JP4937619B2 - Hydrodynamic bearing device - Google Patents

Hydrodynamic bearing device Download PDF

Info

Publication number
JP4937619B2
JP4937619B2 JP2006083457A JP2006083457A JP4937619B2 JP 4937619 B2 JP4937619 B2 JP 4937619B2 JP 2006083457 A JP2006083457 A JP 2006083457A JP 2006083457 A JP2006083457 A JP 2006083457A JP 4937619 B2 JP4937619 B2 JP 4937619B2
Authority
JP
Japan
Prior art keywords
bearing
dynamic pressure
pressure groove
radial
groove region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006083457A
Other languages
Japanese (ja)
Other versions
JP2007255651A (en
Inventor
政治 堀
正明 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2006083457A priority Critical patent/JP4937619B2/en
Application filed by NTN Corp filed Critical NTN Corp
Priority to CN201210023188.2A priority patent/CN102537031B/en
Priority to CN2010101303198A priority patent/CN101852245B/en
Priority to PCT/JP2007/055859 priority patent/WO2007111218A1/en
Priority to US12/293,953 priority patent/US8215843B2/en
Priority to CN2007800100900A priority patent/CN101405513B/en
Priority to KR1020087024858A priority patent/KR101413550B1/en
Priority to KR1020137025904A priority patent/KR101460573B1/en
Publication of JP2007255651A publication Critical patent/JP2007255651A/en
Application granted granted Critical
Publication of JP4937619B2 publication Critical patent/JP4937619B2/en
Priority to US13/492,467 priority patent/US8562219B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、動圧軸受装置に関するものである。   The present invention relates to a hydrodynamic bearing device.

動圧軸受装置は、軸受隙間に生じる潤滑流体の動圧作用で支持すべき回転部材を回転自在に非接触支持する軸受装置である。この動圧軸受装置は、高速回転、高回転精度、低騒音等の特徴を有するものであり、近年ではその特徴を活かして、情報機器、例えばHDD、FDD等の磁気ディスク装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置、MD、MO等の光磁気ディスク装置等に搭載するスピンドルモータ用、また、パーソナルコンピュータ(PC)などに搭載され、発熱源の冷却を行うファンモータ用等の軸受として広く用いられている。   The dynamic pressure bearing device is a bearing device that rotatably supports a rotating member to be supported by a dynamic pressure action of a lubricating fluid generated in a bearing gap. This hydrodynamic bearing device has characteristics such as high-speed rotation, high rotation accuracy, and low noise. In recent years, utilizing these characteristics, information devices such as magnetic disk devices such as HDD and FDD, CD-ROM, Used for spindle motors mounted on optical disk devices such as CD-R / RW and DVD-ROM / RAM, magneto-optical disk devices such as MD and MO, etc., and mounted on personal computers (PCs) to cool the heat source. Widely used as a bearing for fan motors and the like.

ところで、上記の情報機器用モータでは、情報処理量の増大等に伴い、記録媒体の積層化や高速回転化が進展している。これに伴い、動圧軸受装置には、一層の軸受剛性の向上、特にモーメント剛性の向上が求められている。   By the way, in the above-mentioned motor for information equipment, as the amount of information processing increases, the recording medium is laminated and the rotation speed is increased. Accordingly, the hydrodynamic bearing device is required to further improve the bearing rigidity, particularly the moment rigidity.

動圧軸受装置のモーメント剛性の向上手段として、ラジアル軸受部の軸受スパンを拡大させた構造が一般的で、例えば、単体の軸受本体(軸受スリーブ)の内周側に、上下2箇所に離隔してラジアル軸受隙間を設けたもの(例えば、特許文献1参照)の他、軸受本体を、軸方向に並べた2つの軸受スリーブで形成し、各軸受スリーブの内周側に1箇所ずつラジアル軸受隙間を設けたもの(例えば、特許文献2参照)が知られている。   As a means for improving the moment rigidity of a hydrodynamic bearing device, a structure in which the bearing span of the radial bearing portion is enlarged is generally used. For example, the structure is separated at two locations on the inner peripheral side of a single bearing body (bearing sleeve). In addition to a bearing having a radial bearing gap (for example, see Patent Document 1), the bearing body is formed by two bearing sleeves arranged in the axial direction, and one radial bearing gap is provided on the inner peripheral side of each bearing sleeve. (For example, refer to Patent Document 2).

また、モーメント剛性向上の他の手段として、スラスト軸受部の軸受スパンを拡大させた構造を採用することもでき、この種の構造を有する動圧軸受装置として、軸受スリーブの両端側にスラスト軸受部を設けたものが知られている(例えば、特許文献3参照)。
特開2003−65324号公報 特開平11−269475号公報 特開2005−321089号公報
Further, as another means for improving moment rigidity, a structure in which the bearing span of the thrust bearing portion is enlarged can be adopted. As a hydrodynamic bearing device having this type of structure, the thrust bearing portion is provided at both ends of the bearing sleeve. Is known (see, for example, Patent Document 3).
JP 2003-65324 A JP-A-11-269475 JP 2005-321089 A

しかしながら、特許文献1の構成では、軸受スパンの拡大に伴い、軸受スリーブが長大化する。軸受スリーブが長大化すると、軸受スリーブの加工精度を確保することが難しくなる。特に軸受スリーブが焼結金属製である場合、その圧粉成形時に均一密度を得にくくなり、所期の軸受性能を発揮できないおそれがある。従って、より一層の軸受スパンの拡大には限度がある。   However, in the configuration of Patent Document 1, the bearing sleeve becomes longer as the bearing span increases. When the bearing sleeve becomes long, it becomes difficult to ensure the processing accuracy of the bearing sleeve. In particular, when the bearing sleeve is made of a sintered metal, it is difficult to obtain a uniform density at the time of compacting, and there is a possibility that desired bearing performance cannot be exhibited. Therefore, there is a limit to further expanding the bearing span.

一方、特許文献2の構成では、上記の問題を生じることなく、ラジアル軸受部の軸受スパンを比較的容易に増大させることができる。このとき、更なるモーメント剛性の向上を狙って、例えば特許文献3のように、軸受本体の両端側に動圧軸受からなるスラスト軸受部を設ける構成とすることもできる。焼結金属製の軸受本体(軸受スリーブ)を用いる場合、スラスト軸受隙間に流体動圧を発生させる動圧溝等の動圧発生手段は、成形性を考慮して軸受スリーブの端面に設けられる場合が多いが、各動圧溝は回転方向を考慮して傾斜方向等を異ならせる必要がある。したがって、2種類の軸受スリーブが必要となるが、これらは、目視では判別し難いレベルの略同一形状に形成されるため、その組み付け方向や組み付け位置を間違い易い。これらを誤ると、軸受装置として機能しないため、組み付けには格別の配慮を要し、これが加工コストを高騰させる場合がある。   On the other hand, in the configuration of Patent Document 2, the bearing span of the radial bearing portion can be relatively easily increased without causing the above-described problem. At this time, with the aim of further improving the moment rigidity, for example, as disclosed in Patent Document 3, a thrust bearing portion formed of a dynamic pressure bearing may be provided on both ends of the bearing body. When using a sintered metal bearing body (bearing sleeve), dynamic pressure generating means such as a dynamic pressure groove that generates fluid dynamic pressure in the thrust bearing gap is provided on the end face of the bearing sleeve in consideration of formability. In many cases, however, each dynamic pressure groove needs to have a different inclination direction in consideration of the rotation direction. Therefore, two types of bearing sleeves are required, but they are formed in substantially the same shape at a level that is difficult to distinguish visually, and therefore their assembly direction and position are likely to be mistaken. If these are mistaken, they will not function as a bearing device, so special consideration is required for assembly, which may increase the processing cost.

本発明の課題は、組立容易性を向上させ、これによりモーメント剛性に優れる動圧軸受装置を低コストに提供することである。   An object of the present invention is to provide a hydrodynamic bearing device that improves the ease of assembly and thereby has excellent moment rigidity at a low cost.

上記課題を解決するため、本発明にかかる動圧軸受装置は、ハウジングと、該ハウジングの内周に固定された軸受本体と、該軸受本体の一端面および他端面と支持すべき回転部材との間にそれぞれ形成される第1および第2スラスト軸受隙間と、前記第1スラスト軸受隙間に流体動圧を発生させる第1動圧溝領域と、前記第2スラスト軸受隙間に流体動圧を発生させる第2動圧溝領域と、前記軸受本体の内周面に設けたラジアル軸受面で形成されるラジアル軸受隙間と、該ラジアル軸受隙間に発生する流体動圧で前記回転部材をラジアル方向に非接触支持するラジアル軸受部とを備えるものであって、前記軸受本体は、軸方向に並べて配置された2つの軸受スリーブを有し、該2つの軸受スリーブが何れも、内周面に前記ラジアル軸受面を有すると共に、一端面および他端面に前記第1動圧溝領域および前記第2動圧溝領域をそれぞれ有し、かつ一方の軸受スリーブの前記第1動圧溝領域を前記第1スラスト軸受隙間に臨ませ、他方の軸受スリーブの前記第2動圧溝領域を前記第2スラスト軸受隙間に臨ませたことを特徴とするものである。 In order to solve the above problems, a hydrodynamic bearing device according to the present invention includes a housing, a bearing body fixed to the inner periphery of the housing, and one end surface and the other end surface of the bearing body, and a rotating member to be supported. First and second thrust bearing gaps formed between each other, a first dynamic pressure groove region for generating fluid dynamic pressure in the first thrust bearing gap, and a fluid dynamic pressure in the second thrust bearing gap. A radial bearing gap formed by a second dynamic pressure groove region , a radial bearing surface provided on the inner peripheral surface of the bearing body, and the rotating member in a radial direction non-contact with the fluid dynamic pressure generated in the radial bearing gap A radial bearing portion for supporting the bearing body, the bearing body having two bearing sleeves arranged side by side in an axial direction, both of the two bearing sleeves on the inner peripheral surface of the radial bearing surface Have Rutotomoni has one end surface and other end surface of the first dynamic pressure groove region and the second dynamic pressure generating groove area, respectively, and the first dynamic pressure groove region of one bearing sleeve to the first thrust bearing gap The second dynamic pressure groove region of the other bearing sleeve is exposed to the second thrust bearing gap.

上記のように、本発明では、軸受本体が2つの軸受スリーブを有しているので、ラジアル軸受部の軸受スパンを増大させて、モーメント剛性を高めることができると共に、軸受スリーブの製造を容易化することができる。また、上記の軸受スリーブが何れも、両端面に、第1動圧溝領域と第2動圧溝領域とを有すものであり、かつ一方の軸受スリーブの第1動圧溝領域を第1スラスト軸受隙間に臨ませ、他方の軸受スリーブの第2動圧溝領域を第2スラスト軸受隙間に臨ませており、これは換言すると同一の軸受スリーブを軸方向に2つ並べたことを意味する。したがって、各軸受スリーブは、上下の配置を考慮することなくハウジングに組み付けることができ、これにより、軸受本体の一端側に第1スラスト軸受隙間、他端側に第2スラスト軸受隙間を備え、一層モーメント剛性に優れた動圧軸受装置を容易に形成することができる。また軸受スリーブを1種類に集約出来る分、部品単価を低減することができ、さらに、部品の管理コストを低減することもできる。   As described above, in the present invention, since the bearing body has two bearing sleeves, the bearing span of the radial bearing portion can be increased to increase the moment rigidity, and the manufacture of the bearing sleeve is facilitated. can do. Each of the bearing sleeves has a first dynamic pressure groove region and a second dynamic pressure groove region on both end faces, and the first dynamic pressure groove region of one of the bearing sleeves is the first dynamic pressure groove region. The second dynamic pressure groove area of the other bearing sleeve faces the second thrust bearing gap, which means that two identical bearing sleeves are arranged in the axial direction. . Accordingly, each bearing sleeve can be assembled to the housing without considering the upper and lower arrangements, thereby providing a first thrust bearing gap on one end side of the bearing body and a second thrust bearing gap on the other end side. A hydrodynamic bearing device excellent in moment rigidity can be easily formed. Further, the unit cost of parts can be reduced by the amount that the bearing sleeves can be integrated into one type, and further, the management cost of parts can be reduced.

第1動圧溝領域と、第2動圧溝領域とを異なる形状に形成すれば、各軸受スリーブの上下を容易に識別することが可能となり、一層組み付けの容易化を図ることができる。ここで言う「異なる形状」は、例えば、一方をスパイラル形状に配列された複数の動圧溝で、他方をヘリングボーン形状に配列された複数の動圧溝で形成する構成の他、同種形状に配列された動圧溝の溝本数等を両者で異ならせたものも含まれる。識別性を高める観点から言えば、前者の構成が望ましい。なお、動圧軸受装置の用途によって、第1スラスト軸受隙間と第2スラスト軸受隙間とで必要とされる圧力が異なる場合等には、それに併せて動圧溝の配列パターンを変更してもよい。   If the first dynamic pressure groove region and the second dynamic pressure groove region are formed in different shapes, it is possible to easily identify the top and bottom of each bearing sleeve, and to further facilitate the assembly. The “different shape” here refers to, for example, a configuration in which one is formed by a plurality of dynamic pressure grooves arranged in a spiral shape and the other is formed by a plurality of dynamic pressure grooves arranged in a herringbone shape, and the same shape. The number of the arranged dynamic pressure grooves and the like are different from each other. From the viewpoint of enhancing the distinguishability, the former configuration is desirable. If the pressure required for the first thrust bearing gap and the second thrust bearing gap differs depending on the application of the hydrodynamic bearing device, the arrangement pattern of the hydrodynamic grooves may be changed accordingly. .

2つの軸受スリーブ間には、スペーサ部材を介装させることができる。このスペーサ部材は、例えば軸受スリーブを含油焼結金属で形成する場合、多孔質組織を有しない材料(非多孔質材料)で形成することができる。この場合、軸受装置に包含させる潤滑油量を減少させることができるので、総油量が少なくなる分低コスト化できる。さらに、油量が少なくなる分、ハウジングの開口部に設けられるシール空間の容積を小さくすることができ、ラジアル軸受部の軸受スパンを一層拡大させることができる。   A spacer member can be interposed between the two bearing sleeves. For example, when the bearing sleeve is formed of an oil-containing sintered metal, the spacer member can be formed of a material having no porous structure (non-porous material). In this case, since the amount of lubricating oil included in the bearing device can be reduced, the cost can be reduced by reducing the total amount of oil. Furthermore, as the amount of oil decreases, the volume of the seal space provided in the opening of the housing can be reduced, and the bearing span of the radial bearing portion can be further expanded.

上記構成の動圧軸受装置は、該動圧軸受装置と、ステータコイルと、ロータマグネットとを有するモータ、その中でも高速回転化や回転体の重量化に伴って、特に高いモーメント剛性が必要なモータに好ましく用いることができる。   The hydrodynamic bearing device having the above-described configuration includes a motor having the hydrodynamic bearing device, a stator coil, and a rotor magnet, and among them, a motor that requires particularly high moment rigidity as the speed increases and the weight of the rotating body increases. Can be preferably used.

以上より、本発明によれば、ハウジングに対する軸受本体の組み付けを容易化し、これによりモーメント剛性に優れた動圧軸受装置を低コストに提供することができる。   As described above, according to the present invention, it is possible to facilitate the assembly of the bearing body to the housing, thereby providing a hydrodynamic bearing device having excellent moment rigidity at a low cost.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明に係る動圧軸受装置1を組み込んだ情報機器用スピンドルモータの一構成例を概念的に示している。このスピンドルモータは、HDD等のディスク駆動装置に用いられるもので、動圧軸受装置1と、軸部材2に装着されたロータ(ディスクハブ)3と、例えば半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5を備えている。ステータコイル4はブラケット6の外周に取付けられ、ロータマグネット5はディスクハブ3の内周に取付けられる。動圧軸受装置1のハウジング7は、ブラケット6の内周に装着される。ディスクハブ3には、磁気ディスク等のディスクDが一又は複数枚保持される。ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間の電磁力でロータマグネット5が回転し、それによって、ディスクハブ3およびディスクハブ3に保持されたディスクDが軸部材2と一体に回転する。   FIG. 1 conceptually shows one configuration example of a spindle motor for information equipment incorporating a fluid dynamic bearing device 1 according to the present invention. This spindle motor is used in a disk drive device such as an HDD, and is opposed to the hydrodynamic bearing device 1 and the rotor (disk hub) 3 mounted on the shaft member 2 through a radial gap, for example. A stator coil 4 and a rotor magnet 5 are provided. The stator coil 4 is attached to the outer periphery of the bracket 6, and the rotor magnet 5 is attached to the inner periphery of the disk hub 3. The housing 7 of the hydrodynamic bearing device 1 is attached to the inner periphery of the bracket 6. The disk hub 3 holds one or more disks D such as magnetic disks. When the stator coil 4 is energized, the rotor magnet 5 is rotated by electromagnetic force between the stator coil 4 and the rotor magnet 5, whereby the disk hub 3 and the disk D held by the disk hub 3 are integrated with the shaft member 2. Rotate to.

図2は、上記スピンドルモータで使用される動圧軸受装置1の一例を示すものである。この動圧軸受装置1は、固定側となるハウジング7、およびハウジング7の内周に固定される軸受本体8と、回転部材を構成する軸部材2、および軸部材2の軸方向二箇所に離隔して設けられた第1、第2フランジ部9、10とを主要な構成部品として備える。本実施形態において、軸受本体8は、軸方向に離隔して配置された2つの軸受スリーブ81、81と、両軸受スリーブ81、81間に介装されたスペーサ部材82とで構成されている。なお、以下説明の便宜上、ハウジング7の開口部から軸部材2の端部が突出している側を上側、その軸方向反対側を下側として説明を進める。   FIG. 2 shows an example of the hydrodynamic bearing device 1 used in the spindle motor. The hydrodynamic bearing device 1 includes a housing 7 on a fixed side, a bearing body 8 fixed to the inner periphery of the housing 7, a shaft member 2 constituting a rotating member, and two axial directions of the shaft member 2. The first and second flange portions 9 and 10 provided as main components are provided. In the present embodiment, the bearing body 8 includes two bearing sleeves 81 and 81 that are spaced apart from each other in the axial direction, and a spacer member 82 that is interposed between the bearing sleeves 81 and 81. For convenience of explanation, the description will be given with the side where the end of the shaft member 2 protrudes from the opening of the housing 7 as the upper side and the opposite side in the axial direction as the lower side.

本実施形態の動圧軸受装置1では、後述するように、上側の軸受スリーブ81の内周面81aと軸部材2の外周面2aとの間に第1ラジアル軸受部R1が設けられ、下側の軸受スリーブ81の内周面81aと軸部材2の外周面2aとの間に第2ラジアル軸受部R2が設けられる。また、上側の軸受スリーブ81の上側端面81bと第1フランジ部9の下側端面9bとの間に第1スラスト軸受部T1が設けられ、下側の軸受スリーブ81の下側端面81cと第2フランジ部10の上側端面10bとの間に第2スラスト軸受部T2が設けられる。   In the hydrodynamic bearing device 1 of the present embodiment, as will be described later, a first radial bearing portion R1 is provided between the inner peripheral surface 81a of the upper bearing sleeve 81 and the outer peripheral surface 2a of the shaft member 2, and the lower side A second radial bearing portion R <b> 2 is provided between the inner peripheral surface 81 a of the bearing sleeve 81 and the outer peripheral surface 2 a of the shaft member 2. Also, a first thrust bearing portion T1 is provided between the upper end surface 81b of the upper bearing sleeve 81 and the lower end surface 9b of the first flange portion 9, and the lower end surface 81c and the second end surface 81c of the lower bearing sleeve 81 are provided. A second thrust bearing portion T <b> 2 is provided between the upper end face 10 b of the flange portion 10.

軸部材2は、ステンレス鋼等の金属材料で形成される。軸部材2は全体として概ね同径の軸状をなし、その中間部分には他所よりも僅かに小径の逃げ部2bが形成されている。軸部材2の外周面2aのうち、第1および第2フランジ部9、10の固定位置には、凹部、例えば円周溝2cが形成されている。なお、この実施形態では、軸部材2は金属の一体加工品であるが、金属と樹脂からなるハイブリッド軸(鞘部が金属で、芯部が樹脂等)とすることもできる。   The shaft member 2 is formed of a metal material such as stainless steel. The shaft member 2 as a whole has a shaft shape having substantially the same diameter, and a relief portion 2b having a slightly smaller diameter than the other portions is formed in the middle portion thereof. In the outer peripheral surface 2a of the shaft member 2, a recessed portion, for example, a circumferential groove 2c is formed at a fixing position of the first and second flange portions 9 and 10. In this embodiment, the shaft member 2 is an integrally processed product of metal. However, the shaft member 2 may be a hybrid shaft made of metal and resin (the sheath is a metal and the core is a resin or the like).

ハウジング7は両端開口の筒状をなし、その内周面7aは軸方向に径一定でストレートな円筒面に形成されている。このハウジング7は、例えば真ちゅうやアルミ等の金属材料の機械加工品、あるいは樹脂組成物の射出成形品とされる。樹脂組成物で射出成形する場合、使用可能なベース樹脂に特に限定はないが、例えば、ポリサルフォン(PSF)、ポリエーテルサルフォン(PES)、ポリフェニルサルフォン(PPSF)、ポリエーテルイミド(PEI)等の非晶性樹脂の他、液晶ポリマー(LCP)、ポリエーテルエーテルケトン(PEEK)、ポリブチレンテレフタレート(PBT)、ポリフェニレンサルファイド(PPS)等の結晶性樹脂を用いることができる。また、上記の樹脂に充填する充填材の種類も特に限定されないが、例えば、充填材として、ガラス繊維等の繊維状充填材、チタン酸カリウム等のウィスカー状充填材、マイカ等の鱗片状充填材、カーボンファイバー、カーボンブラック、黒鉛、カーボンナノマテリアル、金属粉末等の繊維状又は粉末状の導電性充填材を用いることができる。これらの充填材は、単独で用い、あるいは、二種以上を混合して使用しても良い。   The housing 7 has a cylindrical shape with openings at both ends, and its inner peripheral surface 7a is formed in a straight cylindrical surface with a constant diameter in the axial direction. The housing 7 is, for example, a machined product of a metal material such as brass or aluminum, or an injection molded product of a resin composition. In the case of injection molding with a resin composition, usable base resins are not particularly limited. For example, polysulfone (PSF), polyethersulfone (PES), polyphenylsulfone (PPSF), polyetherimide (PEI) In addition to amorphous resins such as the above, crystalline resins such as liquid crystal polymer (LCP), polyether ether ketone (PEEK), polybutylene terephthalate (PBT), and polyphenylene sulfide (PPS) can be used. The type of filler to be filled in the resin is not particularly limited. For example, as the filler, fibrous filler such as glass fiber, whisker-like filler such as potassium titanate, and scaly filler such as mica. A fibrous or powdery conductive filler such as carbon fiber, carbon black, graphite, carbon nanomaterial, or metal powder can be used. These fillers may be used alone or in combination of two or more.

軸受本体8を構成する2つの軸受スリーブ81、81は、共に焼結金属からなる多孔質体、特に銅を主成分とする燒結金属の多孔質体で円筒状に形成されている。両軸受スリーブ81、81は、黄銅等の軟質金属で形成することもできる。軸受スリーブ81の外周面81dには、軸方向溝81d1が、円周方向の複数箇所(図示例では3箇所)に等間隔で設けられている。   The two bearing sleeves 81, 81 constituting the bearing body 8 are both formed into a cylindrical shape with a porous body made of sintered metal, particularly a sintered body of sintered metal mainly composed of copper. Both bearing sleeves 81, 81 can also be formed of a soft metal such as brass. On the outer peripheral surface 81d of the bearing sleeve 81, axial grooves 81d1 are provided at a plurality of locations in the circumferential direction (three locations in the illustrated example) at equal intervals.

両軸受スリーブ81、81の内周面81aには、それぞれ第1、第2ラジアル軸受部R1、R2のラジアル軸受面Aとなる領域が設けられ、該ラジアル軸受面Aとなる領域には、例えば図3(a)に示すように、ヘリングボーン形状に配列された複数の動圧溝81a1が、軸方向で対称形状に形成されている。動圧溝81a1は、公知のその他の形状、例えばスパイラル形状等に配列することもできる。   The inner peripheral surface 81a of both bearing sleeves 81, 81 is provided with a region serving as the radial bearing surface A of each of the first and second radial bearing portions R1, R2, and the region serving as the radial bearing surface A includes, for example, As shown in FIG. 3A, a plurality of dynamic pressure grooves 81a1 arranged in a herringbone shape are formed symmetrically in the axial direction. The dynamic pressure grooves 81a1 can be arranged in other known shapes such as a spiral shape.

両軸受スリーブ81、81の上側端面81bの一部または全部環状領域には、例えば図3(b)に示すように、スパイラル形状に配列された複数の動圧溝81b1からなる第1動圧溝領域が形成されている。また、下側端面81cの一部または全部環状領域には、例えば図3(c)に示すように、ヘリングボーン形状に配列された複数の動圧溝81c1からなる第2動圧溝領域が形成されている。本実施形態では、上側の軸受スリーブ81の第1動圧溝領域が、第1スラスト軸受部T1のスラスト軸受面Bになり、下側の軸受スリーブ81の第2動圧溝領域が、第2スラスト軸受部T2のスラスト軸受面Cとなる。上述した動圧溝81a1、81b1、および81c1は、全て軸受スリーブ81の成形と同時に形成することができる。   For example, as shown in FIG. 3B, a first dynamic pressure groove comprising a plurality of dynamic pressure grooves 81b1 arranged in a spiral shape is formed in a part or all of the annular region of the upper end surface 81b of the bearing sleeves 81, 81. A region is formed. Further, as shown in FIG. 3C, for example, a second dynamic pressure groove region including a plurality of dynamic pressure grooves 81c1 arranged in a herringbone shape is formed in a part or all of the annular region of the lower end surface 81c. Has been. In the present embodiment, the first dynamic pressure groove region of the upper bearing sleeve 81 is the thrust bearing surface B of the first thrust bearing portion T1, and the second dynamic pressure groove region of the lower bearing sleeve 81 is the second. It becomes the thrust bearing surface C of the thrust bearing portion T2. The above-described dynamic pressure grooves 81 a 1, 81 b 1 and 81 c 1 can all be formed simultaneously with the molding of the bearing sleeve 81.

2つの軸受スリーブ81、81の間には、円筒状のスペーサ部材82が介装されている。スペーサ部材82は、黄銅やアルミ等の金属材料あるいは樹脂材料で形成され、その内周面82aは、軸受スリーブ81の内周面81aよりも大径に形成されている。本実施形態において、スペーサ部材82は、その上端面82bを上側の軸受スリーブ81の下側端面81cと、また下端面82cを下側の軸受スリーブ81の上側端面81bと当接させた状態で、ハウジング7内周の軸方向略中央部に配設されている。スペーサ部材82の外周面82dには、軸方向溝82d1が円周方向の複数箇所(例えば、3箇所)に設けられている。   A cylindrical spacer member 82 is interposed between the two bearing sleeves 81, 81. The spacer member 82 is formed of a metal material such as brass or aluminum or a resin material, and the inner peripheral surface 82 a is formed to have a larger diameter than the inner peripheral surface 81 a of the bearing sleeve 81. In the present embodiment, the spacer member 82 has its upper end surface 82b in contact with the lower end surface 81c of the upper bearing sleeve 81 and its lower end surface 82c in contact with the upper end surface 81b of the lower bearing sleeve 81. The housing 7 is disposed at a substantially central portion in the axial direction of the inner periphery. On the outer peripheral surface 82d of the spacer member 82, axial grooves 82d1 are provided at a plurality of locations (for example, three locations) in the circumferential direction.

第1フランジ部9および第2フランジ部10は、何れも黄銅等の軟質金属材料やその他の金属材料、あるいは樹脂材料でリング状に形成され、軸部材2の外周面2aに例えば接着固定され、接着固定時には、軸部材2に塗布した接着剤が、接着剤溜りとしての円周溝2cに充填されて固化することにより、フランジ部9、10の軸部材2に対する接着強度が向上する。   The first flange portion 9 and the second flange portion 10 are each formed in a ring shape from a soft metal material such as brass, other metal materials, or a resin material, and are bonded and fixed to the outer peripheral surface 2a of the shaft member 2, for example. At the time of bonding and fixing, the adhesive applied to the shaft member 2 is filled in the circumferential groove 2c as an adhesive reservoir and solidified, whereby the adhesive strength of the flange portions 9 and 10 to the shaft member 2 is improved.

第1フランジ部9の外周面9aは、ハウジング7の上端開口部側の内周面7aとの間に所定容積の第1シール空間S1を形成し、また第2フランジ部10の外周面10aは、ハウジング7の下端開口部側の内周面7aとの間に所定容積の第2シール空間S2を形成する。本実施形態において、第1フランジ部9の外周面9aおよび第2フランジ部10の外周面10aは、それぞれ軸受装置の外部側に向かって漸次縮径したテーパ面状に形成される。そのため、両シール空間S1、S2は、互いに接近する方向(ハウジング7の内部方向)に漸次縮径したテーパ形状となる。軸部材2の回転時、両シール空間S1、S2内の潤滑油は毛細管力による引き込み作用と、回転時の遠心力による引き込み作用とにより、シール空間が狭くなる方向(ハウジング7の内部方向)に向けて引き込まれる。これにより、ハウジング7の内部からの潤滑油の漏れ出しが効果的に防止される。油漏れを確実に防止するため、ハウジング7の上下端面、第1フランジ部9の上側端面9c、および第2フランジ部10の下側端面10cにそれぞれ撥油剤からなる被膜を形成することもできる(図示省略)。   A first seal space S1 having a predetermined volume is formed between the outer peripheral surface 9a of the first flange portion 9 and the inner peripheral surface 7a on the upper end opening side of the housing 7, and the outer peripheral surface 10a of the second flange portion 10 is A second seal space S2 having a predetermined volume is formed between the housing 7 and the inner peripheral surface 7a on the lower end opening side. In this embodiment, the outer peripheral surface 9a of the 1st flange part 9 and the outer peripheral surface 10a of the 2nd flange part 10 are each formed in the taper surface shape gradually diameter-reduced toward the outer side of the bearing apparatus. Therefore, both the seal spaces S1 and S2 have a tapered shape that is gradually reduced in diameter in a direction approaching each other (inner direction of the housing 7). When the shaft member 2 rotates, the lubricating oil in both the seal spaces S1 and S2 is drawn in a direction in which the seal space becomes narrower (inner direction of the housing 7) due to the pulling action by capillary force and the pulling action by centrifugal force during rotation. It is drawn toward. Thereby, the leakage of the lubricating oil from the inside of the housing 7 is effectively prevented. In order to reliably prevent oil leakage, a film made of an oil repellent agent can be formed on each of the upper and lower end surfaces of the housing 7, the upper end surface 9c of the first flange portion 9, and the lower end surface 10c of the second flange portion 10 ( (Not shown).

第1および第2シール空間S1、S2は、ハウジング7の内部空間に充満される潤滑油の温度変化に伴う容積変化量を吸収するバッファ機能を有する。想定される温度変化の範囲内で、油面は常時両シール空間S1、S2内にある。これを実現するために、両シール空間S1、S2の容積の総和は、少なくとも内部空間に充満される潤滑油の温度変化に伴う容積変化量よりも大きく設定される。   The first and second seal spaces S <b> 1 and S <b> 2 have a buffer function that absorbs a volume change amount associated with a temperature change of the lubricating oil filled in the internal space of the housing 7. The oil level is always in both the seal spaces S1 and S2 within the assumed temperature change range. In order to realize this, the sum of the volumes of the seal spaces S1, S2 is set to be larger than at least the volume change amount associated with the temperature change of the lubricating oil filled in the internal space.

上記構成からなる動圧軸受装置1の組立は、例えば次のようにして行われる。   The assembly of the hydrodynamic bearing device 1 having the above configuration is performed as follows, for example.

軸受スリーブ81、81およびスペーサ部材82(軸受本体8)を、ハウジング7の内周面7aに、接着、圧入、溶着等適宜の手段で固定する。そして、軸受本体8の内周に軸部材2を挿入した後、軸受本体8を挟むように第1フランジ部9および第2フランジ部10を、所定のアキシャル隙間を確保した状態で軸部材2の円周溝2cの外周に接着固定する。このようにして動圧軸受装置1の組立が完了すると、両フランジ部9、10で密閉されたハウジング7の内部空間に、両軸受スリーブ81、81の内部気孔も含め、潤滑流体として例えば潤滑油を充満させる。潤滑油の充填は、例えば組立が完了した動圧軸受装置1を真空槽内で潤滑油中に浸漬した後、大気圧に開放することにより行うことができる。   The bearing sleeves 81 and 81 and the spacer member 82 (bearing body 8) are fixed to the inner peripheral surface 7a of the housing 7 by appropriate means such as adhesion, press-fitting, and welding. Then, after the shaft member 2 is inserted into the inner periphery of the bearing body 8, the first flange portion 9 and the second flange portion 10 are placed in a state where a predetermined axial gap is secured so as to sandwich the bearing body 8. It is bonded and fixed to the outer periphery of the circumferential groove 2c. When the assembly of the hydrodynamic bearing device 1 is completed in this way, the internal space of the housing 7 sealed with the flange portions 9 and 10 includes the internal pores of the both bearing sleeves 81 and 81, for example, lubricating oil. To charge. Filling the lubricating oil can be performed, for example, by immersing the hydrodynamic bearing device 1 that has been assembled in the lubricating oil in a vacuum chamber and then releasing it to atmospheric pressure.

上記構成の動圧軸受装置1において、軸部材2が回転すると、両軸受スリーブ81の内周面81aのラジアル軸受面Aは、それぞれ軸部2aの外周面2a1とラジアル軸受隙間を介して対向する。そして軸部材2の回転に伴って、各ラジアル軸受隙間に潤滑油の動圧が発生し、その圧力によって軸部材2がラジアル方向に回転自在に非接触支持される。これにより、軸部材2をラジアル方向に回転自在に非接触支持する第1ラジアル軸受部R1と第2ラジアル軸受部R2とが形成される。   In the hydrodynamic bearing device 1 having the above configuration, when the shaft member 2 rotates, the radial bearing surface A of the inner peripheral surface 81a of the both bearing sleeves 81 faces the outer peripheral surface 2a1 of the shaft portion 2a via the radial bearing gap. . As the shaft member 2 rotates, a dynamic pressure of lubricating oil is generated in each radial bearing gap, and the shaft member 2 is supported in a non-contact manner in a radial direction by the pressure. As a result, the first radial bearing portion R1 and the second radial bearing portion R2 that support the shaft member 2 in a non-contact manner so as to be rotatable in the radial direction are formed.

また、軸部材2が回転すると、上側の軸受スリーブ81の上側端面81bのスラスト軸受面Bとなる領域(第1動圧溝領域)が、第1フランジ部9の下側端面9bと所定の第1スラスト軸受隙間を介して対向し、また下側の軸受スリーブ81の下側端面81cのスラスト軸受面Cとなる領域(第2動圧溝領域)が、第2フランジ部10の上側端面10bと所定の第2スラスト軸受隙間を介して対向する。そして軸部材2の回転に伴い、各スラスト軸受隙間に潤滑油の動圧が発生し、その圧力によって軸部材2が両スラスト方向に回転自在に非接触支持される。これにより、軸部材2を両スラスト方向に回転自在に非接触支持する第1スラスト軸受部T1と第2スラスト軸受部T2とが形成される。   Further, when the shaft member 2 rotates, a region (first dynamic pressure groove region) that becomes the thrust bearing surface B of the upper end surface 81b of the upper bearing sleeve 81 is separated from the lower end surface 9b of the first flange portion 9 and a predetermined first. A region (second dynamic pressure groove region) that faces the thrust bearing surface C of the lower end surface 81c of the lower bearing sleeve 81 is opposed to the upper end surface 10b of the second flange portion 10 through the first thrust bearing gap. Opposing via a predetermined second thrust bearing gap. As the shaft member 2 rotates, dynamic pressure of lubricating oil is generated in each thrust bearing gap, and the shaft member 2 is supported in a non-contact manner so as to be rotatable in both thrust directions. Thereby, the 1st thrust bearing part T1 and the 2nd thrust bearing part T2 which non-contact-support the shaft member 2 rotatably in both thrust directions are formed.

ところで、動圧軸受装置1の運転中には、局所的な負圧の発生に伴う気泡の生成、気泡の生成に起因する潤滑油の漏れや振動の発生等が生じる場合がある。これに対し、本実施形態では、両軸受スリーブ81、81の軸方向溝81d1、スペーサ部材82の軸方向溝82d1、各軸受隙間(第1、第2ラジアル軸受部R1、R2のラジアル軸受隙間、第1、第2スラスト軸受部T1、T2のスラスト軸受隙間)、およびスペーサ部材82の内周面82aと軸部材2の外周面2aとの間の隙間により、動圧軸受装置1の内部に一連の循環流路を形成したので、軸受運転中には、潤滑油がこの循環流路を介して流動循環する。これにより、上記不具合は効果的に防止される。また、両軸受スリーブ81の軸方向溝81d1の一端は、それぞれ、大気開放側となるシール空間S1、S2に通じている。そのため、何らかの理由で潤滑油中に気泡が混入した場合でも、気泡が潤滑油に伴って循環する際に外気開放側に排出されるので、気泡による悪影響は一層効果的に防止される。   By the way, during operation of the hydrodynamic bearing device 1, there are cases in which bubbles are generated due to the generation of local negative pressure, lubrication oil leaks or vibrations occur due to the generation of bubbles. On the other hand, in the present embodiment, the axial groove 81d1 of the both bearing sleeves 81, 81, the axial groove 82d1 of the spacer member 82, the bearing gaps (the radial bearing gaps of the first and second radial bearing portions R1, R2, Thrust bearing gaps of the first and second thrust bearing portions T1 and T2) and a gap between the inner peripheral surface 82a of the spacer member 82 and the outer peripheral surface 2a of the shaft member 2 are arranged in series inside the hydrodynamic bearing device 1. Thus, the lubricating oil flows and circulates through the circulation channel during the bearing operation. Thereby, the said malfunction is prevented effectively. Further, one end of the axial groove 81d1 of the both bearing sleeves 81 communicates with the seal spaces S1 and S2 on the atmosphere release side, respectively. Therefore, even when bubbles are mixed in the lubricating oil for some reason, the bubbles are discharged to the outside air release side when circulating along with the lubricating oil, so that adverse effects due to the bubbles are more effectively prevented.

以上に示すように、本発明では、上側端面81bに動圧溝81b1からなる第1動圧溝領域を、下側端面81cに動圧溝81c1からなる第2動圧溝領域をそれぞれ有する軸受スリーブ81、81を用いて、換言すると同一の軸受スリーブを2つ用いて軸受本体8を構成している。従って、軸受スリーブ81、81の上下の位置関係を考慮することなくハウジング7に組み付けることができ、組み間違いに起因して動圧軸受装置1が使用できないといった不具合を回避しつつ、軸受本体8の両端側にスラスト軸受部T1、T2を設けてモーメント剛性に優れた動圧軸受装置1を容易かつ低コストに得ることができる。特に、本実施形態では、上側端面81bの動圧溝81b1をスパイラル形状に配列して第1動圧溝領域を形成し、下側端面81cの動圧溝81c1をヘリングボーン形状に配列して第2動圧溝領域を形成しているので、両端面の識別性を高め、各軸受スリーブ81の上下を誤って組み付けるといった事態を確実に防止することが可能となる。   As described above, in the present invention, the bearing sleeve has the first dynamic pressure groove region formed of the dynamic pressure groove 81b1 on the upper end surface 81b and the second dynamic pressure groove region formed of the dynamic pressure groove 81c1 on the lower end surface 81c. In other words, the bearing body 8 is constituted by using two identical bearing sleeves. Accordingly, the bearing sleeve 81 can be assembled to the housing 7 without considering the vertical positional relationship of the bearing sleeves 81, and the dynamic pressure bearing device 1 cannot be used due to a wrong assembly, while avoiding the problem that the bearing body 8 can be used. By providing the thrust bearing portions T1 and T2 on both ends, the hydrodynamic bearing device 1 having excellent moment rigidity can be obtained easily and at low cost. In particular, in this embodiment, the dynamic pressure grooves 81b1 on the upper end surface 81b are arranged in a spiral shape to form a first dynamic pressure groove region, and the dynamic pressure grooves 81c1 on the lower end surface 81c are arranged in a herringbone shape. Since the two dynamic pressure groove regions are formed, it is possible to improve the distinguishability of both end faces and to reliably prevent a situation in which the upper and lower sides of each bearing sleeve 81 are mistakenly assembled.

また、2種類の軸受スリーブを1種類の軸受スリーブに集約出来る分、部品単価を低減することができる他、部品の管理コストを低減することができる。   In addition, since the two types of bearing sleeves can be integrated into one type of bearing sleeve, the unit unit price can be reduced and the management cost of the components can be reduced.

なお、本実施形態では、第1スラスト軸受部T1の第1スラスト軸受隙間に臨むスラスト軸受面B(第1動圧溝領域)にはスパイラル形状に配列した動圧溝を形成し、第2スラスト軸受部T2の第2スラスト軸受隙間に臨むスラスト軸受面C(第2動圧溝領域)にはヘリングボーン形状に配列した動圧溝を形成しているが、識別性が確保できるのであれば、例えば、第1動圧溝領域と第2動圧溝領域とを、溝本数や傾斜角を異ならせた同一形状に配列した動圧溝で構成することもできる。   In the present embodiment, a dynamic pressure groove arranged in a spiral shape is formed on the thrust bearing surface B (first dynamic pressure groove region) facing the first thrust bearing gap of the first thrust bearing portion T1, and the second thrust is formed. The thrust bearing surface C (second dynamic pressure groove region) facing the second thrust bearing gap of the bearing portion T2 is formed with dynamic pressure grooves arranged in a herringbone shape. For example, the first dynamic pressure groove region and the second dynamic pressure groove region may be configured by dynamic pressure grooves arranged in the same shape with different numbers of grooves and inclination angles.

また、以上では、識別性のみに着目して第1動圧溝領域と第2動圧溝領域の動圧溝の配列形状を決定したが、例えば第1スラスト軸受部T1や第2スラスト軸受部T2で必要とされる圧力に応じて、動圧溝の配列形状や溝本数等を異ならせることもできる。   In the above description, the arrangement shape of the dynamic pressure grooves in the first dynamic pressure groove region and the second dynamic pressure groove region has been determined by focusing only on the distinctiveness. For example, the first thrust bearing portion T1 and the second thrust bearing portion The arrangement shape of the dynamic pressure grooves, the number of grooves, and the like can be varied according to the pressure required in T2.

本実施形態では、軸受スリーブ81、81間に非多孔質体のスペーサ部材82を介装させているので、軸受本体8を軸受スリーブ81のみで構成する場合に比べ、潤滑油量を低減することができる。これにより、第1および第2フランジ部9、10の軸方向寸法を短縮し、ラジアル軸受部R1、R2の軸受スパンを拡大させることもできる。   In this embodiment, since the non-porous spacer member 82 is interposed between the bearing sleeves 81, 81, the amount of lubricating oil can be reduced as compared with the case where the bearing body 8 is composed of only the bearing sleeve 81. Can do. Thereby, the axial direction dimension of the 1st and 2nd flange parts 9 and 10 can be shortened, and the bearing span of radial bearing part R1 and R2 can also be expanded.

また、図示は省略するが、上記構成の動圧軸受装置1において、第1あるいは第2フランジ部9、10の何れか一方は、軸部材2と一体に形成することができ、この構成とすることにより、動圧軸受装置1の組み付けを一層簡略化することができる。   Although not shown, in the hydrodynamic bearing device 1 having the above-described configuration, either the first or second flange portion 9 or 10 can be formed integrally with the shaft member 2, and this configuration is adopted. As a result, the assembly of the hydrodynamic bearing device 1 can be further simplified.

また、以上の説明では、ラジアル軸受隙間に流体動圧を発生させる動圧発生手段(動圧溝)を軸受スリーブ81の内周に設ける場合について説明を行ったが、動圧溝はラジアル軸受隙間を介して対向する軸部材2の外周面2aに設けてもよい。この場合、両軸受スリーブの上下の位置関係は回転性能に影響を及ぼさないので、第1ラジアル軸受部R1を形成するための動圧溝と第2ラジアル軸受部R2を形成するための動圧溝は、その形状等を相互に異ならせてもよい。   In the above description, the case where the dynamic pressure generating means (dynamic pressure groove) for generating fluid dynamic pressure in the radial bearing gap is provided on the inner periphery of the bearing sleeve 81 has been described. You may provide in the outer peripheral surface 2a of the shaft member 2 which opposes via. In this case, since the positional relationship between the upper and lower bearing sleeves does not affect the rotational performance, the dynamic pressure groove for forming the first radial bearing portion R1 and the dynamic pressure groove for forming the second radial bearing portion R2 are used. May have different shapes or the like.

図4は、本発明にかかる動圧軸受装置の他の実施形態を示している。この動圧軸受装置1は、主に、軸受本体8を、2つの軸受スリーブ81、81のみで構成した点で、図2に示す動圧軸受装置1と構成を異にする。このとき、軸受スリーブ81の内周面81aに動圧溝を設ける場合には、その動圧溝81a2形状を、例えば図5に示すような、円周方向等間隔に設けられた複数の軸方向溝形状とすれば、図2に示す構成と同様に、両軸受スリーブ81、81の上下位置を考慮することなく組み付けを行うことができる。この形態の動圧溝81a2で構成されるラジアル軸受部R1,R2は、いわゆるステップ軸受である。もちろん、ラジアル軸受部R1、R2を形成するための動圧溝を軸部材2の外周面2aに設ける場合には、上記同様、その形状は自由に設定することが可能である。なお、これ以外の構成・作用は、図2に示す実施形態と同一であるため、共通の参照番号を付与して重複説明を省略する。   FIG. 4 shows another embodiment of the hydrodynamic bearing device according to the present invention. The hydrodynamic bearing device 1 differs from the hydrodynamic bearing device 1 shown in FIG. 2 mainly in that the bearing body 8 is composed of only two bearing sleeves 81 and 81. At this time, when the dynamic pressure groove is provided on the inner peripheral surface 81a of the bearing sleeve 81, the shape of the dynamic pressure groove 81a2 is, for example, a plurality of axial directions provided at equal intervals in the circumferential direction as shown in FIG. If the groove shape is adopted, as in the configuration shown in FIG. 2, assembly can be performed without considering the vertical positions of the two bearing sleeves 81, 81. The radial bearing portions R1 and R2 configured by the dynamic pressure groove 81a2 in this form are so-called step bearings. Of course, when the dynamic pressure grooves for forming the radial bearing portions R1 and R2 are provided on the outer peripheral surface 2a of the shaft member 2, the shape can be freely set as described above. Other configurations and operations are the same as those in the embodiment shown in FIG. 2, and therefore, common reference numerals are given and redundant descriptions are omitted.

なお、ラジアル軸受部R1、R2は、ラジアル軸受面となる領域に複数の円弧面を設けた、いわゆる多円弧軸受で構成することもできる。また、スラスト軸受部T1、T2としては、上記のようにヘリングボーン形状やスパイラル形状等の動圧溝によって潤滑油の動圧作用を発生させる以外にも、スラスト軸受面となる領域に、複数の半径方向溝を円周方向所定間隔に設けた、いわゆるステップ軸受、いわゆる波型軸受(ステップ型が波型になったもの)等を採用しても良い。   In addition, radial bearing part R1, R2 can also be comprised with what is called a multi-arc bearing which provided the some circular arc surface in the area | region used as a radial bearing surface. Further, as the thrust bearing portions T1 and T2, in addition to generating the dynamic pressure action of the lubricating oil by the dynamic pressure grooves having a herringbone shape or a spiral shape as described above, a plurality of thrust bearing portions T1 and T2 You may employ | adopt what is called a step bearing provided with the radial direction groove | channel at predetermined intervals of the circumferential direction, what is called a wave type bearing (what the step type turned into a wave type), etc.

また、以上の説明では、動圧軸受装置1の内部に充満する流体として、潤滑油を例示したが、それ以外にも各軸受隙間に動圧を発生させることができる流体、例えば空気等の気体や、磁性流体等を使用することもできる。   In the above description, the lubricating oil is exemplified as the fluid that fills the inside of the hydrodynamic bearing device 1. However, other fluids that can generate dynamic pressure in the bearing gaps, for example, gas such as air Alternatively, a magnetic fluid or the like can be used.

以上では、動圧軸受装置1をディスク装置用のスピンドルモータに組み込んで使用する形態を例示したが、本発明の構成を有する動圧軸受装置1は、情報機器用のスピンドルモータ以外にも、高速回転し、高いモーメント剛性が要求されるモータ、例えばファンモータにも好ましく用いることができる。   In the above, an example in which the dynamic pressure bearing device 1 is used by being incorporated in a spindle motor for a disk device has been illustrated. However, the dynamic pressure bearing device 1 having the configuration of the present invention is not limited to a spindle motor for information equipment, It can be preferably used for a motor that rotates and requires high moment rigidity, for example, a fan motor.

図6は、本発明に係る動圧軸受装置1を組み込んだファンモータ、その中でも半径方向(ラジアル方向)のギャップを介してステータコイル4およびロータマグネット5を対向させた、いわゆるラジアルギャップ型ファンモータの一例を概念的に示すものである。図示例のモータは、主に、軸部材2の上端外周に固定されるロータ33が外周面に羽根を有する点、およびブラケット36がモータの各構成部品を収容するケーシングとしての機能を果たす点で、図1に示すスピンドルモータと構成を異にする。なお、その他の構成部材は、図1に示すモータの各構成部材と機能・作用を同一にするため、共通の参照番号を付して重複説明を省略する。   FIG. 6 shows a fan motor incorporating the hydrodynamic bearing device 1 according to the present invention, and in particular, a so-called radial gap type fan motor in which the stator coil 4 and the rotor magnet 5 are opposed to each other through a gap in the radial direction (radial direction). This is a conceptual illustration. In the illustrated motor, the rotor 33 fixed to the outer periphery of the upper end of the shaft member 2 has blades on the outer peripheral surface, and the bracket 36 serves as a casing for housing each component of the motor. The configuration is different from that of the spindle motor shown in FIG. The other constituent members have the same functions and functions as the constituent members of the motor shown in FIG.

動圧軸受装置を組み込んだ情報機器用スピンドルモータの断面図である。It is sectional drawing of the spindle motor for information equipment incorporating the dynamic pressure bearing apparatus. 本発明の構成を有する動圧軸受装置の断面図である。It is sectional drawing of the dynamic pressure bearing apparatus which has a structure of this invention. (a)図は軸受スリーブの縦断面図、(b)図は軸受スリーブの上側端面を示す図、(c)図は軸受スリーブの下側端面を示す図である。(A) is a longitudinal sectional view of the bearing sleeve, (b) is a view showing an upper end face of the bearing sleeve, and (c) is a view showing a lower end face of the bearing sleeve. 動圧軸受装置の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of a hydrodynamic bearing apparatus. 軸受スリーブの他の実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows other embodiment of a bearing sleeve. 動圧軸受装置を組み込んだファンモータの断面図である。It is sectional drawing of the fan motor incorporating the dynamic pressure bearing apparatus.

符号の説明Explanation of symbols

1 動圧軸受装置
2 軸部材
4 ステータコイル
5 ロータマグネット
7 ハウジング
8 軸受本体
9 第1フランジ部
10 第2フランジ部
81 軸受スリーブ
82 スペーサ部材
81a1、81b1、81c1 動圧溝
R1、R2 ラジアル軸受部
T1、T2 スラスト軸受部
S1、S2 シール空間
DESCRIPTION OF SYMBOLS 1 Dynamic pressure bearing apparatus 2 Shaft member 4 Stator coil 5 Rotor magnet 7 Housing 8 Bearing main body 9 1st flange part 10 2nd flange part 81 Bearing sleeve 82 Spacer member 81a1, 81b1, 81c1 Dynamic pressure groove R1, R2 Radial bearing part T1 , T2 Thrust bearing part S1, S2 Seal space

Claims (4)

ハウジングと、該ハウジングの内周に固定された軸受本体と、該軸受本体の一端面および他端面と支持すべき回転部材との間にそれぞれ形成される第1および第2スラスト軸受隙間と、前記第1スラスト軸受隙間に流体動圧を発生させる第1動圧溝領域と、前記第2スラスト軸受隙間に流体動圧を発生させる第2動圧溝領域と、前記軸受本体の内周面に設けたラジアル軸受面で形成されるラジアル軸受隙間と、該ラジアル軸受隙間に発生する流体動圧で前記回転部材をラジアル方向に非接触支持するラジアル軸受部とを備える動圧軸受装置であって、
前記軸受本体は、軸方向に並べて配置された2つの軸受スリーブを有し、
該2つの軸受スリーブが何れも、内周面に前記ラジアル軸受面を有すると共に、一端面および他端面に、前記第1動圧溝領域および前記第2動圧溝領域をそれぞれ有し、かつ一方の軸受スリーブの前記第1動圧溝領域を前記第1スラスト軸受隙間に臨ませ、他方の軸受スリーブの前記第2動圧溝領域を前記第2スラスト軸受隙間に臨ませたことを特徴とする動圧軸受装置。
A housing, a bearing body fixed to an inner periphery of said housing, a first and second thrust bearing gap formed respectively between the rotating member to be supported with the one end surface and other end surface of the bearing body, wherein A first dynamic pressure groove region for generating fluid dynamic pressure in the first thrust bearing gap; a second dynamic pressure groove region for generating fluid dynamic pressure in the second thrust bearing gap; and an inner peripheral surface of the bearing body. A radial bearing gap formed by a radial bearing surface, and a radial bearing portion that non-contact-supports the rotating member in a radial direction with fluid dynamic pressure generated in the radial bearing gap ,
The bearing body has two bearing sleeves arranged side by side in the axial direction ;
Each of the two bearing sleeves has the radial bearing surface on the inner peripheral surface, and the first dynamic pressure groove region and the second dynamic pressure groove region on one end surface and the other end surface , respectively , The first dynamic pressure groove region of the other bearing sleeve faces the first thrust bearing gap, and the second dynamic pressure groove region of the other bearing sleeve faces the second thrust bearing gap. Hydrodynamic bearing device.
前記第1動圧溝領域と前記第2動圧溝領域を異なる形状に形成した請求項1記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 1, wherein the first dynamic pressure groove region and the second dynamic pressure groove region are formed in different shapes. 前記2つの軸受スリーブ間にスペーサ部材を介装させた請求項1記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 1, wherein a spacer member is interposed between the two bearing sleeves. 請求項1〜3の何れかに記載の動圧軸受装置と、ステータコイルと、ロータマグネットとを有するモータ。   A motor comprising the hydrodynamic bearing device according to claim 1, a stator coil, and a rotor magnet.
JP2006083457A 2006-03-24 2006-03-24 Hydrodynamic bearing device Expired - Fee Related JP4937619B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2006083457A JP4937619B2 (en) 2006-03-24 2006-03-24 Hydrodynamic bearing device
CN2010101303198A CN101852245B (en) 2006-03-24 2007-03-22 Fluid bearing device
PCT/JP2007/055859 WO2007111218A1 (en) 2006-03-24 2007-03-22 Fluid bearing device
US12/293,953 US8215843B2 (en) 2006-03-24 2007-03-22 Fluid dynamic bearing device
CN201210023188.2A CN102537031B (en) 2006-03-24 2007-03-22 Fluid dynamic bearing device
CN2007800100900A CN101405513B (en) 2006-03-24 2007-03-22 Fluid bearing device
KR1020087024858A KR101413550B1 (en) 2006-03-24 2007-03-22 Fluid bearing device
KR1020137025904A KR101460573B1 (en) 2006-03-24 2007-03-22 Fluid bearing device
US13/492,467 US8562219B2 (en) 2006-03-24 2012-06-08 Fluid dynamic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006083457A JP4937619B2 (en) 2006-03-24 2006-03-24 Hydrodynamic bearing device

Publications (2)

Publication Number Publication Date
JP2007255651A JP2007255651A (en) 2007-10-04
JP4937619B2 true JP4937619B2 (en) 2012-05-23

Family

ID=38630094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006083457A Expired - Fee Related JP4937619B2 (en) 2006-03-24 2006-03-24 Hydrodynamic bearing device

Country Status (2)

Country Link
JP (1) JP4937619B2 (en)
CN (1) CN101405513B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5398132B2 (en) 2007-09-28 2014-01-29 豊田バンモップス株式会社 Grinding wheel
KR101434020B1 (en) * 2012-07-04 2014-08-25 삼성전기주식회사 Spindle motor
CN106321523A (en) * 2015-06-17 2017-01-11 奇鋐科技股份有限公司 Fan vibration reducing structure and fan with vibration reducing structure
US11221039B2 (en) * 2017-01-09 2022-01-11 Hamilton Sundstrand Corporation Bearing assembly with surface layer
CN108591274A (en) * 2018-05-10 2018-09-28 上海理工大学 A kind of sealing device and precision equipment
CN108561536A (en) * 2018-05-10 2018-09-21 上海理工大学 A kind of high-precision motor device and precision equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2608708B2 (en) * 1986-09-27 1997-05-14 セイレイ工業株式会社 Threshing machine horizontal feeder for threshing machine
US5407281A (en) * 1994-07-22 1995-04-18 Quantum Corp. Self-replenishing hydrodynamic bearing
JP2005003042A (en) * 2003-06-10 2005-01-06 Ntn Corp Hydrodynamic bearing device
JP2005321089A (en) * 2004-04-09 2005-11-17 Ntn Corp Dynamic pressure bearing device

Also Published As

Publication number Publication date
CN101405513B (en) 2010-11-10
JP2007255651A (en) 2007-10-04
CN101405513A (en) 2009-04-08

Similar Documents

Publication Publication Date Title
JP5274820B2 (en) Hydrodynamic bearing device
US8356938B2 (en) Fluid dynamic bearing apparatus
JP2005321089A (en) Dynamic pressure bearing device
WO2005098252A1 (en) Dynamic pressure bearing device
JP4937619B2 (en) Hydrodynamic bearing device
JP4874004B2 (en) Hydrodynamic bearing device
US8529132B2 (en) Fluid dynamic bearing device and method of manufacturing the same
JP2006292013A (en) Dynamic pressure bearing device
JP4762757B2 (en) Hydrodynamic bearing device
JP2005282779A (en) Fluid bearing device
JP2007024089A (en) Dynamic pressure bearing device and motor
JP5220339B2 (en) Hydrodynamic bearing device
JP2015132380A (en) Fluid dynamic pressure bearing device and motor having the same
JP4948908B2 (en) Hydrodynamic bearing device
JP2007071274A (en) Dynamic pressure bearing device
JP4708228B2 (en) Hydrodynamic bearing device
JP4828908B2 (en) Hydrodynamic bearing device
JP2011007336A (en) Dynamic pressure bearing device and motor
JP5247987B2 (en) Hydrodynamic bearing device
JP4949216B2 (en) Hydrodynamic bearing device
JP2010096202A (en) Fluid bearing device and method of manufacturing the same
JP5020652B2 (en) Hydrodynamic bearing device
JP4522869B2 (en) Hydrodynamic bearing device
JP4647585B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP2007327546A (en) Fluid bearing device manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4937619

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees