JP2009243605A - Fluid bearing device - Google Patents

Fluid bearing device Download PDF

Info

Publication number
JP2009243605A
JP2009243605A JP2008091827A JP2008091827A JP2009243605A JP 2009243605 A JP2009243605 A JP 2009243605A JP 2008091827 A JP2008091827 A JP 2008091827A JP 2008091827 A JP2008091827 A JP 2008091827A JP 2009243605 A JP2009243605 A JP 2009243605A
Authority
JP
Japan
Prior art keywords
housing
shaft member
bearing device
thrust
hydrodynamic bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008091827A
Other languages
Japanese (ja)
Inventor
Hiromichi Kunigome
広道 國米
Tetsuya Yamamoto
哲也 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2008091827A priority Critical patent/JP2009243605A/en
Publication of JP2009243605A publication Critical patent/JP2009243605A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce a stress concentration occurring in a housing of a fluid bearing device so as to enhance the strength of the housing. <P>SOLUTION: A corner rounded portion 7e is formed at a boundary between an inner peripheral surface 7a1 and an inner bottom surface 7b1 of the housing 7. The corner rounded portion 7e is formed by smoothly connecting a first circular arc surface 7e1 and a second circular arc surface 7e2 having a radius of curvature smaller than that of the first circular arc surface 7e1. The first circular arc surface 7e1 having a larger radius of curvature is arranged at the part of the corner rounded portion 7e where the stress concentration is liable to occur. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、軸受隙間に生じる流体膜で軸部材を回転自在に支持する流体軸受装置に関する。   The present invention relates to a hydrodynamic bearing device that rotatably supports a shaft member with a fluid film generated in a bearing gap.

流体軸受装置は、その高回転精度および静粛性から、情報機器(例えばHDD)の磁気ディスク駆動装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク駆動装置、若しくはMD、MO等の光磁気ディスク駆動装置等のスピンドルモータ用、レーザビームプリンタ(LBP)のポリゴンスキャナモータ用、プロジェクタのカラーホイールモータ用、又は電気機器の冷却等に使用されるファンモータなどの小型モータ用として使用されている。   Due to its high rotational accuracy and quietness, the hydrodynamic bearing device is a magnetic disk drive device for information equipment (for example, HDD), an optical disk drive device such as a CD-ROM, CD-R / RW, DVD-ROM / RAM, or MD, For spindle motors of magneto-optical disk drive devices such as MO, for polygon scanner motors of laser beam printers (LBP), for color wheel motors of projectors, or for small motors such as fan motors used for cooling of electrical equipment, etc. It is used as

例えば、特許文献1に記載されている流体軸受装置は、軸部材と、内周に軸部材を挿入した軸受スリーブと、内周に軸部材及び軸受スリーブを収容したハウジングとを備える。ハウジングは、側部及び底部を一体に有している。   For example, the hydrodynamic bearing device described in Patent Document 1 includes a shaft member, a bearing sleeve in which the shaft member is inserted in the inner periphery, and a housing in which the shaft member and the bearing sleeve are accommodated in the inner periphery. The housing has a side part and a bottom part integrally.

特開2003−239974号公報JP 2003-239974 A

上記のような流体軸受装置に衝撃荷重が加わると、軸部材がハウジングの底部に衝突することがある。このとき、ハウジングの側部と底部との境界部、詳しくは内周面と内底面との境界部に応力が集中し、この境界部に亀裂や破損が生じる恐れがある。このような応力集中を緩和するために、前記境界部に単一の曲率半径からなる隅アール部を設けることがある。   When an impact load is applied to the fluid dynamic bearing device as described above, the shaft member may collide with the bottom of the housing. At this time, stress concentrates on the boundary portion between the side portion and the bottom portion of the housing, specifically, the boundary portion between the inner peripheral surface and the inner bottom surface, and there is a possibility that the boundary portion is cracked or broken. In order to alleviate such stress concentration, a corner radius portion having a single radius of curvature may be provided at the boundary portion.

近年、HDDの高容量化に伴って、スピンドルモータに積層されるディスクの枚数が増加する傾向にある。このディスクはディスクハブを介して流体軸受装置の軸部材に取り付けられるため、ディスク枚数の増加に伴って流体軸受装置の軸部材側の重量が増し、上記のような衝撃荷重によりハウジングが受ける荷重が大きくなる。このような事情から、ハウジングに生じる応力集中をより一層緩和する工夫が求められている。   In recent years, with the increase in capacity of HDDs, the number of disks stacked on a spindle motor tends to increase. Since this disc is attached to the shaft member of the hydrodynamic bearing device via the disc hub, the weight on the shaft member side of the hydrodynamic bearing device increases as the number of discs increases, and the load received by the housing due to the impact load as described above is increased. growing. Under such circumstances, a device for further relaxing the stress concentration generated in the housing is required.

例えば、前記隅アール部の曲率半径を大きくすれば、応力集中を緩和することができる。しかし、隅アール部の曲率半径を大きくすると、隅アール部が軸受内部側に侵出し、軸部材のフランジ部等と干渉する恐れがある(図5の7e1’参照)。一方、ハウジングの一部を除去して隅アール部の曲率半径を拡大すれば、上記のような隅アール部と軸部材のフランジ部等とが干渉する恐れは回避できる(図5の7e1’’参照)。しかし、ハウジングの応力が集中する部分が局部的に薄肉となることで、ハウジングの強度低下を招くこととなる。   For example, if the radius of curvature of the corner rounded portion is increased, the stress concentration can be relaxed. However, if the radius of curvature of the corner rounded portion is increased, the corner rounded portion may invade the bearing inner side and interfere with the flange portion or the like of the shaft member (see 7e1 'in FIG. 5). On the other hand, if the radius of curvature of the corner rounded portion is increased by removing a part of the housing, the risk of interference between the corner rounded portion and the flange portion of the shaft member can be avoided (7e1 '' in FIG. 5). reference). However, the portion where the stress is concentrated in the housing is locally thinned, which causes a reduction in the strength of the housing.

本発明の課題は、流体軸受装置のハウジングに生じる応力集中を緩和し、ハウジングの強度を高めることにある。   An object of the present invention is to alleviate stress concentration generated in a housing of a hydrodynamic bearing device and increase the strength of the housing.

前記課題を解決するために、本発明は、軸部材と、内周に軸部材を収容し、側部及び底部を一体に有するハウジングと、軸部材の外周面が面するラジアル軸受隙間の流体膜で軸部材をラジアル方向に支持するラジアル軸受部とを備えた流体軸受装置において、ハウジングの内周面と内底面との境界部に、曲率半径の異なる複数の円弧面を有する隅アール部を設けたことを特徴とする。   In order to solve the above-described problems, the present invention provides a shaft member, a housing that accommodates the shaft member on the inner periphery, and integrally includes a side portion and a bottom portion, and a fluid film in a radial bearing gap that faces the outer periphery of the shaft member. In the hydrodynamic bearing device having a radial bearing portion for supporting the shaft member in the radial direction, a corner radius portion having a plurality of arc surfaces having different curvature radii is provided at a boundary portion between the inner peripheral surface and the inner bottom surface of the housing. It is characterized by that.

このように、本発明の流体軸受装置では、ハウジングの応力集中部、すなわち、内周面と内底面との境界部に、曲率半径の異なる複数の円弧面を有する隅アール部を設けた。隅アール部の複数の円弧面のうち、曲率半径の大きい円弧面を応力が集中する側に配することで、この部分における応力集中が緩和され、ハウジングの強度を高めることができる。また、隅アール部に曲率半径の小さい円弧面を設けることで、隅アール部が軸受内部側に侵出する量、あるいはハウジングを除去する量を低減することができる。   Thus, in the hydrodynamic bearing device of the present invention, the corner radius portion having a plurality of circular arc surfaces having different curvature radii is provided at the stress concentration portion of the housing, that is, the boundary portion between the inner peripheral surface and the inner bottom surface. By arranging an arc surface having a large curvature radius on the side where the stress is concentrated among the plurality of arc surfaces in the corner rounded portion, the stress concentration in this portion is alleviated and the strength of the housing can be increased. Further, by providing an arc surface having a small radius of curvature at the corner radius portion, the amount of the corner radius portion protruding into the bearing inner side or the amount of removing the housing can be reduced.

このハウジングを射出成形すれば、隅アール部を含めて簡易且つ高精度に形成することができる。射出材料に繊維状充填剤(例えば炭素繊維)を配合する場合、隅アール部に沿って繊維状充填剤を配向させれば、応力集中部におけるハウジングの強度を高めることができる(図6参照)。   If this housing is injection-molded, it can be easily and accurately formed including the corner rounded portion. When a fibrous filler (for example, carbon fiber) is blended in the injection material, the strength of the housing in the stress concentration portion can be increased by orienting the fibrous filler along the corner radius portion (see FIG. 6). .

例えば、軸部材にフランジ部を設け、フランジ部の端面とハウジングの内底面との間のスラスト軸受隙間に生じる流体膜で軸部材をスラスト方向に支持するスラスト軸受部を設け、ハウジングの内底面に、スラスト軸受隙間の流体膜に動圧作用を発生させるスラスト動圧発生部を形成することができる。このとき、ハウジング内底面の外周縁部に平坦面を設け、隅アール部の一端を平坦面に、他端を内周面にそれぞれ滑らかにつなげれば、これらの接続部における応力集中を緩和することができる。   For example, a flange portion is provided on the shaft member, a thrust bearing portion that supports the shaft member in the thrust direction with a fluid film generated in a thrust bearing gap between the end surface of the flange portion and the inner bottom surface of the housing is provided, and the inner bottom surface of the housing is provided. A thrust dynamic pressure generating portion that generates a dynamic pressure action on the fluid film in the thrust bearing gap can be formed. At this time, if a flat surface is provided on the outer peripheral edge portion of the inner bottom surface of the housing, and one end of the corner rounded portion is smoothly connected to the flat surface and the other end is smoothly connected to the inner peripheral surface, stress concentration at these connecting portions can be reduced. Can do.

また、スラスト動圧発生部に丘部と凹部を設け、丘部と平坦面との間に平坦面に対して鈍角を成す段差面を形成すれば、段差面と平坦面との境界部における応力集中を緩和することができる。さらに、この段差面と平坦面とを滑らかにつなげれば、これらの境界部における応力集中をより一層緩和できる。   In addition, if the thrust dynamic pressure generating part is provided with a hill and a recess, and a step surface having an obtuse angle with respect to the flat surface is formed between the hill and the flat surface, the stress at the boundary between the step surface and the flat surface Concentration can be eased. Furthermore, if the step surface and the flat surface are smoothly connected, the stress concentration at these boundary portions can be further alleviated.

以上のように、本発明によれば、流体軸受装置のハウジングに生じる応力集中を緩和し、ハウジングの強度を高めることができる。   As described above, according to the present invention, stress concentration generated in the housing of the hydrodynamic bearing device can be alleviated and the strength of the housing can be increased.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態に係る流体軸受装置1(動圧軸受装置1)を組込んだ情報機器用スピンドルモータの一構成例を概念的に示している。このスピンドルモータは、HDD等のディスク駆動装置に用いられるもので、軸部材2を回転自在に支持する動圧軸受装置1と、軸部材2の上端部に固定されたディスクハブ3と、半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5と、モータブラケット6とを備えている。ステータコイル4はモータブラケット6の外周に取付けられ、ロータマグネット5はディスクハブ3の内周に取付けられている。動圧軸受装置1は、モータブラケット6の内周に固定される。ディスクハブ3には、情報記録媒体としてのディスクDが1枚又は複数枚(本実施形態では2枚)保持され、図示しないクランプ装置で固定される。ステータコイル4に通電すると、ロータマグネット5が回転し、これに伴って、ディスクハブ3およびディスクハブ3に保持されたディスクDが軸部材2と一体に回転する。   FIG. 1 conceptually shows a configuration example of a spindle motor for information equipment incorporating a hydrodynamic bearing device 1 (dynamic pressure bearing device 1) according to an embodiment of the present invention. This spindle motor is used in a disk drive device such as an HDD, and includes a hydrodynamic bearing device 1 that rotatably supports a shaft member 2, a disk hub 3 fixed to the upper end portion of the shaft member 2, and a radial direction. The stator coil 4 and the rotor magnet 5 that are opposed to each other through the gap, and the motor bracket 6 are provided. The stator coil 4 is attached to the outer periphery of the motor bracket 6, and the rotor magnet 5 is attached to the inner periphery of the disk hub 3. The hydrodynamic bearing device 1 is fixed to the inner periphery of the motor bracket 6. The disc hub 3 holds one or a plurality of discs D (two in this embodiment) as information recording media, and is fixed by a clamping device (not shown). When the stator coil 4 is energized, the rotor magnet 5 rotates, and accordingly, the disk hub 3 and the disk D held by the disk hub 3 rotate integrally with the shaft member 2.

図2に示す動圧軸受装置1は、軸部材2と、内周に軸部材2を挿入した軸受スリーブ8と、内周に軸部材2を収容し、内周面に軸受スリーブ8を固定した有底筒状のハウジング7と、ハウジング7の開口部に配されたシール部9とを有する。尚、説明の便宜上、軸方向でハウジング7の開口側を上側、ハウジング7の閉塞側を下側と言うものとする。   The hydrodynamic bearing device 1 shown in FIG. 2 has a shaft member 2, a bearing sleeve 8 with the shaft member 2 inserted into the inner periphery, the shaft member 2 accommodated in the inner periphery, and the bearing sleeve 8 fixed to the inner peripheral surface. It has a bottomed cylindrical housing 7 and a seal portion 9 disposed in the opening of the housing 7. For convenience of explanation, the opening side of the housing 7 in the axial direction is referred to as the upper side, and the closing side of the housing 7 is referred to as the lower side.

軸部材2は、略円筒状の軸部2aと、軸部2aの下端に設けられたフランジ部2bとを有する。軸部材2は、SUS等の金属材料で一体に形成される他、軸部2aとフランジ部2bとを別体に形成してもよい。あるいは、軸部材の一部、例えば両端面を樹脂材料で形成してもよい。   The shaft member 2 has a substantially cylindrical shaft portion 2a and a flange portion 2b provided at the lower end of the shaft portion 2a. The shaft member 2 may be formed integrally with a metal material such as SUS, or the shaft portion 2a and the flange portion 2b may be formed separately. Or you may form a part of shaft member, for example, both end surfaces with a resin material.

軸受スリーブ8は、例えば銅を主成分とする焼結金属の多孔質体で円筒状に形成される。この他、軸受スリーブ8を他の金属や樹脂、あるいはセラミック等で形成することも可能である。   The bearing sleeve 8 is formed in a cylindrical shape with a porous body of sintered metal whose main component is copper, for example. In addition, the bearing sleeve 8 can be formed of other metals, resins, ceramics, or the like.

軸受スリーブ8の内周面8aには、図3(a)に示すように、ヘリングボーン形状の動圧溝8a1、8a2が、軸方向に離隔した2箇所の領域に形成される。詳しくは、帯状部分、及び帯状部分から軸方向両側へ延びた複数の傾斜部を有する丘部8a10、8a20を設け(図中にクロスハッチングで示す)、この丘部8a10、8a20の傾斜部の円周方向間に動圧溝8a1、8a2がそれぞれ形成される。上側の動圧溝8a1は、軸方向非対称形状に形成され、具体的には、丘部8a10の帯状部分より上側の溝の軸方向寸法X1が、下側の溝の軸方向寸法X2よりも大きくなっている(X1>X2)。   As shown in FIG. 3A, herringbone-shaped dynamic pressure grooves 8a1 and 8a2 are formed on the inner peripheral surface 8a of the bearing sleeve 8 in two regions separated in the axial direction. Specifically, a hill portion 8a10, 8a20 having a belt-like portion and a plurality of inclined portions extending from the belt-like portion to both sides in the axial direction is provided (indicated by cross hatching in the figure), and a circle of the slope portion of the hill portion 8a10, 8a20 is provided. Dynamic pressure grooves 8a1 and 8a2 are formed between the circumferential directions, respectively. The upper dynamic pressure groove 8a1 is formed in an axially asymmetric shape. Specifically, the axial dimension X1 of the upper groove from the belt-like portion of the hill part 8a10 is larger than the axial dimension X2 of the lower groove. (X1> X2).

軸受スリーブ8の下側端面8cには、図3(b)に示すように、スパイラル形状の動圧溝8c1が形成される。詳しくは、環状部分、及び環状部分から外径側へスパイラル状に延びた複数の傾斜部を有する丘部8c10を設け(図中にクロスハッチングで示す)、この丘部8c10の傾斜部の円周方向間に動圧溝8c1が形成される。   As shown in FIG. 3B, a spiral-shaped dynamic pressure groove 8c1 is formed on the lower end surface 8c of the bearing sleeve 8. Specifically, a hill portion 8c10 having an annular portion and a plurality of inclined portions extending spirally from the annular portion to the outer diameter side is provided (indicated by cross hatching in the drawing), and the circumference of the inclined portion of the hill portion 8c10 A dynamic pressure groove 8c1 is formed between the directions.

軸受スリーブ8の外周面8dには、軸方向に延びる溝8d1が軸方向全長に亘って任意の本数形成される。この実施形態では、3本の軸方向溝8d1を円周方向等間隔に形成している。軸受スリーブ部の上側端面8bには、図3に示すように、V字断面の周方向溝8b1が全周に亘って形成され、周方向溝8b1の内径側には任意の本数の半径方向溝8b2が形成される。   An arbitrary number of grooves 8d1 extending in the axial direction are formed on the outer peripheral surface 8d of the bearing sleeve 8 over the entire length in the axial direction. In this embodiment, three axial grooves 8d1 are formed at equal intervals in the circumferential direction. As shown in FIG. 3, a circumferential groove 8b1 having a V-shaped cross section is formed on the entire upper end surface 8b of the bearing sleeve portion, and an arbitrary number of radial grooves are formed on the inner diameter side of the circumferential groove 8b1. 8b2 is formed.

ハウジング7は、略円筒状の側部7aと、側部7aの下端開口部を閉塞する底部7bとを一体に有する。本実施形態では、ハウジング7は樹脂材料で射出成形される。ハウジング7の樹脂材料は特に限定されず、例えば液晶ポリマー(LCP)、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)等の結晶性樹脂、あるいはポリフェニルサルフォン(PPSU)、ポリエーテルサルフォン(PES)、ポリエーテルイミド(PEI)等の非晶性樹脂をベース樹脂とする樹脂組成物が使用可能である。この樹脂材料には、目的に応じて各種充填剤を適量配合することができ、例えば、炭素繊維やガラス繊維等の繊維状充填材、チタン酸カリウム等のウィスカ状充填材、マイカ等の鱗片状充填材、カーボン繊維、カーボンブラック、黒鉛、カーボンナノマテリアル、各種金属粉等の繊維状または粉末状の導電性充填材などを配合することができる。   The housing 7 integrally includes a substantially cylindrical side portion 7a and a bottom portion 7b that closes a lower end opening of the side portion 7a. In this embodiment, the housing 7 is injection-molded with a resin material. The resin material of the housing 7 is not particularly limited. For example, a crystalline resin such as liquid crystal polymer (LCP), polyphenylene sulfide (PPS), polyetheretherketone (PEEK), polyphenylsulfone (PPSU), polyethersulfone, or the like. Resin compositions based on amorphous resins such as (PES) and polyetherimide (PEI) can be used. In this resin material, various fillers can be blended in appropriate amounts according to the purpose. For example, fibrous fillers such as carbon fibers and glass fibers, whisker-like fillers such as potassium titanate, and scaly forms such as mica. Fibrous or powdery conductive fillers such as filler, carbon fiber, carbon black, graphite, carbon nanomaterial, and various metal powders can be blended.

ハウジング7の材料は上記に限らず、例えば、マグネシウム合金やアルミニウム合金等の低融点金属材料を使用してもよい。また、ハウジング7は、金属紛とバインダーの混合物で射出成形した後、脱脂・焼結するいわゆるMIM成形で形成してもよい。さらに、ハウジング7を、金属材料、例えば真ちゅう等の軟質金属のプレス成形や、切削等の機械加工で形成することもできる。   The material of the housing 7 is not limited to the above. For example, a low melting point metal material such as a magnesium alloy or an aluminum alloy may be used. Further, the housing 7 may be formed by so-called MIM molding in which degreasing and sintering are performed after injection molding with a mixture of metal powder and binder. Furthermore, the housing 7 can also be formed by press molding of a metal material, for example, a soft metal such as brass, or machining such as cutting.

ハウジング7の内周面7a1は、円筒面状に形成される。この内周面7a1に、軸受スリーブ8が、接着(ルーズ接着や圧入接着を含む)、圧入、溶着等の適宜の手段で固定される。   The inner peripheral surface 7a1 of the housing 7 is formed in a cylindrical surface shape. The bearing sleeve 8 is fixed to the inner peripheral surface 7a1 by appropriate means such as adhesion (including loose adhesion and press-fit adhesion), press-fit, and welding.

ハウジング7の底部7bの上側端面7b1(内底面7b1)には、図4に示すように、例えば丘部7b12及び凹部(例えばスパイラル形状の動圧溝7b11)からなるスラスト動圧発生部が形成される。詳しくは、環状部分7b13と、環状部分7b13から外径側へスパイラル状に延びた複数の傾斜部7b14とを有する丘部7b12を設け(図中にクロスハッチングで示す)、この丘部7b12の傾斜部7b14の円周方向間に動圧溝7b11が形成される。図4および5に示すように、内底面7b1のうち、丘部7b12の外径側の外周縁部には、環状の平坦面7b10が形成される。平坦面7b10は動圧溝7b11のレベルと等しく、丘部7b12は平坦面7b10よりも盛り上がった位置にある。丘部7b12と平坦面7b10との間の段差面7b15は、平坦面7b10に対して鈍角θを成すテーパ状に形成される(θ>90°)。   On the upper end surface 7b1 (inner bottom surface 7b1) of the bottom 7b of the housing 7, as shown in FIG. 4, there is formed a thrust dynamic pressure generating portion including, for example, a hill portion 7b12 and a concave portion (for example, a spiral dynamic pressure groove 7b11). The Specifically, a hill portion 7b12 having an annular portion 7b13 and a plurality of inclined portions 7b14 extending spirally from the annular portion 7b13 to the outer diameter side is provided (indicated by cross-hatching in the figure), and the hill portion 7b12 is inclined. A dynamic pressure groove 7b11 is formed between the circumferential directions of the portion 7b14. As shown in FIGS. 4 and 5, an annular flat surface 7b10 is formed on the outer peripheral edge portion of the inner bottom surface 7b1 on the outer diameter side of the hill portion 7b12. The flat surface 7b10 is equal to the level of the dynamic pressure groove 7b11, and the hill portion 7b12 is located higher than the flat surface 7b10. A step surface 7b15 between the hill portion 7b12 and the flat surface 7b10 is formed in a tapered shape having an obtuse angle θ with respect to the flat surface 7b10 (θ> 90 °).

ハウジング7の底部7bには、底部7bの下側端面7b2の外径端から軸方向下方へ向けて突出した環状の突出部7cが設けられる。突出部7cの内周面7c1は、側部7aの内周面7a1よりも小径に形成される。すなわち、突出部7cの径方向の肉厚は、側部7aの肉厚よりも大きくなるように形成される。突出部7cの内周面7c1と底部7bの下側端面7b2との間には、テーパ面7dが形成される。ハウジング7の側部7aの外周面だけでなく、突出部7cの外周面をブラケット6の内周面に固定することにより、固定面積が拡大し、両者の固定強度が高められる。   The bottom portion 7b of the housing 7 is provided with an annular protruding portion 7c that protrudes downward in the axial direction from the outer diameter end of the lower end surface 7b2 of the bottom portion 7b. The inner peripheral surface 7c1 of the protruding portion 7c is formed with a smaller diameter than the inner peripheral surface 7a1 of the side portion 7a. That is, the radial thickness of the protruding portion 7c is formed to be larger than the thickness of the side portion 7a. A tapered surface 7d is formed between the inner peripheral surface 7c1 of the protruding portion 7c and the lower end surface 7b2 of the bottom portion 7b. By fixing not only the outer peripheral surface of the side portion 7a of the housing 7 but also the outer peripheral surface of the protruding portion 7c to the inner peripheral surface of the bracket 6, the fixing area is expanded and the fixing strength of both is increased.

ハウジング7の内周面7a1と内底面7b1との境界部には、隅アール部7eが形成される。隅アール部7eは、図5に示すように、第1円弧面7e1と第2円弧面7e2とからなる。第1円弧面7e1の曲率半径rは、第2円弧面7e2の曲率半径rよりも大きく設定される(r>r)。図示例では、第1円弧面7e1及び第2円弧面7e2がそれぞれ45°ずつ形成されている。曲率半径の大きい第1円弧面7e1は側部7a側に配され、曲率半径の小さい第2円弧面7e2は底部7b側に配されている。第1円弧面7e1と第2円弧面7e2は滑らかにつながっており、また、第1円弧面7e1は内周面7a1と、第2円弧面7e2は内底面7b1の平坦面7b10と、それぞれ滑らかにつながっている。 A corner radius portion 7e is formed at the boundary between the inner peripheral surface 7a1 and the inner bottom surface 7b1 of the housing 7. As shown in FIG. 5, the corner rounded portion 7e is composed of a first arc surface 7e1 and a second arc surface 7e2. The radius of curvature r 1 of the first arcuate surface 7e1 is set larger than the radius of curvature r 2 of the second circular arc surface 7e2 (r 1> r 2). In the illustrated example, the first arc surface 7e1 and the second arc surface 7e2 are each formed at 45 °. The first arc surface 7e1 having a large curvature radius is disposed on the side portion 7a side, and the second arc surface 7e2 having a small curvature radius is disposed on the bottom portion 7b side. The first arc surface 7e1 and the second arc surface 7e2 are smoothly connected to each other, and the first arc surface 7e1 is smoothly connected to the inner peripheral surface 7a1 and the second arc surface 7e2 is smooth to the flat surface 7b10 of the inner bottom surface 7b1. linked.

このように、ハウジング7の内周面7a1と内底面7b1との境界部に隅アール部7eを設けることにより、この部分における応力集中を緩和することが出来る。この隅アール部7eを、曲率半径の異なる第1円弧面7e1と第2円弧面7e2とで構成することで、ハウジング7の強度低下を回避しつつ、応力集中を緩和することができる。すなわち、図示例では、突出部7c及びテーパ面7dを設けることにより、隅アール部7eにおけるハウジング7の軸方向の肉厚が径方向の肉厚よりも大きくなっている。すなわち、ハウジング7の隅アール部7eにおける強度は、側部7a側よりも底部7b側が高い。従って、強度の比較的低い側部7a側に曲率半径の大きい第1円弧面7e1を設けることで、この部分の応力集中を緩和し、隅アール部7eにおける強度を高めることができる。尚、第1円弧面7e1の曲率半径r及び第2円弧面7e2の曲率半径rは、上記効果を得ることができる限り特に限定されないが、例えば、軸部2aの外径寸法が4mm程度の流体軸受装置の場合、第1円弧面7e1の曲率半径rは0.4〜0.5mmの範囲内、第2円弧面7e2の曲率半径rは0.15〜0.25mmの範囲内に設定される。 Thus, by providing the corner radius portion 7e at the boundary portion between the inner peripheral surface 7a1 and the inner bottom surface 7b1 of the housing 7, the stress concentration in this portion can be reduced. By configuring the corner rounded portion 7e with the first arc surface 7e1 and the second arc surface 7e2 having different radii of curvature, stress concentration can be reduced while avoiding a decrease in strength of the housing 7. That is, in the illustrated example, the protrusion 7c and the tapered surface 7d are provided so that the axial thickness of the housing 7 at the corner radius portion 7e is larger than the radial thickness. That is, the strength at the corner rounded portion 7e of the housing 7 is higher on the bottom 7b side than on the side 7a side. Therefore, by providing the first circular arc surface 7e1 having a large curvature radius on the side portion 7a having a relatively low strength, the stress concentration in this portion can be alleviated and the strength at the corner radius portion 7e can be increased. Incidentally, the radius of curvature r 2 of the curvature radius r 1 and a second arcuate surface 7e2 of the first arcuate surface 7e1 is not particularly limited as long as the above effect can be obtained, for example, an outer diameter of about 4mm of the shaft portion 2a for the hydrodynamic bearing, the range of the radius of curvature r 1 of the first arcuate surface 7e1 is 0.4 to 0.5 mm, the radius of curvature r 2 of the second arcuate surface 7e2 in the range of 0.15~0.25mm Set to

ところで、隅アール部7eを第1円弧面のみで形成した場合、隅アール部が軸受内部側に侵出して軸部材2のフランジ部2bと干渉する恐れが生じる(図5に点線7e1’で示す)。これを解消するためにフランジ部2bを小径化すると、スラスト軸受部の半径方向寸法も小さくなり、スラスト負荷能力の低下を招く。一方、フランジ部2bとの緩衝回避のために、ハウジング7の一部を除去して第1円弧面を設けると(図5に一点鎖線7e1’’で示す)、ハウジング7の強度低下を招く。そこで、第1円弧面7e1と滑らかにつながり、第1円弧面7e1よりも曲率半径の小さい第2円弧面7e2を設けることにより、隅アール部7eが軸受内部側に迫り出すことなく、且つ、ハウジングを部分的に除去することなく、第1円弧面7e1と内底面7b1とを滑らかにつなぐことができる。   By the way, when the corner radius portion 7e is formed only by the first arc surface, the corner radius portion may protrude into the bearing inner side and interfere with the flange portion 2b of the shaft member 2 (indicated by a dotted line 7e1 ′ in FIG. 5). ). When the diameter of the flange portion 2b is reduced in order to solve this problem, the radial dimension of the thrust bearing portion is also reduced, leading to a reduction in thrust load capacity. On the other hand, if a part of the housing 7 is removed to provide a first arc surface (indicated by a one-dot chain line 7e1 ″ in FIG. 5) in order to avoid buffering with the flange portion 2b, the strength of the housing 7 is reduced. Therefore, by providing the second arcuate surface 7e2 smoothly connected to the first arcuate surface 7e1 and having a smaller radius of curvature than the first arcuate surface 7e1, the corner radius portion 7e does not protrude toward the bearing inner side, and the housing The first circular arc surface 7e1 and the inner bottom surface 7b1 can be smoothly connected without partially removing.

例えば、ハウジング7の射出材料に、炭素繊維やガラス繊維等の繊維状充填材を配合する場合、図6に示すように、繊維状充填材Fを隅アール部7eに沿って配向させれば、応力が集中する隅アール部7eの強度をより一層高めることができる。このとき、隅アール部の曲率半径が小さいと、ハウジング7の射出材料が隅アール部に沿って流動しにくくなるため、繊維状充填材Fを図6のように配向させることは難しい。そこで、上記のように、隅アール部7eに曲率半径の大きい第1円弧面7e1を設ければ、射出材料が第1円弧面7e1に沿って流動しやすくなり、繊維状充填材Fを図6のように配向させることが比較的容易となる。尚、繊維状充填材の平均繊維長は、短すぎるとハウジング7の隅アール部7eに十分な強度を付与することができず、長すぎると射出材料の流動性が著しく低下し、ハウジング7の成形が難しくなるため、30〜360μm、好ましくは160〜240μmの範囲内とすることが望ましい。 For example, when a fibrous filler such as carbon fiber or glass fiber is blended in the injection material of the housing 7, as shown in FIG. 6, if the fibrous filler F is oriented along the corner radius portion 7e, The strength of the corner radius portion 7e where the stress is concentrated can be further increased. At this time, if the radius of curvature of the corner rounded portion is small, the injection material of the housing 7 becomes difficult to flow along the corner rounded portion, so it is difficult to orient the fibrous filler F as shown in FIG. Therefore, as described above, if the first arcuate surface 7e1 having a large radius of curvature is provided at the corner rounded portion 7e, the injection material can easily flow along the first arcuate surface 7e1, and the fibrous filler F is formed as shown in FIG. It becomes relatively easy to orient like. If the average fiber length of the fibrous filler is too short, sufficient strength cannot be imparted to the corner rounded portion 7e of the housing 7, and if too long, the fluidity of the injection material is significantly reduced. Since it becomes difficult to mold, it is desirable that the thickness be in the range of 30 to 360 μm, preferably 160 to 240 μm.

本実施形態のように、ハウジング内底面7b1にスラスト動圧発生部を設ける場合、スラスト動圧発生部の丘部7b12とハウジング内底面7b1の平坦面7b10との間の段差面15に応力集中が生じる恐れがある。そこで、上記のように、段差面7b15と平坦面7b10との間の角度θを鈍角にすることで、この部分の応力集中を緩和することができる(図5参照)。尚、図5では、段差面7b15と平坦面7b10との間に角部が形成されているが、この境界部をアール面で滑らかにつなげると、応力集中をより一層緩和することができる。   When the thrust dynamic pressure generating portion is provided on the housing inner bottom surface 7b1 as in the present embodiment, stress concentration occurs on the step surface 15 between the hill portion 7b12 of the thrust dynamic pressure generating portion and the flat surface 7b10 of the housing inner bottom surface 7b1. May occur. Therefore, as described above, by making the angle θ between the step surface 7b15 and the flat surface 7b10 an obtuse angle, the stress concentration in this portion can be relaxed (see FIG. 5). In FIG. 5, a corner is formed between the stepped surface 7b15 and the flat surface 7b10. However, if the boundary is smoothly connected with a rounded surface, the stress concentration can be further relaxed.

シール部9は、例えば樹脂材料で環状に形成され、ハウジング7の内周面7a1に圧入や接着等の適宜の手段で固定される。シール部9の内周面9aは、上方へ向けて漸次拡径したテーパ面状に形成される。これにより、シール部9の内周面9aと軸部材2の外周面2a1との間に、下方へ向けて径方向寸法を漸次縮小した楔状のシール空間Sが形成される。シール部9で密封されたハウジング7の内部空間には、潤滑油が注油され、ハウジング7内が潤滑油で満たされる(図2中の散点領域)。シール空間Sには、軸受内部に満たされた潤滑油の油面(気液界面)が形成され、楔状のシール空間Sの毛細管力の引き込み作用により、油面は常にシール空間Sに保持される。シール空間Sの容積は、温度変化に伴って軸受内部に充満した潤滑油が膨張、収縮した場合でも、潤滑油の油面が常にシール空間Sの範囲内に保持できるように設定される。   The seal portion 9 is formed in an annular shape with, for example, a resin material, and is fixed to the inner peripheral surface 7a1 of the housing 7 by appropriate means such as press fitting or adhesion. The inner peripheral surface 9a of the seal portion 9 is formed in a tapered surface shape whose diameter is gradually increased upward. Thus, a wedge-shaped seal space S is formed between the inner peripheral surface 9a of the seal portion 9 and the outer peripheral surface 2a1 of the shaft member 2 with the radial dimension gradually reduced downward. Lubricating oil is injected into the internal space of the housing 7 sealed by the seal portion 9, and the inside of the housing 7 is filled with the lubricating oil (a dotted area in FIG. 2). In the seal space S, an oil surface (gas-liquid interface) of the lubricating oil filled in the bearing is formed, and the oil surface is always held in the seal space S by the pulling action of the capillary force of the wedge-shaped seal space S. . The volume of the seal space S is set so that the oil level of the lubricant can always be kept within the range of the seal space S even when the lubricant filled in the bearing expands and contracts with a change in temperature.

上記構成の動圧軸受装置1において、軸部材2が回転すると、軸受スリーブ8の内周面8aと軸部2aの外周面2a1との間にラジアル軸受隙間が形成される。このラジアル軸受隙間の油膜の圧力が動圧溝8a1、8a2により高められ、これにより軸部材2をラジアル方向に非接触支持する第1ラジアル軸受部R1及び第2ラジアル軸受部R2が構成される。   In the dynamic pressure bearing device 1 having the above configuration, when the shaft member 2 rotates, a radial bearing gap is formed between the inner peripheral surface 8a of the bearing sleeve 8 and the outer peripheral surface 2a1 of the shaft portion 2a. The pressure of the oil film in the radial bearing gap is increased by the dynamic pressure grooves 8a1 and 8a2, thereby forming the first radial bearing portion R1 and the second radial bearing portion R2 that support the shaft member 2 in a non-contact manner in the radial direction.

これと同時に、軸部材2のフランジ部2bの上側端面2b1と軸受スリーブ8の下側端面8cとの間、及び、軸部材2のフランジ部2bの下側端面2b2とハウジング7の内底面7b1との間に、それぞれスラスト軸受隙間が形成される。各スラスト軸受隙間の油膜の圧力が動圧溝8c1、7b11により高められ、これにより軸部材2をスラスト方向に非接触支持する第1スラスト軸受部T1及び第2スラスト軸受部T2が構成される。   At the same time, between the upper end surface 2b1 of the flange portion 2b of the shaft member 2 and the lower end surface 8c of the bearing sleeve 8, and the lower end surface 2b2 of the flange portion 2b of the shaft member 2 and the inner bottom surface 7b1 of the housing 7 A thrust bearing gap is formed between each of them. The pressure of the oil film in each thrust bearing gap is increased by the dynamic pressure grooves 8c1 and 7b11, thereby forming the first thrust bearing portion T1 and the second thrust bearing portion T2 that support the shaft member 2 in a non-contact manner in the thrust direction.

また、第1スラスト軸受部T1のスラスト軸受隙間の外径端と、ハウジング7の開口部に設けられたシール空間Sとが、軸受スリーブ8の軸方向溝8d1と、軸受スリーブ8の上側端面8bとシール部9の下側端面9bとの間の隙間とを介して連通状態となる。これにより、何らかの理由で第1スラスト軸受部T1の油膜の圧力が過度に高まり、あるいは低下するといった事態を回避することができるため、軸部材2をスラスト方向に安定して支持することが可能となる。   Further, the outer diameter end of the thrust bearing gap of the first thrust bearing portion T1 and the seal space S provided in the opening of the housing 7 are the axial groove 8d1 of the bearing sleeve 8 and the upper end surface 8b of the bearing sleeve 8. And a gap between the lower end surface 9b of the seal portion 9 and a communication state. As a result, it is possible to avoid a situation in which the pressure of the oil film of the first thrust bearing portion T1 excessively increases or decreases for some reason, so that the shaft member 2 can be stably supported in the thrust direction. Become.

また、この実施形態では、第1ラジアル軸受部R1の動圧溝8a1が軸方向非対称(X1>X2)に形成されているため(図3参照)、軸部材2の回転時、動圧溝8a1の上側の溝による潤滑油の引き込み力(ポンピング力)は、下側の溝の引き込み力に比べて相対的に大きくなる。そして、この引き込み力の差圧によって、軸受スリーブ8の内周面8aと軸部2aの外周面2a1との間の隙間に満たされた潤滑油が下方に流動し、第1スラスト軸受部T1のスラスト軸受隙間→軸方向溝8d1→軸受スリーブ8の上側端面8bとシール部9の下側端面9bとの間の隙間という経路を循環して、再びラジアル軸受隙間に引き込まれる。このように、潤滑油をハウジング7の内部空間を強制的に流動循環させることで、軸受内部の圧力バランスを適正に保つことができる。これにより、潤滑油の負圧発生に伴う気泡の生成を確実に防止し、これに伴う潤滑油の漏れや振動の発生等の問題を解消することができる。   In this embodiment, since the dynamic pressure groove 8a1 of the first radial bearing portion R1 is formed to be axially asymmetric (X1> X2) (see FIG. 3), the dynamic pressure groove 8a1 is rotated when the shaft member 2 is rotated. The pulling force (pumping force) of the lubricating oil by the upper groove is relatively larger than the pulling force of the lower groove. Then, due to the differential pressure of the pulling force, the lubricating oil filled in the gap between the inner peripheral surface 8a of the bearing sleeve 8 and the outer peripheral surface 2a1 of the shaft portion 2a flows downward, and the first thrust bearing portion T1 Thrust bearing clearance → Axial groove 8d1 → Circulates a path between the upper end surface 8b of the bearing sleeve 8 and the lower end surface 9b of the seal portion 9, and is drawn into the radial bearing clearance again. As described above, the lubricating oil is forced to flow and circulate in the inner space of the housing 7, whereby the pressure balance inside the bearing can be properly maintained. As a result, it is possible to reliably prevent the generation of bubbles due to the generation of the negative pressure of the lubricating oil, and to solve problems such as the leakage of the lubricating oil and the occurrence of vibrations.

本発明は、上記の実施形態に限られない。以下、本発明の他の実施形態を説明する。尚、以下の説明において、上記実施形態と同様の構成、機能を有する部位には同一の符号を付して、説明を省略する。   The present invention is not limited to the above embodiment. Hereinafter, other embodiments of the present invention will be described. In the following description, parts having the same configuration and function as those of the above embodiment are denoted by the same reference numerals, and the description thereof is omitted.

図7に示す実施形態では、ハウジング7の底部7bが側部7aよりも薄肉に形成されている。この場合、ハウジング7の隅アール部7eでは、軸方向の肉厚が径方向の肉厚よりも薄く、すなわち、ハウジング7の隅アール部7eにおける強度は、側部7a側よりも底部7b側の方が低くなっている。この場合は、図8に示すように、隅アール部7eのうち、曲率半径の大きい第1円弧面7e1を底部7b側に配することにより、底部7b側の応力集中を緩和し、ハウジング7の強度を高めることができる。   In the embodiment shown in FIG. 7, the bottom 7b of the housing 7 is formed thinner than the side 7a. In this case, at the corner rounded portion 7e of the housing 7, the axial thickness is thinner than the radial thickness. That is, the strength at the corner rounded portion 7e of the housing 7 is closer to the bottom 7b side than the side 7a side. Is lower. In this case, as shown in FIG. 8, by arranging the first circular arc surface 7e1 having a large curvature radius in the corner rounded portion 7e on the bottom 7b side, stress concentration on the bottom 7b side is alleviated, and the housing 7 Strength can be increased.

以上の実施形態では、隅アール部7eが2つの円弧面7e1、7e2とで構成されているが、曲率半径の異なる複数の円弧面を有し、上記の効果が得られる限り、この構成に限られない。例えば、2つの円弧面7e1、7e2の間に、別の円弧面や直線部を介在させてもよい。この場合、これらの円弧面や直線部は、全て滑らかにつなげることが好ましい。あるいは、隅アール部7eを、一端から他端へ向けて曲率半径を徐々に連続的に大きく(あるいは小さく)した構成としてもよい。また、以上の説明では、ハウジング7の内底面7b1に平坦面7b10を設けているが、この平坦面を省略し、隅アール部7eの内径端を直接段差面7b15につなげてもよい。   In the above embodiment, the corner rounded portion 7e is composed of two arcuate surfaces 7e1 and 7e2, but is limited to this configuration as long as it has a plurality of arcuate surfaces with different radii of curvature and the above effects are obtained. I can't. For example, another arc surface or a straight line portion may be interposed between the two arc surfaces 7e1 and 7e2. In this case, it is preferable that all of these circular arc surfaces and straight line portions are smoothly connected. Alternatively, the corner radius portion 7e may be configured such that the radius of curvature gradually increases (or decreases) gradually from one end to the other end. In the above description, the flat surface 7b10 is provided on the inner bottom surface 7b1 of the housing 7. However, this flat surface may be omitted, and the inner diameter end of the corner radius portion 7e may be directly connected to the step surface 7b15.

また、以上の実施形態では、ラジアル軸受部R1、R2及びスラスト軸受部T1、T2の動圧発生部がそれぞれ軸受スリーブ8の内周面8a、下側端面8c、及びハウジング7の内底面7b1に形成されているが、これらの面と軸受隙間を介して対向する面、すなわち軸部2aの外周面2a1、フランジ部2bの上側端面2b1及び下側端面2b2に形成してもよい。   In the above embodiment, the radial bearing portions R1 and R2 and the dynamic pressure generating portions of the thrust bearing portions T1 and T2 are respectively formed on the inner peripheral surface 8a, the lower end surface 8c of the bearing sleeve 8, and the inner bottom surface 7b1 of the housing 7. Although formed, they may be formed on the surfaces facing these surfaces through a bearing gap, that is, the outer peripheral surface 2a1 of the shaft portion 2a, the upper end surface 2b1 and the lower end surface 2b2 of the flange portion 2b.

また、以上の実施形態では、ラジアル軸受部R1、R2のラジアル動圧発生部として、ヘリングボーン形状の動圧溝が例示されているが、これに限らず、例えば、いわゆるステップ軸受や波型軸受、あるいは多円弧軸受を採用することもできる。また、軸受スリーブ8の内周面8a及び軸部材2の外周面2a1の双方を円筒面とし、ラジアル軸受部R1、R2として、動圧発生部を有しない、いわゆる真円軸受を採用することもできる。   Further, in the above embodiment, the herringbone-shaped dynamic pressure grooves are exemplified as the radial dynamic pressure generating portions of the radial bearing portions R1 and R2. However, the present invention is not limited to this, and for example, so-called step bearings and wave bearings Alternatively, a multi-arc bearing can be employed. Further, both the inner peripheral surface 8a of the bearing sleeve 8 and the outer peripheral surface 2a1 of the shaft member 2 may be cylindrical surfaces, and so-called circular bearings having no dynamic pressure generating portions may be employed as the radial bearing portions R1 and R2. it can.

また、以上の実施形態では、スラスト軸受部T1、T2のスラスト動圧発生部として、スパイラル形状の動圧溝が例示されているが、これに限らず、例えばステップ軸受や波型軸受を採用することもできる。あるいは、スラスト軸受部T1、T2として、軸部材の端部を接触支持するピボット軸受を採用することもできる。   In the above embodiment, the spiral dynamic pressure grooves are exemplified as the thrust dynamic pressure generating portions of the thrust bearing portions T1 and T2. However, the present invention is not limited to this, and for example, step bearings or wave bearings are employed. You can also. Or the pivot bearing which contacts and supports the edge part of a shaft member is also employable as thrust bearing part T1, T2.

また、以上の実施形態では、ラジアル軸受部R1、R2が軸方向に離隔して設けられているが、これらを軸方向で連続的に設けても良い。あるいは、これらの何れか一方のみを設けてもよい。   Further, in the above embodiment, the radial bearing portions R1 and R2 are provided separately in the axial direction, but these may be provided continuously in the axial direction. Alternatively, only one of these may be provided.

また、以上の実施形態では、流体軸受装置の内部空間に充満される潤滑剤として潤滑油が使用されているが、これに限らず、例えば空気等の気体や、潤滑グリース、磁性流体等を使用することもできる。   Further, in the above embodiment, lubricating oil is used as a lubricant that fills the internal space of the hydrodynamic bearing device. However, the present invention is not limited to this. For example, a gas such as air, lubricating grease, magnetic fluid, or the like is used. You can also

また、本発明の動圧軸受装置は、上記のようにHDD等のディスク駆動装置に用いられるスピンドルモータに限らず、光ディスクの光磁気ディスク駆動用のスピンドルモータ等、高速回転下で使用される情報機器用の小型モータ、レーザビームプリンタのポリゴンスキャナモータ等における回転軸支持用、あるいは電気機器の冷却用のファンモータとしても好適に使用することができる。   Further, the hydrodynamic bearing device of the present invention is not limited to the spindle motor used in the disk drive device such as the HDD as described above, but is used for information used under high-speed rotation, such as a spindle motor for driving a magneto-optical disk of an optical disk. It can also be suitably used as a fan motor for supporting a rotating shaft in a small motor for equipment, a polygon scanner motor of a laser beam printer, or for cooling an electrical equipment.

スピンドルモータの断面図である。It is sectional drawing of a spindle motor. 動圧軸受装置の断面図である。It is sectional drawing of a hydrodynamic bearing apparatus. (a)は軸受スリーブの断面図であり、(b)は同下面図である。(A) is sectional drawing of a bearing sleeve, (b) is the bottom view. ハウジングの上面図である。It is a top view of a housing. 図2のA部の拡大図である。It is an enlarged view of the A section of FIG. ハウジングの隅アール部における繊維状充填材の配向の様子を示す断面図である。It is sectional drawing which shows the mode of the orientation of the fibrous filler in the corner round part of a housing. 他の実施形態に係る動圧軸受装置の断面図である。It is sectional drawing of the hydrodynamic bearing apparatus which concerns on other embodiment. 図7のB部の拡大図である。It is an enlarged view of the B section of FIG.

符号の説明Explanation of symbols

1 動圧軸受装置(流体軸受装置)
2 軸部材
7 ハウジング
7a1 内周面
7b1 内底面
7b10 平坦面
7b11 動圧溝(凹部)
7b12 丘部
7b15 段差面
7e 隅アール部
7e1 第1円弧面
7e2 第2円弧面
8 軸受スリーブ
9 シール部
R1、R2 ラジアル軸受部
T1、T2 スラスト軸受部
S シール空間
1 Hydrodynamic bearing device (fluid bearing device)
2 Shaft member 7 Housing 7a1 Inner peripheral surface 7b1 Inner bottom surface 7b10 Flat surface 7b11 Dynamic pressure groove (concave portion)
7b12 Hill portion 7b15 Stepped surface 7e Corner radius portion 7e1 First arc surface 7e2 Second arc surface 8 Bearing sleeve 9 Seal portions R1, R2 Radial bearing portions T1, T2 Thrust bearing portion S Seal space

Claims (6)

軸部材と、内周に軸部材を収容し、側部及び底部を一体に有するハウジングと、軸部材の外周面が面するラジアル軸受隙間の流体膜で軸部材をラジアル方向に支持するラジアル軸受部とを備えた流体軸受装置において、
ハウジングの内周面と内底面との境界部に、曲率半径の異なる複数の円弧面を有する隅アール部を設けたことを特徴とする流体軸受装置。
A shaft member, a housing that accommodates the shaft member on the inner periphery, and integrally having a side portion and a bottom portion, and a radial bearing portion that supports the shaft member in the radial direction with a fluid film in a radial bearing gap that faces the outer peripheral surface of the shaft member In a hydrodynamic bearing device comprising:
A hydrodynamic bearing device comprising a corner radius portion having a plurality of circular arc surfaces having different curvature radii at a boundary portion between an inner peripheral surface and an inner bottom surface of a housing.
ハウジングを、繊維状充填剤を含む樹脂材料で射出成形し、繊維状充填剤を隅アール部に沿って配向させた請求項1記載の流体軸受装置。   The hydrodynamic bearing device according to claim 1, wherein the housing is injection-molded with a resin material including a fibrous filler, and the fibrous filler is oriented along the corner rounded portion. 軸部材にフランジ部を設け、フランジ部の端面とハウジングの内底面との間のスラスト軸受隙間に生じる流体膜で軸部材をスラスト方向に支持するスラスト軸受部を有し、ハウジングの内底面に、スラスト軸受隙間の流体膜に動圧作用を発生させるスラスト動圧発生部を形成した請求項1記載の流体軸受装置。   The shaft member is provided with a flange portion, and has a thrust bearing portion that supports the shaft member in the thrust direction with a fluid film generated in a thrust bearing gap between the end surface of the flange portion and the inner bottom surface of the housing. The hydrodynamic bearing device according to claim 1, wherein a thrust dynamic pressure generating portion for generating a dynamic pressure action on a fluid film in the thrust bearing gap is formed. ハウジングの内底面の外周縁部に平坦面を設け、隅アール部の一端を平坦面に、他端を内周面にそれぞれ滑らかにつなげた請求項1記載の流体軸受装置。   The hydrodynamic bearing device according to claim 1, wherein a flat surface is provided on the outer peripheral edge of the inner bottom surface of the housing, and one end of the corner rounded portion is smoothly connected to the flat surface and the other end is smoothly connected to the inner peripheral surface. スラスト動圧発生部に丘部と溝部を設け、丘部と平坦面との間に平坦面に対して鈍角を成す段差面を形成した請求項4記載の流体軸受装置。   5. The hydrodynamic bearing device according to claim 4, wherein a hill portion and a groove portion are provided in the thrust dynamic pressure generating portion, and a step surface having an obtuse angle with respect to the flat surface is formed between the hill portion and the flat surface. 前記段差面と平坦面とを滑らかにつなげた請求項5記載の流体軸受装置。   The hydrodynamic bearing device according to claim 5, wherein the step surface and the flat surface are smoothly connected.
JP2008091827A 2008-03-31 2008-03-31 Fluid bearing device Withdrawn JP2009243605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008091827A JP2009243605A (en) 2008-03-31 2008-03-31 Fluid bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008091827A JP2009243605A (en) 2008-03-31 2008-03-31 Fluid bearing device

Publications (1)

Publication Number Publication Date
JP2009243605A true JP2009243605A (en) 2009-10-22

Family

ID=41305743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008091827A Withdrawn JP2009243605A (en) 2008-03-31 2008-03-31 Fluid bearing device

Country Status (1)

Country Link
JP (1) JP2009243605A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014091516A1 (en) * 2012-12-10 2014-06-19 三菱重工業株式会社 Resin bobbin for electric motor, and electric motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014091516A1 (en) * 2012-12-10 2014-06-19 三菱重工業株式会社 Resin bobbin for electric motor, and electric motor

Similar Documents

Publication Publication Date Title
US8256962B2 (en) Fluid dynamic bearing device
US8128289B2 (en) Fluid dynamic bearing device
JP5274820B2 (en) Hydrodynamic bearing device
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
JP2008069805A (en) Dynamic pressure bearing device
JP2006292013A (en) Dynamic pressure bearing device
JP4476670B2 (en) Hydrodynamic bearing device
JP5220339B2 (en) Hydrodynamic bearing device
JP4948908B2 (en) Hydrodynamic bearing device
JP5220359B2 (en) Hydrodynamic bearing device
JP2006112614A (en) Dynamic pressure bearing device
JP2009243605A (en) Fluid bearing device
JP2007071312A (en) Dynamic pressure bearing device
JP2007267503A (en) Dynamic pressure bearing apparatus
JP4828908B2 (en) Hydrodynamic bearing device
JP5133156B2 (en) Fluid dynamic bearing device
JP2008075687A (en) Fluid bearing device
JP4949216B2 (en) Hydrodynamic bearing device
JP5188942B2 (en) Fluid dynamic bearing device
JP2008069835A (en) Dynamic pressure bearing device
JP2006194383A (en) Dynamic pressure bearing device
JP2007255646A (en) Fluid bearing device
JP2008256088A (en) Fluid bearing device and motor having the same
JP4689567B2 (en) Method for manufacturing hydrodynamic bearing device
JP2006214542A (en) Fluid bearing device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110607