば、特許文献3を参照)。   Further, in this type of hydrodynamic bearing device, a seal member is usually provided at the opening of the housing in order to prevent the lubricating oil filling the bearing gap and the like from leaking to the outside. A seal space is formed between the outer peripheral surface. This type of seal space also has a so-called oil buffer, and the volume of the seal space is larger than the amount of change in volume of the lubricating oil filled in the internal space of the housing due to thermal expansion or contraction within the operating temperature range. Is set to be large. Therefore, even when there is a change in the volume of the lubricating oil accompanying a temperature change, the oil level of the lubricating oil is always maintained in the seal space, and at least the lubricating oil does not leak to the outside due to a change in the ambient temperature (for example, (See Patent Document 3).

このように、軸受スリーブは、軸部材の外周面との間にラジアル軸受隙間を形成するものであるから、ラジアル軸受隙間を形成する面には高い面精度が要求される。上述のように、軸受スリーブを焼結金属で形成する場合には、例えば焼結体密度を疎にする(小さくする)ことで、焼結後の二次加工性(寸法サイジングなど)を高める方法が考えられる。   Thus, since the bearing sleeve forms a radial bearing gap with the outer peripheral surface of the shaft member, high surface accuracy is required for the surface forming the radial bearing gap. As described above, when the bearing sleeve is formed of sintered metal, for example, a method of increasing secondary workability (such as dimension sizing) after sintering by reducing (decreasing) the density of the sintered body. Can be considered.

しかしながら、焼結体密度を小さくすることで、かかる軸受スリーブの気孔率が高まるため、その分軸受内部空間に保持される潤滑油の量が増大する。保油量の増加は、必然的にバッファ容積の増加を招くため、どうしてもシール空間の容積、例えば軸方向寸法を大きく取らざるを得ず、このことが結果的に流体軸受装置の小型化を阻害する要因となる。   However, since the porosity of the bearing sleeve is increased by reducing the sintered body density, the amount of lubricating oil retained in the bearing internal space is increased accordingly. An increase in the oil retention amount inevitably leads to an increase in the buffer volume, which inevitably requires a large seal space volume, for example, an axial dimension, which consequently hinders downsizing of the hydrodynamic bearing device. Will be a factor.

この問題を解決するための手段として、例えば特開2002−327203号公報(特許文献4)に記載の手段が考えられる。当該文献に開示の焼結スリーブは、外周側部分に比べて内周側部分の多孔質性(気孔率)が高められており、内周側部分に潤滑油を保持させた状態で軸受スリーブとして使用される。また、製造方法に関し、一体に圧粉成形したものを焼結する際、内周側部分における焼結温度を、外周側部分における焼結温度よりも低くすることで、上記構造の焼結スリーブを形成可能としている。   As means for solving this problem, for example, means described in Japanese Patent Laid-Open No. 2002-327203 (Patent Document 4) can be considered. The sintered sleeve disclosed in this document has a higher porosity (porosity) in the inner peripheral side portion than the outer peripheral side portion, and the bearing sleeve can be used as a bearing sleeve with lubricating oil held in the inner peripheral side portion. used. In addition, regarding the manufacturing method, when sintering the integrally molded powder, the sintering temperature of the inner peripheral side portion is set to be lower than the sintering temperature of the outer peripheral side portion. It can be formed.

上記手段で形成した焼結スリーブであれば、ラジアル軸受面を有する内周側部分ほど気孔率が高いので、かかる領域における二次加工性を向上させることができ、これによりラジアル軸受面を有する内周面を精度よく仕上げることができる。また、外周側部分ほど気孔率が低いので、全体にわたって内周側部分と同じ気孔率となるよう形成した焼結スリーブと比べて、焼結スリーブに含浸される流体(潤滑油など)の量を減らすことができる。   In the case of the sintered sleeve formed by the above means, the porosity is higher in the inner peripheral side portion having the radial bearing surface, so that the secondary workability in such a region can be improved, and thereby the inner surface having the radial bearing surface can be improved. The peripheral surface can be finished with high accuracy. Moreover, since the porosity is lower in the outer peripheral portion, the amount of fluid (lubricating oil, etc.) impregnated in the sintered sleeve is smaller than that in the sintered sleeve formed so as to have the same porosity as the inner peripheral portion throughout. Can be reduced.

しかしながら、上述の製造方法は、焼結時の加熱温度(焼結温度)を内周側部分と外周側部分との間で異ならせることで焼結後の気孔率に差を生ぜしめようとするものであるから、その制御は容易ではなく、所要の気孔率を精度よく得ることは難しい。特に、焼結時の温度差でもって気孔率を異ならせる場合、その気孔率の大小は、粒子間のネック結合の成長の度合いによるため、内外周間で与え得る気孔率の差には限界があり、大きな気孔率の差を生み出すことは困難である。また、内周側部分で気孔率を大きくとろうとして、焼結の程度(ネック結合の成長)を抑制することで、当該部分の焼結作用が不足し、十分な強度を得ることができない恐れがある。これでは、継続使用に伴い生じる軸受面の磨耗により、軸受性能が低下する恐れがある。
特開2003−239951号公報 特開平11−182551号公報 特開2003−65324号公報 特開2002−327203号公報
However, the above-described manufacturing method attempts to make a difference in porosity after sintering by making the heating temperature (sintering temperature) during sintering different between the inner peripheral portion and the outer peripheral portion. Therefore, the control is not easy, and it is difficult to obtain the required porosity with high accuracy. In particular, when the porosity is varied depending on the temperature difference during sintering, the size of the porosity depends on the degree of growth of neck bonds between particles, so there is a limit to the difference in porosity that can be given between the inner and outer circumferences. Yes, it is difficult to create a large porosity difference. In addition, by suppressing the degree of sintering (growth of neck bonding) in an attempt to increase the porosity at the inner peripheral portion, the sintering action of the portion may be insufficient, and sufficient strength may not be obtained. There is. In this case, the bearing performance may be deteriorated due to the wear of the bearing surface caused by the continuous use.
JP 2003-239951 A Japanese Patent Laid-Open No. 11-182551 JP 2003-65324 A JP 2002-327203 A

以上の事情に鑑み、本発明では、焼結軸受スリーブの気孔率を高精度かつ自由に制御可能とし、これにより高い軸受性能を発揮し、かつ小型化が可能な流体軸受装置を提供することを技術的課題とする。   In view of the above circumstances, the present invention provides a hydrodynamic bearing device that can freely control the porosity of a sintered bearing sleeve with high accuracy and thereby exhibits high bearing performance and can be downsized. Technical issue.

前記課題を解決するため、本発明は、軸受隙間と、軸受隙間に面した軸受面を有する焼結金属製の軸受部材と、軸受部材の内周に挿入される軸部材とを備え、軸受隙間に形成される流体の流体膜で軸部材を相対回転可能に支持するものにおいて、軸受部材が、互いに粒度の異なる粉末からなる二つの領域を一体化したもので、双方の領域のうち、相対的に気孔率の高い領域に軸受面が設けられていることを特徴とする流体軸受装置を提供する。ここで、気孔率は、軸受部材の単位体積当たりに占める各内部空孔の容積の総和の割合をいう。また、ここでいう粒度は、粒度分布の意を含む。   In order to solve the above problems, the present invention includes a bearing gap, a sintered metal bearing member having a bearing surface facing the bearing gap, and a shaft member inserted into the inner periphery of the bearing member. In which the shaft member is supported by the fluid film of the fluid so as to be relatively rotatable, the bearing member is formed by integrating two regions made of powders having different particle sizes from each other. A hydrodynamic bearing device is provided in which a bearing surface is provided in a region having a high porosity. Here, the porosity refers to the ratio of the sum of the volume of each internal hole per unit volume of the bearing member. Moreover, the particle size here includes the meaning of particle size distribution.

このように、本発明は、互いに粒度の異なる粉末からなる二つの領域を一体化することで、互いに気孔率の異なる二つの領域からなる焼結金属製の軸受部材を形成することを特徴とするものである。これによれば、粉末の粒度を調整するだけで気孔率を制御することができるので、焼結時の温度や、圧粉成形時の圧力(圧縮量)でもって制御する場合と比べて容易かつ高精度に気孔率の設定を行うことができる。また、気孔率の異なる領域(となる成形体)を別々に圧粉成形できることから、当該領域間で制限を受けることなく各々で自由に気孔率を設定することができ、双方の領域間で気孔率に大きな差をもたせることが可能となる。また、焼結時、双方の領域間で焼結温度を異ならせる必要はないため、従来のように、焼結の程度(ネック結合の成長)の違いに起因する強度や耐磨耗性の低下を回避することができ、これにより高い軸受性能を確保することができる。   Thus, the present invention is characterized by forming a sintered metal bearing member composed of two regions having different porosity from each other by integrating two regions composed of powders having different particle sizes. Is. According to this, since the porosity can be controlled only by adjusting the particle size of the powder, compared with the case of controlling by the temperature at the time of sintering and the pressure (compression amount) at the time of compacting, The porosity can be set with high accuracy. In addition, since regions having different porosity (to be formed bodies) can be separately compacted, the porosity can be freely set in each region without any restriction between the regions, and the pores between both regions can be set. It is possible to make a large difference in rate. In addition, during sintering, there is no need to vary the sintering temperature between the two regions, so as in the conventional case, the strength and wear resistance are reduced due to differences in the degree of sintering (neck bond growth). Thus, high bearing performance can be ensured.

また、軸受部材を構成する双方の領域のうち、相対的に気孔率の高い領域に軸受面を設けることで、焼結後の二次加工性が比較的高い側の領域に軸受面を設けることができ、これにより軸受面を高精度かつ容易に仕上げることができる。その一方で、軸受面を有しない領域は、軸受面を有する領域ほど二次加工性を必要としないため、相対的に気孔率の低い領域とすることができ、これにより、当該軸受部材に含浸される流体の量を、従来の軸受部材のそれと比べて大幅に減じることができる。従って、軸受装置内部に保持される流体の量を減じることができ、これによりバッファ空間となるシール空間の軸方向寸法を縮小することができる。そのため、高い軸受性能を発揮しつつも、流体軸受装置の小型化を図ることが可能となる。   Also, by providing the bearing surface in a relatively high porosity region of both regions constituting the bearing member, the bearing surface is provided in a region on the side where the secondary workability after sintering is relatively high. As a result, the bearing surface can be finished with high accuracy and ease. On the other hand, since the region having no bearing surface does not require secondary workability as the region having the bearing surface, it can be a region having a relatively low porosity, thereby impregnating the bearing member. The amount of fluid produced can be greatly reduced compared to that of conventional bearing members. Therefore, the amount of fluid held in the bearing device can be reduced, and thereby the axial dimension of the seal space serving as the buffer space can be reduced. Therefore, it is possible to reduce the size of the hydrodynamic bearing device while exhibiting high bearing performance.

このように、本発明は、焼結金属製の軸受部材を、互いに粒度の異なる粉末からなる二つの領域を一体化することで形成したことを特徴の一つとするものであり、一体化のための具体的手段としては、例えば例えば粒度の異なる粉末をそれぞれ圧縮成形した後、成形された複数の領域を焼結により一体化する手段が考えられる。また、個々に圧粉成形した後、さらに焼結したものを圧入等の手段により一体化する手段や、一方の焼結体を他方の焼結体に圧入することで一体化する手段、あるいは別個に圧粉成形および焼結したものを超音波溶着で一体化する手段、接着剤により一体化(接着固定)する手段などが考えられる。これら例示の手段は何れも圧粉成形後に一体化するものであるから、気孔率の異なる領域ごとに、使用する原料粉末の種類(組成を含む)やサイズ、あるいは各領域の形状等を、各領域に対する要求特性に応じて容易に設定することができる。   Thus, the present invention is characterized in that a sintered metal bearing member is formed by integrating two regions made of powders having different particle sizes from each other. As a specific means, for example, a means of compressing and molding powders having different particle sizes and then integrating a plurality of molded regions by sintering can be considered. Also, after individually compacting, means for integrating further sintered materials by means such as press fitting, means for integrating one sintered body by press-fitting into the other sintered body, or separate A means for integrating the powder compacted and sintered by ultrasonic welding, a means for integrating (adhering and fixing) with an adhesive, and the like are conceivable. Since these exemplary means are all integrated after compacting, the type (including composition) and size of the raw material powder to be used for each region having different porosity, the shape of each region, etc. It can be easily set according to the required characteristics for the area.

この中でも、特に焼結により一体化する手段は、圧入等による一体化の場合と比べて、相互に固定される面の間でそれほど高い寸法精度あるいは位置決め精度を必要とせずに済む。また、この種の焼結体においては、焼結後の寸法変化を矯正するためのサイジング工程が必須であるが、焼結により一体化すれば寸法矯正のためのサイジング工程を一体化した部材に対してのみ行えば済み、一体化前の複数の部材に対して個々にサイジングを行う場合と比べてサイジング工程を簡略化することができる。また、一体化を焼結と同時に行うので、接着により一体化を図る場合のように、複数の部材を一体化するための工程を別途設ける必要もない。そのため、総じて製造コストの低減化および作業時間の短縮化が可能となる。   Among these, the means for integrating by sintering in particular does not require so high dimensional accuracy or positioning accuracy between the surfaces fixed to each other as compared with the case of integration by press fitting or the like. Also, in this kind of sintered body, a sizing process for correcting dimensional changes after sintering is essential, but if integrated by sintering, a sizing process for dimensional correction is integrated into a member. However, the sizing process can be simplified as compared with the case where sizing is individually performed on a plurality of members before integration. Further, since the integration is performed simultaneously with the sintering, it is not necessary to separately provide a process for integrating a plurality of members as in the case of integrating by bonding. Therefore, it is possible to reduce the manufacturing cost and the work time as a whole.

上記軸受部材の軸受面には、軸受隙間に流体の動圧作用を生じるための動圧発生部を設けることができる。この場合、動圧発生部の形成は、互いに粒度の異なる粉末からなる二つの領域の一体化の後に、特に焼結による一体化の後に行うのがよい。これによれば、例えば圧粉成形の段階で動圧発生部を設ける場合のように、焼結により動圧発生部(溝など)の形状精度が低下する事態を回避することができ、高い形状精度を有する動圧発生部を得ることができる。   The bearing surface of the bearing member can be provided with a dynamic pressure generating part for generating a fluid dynamic pressure action in the bearing gap. In this case, the formation of the dynamic pressure generating portion is preferably performed after the integration of the two regions made of powders having different particle sizes, particularly after the integration by sintering. According to this, it is possible to avoid a situation in which the shape accuracy of the dynamic pressure generating part (groove, etc.) is reduced due to sintering, as in the case of providing the dynamic pressure generating part at the stage of compacting, for example. A dynamic pressure generator having accuracy can be obtained.

なお、上記構成の軸受部材の、相対的に気孔率の高い領域に設けられる軸受面は、ラジアル軸受隙間に面するラジアル軸受面を含むものであってもよいし、スラスト軸受隙間に面するスラスト軸受面を含むものであってもよい。あるいは、上記軸受面が、ラジアル軸受面に加えてスラスト軸受面をさらに含むものであってもよい。   The bearing surface provided in the relatively high porosity region of the bearing member having the above-described configuration may include a radial bearing surface that faces the radial bearing gap, or a thrust surface that faces the thrust bearing gap. It may include a bearing surface. Alternatively, the bearing surface may further include a thrust bearing surface in addition to the radial bearing surface.

以上のように、本発明によれば、焼結軸受スリーブの気孔率を高精度かつ自由に制御することができ、これにより高い軸受性能を発揮し、かつ小型化が可能な流体軸受装置を提供することが可能となる。   As described above, according to the present invention, it is possible to freely control the porosity of a sintered bearing sleeve with high accuracy, thereby providing a hydrodynamic bearing device that exhibits high bearing performance and can be downsized. It becomes possible to do.

以下、本発明の一実施形態を図1〜図7に基づいて説明する。なお、以下の説明における『上下』方向は単に各図における上下方向を便宜的に示すもので、流体軸受装置の設置方向や使用態様等を特定するものではない。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS. The “up and down” direction in the following description merely indicates the up and down direction in each drawing for the sake of convenience, and does not specify the installation direction, usage mode, or the like of the hydrodynamic bearing device.

図1は、本発明の一実施形態に係る流体軸受装置1を具備したスピンドルモータの一構成例を概念的に示している。このスピンドルモータは、例えば磁気ディスクを搭載したHDD等の情報機器用として用いられるもので、一端にハブ2を取り付けた軸部材3をラジアル方向に回転自在に支持する流体軸受装置1と、例えば半径方向のギャップを介して対向させたステータコイル41およびロータマグネット42とからなる駆動部4と、ブラケット5とを備えている。ステータコイル41はブラケット5に固定され、ロータマグネット42はハブ2に固定される。流体軸受装置1のハウジング6は、ブラケット5の内周に固定される。また、同図に示すように、ハブ2にはディスク7(図1では2枚)が保持される。このように構成されたスピンドルモータにおいて、ステータコイル41に通電すると、ステータコイル41とロータマグネット42との間に発生する励磁力でロータマグネット42が回転し、これに伴って、ハブ2に固定されたディスク7が軸部材3と一体に回転する。   FIG. 1 conceptually shows a configuration example of a spindle motor including a hydrodynamic bearing device 1 according to an embodiment of the present invention. The spindle motor is used for information equipment such as an HDD equipped with a magnetic disk, for example, and includes a hydrodynamic bearing device 1 that rotatably supports a shaft member 3 having a hub 2 attached to one end in a radial direction, and a radius, for example. A drive unit 4 including a stator coil 41 and a rotor magnet 42 opposed to each other with a gap in the direction, and a bracket 5 are provided. The stator coil 41 is fixed to the bracket 5, and the rotor magnet 42 is fixed to the hub 2. The housing 6 of the hydrodynamic bearing device 1 is fixed to the inner periphery of the bracket 5. Further, as shown in the figure, the hub 2 holds the disks 7 (two in FIG. 1). In the spindle motor configured as described above, when the stator coil 41 is energized, the rotor magnet 42 is rotated by the exciting force generated between the stator coil 41 and the rotor magnet 42, and accordingly, is fixed to the hub 2. The disc 7 rotates together with the shaft member 3.

図2は、流体軸受装置1を示している。この流体軸受装置1は、ハウジング6と、ハウジング6の内周に固定される焼結金属製の軸受部材8と、ハウジング6の一端を閉口する蓋部9と、ハウジング6および軸受部材8に対して相対回転する軸部材3と、シール部10とを備える。   FIG. 2 shows the hydrodynamic bearing device 1. The hydrodynamic bearing device 1 includes a housing 6, a sintered metal bearing member 8 fixed to the inner periphery of the housing 6, a lid portion 9 that closes one end of the housing 6, and the housing 6 and the bearing member 8. And a shaft member 3 that relatively rotates, and a seal portion 10.

軸部材3は、例えばSUS鋼などの金属材料で形成され、軸部31と、軸部31の下端に一体又は別体に設けられるフランジ部32とを備える。軸部31には、軸受部材8との間に後述するラジアル軸受部R1、R2の各ラジアル軸受隙間を形成する大径面33、34が形成されると共に、これら大径面33、34と、フランジ部32と反対の側でつながり、フランジ部32から離隔する向きに漸次縮径するテーパ面35が形成されている。   The shaft member 3 is formed of a metal material such as SUS steel, for example, and includes a shaft portion 31 and a flange portion 32 provided integrally or separately at the lower end of the shaft portion 31. The shaft portion 31 is formed with large-diameter surfaces 33 and 34 that form radial bearing gaps of radial bearing portions R1 and R2 described later between the shaft member 31 and the large-diameter surfaces 33 and 34. A tapered surface 35 is formed which is connected on the side opposite to the flange portion 32 and gradually decreases in diameter in a direction away from the flange portion 32.

ハウジング6は、例えば真ちゅう等の金属材料や樹脂材料で筒状に形成され、その軸方向両端を開口した形態をなす。ハウジング6の下端内周には、後述する蓋部9を固定するための第一内周面61が形成される。また、第一内周面61とは内径寸法が異なり、当該内周面61の上方に位置するハウジング6の第二内周面62には、軸受部材8の外周面86が、例えば接着(ルーズ接着や圧入接着を含む)、圧入、溶着(超音波溶着やレーザ溶着を含む)など適宜の手段で固定される。   The housing 6 is formed in a cylindrical shape with a metal material such as brass or a resin material, for example, and has a shape in which both axial ends thereof are opened. A first inner peripheral surface 61 for fixing a lid 9 described later is formed on the inner periphery of the lower end of the housing 6. Further, the inner diameter is different from that of the first inner peripheral surface 61, and the outer peripheral surface 86 of the bearing member 8 is bonded to the second inner peripheral surface 62 of the housing 6 positioned above the inner peripheral surface 61. It is fixed by appropriate means such as adhesion and press-fitting), press-fitting, and welding (including ultrasonic welding and laser welding).

軸受部材8は全体としてスリーブ状をなし、例えば銅や鉄、あるいは双方を主成分とする粉末からなる焼結金属で形成される。   The bearing member 8 has a sleeve shape as a whole, and is formed of, for example, sintered metal made of powder containing copper, iron, or both as main components.

詳細には、軸受部材8は、互いに粒度の異なる粉末からなり、かつ気孔率の異なる二つの領域、ここでは第一領域81と第二領域82とを一体化してなる。第一領域81の気孔率は第二領域82の気孔率より高く、第一領域81の内周面83には、軸部31との間に後述するラジアル軸受隙間を形成するラジアル軸受面が設けられている。また、この実施形態では、第一領域81は主として筒状をなし、さらにその一端から外径側に向けて鍔状に突出した形状をなす。そして、この鍔部84の下端面85には、軸部材3のフランジ部32との間に後述するスラスト軸受部T1のスラスト軸受隙間を形成するスラスト軸受面が設けられている。   More specifically, the bearing member 8 is made of powders having different particle sizes and is formed by integrating two regions having different porosity, here, the first region 81 and the second region 82. The porosity of the first region 81 is higher than the porosity of the second region 82, and a radial bearing surface that forms a radial bearing gap, which will be described later, is provided between the inner peripheral surface 83 of the first region 81 and the shaft portion 31. It has been. Moreover, in this embodiment, the 1st area | region 81 is mainly cylindrical, and also makes the shape which protruded in the hook shape toward the outer-diameter side from the end. A thrust bearing surface that forms a thrust bearing gap of a thrust bearing portion T <b> 1 to be described later is provided between the lower end surface 85 of the flange portion 84 and the flange portion 32 of the shaft member 3.

ここで、気孔率は、軸受部材8の単位体積当たりに占める各内部空孔の容積の総和の割合をいい、具体的には以下の式によって算出される。
気孔率[%]=100−密度比[%]={1−(ρ1/ρ0)}×100
ρ1:軸受部材8の密度(測定方法は、JIS Z 2501 乾燥密度の欄を参照)
ρ0:軸受部材8と同一組成の物質の真の密度
気孔率は密度比の増加に伴いほぼ線形的に低下することが分かっており、従って、密度比を求めることで気孔率を得ることができる。本発明のように、軸受部材8が、互いに気孔率の異なる領域(第一領域81、第二領域82)で構成される場合には、上記式において、『軸受部材8』を、『第一領域81』あるいは『第二領域82』に置き換えて考えればよい。
Here, the porosity refers to the ratio of the total volume of the internal holes per unit volume of the bearing member 8, and is specifically calculated by the following equation.
Porosity [%] = 100−Density ratio [%] = {1− (ρ1 / ρ0)} × 100
ρ1: density of the bearing member 8 (refer to the column of JIS Z 2501 dry density for the measurement method)
ρ0: True density of the material having the same composition as the bearing member 8 It has been found that the porosity decreases almost linearly as the density ratio increases, and therefore the porosity can be obtained by obtaining the density ratio. . As in the present invention, when the bearing member 8 is composed of regions having different porosities (first region 81, second region 82), in the above formula, The area 81 ”or the“ second area 82 ”may be replaced.

第一領域81の気孔率、および第二領域82の気孔率は、上述の大小関係を満たす限り、任意の範囲で設定可能である。この場合、第一領域81の気孔率に関しては、必要最小限の含油量が確保される他、ラジアル軸受面となる内周面83の二次加工性(焼結後の変形能)、特に後述する動圧発生部Aの成形性がある程度確保されていればよい。また、動圧発生部Aの表面から潤滑油が領域81内部に逃げることなく、動圧発生部Aによる動圧作用を十分に発揮できる程度の気孔率であればなおよいが、かかる潤滑油の逃げは、例えば溝サイジング前に回転サイジング等により動圧発生部A形成領域の表面開孔率を調整(低く)しておくことによっても改善することができる。   The porosity of the first region 81 and the porosity of the second region 82 can be set in any range as long as the above-described magnitude relationship is satisfied. In this case, with respect to the porosity of the first region 81, the necessary minimum oil content is ensured, and the secondary workability (deformability after sintering) of the inner peripheral surface 83 serving as the radial bearing surface, particularly described later. It is sufficient that the formability of the dynamic pressure generating part A to be secured is ensured to some extent. Further, the porosity of the lubricating oil may be such that the lubricating oil does not escape from the surface of the dynamic pressure generating portion A into the region 81 and can sufficiently exhibit the dynamic pressure action by the dynamic pressure generating portion A. The clearance can also be improved by adjusting (lowering) the surface opening ratio of the dynamic pressure generating portion A formation region by, for example, rotational sizing before groove sizing.

軸受部材8の外周面86には、1又は複数本(この図示例では3本)の軸方向溝G1が形成されている。この軸方向溝G1は、軸受部材8をハウジング6の内周所定位置に固定した状態では、対向するハウジング6の第二内周面62との間に潤滑油の流体流路を形成する。   One or a plurality of (three in the illustrated example) axial grooves G1 are formed on the outer peripheral surface 86 of the bearing member 8. The axial groove G <b> 1 forms a fluid flow path for lubricating oil between the bearing member 8 and the second inner peripheral surface 62 of the opposing housing 6 in a state where the bearing member 8 is fixed at a predetermined position on the inner periphery of the housing 6.

軸受部材8の上端面87には、環状溝G2および環状溝G2とその外径側でつながり内周面83の側に開口する半径方向溝G3が形成されている。このうち、環状溝G2は、シール部10をハウジング6の内周に固定した状態では、軸受部材8とシール部10との軸方向隙間を介して、軸方向溝G1(流体流路)とつながっている。また、環状溝G2とその外径側でつながる半径方向溝G3は内周面83の側に開口し、内周面83と大径面33との間に形成されるラジアル軸受隙間とつながっている。   The upper end surface 87 of the bearing member 8 is formed with an annular groove G2 and a radial groove G3 that is connected to the outer diameter side of the annular groove G2 and opens to the inner peripheral surface 83 side. Among these, the annular groove G2 is connected to the axial groove G1 (fluid flow path) through the axial clearance between the bearing member 8 and the seal portion 10 in a state where the seal portion 10 is fixed to the inner periphery of the housing 6. ing. Further, the radial groove G3 connected to the annular groove G2 on the outer diameter side thereof opens to the inner peripheral surface 83 side, and is connected to a radial bearing gap formed between the inner peripheral surface 83 and the large diameter surface 33. .

軸受部材8の内周面83(ラジアル軸受面)には、二つの動圧発生部A、Bが軸方向に離隔して形成されている。このうち、軸方向上側の動圧発生部Aは、図3に示すように、傾斜方向の異なる複数の動圧溝A1および動圧溝A2をそれぞれ円周方向に配列して、いわゆるヘリングボーン形状に配列してなる。同様に、軸方向下側の動圧発生部Bは、傾斜方向の異なる複数の動圧溝B1および動圧溝B2をそれぞれ円周方向に配列して、いわゆるヘリングボーン形状に配列してなる。これら動圧発生部A、Bは、軸部31を軸受部材8の内周に挿入した状態では、軸部31の大径面33、34とそれぞれ対向し、軸部31(軸部材3)の回転時、対向する大径面33、34との間に後述する第一ラジアル軸受部R1、第二ラジアル軸受部R2のラジアル軸受隙間をそれぞれ形成する(図2を参照)。   Two dynamic pressure generating portions A and B are formed on the inner peripheral surface 83 (radial bearing surface) of the bearing member 8 so as to be separated from each other in the axial direction. Among these, as shown in FIG. 3, the axially upper dynamic pressure generating portion A has a so-called herringbone shape in which a plurality of dynamic pressure grooves A1 and dynamic pressure grooves A2 having different inclination directions are arranged in the circumferential direction. It is arranged in. Similarly, the dynamic pressure generating portion B on the lower side in the axial direction is formed by arranging a plurality of dynamic pressure grooves B1 and dynamic pressure grooves B2 having different inclination directions in the circumferential direction, so as to form a so-called herringbone shape. These dynamic pressure generating portions A and B face the large-diameter surfaces 33 and 34 of the shaft portion 31 in a state where the shaft portion 31 is inserted into the inner periphery of the bearing member 8, respectively, and the shaft portion 31 (the shaft member 3). During rotation, radial bearing gaps of first radial bearing portion R1 and second radial bearing portion R2, which will be described later, are formed between large-diameter surfaces 33 and 34 facing each other (see FIG. 2).

なお、この実施形態では、ハウジング6の一端開口側(上側)に位置する動圧発生部Aは、軸方向中心m(上下の動圧溝A1、A2間領域の軸方向中央)に対して軸方向非対称に形成されており、軸方向中心mより上側の動圧溝A1形成領域の軸方向寸法X1が下側の動圧溝A2形成領域の軸方向寸法X2よりも大きくなっている。また、動圧溝A1、A2が、図3に示すように、内周面83の、動圧発生部Aを除く領域と同一面上にあり、内周面の軸方向下側に位置する動圧発生部Bに関しても、動圧溝B1、B2が共に内周面83の、動圧発生部Bを除く領域と同一平面上にある。   In this embodiment, the dynamic pressure generating part A located on the one end opening side (upper side) of the housing 6 has an axial center m (the axial center of the region between the upper and lower dynamic pressure grooves A1 and A2). The axial dimension X1 of the dynamic pressure groove A1 formation region above the axial center m is larger than the axial dimension X2 of the lower dynamic pressure groove A2 formation region. Further, as shown in FIG. 3, the dynamic pressure grooves A1 and A2 are on the same plane as the region excluding the dynamic pressure generating portion A on the inner peripheral surface 83, and are located on the lower side in the axial direction of the inner peripheral surface. Regarding the pressure generating part B, both of the dynamic pressure grooves B1 and B2 are on the same plane as the region of the inner peripheral surface 83 excluding the dynamic pressure generating part B.

軸受部材8の下端面85(スラスト軸受面)の全面又は一部領域には、動圧発生部Cとして、例えば図4に示すように、複数の動圧溝C1をスパイラル形状に配列した領域が形成される。この動圧溝C1形成領域(動圧発生部C)は、フランジ部32の上端面36と対向し、軸部材3の回転時には、上端面36との間に後述する第一スラスト軸受部T1のスラスト軸受隙間を形成する(図2を参照)。   On the entire or partial region of the lower end surface 85 (thrust bearing surface) of the bearing member 8, as shown in FIG. 4, for example, a region where a plurality of dynamic pressure grooves C1 are arranged in a spiral shape is formed as the dynamic pressure generating portion C. It is formed. This dynamic pressure groove C1 formation region (dynamic pressure generating portion C) faces the upper end surface 36 of the flange portion 32, and when the shaft member 3 rotates, between the upper end surface 36 and the first thrust bearing portion T1 described later. A thrust bearing gap is formed (see FIG. 2).

軸受部材8の内周面83と下端面85との間には、環状の第一面取り部88が形成される。また、内周面83と上端面87との間にも、環状の第二面取り部89が形成される。   An annular first chamfered portion 88 is formed between the inner peripheral surface 83 and the lower end surface 85 of the bearing member 8. An annular second chamfered portion 89 is also formed between the inner peripheral surface 83 and the upper end surface 87.

以下、上記構成の軸受部材8の製造方法を、成形後、焼結により一体化を行う場合を例にとって説明する。   Hereinafter, the manufacturing method of the bearing member 8 having the above-described configuration will be described by taking as an example a case where integration is performed by sintering after molding.

まず、上記金属粉末を主成分とする原料粉末を圧縮成形し、第一領域81に対応する第一成形体11を成形する。また、第一成形体11とは粒度の異なる原料粉末を圧縮成形し、第二領域82に対応する第二成形体12を成形する。この実施形態では、第一成形体11は、図5に示すように、筒部111と、筒部111の一端から外径側に突出した鍔部112とで構成される。筒部111の内周面113は、第二成形体12との一体後、軸受部材8となった状態では、ラジアル軸受面となる領域であり、一体化前の段階では、動圧発生部A、Bを有さない真円状をなす。同様に、鍔部112の下端面114(筒部111と反対側の端面)はスラスト軸受面となる領域であり、一体化前の段階では、動圧発生部Cを有さない平面形状をなす。第二成形体12は、図6に示すように概ね筒状をなす。なお、両成形体11、12の原料粉末は、互いに粒度の異なるものであればよく、当該粉末が同材料であるか異材料であるかは問わない。   First, the raw material powder containing the metal powder as a main component is compression-molded to form the first molded body 11 corresponding to the first region 81. Further, a raw material powder having a particle size different from that of the first molded body 11 is compression-molded, and the second molded body 12 corresponding to the second region 82 is molded. In this embodiment, the 1st molded object 11 is comprised by the cylinder part 111 and the collar part 112 which protruded to the outer-diameter side from the end of the cylinder part 111, as shown in FIG. The inner peripheral surface 113 of the cylindrical portion 111 is a region that becomes a radial bearing surface in the state of becoming the bearing member 8 after being integrated with the second molded body 12, and in the stage before integration, the dynamic pressure generating portion A , B is a perfect circle. Similarly, the lower end surface 114 (end surface opposite to the cylindrical portion 111) of the flange portion 112 is a region that becomes a thrust bearing surface, and has a planar shape that does not have the dynamic pressure generating portion C at the stage before integration. . The 2nd molded object 12 makes a substantially cylindrical shape, as shown in FIG. In addition, the raw material powder of both the molded objects 11 and 12 should just be a thing from which a particle size differs, and it does not ask | require whether the said powder is the same material or a different material.

次に、図7に示すように、第一成形体11の筒部111に第二成形体12を嵌め合わせることで第一成形体11と第二成形体12とを組合わせ、所定温度で加熱することで、各成形体11、12を焼結すると共に、嵌合面となる第一成形体11(筒部111)の外周面115と第二成形体12の内周面121、第一成形体11(鍔部112)の上端面116と第二成形体12の下端面122とを焼結結合する。これにより第一成形体11と第二成形体12との一体化がなされる。なお、この際、第一成形体11(筒部111)の外径寸法d1は、第二成形体12の内径寸法d2に対して若干小さいほうがよい。焼結前の成形体11、12は非常に脆く、組合わせの際、僅かに引っ掛かるだけでも欠損を生じる可能性があるためである。   Next, as shown in FIG. 7, the first molded body 11 and the second molded body 12 are combined by fitting the second molded body 12 to the cylindrical portion 111 of the first molded body 11 and heated at a predetermined temperature. As a result, each molded body 11, 12 is sintered, and the outer peripheral surface 115 of the first molded body 11 (cylindrical part 111) serving as the fitting surface, the inner peripheral surface 121 of the second molded body 12, and the first molding. The upper end surface 116 of the body 11 (the flange portion 112) and the lower end surface 122 of the second molded body 12 are sinter bonded. Thereby, the 1st molded object 11 and the 2nd molded object 12 are integrated. At this time, the outer diameter d1 of the first molded body 11 (cylinder part 111) is preferably slightly smaller than the inner diameter d2 of the second molded body 12. This is because the compacts 11 and 12 before sintering are very fragile, and there is a possibility that defects may occur even when they are slightly caught during the combination.

上記焼結工程を経た後、両成形体11、12の一体品(焼結品)に寸法サイジングを施し、かかる一体品を適正な寸法あるいは形状に矯正する。この後、一体品の内周面をなす筒部111の内周面113に溝サイジングを施す。具体的には、図3に示す動圧発生部A、Bに倣った形状の成形型(ピン)を一体品の内周面113に押し付け、かかる成形型に倣って内周面113を変形させることで動圧発生部A、Bが成形される。同様に、図4に示す動圧発生部Cに倣った形状の成形型を一体品の下端面114に押し付け、かかる成形型に倣って下端面114を変形させることで動圧発生部Cが成形される。これにより、図3に示す軸受部材8が完成する。   After passing through the above-mentioned sintering step, dimension sizing is performed on the integrated product (sintered product) of the molded bodies 11 and 12, and the integrated product is corrected to an appropriate size or shape. Thereafter, groove sizing is performed on the inner peripheral surface 113 of the cylindrical portion 111 forming the inner peripheral surface of the integrated product. Specifically, a molding die (pin) having a shape following the dynamic pressure generating portions A and B shown in FIG. 3 is pressed against the inner peripheral surface 113 of the integrated product, and the inner peripheral surface 113 is deformed following the molding die. As a result, the dynamic pressure generating portions A and B are formed. Similarly, the dynamic pressure generating portion C is molded by pressing a molding die having a shape following the dynamic pressure generating portion C shown in FIG. 4 against the lower end surface 114 of the integrated product and deforming the lower end surface 114 following the forming die. Is done. Thereby, the bearing member 8 shown in FIG. 3 is completed.

このように、個々に圧粉成形したものを組合わせた状態で焼結して一体化することにより、一体化のための工程を別途設けずに済む。また、焼結により、各成形体11、12間で十分な固定力を得ることができる。この際、第一成形体11と第二成形体12とで同一若しくは同一に準じる材料(主成分が同じ)で成形することで、焼結時の結着力を一層高めることができる。また、この実施形態では、焼結時、各成形体11、12の膨張により、互いに焼結結合される外周面115と内周面121とが接触するよう、双方の成形体11、12の寸法(厚み)、原料組成等を定めている。そのため、上述のように、第一成形体11の外径寸法d1が第二成形体12の内径寸法d2に対して若干小さい場合であっても、両面115、121間で焼結結合が可能となる。   In this way, by individually sintering and integrating the powder compacts that have been compacted, there is no need to provide a separate process for integration. Further, a sufficient fixing force can be obtained between the molded bodies 11 and 12 by sintering. At this time, by forming the first molded body 11 and the second molded body 12 with the same or the same material (the main components are the same), the binding force at the time of sintering can be further increased. Further, in this embodiment, during the sintering, the dimensions of both the molded bodies 11 and 12 are such that the outer circumferential surface 115 and the inner circumferential surface 121 that are sinter-bonded with each other are brought into contact with each other due to expansion of the molded bodies 11 and 12. (Thickness), raw material composition, etc. are defined. Therefore, as described above, even if the outer diameter d1 of the first molded body 11 is slightly smaller than the inner diameter d2 of the second molded body 12, it is possible to sinter bond between the both surfaces 115 and 121. Become.

ハウジング6の下端側を閉口する蓋部9は、例えば金属材料あるいは樹脂材料で形成され、ハウジング6の内周下端に設けられた第一内周面61に固定される。   The lid portion 9 that closes the lower end side of the housing 6 is formed of, for example, a metal material or a resin material, and is fixed to a first inner peripheral surface 61 provided at the inner peripheral lower end of the housing 6.

蓋部9の上端面91の全面又は一部環状領域には、例えば図4と同様の配列態様(スパイラルの方向は逆)をなす動圧発生部Dが形成される。この動圧発生部Dはフランジ部32の下端面37と対向し、軸部31の回転時には、下端面37との間に後述する第二スラスト軸受部T2のスラスト軸受隙間を形成する(図2を参照)。   For example, a dynamic pressure generating portion D having an arrangement mode similar to that in FIG. 4 (the spiral direction is reversed) is formed on the entire upper surface 91 or a partial annular region of the lid portion 9. The dynamic pressure generating portion D faces the lower end surface 37 of the flange portion 32, and forms a thrust bearing gap of a second thrust bearing portion T2 to be described later with the lower end surface 37 when the shaft portion 31 rotates (FIG. 2). See).

シール手段としてのシール部10は、ハウジング6とは別体に金属材料あるいは樹脂材料で形成され、ハウジング6の上端内周に圧入、接着、溶着、溶接等の手段で固定される。この実施形態では、シール部10の固定は、シール部10の下端面101を軸受部材8の上端面87に当接させた状態で行われる(図2を参照)。   The seal portion 10 as a sealing means is formed of a metal material or a resin material separately from the housing 6 and is fixed to the inner periphery of the upper end of the housing 6 by means such as press fitting, adhesion, welding, welding or the like. In this embodiment, the sealing portion 10 is fixed in a state where the lower end surface 101 of the sealing portion 10 is in contact with the upper end surface 87 of the bearing member 8 (see FIG. 2).

シール部10の内周面102は、軸部材3を流体軸受装置1に組込んだ状態では、軸部31のテーパ面35と対向し、このテーパ面35との間に、半径方向寸法が上方に向けて漸次拡大するシール空間Sを形成する。   The inner peripheral surface 102 of the seal portion 10 faces the tapered surface 35 of the shaft portion 31 in a state where the shaft member 3 is assembled in the hydrodynamic bearing device 1, and the radial dimension is upward between the tapered surface 35. A seal space S that gradually expands toward is formed.

上述の如く形成された各構成部品の組立てを行なった後、所定の手段、例えば真空含浸手段によりシール空間Sの開口側から軸受内部空間に潤滑油を注油する。これにより、各ラジアル軸受隙間やスラスト軸受隙間、軸受部材8の内部空孔、特に気孔率の比較的高い第一領域81の内部空孔を含む軸受内部空間を潤滑油で充満した流体軸受装置1が完成する。この際、シール空間Sの容積が、少なくとも流体軸受装置1の内部空間に充満した潤滑油の温度変化に伴う体積変化量よりも大きくなるよう、かかる容積およびその油面を設定するのがよい。これにより、潤滑油の油面はシール空間S内に維持され、少なくとも雰囲気温度の変化により潤滑油が外部に漏れ出ることはない。   After assembling the respective components formed as described above, lubricating oil is injected into the bearing internal space from the opening side of the seal space S by predetermined means, for example, vacuum impregnation means. As a result, the hydrodynamic bearing device 1 in which the bearing internal space including each radial bearing gap, the thrust bearing gap, and the internal holes of the bearing member 8, particularly the internal holes of the first region 81 having a relatively high porosity, is filled with the lubricating oil. Is completed. At this time, it is preferable to set the volume and the oil level so that the volume of the seal space S is larger than at least the volume change amount associated with the temperature change of the lubricating oil filled in the internal space of the hydrodynamic bearing device 1. Thereby, the oil level of the lubricating oil is maintained in the seal space S, and at least the lubricating oil does not leak to the outside due to a change in ambient temperature.

流体軸受装置1内部に注油される潤滑油としては、種々のものが使用可能であるが、HDD等のディスク駆動装置用の流体軸受装置(動圧軸受装置)に提供される潤滑油には、低蒸発率及び低粘度性に優れたエステル系潤滑油、例えばジオクチルセバケート(DOS)、ジオクチルアゼレート(DOZ)等が好適に使用可能である。   Various types of lubricating oil can be used as the lubricating oil injected into the hydrodynamic bearing device 1, but the lubricating oil provided to the hydrodynamic bearing device (dynamic pressure bearing device) for a disk drive device such as an HDD includes An ester-based lubricating oil excellent in low evaporation rate and low viscosity, such as dioctyl sebacate (DOS), dioctyl azelate (DOZ) and the like can be suitably used.

上記構成の流体軸受装置1において、軸部材3の回転時、軸受部材8の内周面83に設けられた動圧発生部A(動圧溝A1、A2形成領域)は、軸部31の外周面(大径面33)とラジアル軸受隙間を介して対向する。そして、軸部材3の回転に伴い、軸受内部空間に満たされた潤滑油が動圧溝A1、A2の軸方向中心側に向けて押し込まれ、その圧力が上昇する。このような動圧溝A1、A2の動圧作用によって、軸部材3をラジアル方向に非接触支持する第一ラジアル軸受部R1が形成される(図2中、上側の領域)。また、動圧発生部Bとこれに対向する外周面(大径面34)との間に形成されるラジアル軸受隙間では、潤滑油が動圧溝B1、B2の軸方向中心側に押し込まれ、その圧力が上昇する。このような動圧溝B1、B2の動圧作用によって、軸部材3をラジアル方向に非接触支持する第二ラジアル軸受部R2が形成される(図2中、下側の領域)。   In the hydrodynamic bearing device 1 configured as described above, when the shaft member 3 rotates, the dynamic pressure generating portion A (dynamic pressure groove A1 and A2 forming region) provided on the inner peripheral surface 83 of the bearing member 8 is the outer periphery of the shaft portion 31. It faces the surface (large diameter surface 33) via a radial bearing gap. As the shaft member 3 rotates, the lubricating oil filled in the bearing internal space is pushed toward the axial center of the dynamic pressure grooves A1 and A2, and the pressure rises. Due to the dynamic pressure action of the dynamic pressure grooves A1 and A2, the first radial bearing portion R1 that supports the shaft member 3 in a non-contact manner in the radial direction is formed (upper region in FIG. 2). Further, in the radial bearing gap formed between the dynamic pressure generating part B and the outer peripheral surface (large diameter surface 34) opposed to the dynamic pressure generating part B, the lubricating oil is pushed into the axial direction center side of the dynamic pressure grooves B1 and B2, The pressure rises. Due to the dynamic pressure action of the dynamic pressure grooves B1 and B2, the second radial bearing portion R2 that supports the shaft member 3 in a non-contact manner in the radial direction is formed (lower region in FIG. 2).

これと同時に、軸受部材8の下端面85に設けられた動圧発生部C(動圧溝C1形成領域)とこれに対向するフランジ部32の上端面36との間のスラスト軸受隙間、および蓋部9の上端面91に設けられた動圧発生部Dとこれに対向するフランジ部32の下端面37との間のスラスト軸受隙間に、動圧溝C1等の動圧作用により潤滑油の油膜がそれぞれ形成される。そして、これら油膜の圧力によって、軸部材3をスラスト方向に非接触支持する第一スラスト軸受部T1と第二スラスト軸受部T2とがそれぞれ構成される。   At the same time, a thrust bearing gap between the dynamic pressure generating portion C (dynamic pressure groove C1 formation region) provided on the lower end surface 85 of the bearing member 8 and the upper end surface 36 of the flange portion 32 opposed thereto, and a lid In the thrust bearing gap between the dynamic pressure generating portion D provided on the upper end surface 91 of the portion 9 and the lower end surface 37 of the flange portion 32 opposite to the dynamic pressure generating portion D, an oil film of lubricating oil is generated by the dynamic pressure action of the dynamic pressure groove C1 and the like. Are formed respectively. The first thrust bearing portion T1 and the second thrust bearing portion T2 that support the shaft member 3 in a non-contact manner in the thrust direction are configured by the pressure of these oil films.

ここで、ラジアル軸受隙間を形成する軸受部材8の内周面83を、相対的に気孔率の高い第一領域81で形成することで、ラジアル軸受面となる内周面83の面精度を高精度かつ低コストに仕上げることができる。また、内周面83等の軸受面となる領域を有しない第二領域82の気孔率を、第一領域81に比べて低くする(密にする)ことで、軸受部材8全体に含浸される油量を、従来の焼結軸受部材と比べて大幅に減じることができる。従って、流体軸受装置1の内部空間に保持される潤滑油の油量を減じることができ、これによりバッファ空間となるシール空間Sの軸方向寸法を縮小して、流体軸受装置1の小型化、特に薄肉化を図ることが可能となる。   Here, by forming the inner peripheral surface 83 of the bearing member 8 forming the radial bearing gap in the first region 81 having a relatively high porosity, the surface accuracy of the inner peripheral surface 83 serving as the radial bearing surface is increased. It can be finished with high accuracy and low cost. Further, the entire area of the bearing member 8 is impregnated by lowering (densifying) the porosity of the second region 82 that does not have a region to be a bearing surface such as the inner peripheral surface 83 compared to the first region 81. The amount of oil can be greatly reduced compared to conventional sintered bearing members. Accordingly, the amount of lubricating oil retained in the internal space of the hydrodynamic bearing device 1 can be reduced, thereby reducing the axial dimension of the seal space S serving as a buffer space, thereby reducing the size of the hydrodynamic bearing device 1. In particular, it is possible to reduce the thickness.

また、互いに粒度の異なる粉末からなる第一領域81と第二領域82とを一体化することで軸受部材8を形成したので、気孔率の制御を、粉末の粒度を調整するだけで高精度かつ容易に行うことが可能となる。また、気孔率の異なる領域81、82を別々に圧粉成形できることから各々で自由に気孔率を設定することができる。また、焼結時、双方の領域81、82間で焼結温度を異ならせる必要はないため、相対的に気孔率の高い第一領域81において、焼結作用の不足に起因する強度や耐磨耗性の低下を回避することができ、これにより高い軸受性能を発揮することができる。   In addition, since the bearing member 8 is formed by integrating the first region 81 and the second region 82 made of powder having different particle sizes, the porosity can be controlled with high accuracy only by adjusting the particle size of the powder. It can be easily performed. Further, since the regions 81 and 82 having different porosities can be separately compacted, the porosities can be set freely. Further, since it is not necessary to make the sintering temperature different between the two regions 81 and 82 during the sintering, the strength and abrasion resistance due to the lack of sintering action in the first region 81 having a relatively high porosity. A decrease in wearability can be avoided, and thereby high bearing performance can be exhibited.

また、この実施形態では、フランジ部32との間にスラスト軸受隙間を形成する軸受部材8の下端面85を、内周面83と同様、相対的に気孔率の高い第一領域81で形成したので、スラスト軸受面となる下端面85の焼結後の二次加工性(サイジング性)を高めて、高い面精度を有する下端面85を容易に得ることができる。   Further, in this embodiment, the lower end surface 85 of the bearing member 8 that forms a thrust bearing gap with the flange portion 32 is formed in the first region 81 having a relatively high porosity, like the inner peripheral surface 83. Therefore, the secondary workability (sizing property) after sintering of the lower end surface 85 serving as the thrust bearing surface can be improved, and the lower end surface 85 having high surface accuracy can be easily obtained.

また、この実施形態においては、軸受部材8の内周面83と下端面85との間、および内周面83と上端面87との間にそれぞれ第一面取り部88、第二面取り部89を設けている。これら面取り部88、89は、通常ラジアル軸受隙間外へと逃げる潤滑油をなるべく多く軸受部材8の内部に取り込み、またなるべく多くの潤滑油をラジアル軸受隙間へと供給する目的で形成される。そのため、面取り部88、89の表面開孔率は、内周面83の表面開孔率よりも大きいことが好ましい。かかる構成にすることで、できるだけ多くの潤滑油をラジアル軸受隙間に還流させ、これにより潤滑油を最大限利用して良好な潤滑性および潤滑油の劣化防止効果を得ることができる。特に、本発明のように、内周面83など、軸受面を含む領域(第一領域81)を部分的に高気孔率とし、残りの領域(第二領域82)を第一領域81に比べて低気孔率として、保油量を最小限に留める構成とした場合に有効な手段となる。   In this embodiment, the first chamfered portion 88 and the second chamfered portion 89 are provided between the inner peripheral surface 83 and the lower end surface 85 of the bearing member 8 and between the inner peripheral surface 83 and the upper end surface 87, respectively. Provided. These chamfered portions 88 and 89 are usually formed for the purpose of taking in as much lubricating oil as possible to escape out of the radial bearing gap into the bearing member 8 and supplying as much lubricating oil as possible to the radial bearing gap. Therefore, it is preferable that the surface opening ratio of the chamfered portions 88 and 89 is larger than the surface opening ratio of the inner peripheral surface 83. By adopting such a configuration, as much lubricating oil as possible can be returned to the radial bearing gap, thereby making it possible to obtain the best lubricity and the effect of preventing the deterioration of the lubricating oil by making maximum use of the lubricating oil. In particular, as in the present invention, a region including the bearing surface such as the inner peripheral surface 83 (first region 81) is partially made high in porosity, and the remaining region (second region 82) is compared with the first region 81. Therefore, it is an effective means in the case of a configuration in which the oil retention amount is kept to a minimum as the low porosity.

さらに、この実施形態においては、動圧発生部Aにおける軸方向上側の動圧溝A1の溝長さ(軸方向寸法X1)を、例えば図3に示すように、軸方向下側の動圧溝A2の溝長さ(軸方向寸法X2)に比べて大きくすると共に、軸受部材8の外周面86に軸方向溝G1を、上端面87に環状溝G2および半径方向溝G3をそれぞれ設けている。かかる構成により、ラジアル軸受隙間へと流れ込んだ潤滑油は、各動圧溝A1、A2に沿った流れとは別に、軸方向非対称の動圧溝A1、A2により上端面87から下端面85の側に向けての流れを生じ、その後、第一スラスト軸受部T1のスラスト軸受隙間→軸方向溝G1→軸受部材8とシール部10との外径側軸方向隙間→環状溝G2→半径方向溝G3という経路を経て、再び上側のラジアル軸受隙間へと還流する。このように、軸受内部空間に潤滑油の循環流路を形成することにより、軸受内部空間における潤滑油の循環性を一層高めることができ、あるいは局所的な負圧状態の発生を極力避けることができ、これにより高い軸受性能を長期にわたって発揮することが可能となる。特に、本発明のように、含浸量を減じた軸受部材8を使用する場合であっても、潤滑油不足あるいはそれに起因する劣化を招くことなく、安定した潤滑性能を得ることができる。なお、図2では一例として、軸方向溝G1や環状溝G2、半径方向溝G3を軸受部材8の側に形成しているが、これらの一部あるいは全てを対向するハウジング6の第二内周面62、あるいはシール部10の下端面101の側に設けることもできる。   Furthermore, in this embodiment, the groove length (axial dimension X1) of the axially upper dynamic pressure groove A1 in the dynamic pressure generating part A is set to the axially lower dynamic pressure groove, for example, as shown in FIG. The axial length G1 is provided on the outer peripheral surface 86 of the bearing member 8, and the annular groove G2 and the radial groove G3 are provided on the upper end surface 87, respectively, while being larger than the groove length A2 (axial dimension X2). With this configuration, the lubricating oil flowing into the radial bearing gap is separated from the flow along the dynamic pressure grooves A1 and A2 by the axially asymmetrical dynamic pressure grooves A1 and A2 from the upper end surface 87 to the lower end surface 85 side. Then, the thrust bearing gap of the first thrust bearing portion T1 → the axial groove G1 → the outer radial side axial gap between the bearing member 8 and the seal portion 10 → the annular groove G2 → the radial groove G3. Then, it returns to the upper radial bearing gap again. In this way, by forming a lubricating oil circulation passage in the bearing internal space, the lubricating oil circulation in the bearing internal space can be further enhanced, or the occurrence of a local negative pressure state can be avoided as much as possible. This makes it possible to exhibit high bearing performance over a long period of time. In particular, even when the bearing member 8 with a reduced impregnation amount is used as in the present invention, a stable lubricating performance can be obtained without incurring a lack of lubricating oil or causing deterioration. In FIG. 2, as an example, the axial groove G1, the annular groove G2, and the radial groove G3 are formed on the bearing member 8 side. However, a part or all of these are opposed to the second inner periphery of the housing 6 facing each other. It can also be provided on the surface 62 or the lower end surface 101 side of the seal portion 10.

以上、本発明の一実施形態を説明したが、本発明は、上記形態に限定されるものではない。上記構成をなす軸受部材8を備えるものである限り、他形態をなす流体軸受装置に対しても本発明を適用することができる。   As mentioned above, although one Embodiment of this invention was described, this invention is not limited to the said form. As long as the bearing member 8 having the above-described configuration is provided, the present invention can be applied to a hydrodynamic bearing device having another form.

また、上記実施形態では、軸受部材8を、第一領域81および第二領域82とで構成した場合を説明したが、もちろん3以上の領域で構成することもできる。何れの場合にしても、各領域を、2以上の圧粉成形体に分けて形成する(例えば図5に示す第一成形体11であれば、筒部111と鍔部112を分けて成形する)ことも可能である。また、軸受部材8はスリーブ状に限らず、完成品として他形状をなすものであってもよい。もちろん、その場合、互いに粒度の異なる粉末からなる二つの領域についても、図3に示す形状に限らず、完成品としての軸受部材8の形状に合わせて種々の形状をとることが可能である。   Moreover, although the case where the bearing member 8 was comprised with the 1st area | region 81 and the 2nd area | region 82 was demonstrated in the said embodiment, of course, it can also comprise in 3 or more area | regions. In any case, each region is formed by dividing it into two or more green compacts (for example, in the case of the first compact 11 shown in FIG. 5, the cylindrical part 111 and the flange part 112 are separately molded. It is also possible. Further, the bearing member 8 is not limited to a sleeve shape, and may have another shape as a finished product. Of course, in this case, the two regions made of powders having different particle sizes are not limited to the shape shown in FIG. 3 but can take various shapes according to the shape of the bearing member 8 as a finished product.

また、上記実施形態では、軸受部材8の製造方法の一例として、軸受部材8の第一領域81および第二領域82となる第一成形体11および第二成形体12を別々に圧粉成形した後、焼結により一体化した場合を説明したが、これ以外の手段によっても製造可能である。   Moreover, in the said embodiment, as an example of the manufacturing method of the bearing member 8, the 1st molded object 11 and the 2nd molded object 12 used as the 1st area | region 81 and the 2nd area | region 82 of the bearing member 8 were separately compacted. Although the case where it integrated by sintering was demonstrated later, it can manufacture also by means other than this.

具体的には、図5および図6に示す形状の第一成形体11、第二成形体12をそれぞれ圧粉成形し、さらに別々に焼結した後、焼結体としての第一成形体11に対して同じく焼結体としての第二成形体12を圧入して、焼結体の寸法サイジングを行うことで一体化することも可能である。この場合、互いに圧入される第一成形体11の外径寸法d1(図5を参照)が、第二成形体12の内径寸法d2(図6を参照)に比べて大きくなるよう、双方の成形体11、12を成形しておくのがよい。焼結後の半径寸法の変化量が、圧入代(d1−d2の絶対値)に影響を及ぼす大きさとなる場合には、かかる焼結後の寸法変化量も考慮に入れて、各成形体11、12の成形時寸法を定めるとよい。   Specifically, the first molded body 11 and the second molded body 12 having the shapes shown in FIGS. 5 and 6 are respectively compacted and sintered separately, and then the first molded body 11 as a sintered body. Similarly, it is also possible to integrate the second molded body 12 as a sintered body by press-fitting and sizing the sintered body. In this case, both of the moldings are performed so that the outer diameter dimension d1 (see FIG. 5) of the first molded body 11 press-fitted into each other is larger than the inner diameter dimension d2 (see FIG. 6) of the second molded body 12. The bodies 11 and 12 are preferably molded. When the amount of change in the radial dimension after sintering has a size that affects the press-fitting allowance (absolute value of d1-d2), each of the molded bodies 11 is also taken into account the amount of change in dimension after sintering. , And 12 molding dimensions may be determined.

また、これ以外の手段として、例えば別々に圧粉成形および焼結したものを超音波溶着で一体化する手段や、接着剤で一体的に固定する手段などを使用することもできる。あるいは、圧粉成形型への充填の仕方を工夫することで、各成形体11、12の圧粉成形および一体化を、当該圧粉成形工程において行うことも可能である。   As other means, for example, means for integrating powder compacted and sintered separately by ultrasonic welding, means for integrally fixing with an adhesive, or the like can be used. Alternatively, the compacting and integration of the compacts 11 and 12 can be performed in the compacting process by devising a method of filling the compacting mold.

上記構成の流体軸受装置1は、上述のHDD用のスピンドルモータだけでなく、例えばCD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置、MD、MO等の光磁気ディスク装置等の情報機器に搭載されるスピンドルモータ用など、情報機器をはじめとする電気機器用の軸受装置として好適に適用可能である。また、本発明のように、最小限の保油量でもって最大限の潤滑効率を得られる構成の流体軸受装置であれば、軸受装置あるいはそれを搭載する情報機器のさらなる小型化にも軸受性能を落とすことなくかつ低コストに対応することができる。そのため、例えばサーバ用HDDなど、長期間に亘って安定した回転性能(軸受性能)を要求される機器に対しても、高い信頼性を有する軸受装置として好適に提供することができる。また、情報機器の高容量化に対応して複数枚のディスク7を搭載したディスク駆動装置に対しても、あるいは高速回転下での高い回転性能(軸受性能)を要求されるモータに対しても、、さらにはファンモータなど比較的小型のモータに対しても、長期に亘って安定した軸受性能を発揮し得る流体軸受装置を提供することができる。   The hydrodynamic bearing device 1 having the above-described configuration is not limited to the above-described spindle motor for HDD, but also includes optical disk devices such as CD-ROM, CD-R / RW, and DVD-ROM / RAM, and magneto-optical disk devices such as MD and MO. The present invention can be suitably applied as a bearing device for electrical equipment including information equipment such as a spindle motor mounted on such information equipment. In addition, as in the present invention, if the hydrodynamic bearing device is configured so that the maximum lubrication efficiency can be obtained with a minimum amount of oil, the bearing performance can be further reduced in the size of the bearing device or information equipment on which the bearing device is mounted. It can cope with low cost without dropping. Therefore, it can be suitably provided as a bearing device having high reliability even for devices that require stable rotation performance (bearing performance) for a long period of time, such as a server HDD. Also for disk drives equipped with a plurality of disks 7 corresponding to the increase in capacity of information equipment, or for motors that require high rotational performance (bearing performance) under high-speed rotation. Furthermore, it is possible to provide a hydrodynamic bearing device that can exhibit stable bearing performance over a long period even for a relatively small motor such as a fan motor.

また、以上の実施形態では、ラジアル軸受部R1、R2およびスラスト軸受部T1、T2として、へリングボーン形状やスパイラル形状の動圧溝により潤滑流体の動圧作用を発生させる構成を例示しているが、本発明はこれに限定されるものではない。すなわち、本発明に係る軸受部材8は、粒度の異なる粉末を圧縮成形して形成された気孔率の異なる複数の領域を一体化してなるものであればよく、動圧発生部の有無は問題にはならない。従って、本発明に係る流体軸受装置は、動圧発生部を、軸受部材8の側ではなくこれと対向する側の部材に設けたものであってもよく、あるいは動圧発生部を持たないいわゆる流体真円軸受を構成するものであってもよい。また、動圧発生部としては、上述の配列形状に限らず、任意の形態をなす動圧発生部(例えばステップ軸受、多円弧軸受など)が構成可能である。   In the above embodiment, the radial bearing portions R1 and R2 and the thrust bearing portions T1 and T2 are configured to generate the dynamic pressure action of the lubricating fluid by the herringbone shape or spiral shape dynamic pressure grooves. However, the present invention is not limited to this. That is, the bearing member 8 according to the present invention only needs to be formed by integrating a plurality of regions having different porosity formed by compression molding powders having different particle sizes, and the presence or absence of a dynamic pressure generating portion is a problem. Must not. Therefore, in the hydrodynamic bearing device according to the present invention, the dynamic pressure generating portion may be provided not on the bearing member 8 side but on a member facing the bearing member 8 side, or a so-called dynamic pressure generating portion having no dynamic pressure generating portion. It may constitute a fluid perfect circle bearing. Moreover, as a dynamic pressure generation part, the dynamic pressure generation part (for example, a step bearing, a multi-arc bearing etc.) which makes not only the above-mentioned arrangement | positioning shape but the arbitrary forms can be comprised.

また、以上の説明では、流体軸受装置1の内部に充満し、ラジアル軸受隙間や、スラスト軸受隙間に流体の流体膜を形成可能な流体として潤滑油を例示したが、それ以外にも各軸受隙間に流体の流体膜を発生可能な流体、例えば空気等の気体や、磁性流体等の流動性を有する潤滑剤、あるいは潤滑グリース等を使用することもできる。   Further, in the above description, the lubricating oil is exemplified as the fluid that fills the inside of the hydrodynamic bearing device 1 and can form a fluid film of the fluid in the radial bearing gap or the thrust bearing gap. In addition, a fluid capable of generating a fluid film, for example, a gas such as air, a fluid lubricant such as a magnetic fluid, or a lubricating grease may be used.

本発明の第一実施形態に係る流体軸受装置を具備したスピンドルモータの断面図である。It is sectional drawing of the spindle motor which comprised the hydrodynamic bearing apparatus which concerns on 1st embodiment of this invention. 流体軸受装置の断面図である。It is sectional drawing of a hydrodynamic bearing apparatus. 焼結金属製の軸受部材の断面図である。It is sectional drawing of the bearing member made from a sintered metal. 図3に示す軸受部材を矢印aの方向から見た平面図である。It is the top view which looked at the bearing member shown in FIG. 3 from the direction of arrow a. 軸受部材の第一領域となる第一成形体の断面図である。It is sectional drawing of the 1st molded object used as the 1st area | region of a bearing member. 軸受部材の第二領域となる第二成形体の断面図である。It is sectional drawing of the 2nd molded object used as the 2nd area | region of a bearing member. 第一成形体と第二成形体との一体化工程を概念的に示す図である。It is a figure which shows notionally the integration process of a 1st molded object and a 2nd molded object.

符号の説明Explanation of symbols

1 流体軸受装置
3 軸部材
6 ハウジング
8 軸受部材
9 蓋部
10 シール部
11 第一成形体
12 第二成形体
81 第一領域
82 第二領域
83 内周面
85 下端面
111 筒部
112 鍔部
A、B、C、D 動圧発生部
A1、A2、B1、B2、C1 動圧溝
R1、R2 ラジアル軸受部
T1、T2 スラスト軸受部
S シール空間
DESCRIPTION OF SYMBOLS 1 Fluid dynamic bearing device 3 Shaft member 6 Housing 8 Bearing member 9 Lid part 10 Seal part 11 1st molded object 12 2nd molded object 81 1st area | region 82 2nd area | region 83 Inner peripheral surface 85 Lower end surface 111 Cylindrical part 112 ridge part A , B, C, D Dynamic pressure generating portions A1, A2, B1, B2, C1 Dynamic pressure grooves R1, R2 Radial bearing portion T1, T2 Thrust bearing portion S Seal space

Claims (5)

軸受隙間と、軸受隙間に面した軸受面を有する焼結金属製の軸受部材と、軸受部材の内周に挿入される軸部材とを備え、軸受隙間に形成される流体の流体膜で軸部材を相対回転可能に支持する流体軸受装置において、
軸受部材が、互いに粒度の異なる粉末からなる二つの領域を一体化したもので、双方の領域のうち、相対的に気孔率の高い領域に軸受面が設けられていることを特徴とする流体軸受装置。
A bearing member made of a sintered metal having a bearing gap, a bearing surface facing the bearing gap, and a shaft member inserted into the inner periphery of the bearing member, and a shaft member formed of a fluid film formed in the bearing gap In the hydrodynamic bearing device that supports the relative rotation,
A fluid bearing comprising a bearing member in which two regions made of powders having different particle sizes are integrated, and a bearing surface is provided in a region having a relatively high porosity among the two regions. apparatus.
双方の領域を焼結により一体化した請求項1記載の流体軸受装置。   The hydrodynamic bearing device according to claim 1, wherein both regions are integrated by sintering. 軸受面に、軸受隙間に流体の動圧作用を生じるための動圧発生部を設けた請求項1記載の流体軸受装置。   The hydrodynamic bearing device according to claim 1, wherein a dynamic pressure generating portion for generating a dynamic pressure action of fluid in the bearing gap is provided on the bearing surface. 軸受面が、ラジアル軸受隙間に面するラジアル軸受面を含む請求項1記載の流体軸受装置。   The hydrodynamic bearing device according to claim 1, wherein the bearing surface includes a radial bearing surface facing a radial bearing gap. 軸受面が、さらにスラスト軸受隙間に面するスラスト軸受面を含む請求項4記載の流体軸受装置。   The hydrodynamic bearing device according to claim 4, wherein the bearing surface further includes a thrust bearing surface facing the thrust bearing gap.
JP2006215758A 2006-08-08 2006-08-08 Fluid bearing device Withdrawn JP2008039104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006215758A JP2008039104A (en) 2006-08-08 2006-08-08 Fluid bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006215758A JP2008039104A (en) 2006-08-08 2006-08-08 Fluid bearing device

Publications (1)

Publication Number Publication Date
JP2008039104A true JP2008039104A (en) 2008-02-21

Family

ID=39174351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006215758A Withdrawn JP2008039104A (en) 2006-08-08 2006-08-08 Fluid bearing device

Country Status (1)

Country Link
JP (1) JP2008039104A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011021649A (en) * 2009-07-14 2011-02-03 Ntn Corp Fluid bearing device
WO2015151698A1 (en) * 2014-04-04 2015-10-08 Ntn株式会社 Sintered bearing, fluid dynamic bearing device provided with same, and sintered bearing manufacturing method
WO2024048202A1 (en) * 2022-09-01 2024-03-07 Ntn株式会社 Sintered oil-impregnated bearing

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011021649A (en) * 2009-07-14 2011-02-03 Ntn Corp Fluid bearing device
WO2015151698A1 (en) * 2014-04-04 2015-10-08 Ntn株式会社 Sintered bearing, fluid dynamic bearing device provided with same, and sintered bearing manufacturing method
JP2015200337A (en) * 2014-04-04 2015-11-12 Ntn株式会社 Sintered bearing, fluid dynamic pressure bearing device including the same, and method of manufacturing sintered bearing
CN106104031A (en) * 2014-04-04 2016-11-09 Ntn株式会社 Sintered bearing and there is the fluid dynamic-pressure bearing device of this sintered bearing and the manufacture method of sintered bearing
EP3128192A4 (en) * 2014-04-04 2018-03-07 NTN Corporation Sintered bearing, fluid dynamic bearing device provided with same, and sintered bearing manufacturing method
US10167899B2 (en) 2014-04-04 2019-01-01 Ntn Corporation Sintered bearing, fluid dynamic bearing device provided with same, and sintered bearing manufacturing method
WO2024048202A1 (en) * 2022-09-01 2024-03-07 Ntn株式会社 Sintered oil-impregnated bearing

Similar Documents

Publication Publication Date Title
JP5384014B2 (en) Sintered bearing
US8356938B2 (en) Fluid dynamic bearing apparatus
JP5318619B2 (en) Sintered metal bearing
JP6199675B2 (en) Sintered metal bearing and fluid dynamic pressure bearing device provided with the bearing
JP6100046B2 (en) Fluid dynamic bearing device and motor including the same
CN101438068B (en) Fluid bearing device and its manufacturing method
JP2014001781A (en) Fluid dynamic pressure bearing device and motor including the same
WO2018037822A1 (en) Dynamic pressure bearing and method for manufacturing same
JP6347929B2 (en) Sintered metal bearing
JP2008039104A (en) Fluid bearing device
JP5558041B2 (en) Fe-based sintered metal bearing and manufacturing method thereof
JP7076266B2 (en) Manufacturing method of sintered oil-impregnated bearing
TW201812190A (en) Fluid dynamic bearing device and motor with same
JP2009228873A (en) Fluid bearing device
JP2011021649A (en) Fluid bearing device
WO2019139007A1 (en) Fluid dynamic bearing device and motor equipped with same
WO2023189389A1 (en) Oil-impregnated sintered bearing and fluid dynamic bearing device including same
JP6981900B2 (en) Fluid dynamic bearing device and motor equipped with it
JP7094118B2 (en) Sintered metal dynamic pressure bearing
JP5606831B2 (en) Bearing member and manufacturing method thereof
JP5231095B2 (en) Hydrodynamic bearing device
JP5133156B2 (en) Fluid dynamic bearing device
JP2021001629A (en) Bearing member and fluid dynamic pressure bearing device including the same
WO2018186221A1 (en) Porous dynamic pressure bearing, fluid dynamic pressure bearing device, and motor
WO2012172956A1 (en) Fluid dynamic bearing device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091110