WO2019070041A1 - Sliding member - Google Patents

Sliding member Download PDF

Info

Publication number
WO2019070041A1
WO2019070041A1 PCT/JP2018/037279 JP2018037279W WO2019070041A1 WO 2019070041 A1 WO2019070041 A1 WO 2019070041A1 JP 2018037279 W JP2018037279 W JP 2018037279W WO 2019070041 A1 WO2019070041 A1 WO 2019070041A1
Authority
WO
WIPO (PCT)
Prior art keywords
lubricating
sliding
base
powder
sliding member
Prior art date
Application number
PCT/JP2018/037279
Other languages
French (fr)
Japanese (ja)
Inventor
拓治 原野
敏彦 毛利
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority claimed from JP2018189340A external-priority patent/JP2019066044A/en
Publication of WO2019070041A1 publication Critical patent/WO2019070041A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing

Definitions

  • the present invention relates to a sliding member having a sliding surface.
  • a through hole in the radial direction is formed in a cylindrical base, and the through hole is fired mainly containing artificial graphite as a solid lubricant.
  • a sliding member in which a body is embedded has been proposed.
  • the second object of the present invention is to provide a sliding member which can improve the working efficiency and the processing cost in manufacturing the sliding member.
  • a resin composition which is a sliding member having a sliding surface, and is a sintered body of a molded body containing Fe powder, Cu powder, Sn powder and graphite powder, a thermoplastic resin and a carbon material
  • a lubrication member which is a molded product of the object, the base body has a housing portion for housing the lubrication member, and at least a portion of the sliding surface is the lubrication received in the housing portion
  • a sliding member comprising a member and wherein the lubricating member is disposed also at an inner diameter of the base.
  • the present invention it is possible to provide a sliding member having excellent lubricating performance / sliding characteristics. Further, according to the present invention, it is possible to provide a sliding member which can improve the working efficiency and the processing cost in manufacturing the sliding member. Further, according to the present invention, the working efficiency and processing cost in manufacturing the sliding member can be improved, and the possibility of the lubricating member (solid lubricant) falling off from the base of the sliding member is reduced while using the sliding member.
  • the sliding member can be provided.
  • the sliding member 1 has a cylindrical shape, and an axis 2 (indicated by a dashed line) as a mating material is inserted in the inner periphery thereof.
  • the sliding member 1 includes a base 4 which is a sintered body of a molded body containing metal powder.
  • a lubricating member (solid lubricant) 3 which is a molded product of a resin composition containing a thermoplastic resin and a carbon material, is disposed in the inside diameter (both) small holes 13 of the substrate 4.
  • inner diameter of the base 4 means the vicinity of one end of the inner diameter portion of the base 4 in contact with the shaft 2.
  • one end of the lubricating member 3 integrated with the base 4 is extended outward at the side surface of the substantially cylindrical sliding member 1 (bearing 1) main body, for example, substantially It is formed in the shape of a hollow disc or annular ring.
  • One end of the base 4 is, for example, substantially annular on the inner diameter side of the side surface of the main body of the sliding member 1 (bearing 1) having a substantially cylindrical shape corresponding to the hollow disc shape / annular rod shape. The shape is indented into the
  • both ends of the lubricating member 3 integrated with the base 4 are extended outward at the side surface of the substantially cylindrical sliding member 1 (bearing 1) main body, for example, as a pair It is formed in a substantially hollow disc shape / annular bowl shape.
  • both ends of the base 4 are, for example, a pair on the inner diameter side of the side surface of the substantially cylindrical sliding member 1 (bearing 1) main body. The shape is indented in a substantially annular shape.
  • the minimum diameter of “inside small diameter” or “inside small diameter” is equal to the smallest diameter of the base 4 and / or the smallest diameter of the lubricating member 3. Further, the maximum diameter of the “inner diameter small opening” or the “inner diameter small small diameter opening” is equal to the maximum diameter of the lubricating member 3.
  • Axial dimension L 1 of the "inner diameter both small of the substrate 4" may be, for example, 5% to 20% of the axial length L 0 of the substrate 4, the axial length L 0 of the substrate 4 And preferably 8% to 12% of the axial length dimension L 0 of the substrate 4.
  • the dimensions of the inner diameter (both) small mouths become smaller, and there is a tendency that the reliable integration of the lubricating member 3 and the base 4 becomes difficult.
  • the size of the inner diameter (both) small mouth becomes too large and the volume of the base 4 decreases, as a result, for example, the strength of the sliding member 1 (bearing 1) provided with the base 4 decreases.
  • the base 4 has a housing 4 c for housing the lubricating member 3.
  • the lubricating member 3 is housed in the housing portion 4c. Thereby, at least one part of the sliding face 11 is comprised by the lubricating member 3 accommodated in the accommodating part 4c.
  • the base 4 is provided with a concave cylindrical mating surface 4b. The mating surface 4 b is in close contact with the outer surface of the lubricating member 3.
  • the thickness of the substantially rectangular flat coupling portion of the lubricating member 3 is, for example, 0.1% to 10% of the inner diameter D 0 of the lubricating member 3 and 0.1% to 5%. Is preferred.
  • the lubricating member 3 be disposed in the inside diameter and the small end 13 of the base 4.
  • the lubricating member 3 having the above-described structure is formed as one unit and integrated with the base 4.
  • the bearing 1 (sliding member 1) when the base 4 is inserted into an injection mold and injection molding is performed using a resin composition, and the bearing 1 (sliding member 1) is formed, the lubricating member 3 reliably It is integrated with the base 4. Thereby, the bearing 1 (sliding member 1) is provided in which the risk of the lubricating member 3 falling off the base 4 of the bearing 1 (sliding member 1) is reduced during use of the bearing 1 (sliding member 1). Ru.
  • a bearing 1 will be described as an example of the sliding member 1 according to the present invention, with reference to FIGS. 1 to 3.
  • the substrate 4 is a sintered body obtained by sintering a molded body containing metal powder in accordance with a normal manufacturing process adopted in manufacturing a bearing.
  • a normal manufacturing process adopted in manufacturing a bearing.
  • the metal powder used to produce the substrate 4 is, for example, a copper-based material containing copper as the main component (the most component in weight ratio), an iron-based metal containing iron as the main component (the most component in weight ratio), Metal powders of any type of metal can be used, including copper-iron based copper and iron as the main components (the most abundant component by weight). Besides, metal powder of special metal such as aluminum-bronze type can also be used.
  • the low melting point element such as a low melting point metal is a component for melting itself during sintering to advance liquid phase sintering, and a low melting point element such as a metal having a melting point lower than that of copper is used.
  • a low melting point element such as a metal having a melting point of 700 ° C. or less, such as tin (Sn), zinc (Zn), phosphorus (P) or the like can be used, and among these, tin having a good compatibility with copper is used Is preferred.
  • the low melting point element such as the low melting point metal can be added by mixing the single powder into the mixed powder or alloying with another metal powder.
  • a sintering aid such as calcium fluoride or a lubricant such as zinc stearate may be added, and further, a graphite powder as a lubricating member powder may be added.
  • the graphite powder By adding the graphite powder, the graphite particles can be dispersed in the sintered structure of the base 4 after sintering, so that the lubrication of the portion of the bearing surface 11 (sliding surface 11) formed by the base 4 Can be enhanced.
  • the metal (element) powder constituting the substrate 4 may be, for example, a mixed powder of Fe powder, Cu powder and Sn powder, and in the present embodiment, a graphite powder is further added to this mixed powder. Be mixed.
  • the mixing ratio of each powder is, for example, Cu powder: approximately 10 to 30 mass%, specifically 10 to 30 mass% (preferably approximately 15 to 20 mass%, specifically 15 to 20) based on the total mass. Mass%), Sn powder: approximately 0.5 to 3.0 mass%, specifically 0.5 to 3.0 mass% (preferably approximately 1.5 to 2.0 mass%, specifically 1 .5 to 2.0% by mass), graphite powder: approximately 0.5 to 7.0% by mass, specifically 0.5 to 7.0% by mass (preferably approximately 0.5 to 3.0% by mass) Specifically, the content is made 0.5 to 3.0% by mass), and the remainder is made into Fe powder.
  • the base 4 made of the iron-copper based sintered alloy having excellent lubricating performance / sliding property / abrasion resistance is obtained. It is formed.
  • graphite dispersed in a base 4 made of iron-copper based sintered alloy contributes to lubricity as free graphite.
  • the lubricating member 3 is a formed body of a resin composition containing a thermoplastic resin and a carbon material.
  • the lubricating member 3 is preferably an injection-formed body of the above-described resin composition.
  • the inclusion of the carbon material can impart excellent sliding characteristics to the bearing 1, and the inclusion of the thermoplastic resin can reduce the cost required for manufacturing the lubricating member 3.
  • the lubricating member 3 can be disposed / embedded as an injection-molded body in the housing portion 4c of the base 4 by injection molding the resin composition containing a thermoplastic resin and a carbon material, for example, using the base 4 as an insert part. (Hereafter, it is also called an insert molding process.).
  • inner side surface 3 a of lubricating member 3 is at least one of sliding surface 11 (bearing surface portion 11) of bearing 1.
  • the working efficiency and the processing cost in manufacturing the bearing 1 (sliding member 1) Improvement is expected.
  • substrate 4 is not limited to the said insert molding process, It can also be arrange
  • thermoplastic resin which can be injection-molded as the thermoplastic resin.
  • PPS polyphenylene sulfide
  • the carbon material blended in the resin composition may be, for example, at least one selected from the group consisting of carbon nanofibers, carbon black and graphite.
  • a powder form can be mentioned as a form of a carbon material.
  • graphite powder can be used as the carbon material powder, and specifically, both natural graphite powder and artificial graphite powder can be used.
  • Natural graphite powder is characterized by being excellent in lubricity because it is scaly.
  • the artificial graphite powder has a feature of being excellent in moldability because it is in a massive form.
  • the carbon material powder is not limited to graphite powder which is crystalline powder, and amorphous powder such as pitch powder and coke powder can also be used.
  • Carbon nanofibers are used as the carbon material, mechanical strength such as flexural modulus of the lubricating member 3 can be improved.
  • Carbon nanofibers are roughly classified into pitch-based and PAN-based, but any of them can be used.
  • carbon nanofibers having an average fiber diameter of 20 ⁇ m or less and an average fiber length of 0.02 to 0.2 mm can be used.
  • a binder can also be included in the carbon material powder (e.g., graphite powder).
  • Resin binder powder can be used as the binder, and phenol resin powder can be used as the resin binder powder, for example. It is preferable to uniformly mix the carbon material powder and the binder by adding a molding aid, a lubricant, a modifier or the like as necessary.
  • the raw material powder constituting the lubricating member 3 besides the mixed powder of the carbon material powder and the resin binder powder as described above, it is also possible to use a granulated powder obtained by granulating the carbon material powder under coexistence of resin binder powder.
  • Granulated powder has a higher specific gravity and higher fluidity than a single resin binder powder or carbon material powder, so that it becomes easy to supply a resin composition containing it to a molding die, and it is precisely molded into a predetermined shape. It is possible to
  • the lubricating member 3 that constitutes a part of the bearing surface portion 11 is a carbon material supply source.
  • the carbon material supplied from the lubricating member 3 spreads over the entire bearing surface 11 due to the relative movement between the bearing surface 11 and the shaft 2, so that the lubricating effect of the carbon material can be obtained in the entire bearing surface 11.
  • the sliding member 1 (bearing 1) which has the outstanding lubricating performance / sliding characteristic is provided.
  • additives such as a mold release agent, a flame retardant, a weather resistance improver, an antioxidant, and a pigment may be added as appropriate.
  • the method of arranging the lubricating member 3 in the inner diameter (both) small holes 13 is not particularly limited, but, for example, in the insert molding step, the lubricating member 3 is arranged in the small diameter holes 13 as an injection molded body of a resin composition. It is also good. Alternatively, after the lubricating member 3 is disposed in the housing portion 4 c in the insert molding process, the lubricating member 3 may be disposed in the inner diameter (both) small holes 13 by a method other than injection molding.
  • Inside diameter (both) lubricating member 3 arranged small 13 has a shape corresponding to the inner peripheral shape of the substrate 4 (the inside diameter (both) small 13), dimensions of L 1 and the radial direction of the axial above It has D 1 .
  • the content of the carbon material blended in the resin composition is preferably in the above-described range in order to prevent the decrease in the yield rate during injection molding while securing the sliding characteristics.
  • the internal holes of the bearing 1 that has undergone the insert molding process can also be impregnated with lubricating oil.
  • the internal holes of the bearing 1 can be impregnated with the lubricating oil by immersing the bearing 1 that has undergone the insert molding process in the lubricating oil in a reduced pressure environment and then returning to atmospheric pressure.
  • the open porosity of the base 4 is determined by impregnating the internal pores of the bearing 1 that has undergone the insert molding step with oil, and the oil functions as a lubricant to make the slide of the bearing 1 In order to improve dynamic characteristics, it is set in a suitable range, preferably 10% or more and 50% or less. If the open porosity is less than 10%, the total amount of oil impregnated in the internal pores of the substrate 4 is small, and it is difficult to make the bearing 1 exert excellent lubricating performance based on the lubricating oil over a long period of time is there.
  • the open porosity of the base 4 is preferably within the above range.
  • the “open porosity” is a percentage representing the internal pores capable of being impregnated with respect to the volume of the substrate 4 and is obtained by dividing the volume of oil after complete impregnation by the volume of the substrate 4 and multiplying by 100. .
  • the open porosity can be measured according to "Sintered metal material-density, oil content and open porosity test method (JIS Z 2501: 2000)" of Japanese Industrial Standard.
  • the surface open area ratio of the base 4 at the mating surface 4 b which is the inner surface of the housing 4 c is thermoplasticity contained in the lubricating member 3 disposed in the housing 4 4 c of the base 4.
  • the anchor effect of the resin is set in a range suitable for enhancing the bonding strength between the base 4 and the lubricating member 3, and is preferably 10% to 50%. If the surface porosity is less than 10%, the amount of the thermoplastic resin contained in the lubricating member 3 entering the surface pores of the mating surface 4b is reduced, and the anchoring effect of the thermoplastic resin tends to be reduced. In addition, when the surface open area ratio exceeds 50%, molding of the housing portion 4c tends to be difficult.
  • the lubricating member 3 may be disposed over the entire axial length of the bearing 1 as shown in FIG. 2 or may be disposed only in a partial region in the axial direction, for example, even when disposed at a plurality of axially separated locations Good.
  • the present invention is not limited to the bearing that supports the relative rotation of the shaft, but can be applied to a bearing that supports the axial movement of the shaft.
  • the present invention is not limited to the cylindrical sliding member, but can be applied to sliding members of other shapes (for example, semi-cylindrical or rectangular parallelepiped).
  • the sliding member of the present invention can be used, for example, as a sliding member used for office equipment, automobiles, accessories and the like.

Abstract

Provided is a sliding member having a sliding surface, the sliding member comprising a base body which is a sintered body of a compact containing metal powder, and a lubricating member which is a compact of a resin composition containing a thermoplastic resin and a carbon material, wherein the base body includes a housing portion for housing the lubricating member, at least a part of the sliding surface is composed of the lubricating member housed in the housing portion, and the lubricating members are also disposed around the inner periphery of openings at both end sides of the base body.

Description

摺動部材Sliding member
 本発明は、摺動面を有する摺動部材に関する。 The present invention relates to a sliding member having a sliding surface.
 固体潤滑剤が埋め込まれた摺動部材に求められる機能は、年々厳しさを増している。そのため、優れた摺動性を長期間維持でき、かつ、低コストで製造が可能な固体潤滑剤の開発が求められている。 The functions required for a sliding member in which a solid lubricant is embedded are becoming more and more severe year by year. Therefore, development of a solid lubricant which can maintain excellent slidability for a long time and which can be manufactured at low cost is required.
 固体潤滑剤が埋め込まれた摺動部材としては、例えば特許文献1において、円筒状の基体に半径方向の貫通孔を形成し、当該貫通孔に固体潤滑剤として、人造黒鉛を主成分とした焼成体を埋め込んだ摺動部材が提案されている。 As a sliding member in which a solid lubricant is embedded, for example, in Patent Document 1, a through hole in the radial direction is formed in a cylindrical base, and the through hole is fired mainly containing artificial graphite as a solid lubricant. A sliding member in which a body is embedded has been proposed.
特開2013-14645号公報JP, 2013-14645, A
 しかしながら、基体に半径方向の貫通孔を形成し、当該貫通孔に固体潤滑剤を埋め込むためには、固体潤滑剤を基体に対して高精度に固定する必要があり、また、基体の貫通孔や、これに嵌合する固体潤滑剤を高精度に加工する必要があるため、作業効率および加工コストの観点から改善の余地がある。特に、固体潤滑剤として炭素系焼成体(焼成された人造黒鉛)を用いた場合、炭素系焼成体は塑性変形しにくいため、寸法精度を高めるためには切削加工等による成形が必要となり、加工コストがさらに増加するという懸念がある。加えて、貫通孔に固体潤滑剤を埋め込む構造では、摺動部材の使用中に、固体潤滑剤が摺動部材の基体から抜け落ちるという懸念がある。また、より優れた潤滑性能/摺動特性を有する摺動部材が求められている。 However, in order to form a radial through hole in the base and embed the solid lubricant in the through hole, it is necessary to fix the solid lubricant to the base with high accuracy, and the through hole of the base or Since it is necessary to process the solid lubricant fitted thereto with high accuracy, there is room for improvement from the viewpoint of work efficiency and processing cost. In particular, when a carbon-based sintered body (calcined artificial graphite) is used as a solid lubricant, the carbon-based sintered body is less likely to be plastically deformed, and thus shaping by cutting is required to improve dimensional accuracy. There is a concern that the cost will increase further. In addition, in the structure in which the solid lubricant is embedded in the through hole, there is a concern that the solid lubricant may fall out of the base of the sliding member during use of the sliding member. There is also a need for a sliding member having better lubricating performance / sliding characteristics.
 そこで本発明は、優れた潤滑性能/摺動特性を有する摺動部材の提供を第一の目的とする。 Then, this invention makes it a first object to provide the sliding member which has the outstanding lubricating performance / sliding characteristic.
 また、本発明は、摺動部材の製造における作業効率および加工コストを改善できる摺動部材の提供を第二の目的とする。 The second object of the present invention is to provide a sliding member which can improve the working efficiency and the processing cost in manufacturing the sliding member.
 また、本発明は、摺動部材の製造における作業効率および加工コストを改善できるとともに、摺動部材の使用中に、潤滑部材(固体潤滑剤)が摺動部材の基体から抜け落ちるおそれが低減された、摺動部材の提供を第三の目的とする。 Further, the present invention can improve the working efficiency and the processing cost in manufacturing the sliding member, and the possibility of the lubricating member (solid lubricant) falling off from the base of the sliding member is reduced while using the sliding member. The third object is to provide a sliding member.
 本発明は、以下に示す摺動部材を提供する。
 [1] 摺動面を有する摺動部材であって、金属粉を含む成形体の焼結体である基体と、熱可塑性樹脂とカーボン材料とを含む樹脂組成物の成形体である、潤滑部材とを含み、前記基体は、前記潤滑部材を収容するための収容部を有し、前記摺動面の少なくとも一部は、前記収容部に収容された前記潤滑部材で構成され、かつ、前記基体の内径小口にも、前記潤滑部材が配置されている、摺動部材。
The present invention provides a sliding member shown below.
[1] A lubricating member, which is a sliding member having a sliding surface, which is a molded body of a resin composition containing a base body which is a sintered body of a molded body containing metal powder, a thermoplastic resin and a carbon material And the base body has a housing portion for housing the lubricating member, and at least a part of the sliding surface is constituted by the lubricating member housed in the housing portion, and The sliding member, wherein the lubricating member is also disposed at the inner diameter of the small hole.
 [2] 摺動面を有する摺動部材であって、Fe粉、Cu粉、Sn粉および黒鉛粉を含む成形体の焼結体である基体と、熱可塑性樹脂とカーボン材料とを含む樹脂組成物の成形体である、潤滑部材とを含み、前記基体は、前記潤滑部材を収容するための収容部を有し、前記摺動面の少なくとも一部は、前記収容部に収容された前記潤滑部材で構成され、かつ、前記基体の内径小口にも、前記潤滑部材が配置されている、摺動部材。 [2] A resin composition which is a sliding member having a sliding surface, and is a sintered body of a molded body containing Fe powder, Cu powder, Sn powder and graphite powder, a thermoplastic resin and a carbon material A lubrication member, which is a molded product of the object, the base body has a housing portion for housing the lubrication member, and at least a portion of the sliding surface is the lubrication received in the housing portion A sliding member comprising a member and wherein the lubricating member is disposed also at an inner diameter of the base.
 [3] 前記樹脂組成物における前記カーボン材料の含有率が、5質量%以上70質量%以下である、[1]または[2]に記載の摺動部材。 [3] The sliding member according to [1] or [2], wherein the content of the carbon material in the resin composition is 5% by mass to 70% by mass.
 [4] 前記基体は内部空孔を有し、前記内部空孔内に潤滑油が含浸されている、[1]~[3]のいずれかに記載の摺動部材。 [4] The sliding member according to any one of [1] to [3], wherein the base has an internal void, and the internal void is impregnated with a lubricating oil.
 [5] 前記基体は、10%以上50%以下の開放気孔率を有する、[4]に記載の摺動部材。 [5] The sliding member according to [4], wherein the base has an open porosity of 10% to 50%.
 [6] 前記基体は、前記収容部の内表面において10%以上50%以下の表面開孔率を有する、[1]~[5]のいずれかに記載の摺動部材。 [6] The sliding member according to any one of [1] to [5], wherein the base has a surface open area ratio of 10% to 50% on the inner surface of the housing portion.
 [7] 前記カーボン材料は、カーボンナノ繊維、カーボンブラックおよび黒鉛からなる群より選択される少なくとも1つである、[1]~[6]のいずれかに記載の摺動部材。 [7] The sliding member according to any one of [1] to [6], wherein the carbon material is at least one selected from the group consisting of carbon nanofibers, carbon black and graphite.
 本発明によれば、優れた潤滑性能/摺動特性を有する、摺動部材を提供することができる。また、本発明によれば、摺動部材の製造における作業効率および加工コストを改善できる、摺動部材を提供することができる。また、本発明によれば、摺動部材の製造における作業効率および加工コストを改善できるとともに、摺動部材の使用中に、潤滑部材(固体潤滑剤)が摺動部材の基体から抜け落ちるおそれが低減された、摺動部材を提供することができる。 According to the present invention, it is possible to provide a sliding member having excellent lubricating performance / sliding characteristics. Further, according to the present invention, it is possible to provide a sliding member which can improve the working efficiency and the processing cost in manufacturing the sliding member. Further, according to the present invention, the working efficiency and processing cost in manufacturing the sliding member can be improved, and the possibility of the lubricating member (solid lubricant) falling off from the base of the sliding member is reduced while using the sliding member. The sliding member can be provided.
本発明の実施形態に係る摺動部材の正面図である。It is a front view of a sliding member concerning an embodiment of the present invention. 図1のA-A線における断面図である。FIG. 2 is a cross-sectional view taken along the line AA of FIG. 本発明の実施形態に係る基体の正面図である。It is a front view of a substrate concerning an embodiment of the present invention.
 図1を参照して、摺動部材1は円筒状を成し、その内周に相手材としての軸2(鎖線で示す)が挿入される。摺動部材1は、金属粉を含む成形体の焼結体である基体4を含む。当該基体4の内径(両)小口13には、熱可塑性樹脂とカーボン材料とを含む樹脂組成物の成形体である、潤滑部材(固体潤滑材)3が配置されている。 Referring to FIG. 1, the sliding member 1 has a cylindrical shape, and an axis 2 (indicated by a dashed line) as a mating material is inserted in the inner periphery thereof. The sliding member 1 includes a base 4 which is a sintered body of a molded body containing metal powder. A lubricating member (solid lubricant) 3, which is a molded product of a resin composition containing a thermoplastic resin and a carbon material, is disposed in the inside diameter (both) small holes 13 of the substrate 4.
 なお、本明細書において、「基体4の内径小口」とは、軸2と接触する基体4の内径部の片端近傍を意味する。具体的に説明すると、基体4と一体化されている潤滑部材3の片端は、ほぼ円筒状をした摺動部材1(軸受1)本体の側面において、外側に向けて延ばされて、例えばほぼ中空円板状/円環状の鍔状に形成されている。この中空円板状/円環状の鍔状をした形状に対応して、基体4の片端は、ほぼ円筒状をした摺動部材1(軸受1)本体の側面の内径側において、例えばほぼ円環状にへこまされた形状とされている。 In the present specification, “inner diameter of the base 4” means the vicinity of one end of the inner diameter portion of the base 4 in contact with the shaft 2. Specifically, one end of the lubricating member 3 integrated with the base 4 is extended outward at the side surface of the substantially cylindrical sliding member 1 (bearing 1) main body, for example, substantially It is formed in the shape of a hollow disc or annular ring. One end of the base 4 is, for example, substantially annular on the inner diameter side of the side surface of the main body of the sliding member 1 (bearing 1) having a substantially cylindrical shape corresponding to the hollow disc shape / annular rod shape. The shape is indented into the
 また、本明細書において、「基体4の内径両小口」とは、軸2と接触する基体4の内径部の両端近傍を意味する。具体的に説明すると、基体4と一体化されている潤滑部材3の両端は、ほぼ円筒状をした摺動部材1(軸受1)本体の側面において、外側に向けて延ばされて、例えば一対のほぼ中空円板状/円環状の鍔状に形成されている。この一対の中空円板状/円環状の鍔状をした形状に対応して、基体4の両端は、ほぼ円筒状をした摺動部材1(軸受1)本体の側面の内径側において、例えば一対のほぼ円環状にへこまされた形状とされている。このような構造とすることで、基体4を射出金型内にインサートして樹脂組成物による射出成形を行い、摺動部材1(軸受1)を形成させる際に、潤滑部材3は、確実に基体4と一体化される。 Further, in the present specification, “inner diameter and small diameter end of base 4” means the vicinity of both ends of the inner diameter portion of the base 4 in contact with the shaft 2. Specifically, both ends of the lubricating member 3 integrated with the base 4 are extended outward at the side surface of the substantially cylindrical sliding member 1 (bearing 1) main body, for example, as a pair It is formed in a substantially hollow disc shape / annular bowl shape. Corresponding to the pair of hollow disk-like / annular bowl-like shapes, both ends of the base 4 are, for example, a pair on the inner diameter side of the side surface of the substantially cylindrical sliding member 1 (bearing 1) main body. The shape is indented in a substantially annular shape. With such a structure, when the base 4 is inserted into an injection mold and injection molding is performed using a resin composition to form the sliding member 1 (bearing 1), the lubricating member 3 reliably It is integrated with the base 4.
 「内径小口」または「内径両小口」について説明すると、「内径小口」または「内径両小口」の最小径は、基体4の最小径、及び/又は、潤滑部材3の最小径に等しい。また、「内径小口」または「内径両小口」の最大径は、潤滑部材3の最大径に等しい。 In the case of “inside small diameter” or “inside small diameter”, the minimum diameter of “inside small diameter” or “inside small diameter” is equal to the smallest diameter of the base 4 and / or the smallest diameter of the lubricating member 3. Further, the maximum diameter of the “inner diameter small opening” or the “inner diameter small small diameter opening” is equal to the maximum diameter of the lubricating member 3.
 「基体4の内径小口」の径方向の寸法Dは、例えば基体4の内径寸法Dの0.1%~10%であってもよい。「基体4の内径小口」の軸方向の寸法Lは、例えば基体4の軸方向長さ寸法Lの2.5%~10%であってもよく、基体4の軸方向長さ寸法Lの3.5%~7.5%であることが好ましく、基体4の軸方向長さ寸法Lの4%~6%であることが特に好ましい。また、「基体4の内径両小口」の径方向の寸法Dは、例えば基体4の内径寸法Dの0.1%~10%であってもよい。「基体4の内径両小口」の軸方向の寸法Lは、例えば基体4の軸方向長さ寸法Lの5%~20%であってもよく、基体4の軸方向長さ寸法Lの7%~15%であることが好ましく、基体4の軸方向長さ寸法Lの8%~12%であることが特に好ましい。 The radial dimension D 1 of “the inner diameter portion of the base 4” may be, for example, 0.1% to 10% of the inner diameter D 0 of the base 4. The axial dimension L 1 of “the inner diameter portion of the base 4” may be, for example, 2.5% to 10% of the axial length dimension L 0 of the base 4, and the axial length dimension L of the base 4 is preferably 3.5% to 7.5% of the 0, and particularly preferably 4% to 6% of the axial length L 0 of the substrate 4. Further, the radial dimension D 1 of the “inner diameter and small diameter portion of the base 4” may be, for example, 0.1% to 10% of the inner diameter size D 0 of the base 4. Axial dimension L 1 of the "inner diameter both small of the substrate 4" may be, for example, 5% to 20% of the axial length L 0 of the substrate 4, the axial length L 0 of the substrate 4 And preferably 8% to 12% of the axial length dimension L 0 of the substrate 4.
 上記の%が所定の値より小さい場合、内径(両)小口の寸法が小さくなり、潤滑部材3と基体4との確実な一体化が難くなる傾向にある。上記の%が所定の値より大きい場合、内径(両)小口の寸法が大きくなりすぎて、基体4の体積が減り、その結果、基体4を備える摺動部材1(軸受1)の例えば強度低下が懸念される。 If the above% is smaller than the predetermined value, the dimensions of the inner diameter (both) small mouths become smaller, and there is a tendency that the reliable integration of the lubricating member 3 and the base 4 becomes difficult. When the above% is larger than the predetermined value, the size of the inner diameter (both) small mouth becomes too large and the volume of the base 4 decreases, as a result, for example, the strength of the sliding member 1 (bearing 1) provided with the base 4 decreases. Are concerned.
 摺動部材1の外周面12は、図示しないハウジングの内周面に圧入や接着等の手段で固定され、摺動部材1の内周に挿入された軸2が回転またはスライドできるように支持される。このように軸2を回転またはスライドさせる他、軸2を静止させ、摺動部材1を回転またはスライドさせることもできる。 The outer peripheral surface 12 of the sliding member 1 is fixed to the inner peripheral surface of a housing (not shown) by means such as press fitting or adhesion, and supported so that the shaft 2 inserted in the inner periphery of the sliding member 1 can rotate or slide. Ru. In addition to rotating or sliding the shaft 2 in this manner, the shaft 2 can be made stationary and the sliding member 1 can be rotated or slid.
 図2を参照して、摺動部材1は、摺動面11および金属粉を含む成形体の焼結体である基体4を含む。なお、本明細書において「金属」とは、炭素、窒素、酸素、硫黄、フッ素、塩素、臭素、ヨウ素、水素および希ガスを除いた周期表のあらゆる元素を意味する。摺動部材1は、熱可塑性樹脂とカーボン材料とを含む樹脂組成物の成形体である、潤滑部材3を含む。潤滑部材3は、当該樹脂組成物の射出成形体であることが好ましい。摺動面11は、潤滑部材3の内側面3aと基体4の内周面4aを含んでいる。また、潤滑部材3の内側面3aと基体4の内周面4aとは、ほぼ面一とされて、摺動面11(軸受面部11)が形成されている。 Referring to FIG. 2, the sliding member 1 includes a sliding surface 11 and a base 4 which is a sintered body of a compact including metal powder. In the present specification, the term "metal" means any element of the periodic table excluding carbon, nitrogen, oxygen, sulfur, fluorine, chlorine, bromine, iodine, hydrogen and a rare gas. The sliding member 1 includes the lubricating member 3 which is a molded body of a resin composition containing a thermoplastic resin and a carbon material. The lubricating member 3 is preferably an injection molded body of the resin composition. The sliding surface 11 includes the inner surface 3 a of the lubricating member 3 and the inner peripheral surface 4 a of the base 4. The inner surface 3a of the lubricating member 3 and the inner peripheral surface 4a of the base 4 are substantially flush with each other, and the sliding surface 11 (bearing surface portion 11) is formed.
 図3を参照して、基体4は、潤滑部材3を収容するための収容部4cを有している。収容部4cには、潤滑部材3が収容される。これにより、摺動面11の少なくとも一部が、収容部4cに収容された潤滑部材3で構成される。基体4は、凹円筒面状の合せ面4bを備える。当該合せ面4bは、潤滑部材3の外側面と密着する。 Referring to FIG. 3, the base 4 has a housing 4 c for housing the lubricating member 3. The lubricating member 3 is housed in the housing portion 4c. Thereby, at least one part of the sliding face 11 is comprised by the lubricating member 3 accommodated in the accommodating part 4c. The base 4 is provided with a concave cylindrical mating surface 4b. The mating surface 4 b is in close contact with the outer surface of the lubricating member 3.
 なお、図3においては、潤滑部材3の一対のほぼ中空円板状/円環状の鍔状をした両端をつなぐと共に内側面3aを構成する6つ(複数)のほぼ矩形平板状をした連成部が潤滑部材3に設けられ、6つ(複数)のほぼ矩形平板状をした連成部に対応して、基体4の内周側に6つ(複数)のほぼ矩形平溝状をした収容部4cが設けられる構成が例示されているが、潤滑部材3の一対のほぼ中空円板状/円環状の鍔状をした両端をつなぐ連成部、並びに、基体4の内周側における収容部4cの数はこれに限定されず、摺動面の少なくとも一部が潤滑部材3で構成されていればよい。例えば、基体4の内周側に複数のほぼ矩形平溝状をした収容部4cが設けられ、複数のほぼ矩形平溝状をした収容部4cに対応して、潤滑部材3の一対のほぼ中空円板状/円環状の鍔状をした両端をつなぐと共に内側面3aを構成する複数のほぼ矩形平板状をした連成部が潤滑部材3に設けられているとよい。 In FIG. 3, a pair of substantially hollow disk-shaped / annular bowl-shaped ends of the lubricating member 3 are connected to connect both ends of six (plural) substantially rectangular flat plates constituting the inner side surface 3a. 6 (plural) substantially rectangular flat groove-shaped accommodation on the inner peripheral side of the base 4 corresponding to the six (plural) substantially rectangular flat coupling portions. Although the configuration in which the portion 4 c is provided is illustrated, a pair of substantially hollow disc-like / annular bowl-like coupling portions connecting the lubricating member 3 and a housing portion on the inner peripheral side of the base 4 The number of 4c is not limited to this, and at least a part of the sliding surface may be configured by the lubricating member 3. For example, a plurality of substantially rectangular flat grooved housing portions 4c are provided on the inner peripheral side of the base body 4, and a pair of substantially hollow hollow parts of the lubricating member 3 are provided corresponding to the plurality of substantially rectangular flat grooved housing portions 4c. It is preferable that the lubricating member 3 be provided with a plurality of substantially rectangular flat plate-like coupling portions which connect the disc-like / ring-like bowl-like ends and which constitute the inner side surface 3a.
 ここで、基体4のほぼ矩形平溝状をした収容部4cの深さ寸法Dについて説明すると、基体4の最小径を基準として、基体4の最小径から基体4の径方向にほぼ沿って基体4の外周側に向けた収容溝深さの寸法を意味する。この深さ寸法Dは、潤滑部材3の一対のほぼ中空円板状/円環状の鍔状をした両端をつなぐと共に内側面3aを構成する複数のほぼ矩形平板状をした連成部の厚さ寸法にほぼ等しい。 Here, to describe the substantially rectangular flat groove shape of the housing portion 4c depth D 2 of the substrate 4, on the basis of the minimum diameter of the base body 4, approximately along the outermost diameter of the substrate 4 in the radial direction of the substrate 4 It means the dimension of the receiving groove depth directed to the outer peripheral side of the base 4. The depth D 2 has a plurality of thicknesses of coupling portions in which the substantially rectangular plate which constitutes the inner surface 3a with connecting a pair of ends in which the substantially hollow disk-shaped / circular flange-like lubricating member 3 Approximately equal to the height dimension.
 基体4のほぼ矩形平溝状をした収容部4cの深さ寸法Dは、例えば基体4の内径寸法Dの0.1%~10%とされ、0.1%~5%とされることが好ましい。また、潤滑部材3のほぼ矩形平板状をした連成部の肉厚は、例えば潤滑部材3の内径寸法Dの0.1%~10%とされ、0.1%~5%とされることが好ましい。 Accommodating portion depth D 2 of 4c in which the substantially rectangular flat groove-like substrate 4 is, for example, 0.1% to 10% of the inner diameter D 0 of the substrate 4, it is 0.1 to 5% Is preferred. The thickness of the substantially rectangular flat coupling portion of the lubricating member 3 is, for example, 0.1% to 10% of the inner diameter D 0 of the lubricating member 3 and 0.1% to 5%. Is preferred.
 基体4のほぼ矩形平溝状をした収容部4cの深さ寸法Dが上記所定の%値よりも小さく、且つ、潤滑部材3のほぼ矩形平板状をした連成部の肉厚が上記所定の%値よりも小さいと、収容部4cに配置/埋設される樹脂組成物の量が減り、その結果、潤滑特性/摺動特性の低下が懸念されると共に、潤滑部材3の径方向の最小肉厚寸法が減少し、潤滑部材3と基体4との確実な一体化が難くなる傾向にある。また、基体4のほぼ矩形平溝状をした収容部4cの深さ寸法Dが上記所定の%値よりも大きく、且つ、潤滑部材3のほぼ矩形平板状をした連成部の肉厚が上記所定の%値よりも大きいと、基体4の径方向の最小肉厚寸法が減少し、その結果、基体4を備える摺動部材1(軸受1)の例えば強度低下が懸念されると共に、潤滑部材3が必要以上に基体4のほぼ矩形平溝状をした収容部4cに充填され、その結果、樹脂組成物の無駄が増える。 Less than substantially rectangular flat groove and the depth D 2 is above a predetermined percentage of the accommodating portion 4c of the substrate 4, and approximately the thickness of the coupling portion where the rectangular plate is above a predetermined lubricating member 3 If the value is smaller than the value of%, the amount of the resin composition disposed / embedded in the housing portion 4c is reduced, and as a result, there is a concern that the lubricating property / sliding property may be deteriorated. The thickness dimension is reduced, and the reliable integration of the lubricating member 3 and the base 4 tends to be difficult. Furthermore, approximately the depth D 2 of the housing portion 4c in which the rectangular flat groove is greater than the predetermined percentage of the base body 4, and the wall thickness of the coupling portion in which the substantially rectangular plate-shaped lubricant member 3 If the value is larger than the above-mentioned predetermined value, the minimum thickness dimension in the radial direction of the base 4 is reduced, and as a result, for example, the strength of the sliding member 1 (bearing 1) provided with the base 4 may be reduced. The member 3 is filled into the substantially rectangular flat grooved housing portion 4c of the base 4 more than necessary, as a result, waste of the resin composition is increased.
 また、さらに、基体4の内径両小口13には、潤滑部材3が配置されるとよい。上記構造をした潤滑部材3は、一つのものとして形成され、且つ、基体4と一体化されている。 Furthermore, it is preferable that the lubricating member 3 be disposed in the inside diameter and the small end 13 of the base 4. The lubricating member 3 having the above-described structure is formed as one unit and integrated with the base 4.
 このような構造とすることで、基体4を射出金型内にインサートして樹脂組成物による射出成形を行い、軸受1(摺動部材1)を形成させる際に、潤滑部材3は、確実に基体4と一体化される。これにより、軸受1(摺動部材1)の使用中に、潤滑部材3が軸受1(摺動部材1)の基体4から抜け落ちるおそれが低減された、軸受1(摺動部材1)が提供される。 With such a structure, when the base 4 is inserted into an injection mold and injection molding is performed using a resin composition, and the bearing 1 (sliding member 1) is formed, the lubricating member 3 reliably It is integrated with the base 4. Thereby, the bearing 1 (sliding member 1) is provided in which the risk of the lubricating member 3 falling off the base 4 of the bearing 1 (sliding member 1) is reduced during use of the bearing 1 (sliding member 1). Ru.
 以下、本発明に係る摺動部材1として軸受1を一例に挙げ、図1~図3を参照しながら説明する。 Hereinafter, a bearing 1 will be described as an example of the sliding member 1 according to the present invention, with reference to FIGS. 1 to 3.
 (1)基体4
 図1を参照して、基体4は、軸受を製造する際に採用される通常の製造工程に従って、金属粉を含む成形体を焼結することにより得られた焼結体である。通常の製造工程とは、例えば金属粉を主成分(重量比で最も多い成分)とする原料粉を、成形型を用いて圧縮成形することにより金属粉成形体を得る工程と、当該金属粉成形体を、例えば750~900℃程度の温度で加熱して焼結させ、焼結された金属粉成形体を得る工程と、当該焼結された金属粉成形体の寸法を矯正するためのサイジング工程等を含む。
(1) Substrate 4
Referring to FIG. 1, the substrate 4 is a sintered body obtained by sintering a molded body containing metal powder in accordance with a normal manufacturing process adopted in manufacturing a bearing. In the usual manufacturing process, for example, a step of obtaining a metal powder compact by compression molding raw material powder containing metal powder as the main component (the component with the largest weight ratio) using a mold, and the metal powder molding A body is heated and sintered at a temperature of, for example, about 750 to 900 ° C. to obtain a sintered metal powder compact, and a sizing process for correcting the dimensions of the sintered metal powder compact Etc.
 基体4を製造するために用いられる金属粉としては、例えば、銅を主成分(重量比で最も多い成分)とする銅系、鉄を主成分(重量比で最も多い成分)とする鉄系、銅および鉄を主成分(重量比で最も多い成分)とする銅鉄系をはじめとする任意の種類の金属の金属粉を用いることができる。この他、アルミニウム-青銅系等の特殊な金属の金属粉を用いることもできる。 The metal powder used to produce the substrate 4 is, for example, a copper-based material containing copper as the main component (the most component in weight ratio), an iron-based metal containing iron as the main component (the most component in weight ratio), Metal powders of any type of metal can be used, including copper-iron based copper and iron as the main components (the most abundant component by weight). Besides, metal powder of special metal such as aluminum-bronze type can also be used.
 銅鉄系の金属粉を用いる場合には、鉄粉、銅粉、および低融点金属粉等の低融点元素を混合した金属粉等の元素を用いることができる。低融点金属等の低融点元素は、焼結時にそれ自体が溶融して液相焼結を進行させるための成分であり、銅よりも低融点の金属等の低融点元素が使用される。具体的には700℃以下の融点を有する金属等の元素、例えば錫(Sn)、亜鉛(Zn)、リン(P)等が使用可能であり、この中でも銅との相性の良い錫を用いるのが好ましい。低融点金属等の低融点元素は、混合粉中にその単体粉を添加する他、他の金属粉と合金化することで添加することもできる。 When a copper-iron-based metal powder is used, elements such as iron powder, copper powder, and metal powder mixed with low melting point elements such as low melting metal powder can be used. The low melting point element such as a low melting point metal is a component for melting itself during sintering to advance liquid phase sintering, and a low melting point element such as a metal having a melting point lower than that of copper is used. Specifically, an element such as a metal having a melting point of 700 ° C. or less, such as tin (Sn), zinc (Zn), phosphorus (P) or the like can be used, and among these, tin having a good compatibility with copper is used Is preferred. The low melting point element such as the low melting point metal can be added by mixing the single powder into the mixed powder or alloying with another metal powder.
 上記の金属粉の他に、必要に応じてフッ化カルシウム等の焼結助剤やステアリン酸亜鉛等の潤滑剤を添加し、さらに潤滑部材粉としての黒鉛粉を添加することもできる。黒鉛粉を添加することで、焼結後の基体4の焼結組織中に黒鉛粒子を分散させることができるので、軸受面部11(摺動面11)のうち基体4で形成される部分における潤滑性を高めることができる。ここでは具体的には、基体4を構成する金属(元素)粉は、例えばFe粉、Cu粉およびSn粉の混合粉末であってよく、本実施形態では、この混合粉末に、さらに黒鉛粉が混合される。 In addition to the above metal powder, if necessary, a sintering aid such as calcium fluoride or a lubricant such as zinc stearate may be added, and further, a graphite powder as a lubricating member powder may be added. By adding the graphite powder, the graphite particles can be dispersed in the sintered structure of the base 4 after sintering, so that the lubrication of the portion of the bearing surface 11 (sliding surface 11) formed by the base 4 Can be enhanced. Here, specifically, the metal (element) powder constituting the substrate 4 may be, for example, a mixed powder of Fe powder, Cu powder and Sn powder, and in the present embodiment, a graphite powder is further added to this mixed powder. Be mixed.
 各粉末の配合割合は、全質量を基準に例えば、Cu粉:ほぼ10~30質量%、具体的には10~30質量%(好ましくはほぼ15~20質量%、具体的には15~20質量%)、Sn粉:ほぼ0.5~3.0質量%、具体的には0.5~3.0質量%(好ましくはほぼ1.5~2.0質量%、具体的には1.5~2.0質量%)、黒鉛粉:ほぼ0.5~7.0質量%、具体的には0.5~7.0質量%(好ましくはほぼ0.5~3.0質量%、具体的には0.5~3.0質量%)とし、残りをFe粉とする。Cu粉の配合割合は、これが少なすぎると摺動面部11の内周面4aの摺動性が低下し、多すぎると摺動面部11の内周面4aの耐摩耗性に問題が生じるので上記の範囲とする。また、Fe粉、Cu粉、Sn粉および黒鉛粉を上記の配合割合とすることにより、優れた潤滑性能/摺動特性/耐摩耗性を有する鉄-銅系の焼結合金製の基体4が形成される。例えば鉄-銅系の焼結合金製の基体4内に分散される黒鉛は、遊離黒鉛として潤滑性に寄与する。本発明の摺動部材は、無給油での高面圧および低速領域における使用、ならびに耐摩耗性の向上の観点から好ましくは、基体4は、Fe粉、Cu粉、Sn粉および黒鉛粉を含む成形体の焼結体である。このように、例えば黒鉛を含んだ鉄-銅系の焼結合金製の基体4が形成されることにより、優れた潤滑性能/摺動特性/耐摩耗性を有する内周面4aを備えた摺動部材1(軸受1)が提供される。 The mixing ratio of each powder is, for example, Cu powder: approximately 10 to 30 mass%, specifically 10 to 30 mass% (preferably approximately 15 to 20 mass%, specifically 15 to 20) based on the total mass. Mass%), Sn powder: approximately 0.5 to 3.0 mass%, specifically 0.5 to 3.0 mass% (preferably approximately 1.5 to 2.0 mass%, specifically 1 .5 to 2.0% by mass), graphite powder: approximately 0.5 to 7.0% by mass, specifically 0.5 to 7.0% by mass (preferably approximately 0.5 to 3.0% by mass) Specifically, the content is made 0.5 to 3.0% by mass), and the remainder is made into Fe powder. If the mixing ratio of Cu powder is too small, the sliding property of the inner peripheral surface 4a of the sliding surface 11 decreases, and if it is too large, a problem occurs in the wear resistance of the inner peripheral surface 4a of the sliding surface 11. Range of Further, by making the Fe powder, the Cu powder, the Sn powder and the graphite powder into the above mixture ratio, the base 4 made of the iron-copper based sintered alloy having excellent lubricating performance / sliding property / abrasion resistance is obtained. It is formed. For example, graphite dispersed in a base 4 made of iron-copper based sintered alloy contributes to lubricity as free graphite. The sliding member of the present invention preferably contains Fe powder, Cu powder, Sn powder and graphite powder from the viewpoints of use in high surface pressure and low speed regions without oiling and improvement of wear resistance. It is a sintered compact of a molded object. Thus, for example, by forming the base 4 made of the iron-copper based sintered alloy containing graphite, for example, a slide having the inner peripheral surface 4a having excellent lubricating performance / sliding property / abrasion resistance. A dynamic member 1 (bearing 1) is provided.
 (2)潤滑部材3
 潤滑部材3は、熱可塑性樹脂とカーボン材料とを含む樹脂組成物の形成体である。当該潤滑部材3は、前述の樹脂組成物の射出形成体であることが好ましい。カーボン材料を含むことにより軸受1に優れた摺動特性を付与することができ、熱可塑性樹脂を含むことにより潤滑部材3の製造に必要なコストを削減することができる。潤滑部材3は、例えば基体4をインサート部品として、熱可塑性樹脂とカーボン材料とを含む樹脂組成物で射出成形することにより、基体4の収容部4cに射出成形体として配置/埋設させることができる(以後、インサート成形工程ともいう)。図2および図3を参照して、潤滑部材3が収容部4cに配置/埋設されることにより、潤滑部材3の内側面3aは、軸受1の摺動面11(軸受面部11)の少なくとも一部を構成する。本発明に係る軸受1においては、例えばインサート成形工程によって基体4の収容部4cに潤滑部材3を配置/埋設させることができるため、軸受1(摺動部材1)の製造における作業効率および加工コストの改善が期待される。なお、基体4の収容部4cに潤滑部材3を配置/埋設させる方法は上記インサート成形工程に限定されず、公知の方法によっても配置/埋設させることができる。
(2) Lubricating member 3
The lubricating member 3 is a formed body of a resin composition containing a thermoplastic resin and a carbon material. The lubricating member 3 is preferably an injection-formed body of the above-described resin composition. The inclusion of the carbon material can impart excellent sliding characteristics to the bearing 1, and the inclusion of the thermoplastic resin can reduce the cost required for manufacturing the lubricating member 3. The lubricating member 3 can be disposed / embedded as an injection-molded body in the housing portion 4c of the base 4 by injection molding the resin composition containing a thermoplastic resin and a carbon material, for example, using the base 4 as an insert part. (Hereafter, it is also called an insert molding process.). With reference to FIGS. 2 and 3, by arranging / embedding lubricating member 3 in housing portion 4 c, inner side surface 3 a of lubricating member 3 is at least one of sliding surface 11 (bearing surface portion 11) of bearing 1. Make up the department. In the bearing 1 according to the present invention, for example, since the lubricating member 3 can be disposed / embedded in the housing portion 4c of the base 4 by an insert molding process, the working efficiency and the processing cost in manufacturing the bearing 1 (sliding member 1) Improvement is expected. In addition, the method of arranging / embedding the lubricating member 3 in the accommodating part 4c of the base | substrate 4 is not limited to the said insert molding process, It can also be arrange | positioned / embedding by a well-known method.
 上記実施形態によれば、潤滑部材3は、基体4の収容部4cに配置/埋設されているため、潤滑部材3に含まれる熱可塑性樹脂のアンカー効果により、合せ面4b(収容部4cの内表面)において、基体4と潤滑部材3との結合力が高められ、軸受1の使用中に潤滑部材3が軸受1の基体4から抜け落ちるおそれが低減されると考えられる。すなわち、軸受1(摺動部材1)の使用中に、潤滑部材3が軸受1(摺動部材1)の基体4から抜け落ちるおそれが低減された、軸受1(摺動部材1)が提供されると期待される。 According to the above embodiment, since the lubricating member 3 is disposed / embedded in the housing portion 4c of the base body 4, the anchoring effect of the thermoplastic resin contained in the lubricating member 3 makes the mating surface 4b (inside the housing portion 4c On the surface), it is considered that the bonding force between the base 4 and the lubricating member 3 is enhanced, and the possibility of the lubricating member 3 falling off the base 4 of the bearing 1 is reduced while the bearing 1 is in use. That is, the bearing 1 (sliding member 1) is provided in which the risk of the lubricating member 3 falling off the base 4 of the bearing 1 (sliding member 1) is reduced during use of the bearing 1 (sliding member 1). It is expected.
 (3)熱可塑性樹脂
 樹脂組成物の例えば主成分(例えば重量比で最も多い成分等とされる場合もあるがこれに限られない。)となる熱可塑性樹脂としては、例えば、ポリアミド(PA)、ポリカーボネート(PC)、ポリブチレンテレフタレート(PBT)、ポリアセタール(POM)、液晶ポリマー(LCP)、全芳香族ポリエステル、ポリフェニレンスルフィド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、ポリイミド(PI)、ポリテトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、エチレン-テトラフルオロエチレン共重合体(ETFE)などのフッ素樹脂(ポリフッ化オレフィン系樹脂)、ポリエチレンなどのオレフィン系樹脂などを含む樹脂を用いてもよい。具体的には、熱可塑性樹脂として、例えば射出成形が可能な熱可塑性樹脂を用いることが好ましい。例えばポリフェニレンスルフィド(PPS)は、価格が適度に低く抑えられた樹脂材料であることに加え、射出成形時における溶融粘度が低いこと等からこれにカーボン材料を多量に配合させることが可能となり好ましいものである。なお、上に記載のこれらの各合成樹脂は単独で使用してもよく、2種類以上混合したポリマーアロイであってもよい。
(3) Thermoplastic resin For example, as a thermoplastic resin to be a main component (for example, it may be the largest component by weight ratio but is not limited thereto) of the resin composition, for example, polyamide (PA) , Polycarbonate (PC), polybutylene terephthalate (PBT), polyacetal (POM), liquid crystal polymer (LCP), wholly aromatic polyester, polyphenylene sulfide (PPS), polyetheretherketone (PEEK), polyamideimide (PAI), poly Ether imide (PEI), polyimide (PI), polytetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), ethylene-tetrafluoroethylene copolymer ( Such as ETFE) A resin containing a fluorine resin (polyfluorinated olefin resin), an olefin resin such as polyethylene, or the like may be used. Specifically, it is preferable to use, for example, a thermoplastic resin which can be injection-molded as the thermoplastic resin. For example, in addition to polyphenylene sulfide (PPS) being a resin material whose price is kept low appropriately, it is possible to mix a large amount of carbon material, because it has a low melt viscosity at the time of injection molding, etc. It is. Each of these synthetic resins described above may be used alone or in combination of two or more kinds.
 (4)カーボン材料
 樹脂組成物に配合されるカーボン材料は、例えばカーボンナノ繊維、カーボンブラックおよび黒鉛からなる群より選択される少なくとも1つであってもよい。カーボン材料の形態としては粉末状を挙げることができる。カーボン材料粉末としては、例えば黒鉛粉を用いることができ、具体的には、天然黒鉛粉および人造黒鉛粉の何れもが使用可能である。天然黒鉛粉は鱗片状を成しているため潤滑性に優れるという特徴を有する。一方、人造黒鉛粉は塊状を成しているため成形性に優れるという特徴を有する。尚、カーボン材料粉末は、結晶質粉である黒鉛粉に限らず、ピッチ粉やコークス粉等の非晶質粉を用いることもできる。カーボン材料としてカーボンナノ繊維を用いた場合には、潤滑部材3の曲げ弾性率などの機械的強度の向上を図ることができる。カーボンナノ繊維は、ピッチ系とPAN系とに大別されるが、何れも使用可能である。カーボンナノ繊維は、例えば、平均繊維径20μm以下、平均繊維長0.02~0.2mmのものを用いることができる。
(4) Carbon Material The carbon material blended in the resin composition may be, for example, at least one selected from the group consisting of carbon nanofibers, carbon black and graphite. A powder form can be mentioned as a form of a carbon material. For example, graphite powder can be used as the carbon material powder, and specifically, both natural graphite powder and artificial graphite powder can be used. Natural graphite powder is characterized by being excellent in lubricity because it is scaly. On the other hand, the artificial graphite powder has a feature of being excellent in moldability because it is in a massive form. The carbon material powder is not limited to graphite powder which is crystalline powder, and amorphous powder such as pitch powder and coke powder can also be used. When carbon nanofibers are used as the carbon material, mechanical strength such as flexural modulus of the lubricating member 3 can be improved. Carbon nanofibers are roughly classified into pitch-based and PAN-based, but any of them can be used. For example, carbon nanofibers having an average fiber diameter of 20 μm or less and an average fiber length of 0.02 to 0.2 mm can be used.
 カーボン材料粉末(例えば、黒鉛粉)にバインダを含めることもできる。バインダとしては樹脂バインダ粉を用いることができ、樹脂バインダ粉としては、例えばフェノール樹脂粉を用いることができる。必要に応じて成形助剤や潤滑剤、あるいは改質剤等を添加して、カーボン材料粉末とバインダを均一に混合することが好ましい。 A binder can also be included in the carbon material powder (e.g., graphite powder). Resin binder powder can be used as the binder, and phenol resin powder can be used as the resin binder powder, for example. It is preferable to uniformly mix the carbon material powder and the binder by adding a molding aid, a lubricant, a modifier or the like as necessary.
 潤滑部材3を構成する原料粉末として、上記のようにカーボン材料粉末および樹脂バインダ粉の混合粉末を用いる他、樹脂バインダ粉の共在下でカーボン材料粉末を造粒した造粒粉を用いることもできる。造粒粉は、単体の樹脂バインダ粉やカーボン材料粉末と比べて比重が大きく、流動性が高いため、それを含む樹脂組成物の成形型への供給がしやすくなり、所定形状に精度良く成形することが可能となる。 As the raw material powder constituting the lubricating member 3, besides the mixed powder of the carbon material powder and the resin binder powder as described above, it is also possible to use a granulated powder obtained by granulating the carbon material powder under coexistence of resin binder powder. . Granulated powder has a higher specific gravity and higher fluidity than a single resin binder powder or carbon material powder, so that it becomes easy to supply a resin composition containing it to a molding die, and it is precisely molded into a predetermined shape. It is possible to
 軸受1では、軸受面部11の一部を構成する潤滑部材3がカーボン材料の供給源となる。潤滑部材3から供給されたカーボン材料が、軸受面部11と軸2との相対移動によって軸受面部11全体に行き渡ることで、軸受面部11全体でカーボン材料による潤滑効果を得ることができる。これにより、優れた潤滑性能/摺動特性を有する摺動部材1(軸受1)が提供される。 In the bearing 1, the lubricating member 3 that constitutes a part of the bearing surface portion 11 is a carbon material supply source. The carbon material supplied from the lubricating member 3 spreads over the entire bearing surface 11 due to the relative movement between the bearing surface 11 and the shaft 2, so that the lubricating effect of the carbon material can be obtained in the entire bearing surface 11. Thereby, the sliding member 1 (bearing 1) which has the outstanding lubricating performance / sliding characteristic is provided.
 (5)その他の材料
 樹脂組成物は、熱可塑性樹脂およびカーボン材料に加えて、他の充填剤を含んでもよい。他の充填剤としては、例えば、ガラス繊維、アラミド繊維、アルミナ繊維、芳香族ポリアミド繊維、ポリエステル繊維、ボロン繊維、炭化珪素繊維、窒化硼素繊維、窒化珪素繊維、金属繊維等の繊維類やこれらを布状に編んだもの、炭酸カルシウム、タルク、シリカ、クレー、マイカ等の鉱物類、硼酸アルミニウムウィスカー、チタン酸カリウムウィスカー等の無機ウィスカー類、ポリイミド樹脂等の熱硬化性樹脂等やポリベンゾイミダゾール等の各種耐熱性樹脂等を用いることができる。これらの充填剤を含むことにより、潤滑部材3の摩擦摩耗特性の改善や、線膨張係数を小さくすることができる。必要に応じて、離型剤、難燃剤、耐候性改良剤、酸化防止剤、顔料などの添加剤を適宜添加してもよい。
(5) Other Materials In addition to the thermoplastic resin and the carbon material, the resin composition may contain other fillers. As other fillers, for example, fibers such as glass fiber, aramid fiber, alumina fiber, aromatic polyamide fiber, polyester fiber, boron fiber, silicon carbide fiber, boron nitride fiber, silicon nitride fiber, metal fiber and the like Cloth-like, minerals such as calcium carbonate, talc, silica, clay, mica etc., inorganic whiskers such as aluminum borate whiskers, potassium titanate whiskers, thermosetting resins such as polyimide resin, etc. polybenzimidazole etc. The various heat resistant resin etc. of can be used. By including these fillers, it is possible to improve the friction and wear characteristics of the lubricating member 3 and to reduce the linear expansion coefficient. If necessary, additives such as a mold release agent, a flame retardant, a weather resistance improver, an antioxidant, and a pigment may be added as appropriate.
 (6)内径(両)小口13
 内径(両)小口13には、潤滑部材3が配置されている。これにより、ラジアル摺動(回転)に加え、アキシャル摺動(スライド)時においても、内径(両)小口13に配置された潤滑部材3から供給されたカーボン材料が、軸受面部11と軸2との相対移動によって軸受面部11全体に行き渡ることで、軸受面部11全体でカーボン材料による潤滑効果を得ることができるものと期待される。
(6) Inner diameter (both) edge 13
A lubricating member 3 is disposed in the inner diameter (both) small holes 13. Thereby, in addition to radial sliding (rotation), also at the time of axial sliding (sliding), the carbon material supplied from the lubricating member 3 disposed in the inner diameter (both) small opening 13 comprises the bearing surface portion 11 and the shaft 2 It is expected that the lubricating effect by the carbon material can be obtained in the entire bearing surface portion 11 by spreading over the entire bearing surface portion 11 by the relative movement of
 内径(両)小口13への潤滑部材3の配置方法は、特に限定されないが、例えば上記インサート成形工程において、潤滑部材3を樹脂組成物の射出成形体として内径(両)小口13へ配置してもよい。あるいは、上記インサート成形工程により潤滑部材3が収容部4cに配置された後、射出成形以外の方法で潤滑部材3を内径(両)小口13に配置してもよい。内径(両)小口13に配置される潤滑部材3は、基体4の内周形状(内径(両)小口13)に相応する形状を有し、前述の軸方向の寸法Lおよび径方向の寸法Dを有するものである。 The method of arranging the lubricating member 3 in the inner diameter (both) small holes 13 is not particularly limited, but, for example, in the insert molding step, the lubricating member 3 is arranged in the small diameter holes 13 as an injection molded body of a resin composition. It is also good. Alternatively, after the lubricating member 3 is disposed in the housing portion 4 c in the insert molding process, the lubricating member 3 may be disposed in the inner diameter (both) small holes 13 by a method other than injection molding. Inside diameter (both) lubricating member 3 arranged small 13 has a shape corresponding to the inner peripheral shape of the substrate 4 (the inside diameter (both) small 13), dimensions of L 1 and the radial direction of the axial above It has D 1 .
 (7)カーボン材料の含有量
 樹脂組成物に配合されるカーボン材料の含有量は、潤滑部材3の摺動面の摺動特性を確保するために好適な範囲に設定され、この含有量は、5質量%以上70質量%以下、好ましくは10質量%以上60質量%以下、熱可塑性樹脂の種類等により例えば10質量%以上40質量%以下である。樹脂組成物中におけるカーボン材料の配合量が所定の質量%未満の場合、カーボン材料の配合量が少ないためにカーボン材料による摺動面の摺動特性向上効果が現れ難くなる傾向にある。樹脂組成物中におけるカーボン材料の配合量が所定の質量%を超える場合、樹脂組成物の流動性が低下して射出成形時における歩留り率が低下する他、射出成形を行うこと自体が困難となる傾向にある。摺動特性を確保しつつ、射出成形時における歩留り率の低下を避けるために、樹脂組成物中に配合されるカーボン材料の含有量は、上記範囲内であることが好ましい。
(7) Content of Carbon Material The content of the carbon material blended in the resin composition is set to a suitable range for securing the sliding characteristics of the sliding surface of the lubricating member 3, and the content is The content is, for example, 10% by mass or more and 40% by mass or less depending on the type of the thermoplastic resin and the like. When the compounding amount of the carbon material in the resin composition is less than a predetermined mass%, the effect of improving the sliding property of the sliding surface by the carbon material tends to be difficult to appear because the compounding amount of the carbon material is small. When the compounding amount of the carbon material in the resin composition exceeds a predetermined mass%, the fluidity of the resin composition is lowered to lower the yield rate at the time of injection molding, and it becomes difficult to carry out the injection molding itself There is a tendency. The content of the carbon material blended in the resin composition is preferably in the above-described range in order to prevent the decrease in the yield rate during injection molding while securing the sliding characteristics.
 (8)潤滑油の含浸
 軸受1は、無数の内部空孔を有しているため、インサート成形工程を経た軸受1の内部空孔に、潤滑油を含浸させることもできる。例えば、インサート成形工程を経た軸受1を、減圧環境下において潤滑油中に浸漬させた後、大気圧に戻すことにより、軸受1の内部空孔に潤滑油を含浸させることができる。潤滑油としては、軸受用として汎用されているものであれば特に制限されず、例えば、スピンドル油、冷凍機油、タービン油、マシン油、ダイナモ油などの鉱油、ポリブテン、ポリ-α-オレフィン、アルキルナフタレン、脂環式化合物などの炭化水素系合成油、または、天然油脂とポリオールとのエステル油、リン酸エステル、ジエステル油、ポリグリコール油、シリコーン油、ポリフェニルエーテル油、アルキルジフェニルエーテル油、アルキルベンゼン、フッ素化油などの非炭化水素系合成油等を用いてもよい。
(8) Impregnation of Lubricating Oil Since the bearing 1 has innumerable internal holes, the internal holes of the bearing 1 that has undergone the insert molding process can also be impregnated with lubricating oil. For example, the internal holes of the bearing 1 can be impregnated with the lubricating oil by immersing the bearing 1 that has undergone the insert molding process in the lubricating oil in a reduced pressure environment and then returning to atmospheric pressure. The lubricating oil is not particularly limited as long as it is generally used for bearings, for example, spindle oil, refrigeration oil, turbine oil, machine oil, mineral oil such as dynamo oil, polybutene, poly-α-olefin, alkyl Hydrocarbon-based synthetic oils such as naphthalene and alicyclic compounds, or ester oils of natural fats and oils, phosphoric acid esters, diester oils, polyglycol oils, silicone oils, polyphenyl ether oils, alkyl diphenyl ether oils, alkyl benzenes, A non-hydrocarbon-based synthetic oil such as a fluorinated oil may be used.
 (9)基体4の開放気孔率
 基体4の開放気孔率は、インサート成形工程を経た軸受1の内部空孔に油を含浸する場合において、当該油が潤滑性付与剤として機能し軸受1の摺動特性を向上させるために好適な範囲に設定され、好ましくは10%以上50%以下である。開放気孔率が10%未満の場合、基体4の内部空孔に含浸される油の総量が少なく、軸受1に長期に亘って潤滑油に基づく優れた潤滑性能を発揮させることが困難な傾向にある。また、開放気孔率が50%を超える場合、基体4の成形が困難となって基体4の成形性が低下し、その結果、生産性よく基体4を成形することが困難となり、基体4を備えた軸受1を低コストで生産することが困難となる傾向にある。基体4に潤滑油に基づく優れた潤滑性能を発揮させつつ、生産性よく軸受1を成形するために、基体4の開放気孔率は、上記範囲内であることが好ましい。なお、「開放気孔率」は、基体4の体積に対する含浸可能な内部空孔を百分率で表したもので、完全含浸後の油の体積を基体4の体積で除し、100を乗じて求められる。開放気孔率は、日本工業規格の「焼結金属材料-密度,含油率及び開放気孔率試験方法(JIS Z 2501:2000)」により測定する事ができる。
(9) Open Porosity of the Base 4 The open porosity of the base 4 is determined by impregnating the internal pores of the bearing 1 that has undergone the insert molding step with oil, and the oil functions as a lubricant to make the slide of the bearing 1 In order to improve dynamic characteristics, it is set in a suitable range, preferably 10% or more and 50% or less. If the open porosity is less than 10%, the total amount of oil impregnated in the internal pores of the substrate 4 is small, and it is difficult to make the bearing 1 exert excellent lubricating performance based on the lubricating oil over a long period of time is there. If the open porosity exceeds 50%, molding of the substrate 4 becomes difficult and the moldability of the substrate 4 decreases, as a result, it becomes difficult to mold the substrate 4 with high productivity, and the substrate 4 is provided. It tends to be difficult to produce the bearing 1 at low cost. In order to form the bearing 1 with high productivity while causing the base 4 to exhibit excellent lubricating performance based on lubricating oil, the open porosity of the base 4 is preferably within the above range. The “open porosity” is a percentage representing the internal pores capable of being impregnated with respect to the volume of the substrate 4 and is obtained by dividing the volume of oil after complete impregnation by the volume of the substrate 4 and multiplying by 100. . The open porosity can be measured according to "Sintered metal material-density, oil content and open porosity test method (JIS Z 2501: 2000)" of Japanese Industrial Standard.
 (10)基体4の表面開孔率
 基体4の、収容部4cの内表面である合せ面4bにおける表面開孔率は、基体4の収容部4cに配置された潤滑部材3に含まれる熱可塑性樹脂のアンカー効果により、基体4と潤滑部材3との結合力を高めるために好適な範囲に設定され、好ましくは10%以上50%以下である。表面開孔率が10%未満の場合、合せ面4bの表面気孔に入り込む潤滑部材3に含まれる熱可塑性樹脂の量が減り、熱可塑性樹脂のアンカー効果が減少する傾向にある。また、表面開孔率が50%を超える場合、収容部4cの成形が困難となる傾向にある。基体4と潤滑部材3との結合力を高めつつ、生産性よく軸受1を成形するために、基体4の表面開孔率は、上記範囲内であることが好ましい。なお、「表面開孔率」とは、表面の単位面積当りに占める表面開孔の総面積の割合(面積比)である。「表面開孔率」は、例えばNikon社製:ECLIPSE ME600等の金属顕微鏡で撮影した画像(例えば500倍)を画像データとしてコンピュータに取り込み、気孔部分の面積を演算することで求めることができる。
(10) Surface open area ratio of the base 4 The surface open area ratio of the base 4 at the mating surface 4 b which is the inner surface of the housing 4 c is thermoplasticity contained in the lubricating member 3 disposed in the housing 4 4 c of the base 4. The anchor effect of the resin is set in a range suitable for enhancing the bonding strength between the base 4 and the lubricating member 3, and is preferably 10% to 50%. If the surface porosity is less than 10%, the amount of the thermoplastic resin contained in the lubricating member 3 entering the surface pores of the mating surface 4b is reduced, and the anchoring effect of the thermoplastic resin tends to be reduced. In addition, when the surface open area ratio exceeds 50%, molding of the housing portion 4c tends to be difficult. In order to form the bearing 1 with high productivity while enhancing the bonding force between the base 4 and the lubricating member 3, the surface open area ratio of the base 4 is preferably within the above range. The "surface open area ratio" is the ratio (area ratio) of the total area of the surface open per unit area of the surface. The “surface open area ratio” can be determined by, for example, taking in an image (for example, 500 times) taken with a metallurgical microscope such as ECLIPSE ME600 manufactured by Nikon as image data into a computer and calculating the area of the pore portion.
 以下、本発明の他の実施形態を説明するが、上記の実施形態と重複する点については説明を省略する。 Hereinafter, although other embodiments of the present invention are described, explanation is omitted about a point which overlaps with the above-mentioned embodiment.
 [その他の実施形態]
 潤滑部材3は、図2に示すように軸受1の軸方向全長にわたって配置する他、軸方向の一部領域に限って配置してもよく、例えば軸方向に離隔した複数箇所に配置してもよい。
Other Embodiments
The lubricating member 3 may be disposed over the entire axial length of the bearing 1 as shown in FIG. 2 or may be disposed only in a partial region in the axial direction, for example, even when disposed at a plurality of axially separated locations Good.
 また、軸受1においては、必ずしも軸受面部11の全体に対して軸2が摺動するわけではなく、例えば、軸受面部11の限定された一部領域が軸2と摺動する場合がある。具体的には、軸2を水平姿勢とした場合、軸2は重力によって落ち込んで軸受面部11の下側領域で軸受面部11と摺動する場合がある。その場合、軸2との摺動領域に潤滑部材3が位置するように、軸受1における潤滑部材3の位置や形状を設計し、あるいは軸受1の円周方向の位相を調整することで、軸2を潤滑部材3と常に摺動させることが可能となる。これにより高い潤滑効果を得ることができるため、例えば軸受面部11との間に潤滑油を介在させないオイルレスの状態で軸2を支持することが可能となる。もちろん、軸受面部11と軸2との間に潤滑油を介在させた状態で用いることもでき、この場合さらに潤滑効果が高められる。本実施形態では、軸受面部11と軸2との間に潤滑油を介在させると共に、基体4の内部空孔に油を含浸させている。この場合、軸2の回転に伴う温度上昇により基体4の表面(内周面4a)から油が滲み出し、この油が軸受面部11と軸2との摺動領域に供給されることで、摺動領域における油膜切れを確実に回避して優れた摺動性が維持される。 Further, in the bearing 1, the shaft 2 does not necessarily slide with respect to the entire bearing surface portion 11, and for example, a limited partial region of the bearing surface portion 11 may slide with the shaft 2. Specifically, when the shaft 2 is in the horizontal posture, the shaft 2 may be depressed by gravity and slide on the bearing surface portion 11 in the lower region of the bearing surface portion 11. In that case, by designing the position and the shape of the lubricating member 3 in the bearing 1 or adjusting the phase of the bearing 1 in the circumferential direction so that the lubricating member 3 is positioned in the sliding region with the shaft 2 It is possible to always slide 2 with the lubricating member 3. Since a high lubricating effect can be acquired by this, it becomes possible to support the axis | shaft 2 in the oil-less state which does not interpose lubricating oil between the bearing surface parts 11, for example. Of course, it can also be used in a state where lubricating oil is interposed between the bearing surface portion 11 and the shaft 2, and in this case, the lubricating effect is further enhanced. In the present embodiment, a lubricating oil is interposed between the bearing surface portion 11 and the shaft 2, and the internal pores of the base 4 are impregnated with the oil. In this case, the oil exudes from the surface (inner peripheral surface 4 a) of the base 4 due to the temperature rise caused by the rotation of the shaft 2, and this oil is supplied to the sliding region between the bearing surface portion 11 and the shaft 2. The excellent slidability is maintained by reliably avoiding oil film breakage in the moving region.
 また、本発明は、軸の相対回転を支持する軸受に限らず、軸の軸方向移動を支持する軸受に適用することもできる。また、本発明は、円筒形状の摺動部材に限らず、他の形状(例えば、半円筒状や直方体状)の摺動部材に適用することもできる。本発明の摺動部材は、例えば事務機器、自動車、補機等に用いる摺動部材に利用することができる。 Furthermore, the present invention is not limited to the bearing that supports the relative rotation of the shaft, but can be applied to a bearing that supports the axial movement of the shaft. Further, the present invention is not limited to the cylindrical sliding member, but can be applied to sliding members of other shapes (for example, semi-cylindrical or rectangular parallelepiped). The sliding member of the present invention can be used, for example, as a sliding member used for office equipment, automobiles, accessories and the like.
 1 摺動部材(軸受)、2 軸、3 潤滑部材、3a 内側面、4 基体、4a 内周面、4b 合せ面、4c 収容部、11 摺動面(軸受面部)、12 外周面、13 内径両小口(内径小口)。 Reference Signs List 1 sliding member (bearing), 2 axis, 3 lubricating member, 3a inner side surface, 4 base, 4a inner peripheral surface, 4b mating surface, 4c accommodation portion, 11 sliding surface (bearing surface portion), 12 outer peripheral surface, 13 inner diameter Both sides (inner diameter side).

Claims (7)

  1.  摺動面を有する摺動部材であって、
     金属粉を含む成形体の焼結体である基体と、
     熱可塑性樹脂とカーボン材料とを含む樹脂組成物の成形体である、潤滑部材とを含み、
     前記基体は、前記潤滑部材を収容するための収容部を有し、
     前記摺動面の少なくとも一部は、前記収容部に収容された前記潤滑部材で構成され、かつ、
     前記基体の内径小口にも、前記潤滑部材が配置されている、
     摺動部材。
    A sliding member having a sliding surface, wherein
    A substrate which is a sintered body of a molded body containing metal powder,
    And a lubricating member, which is a molded product of a resin composition containing a thermoplastic resin and a carbon material,
    The base body has an accommodating portion for accommodating the lubricating member,
    At least a part of the sliding surface is constituted by the lubricating member housed in the housing portion, and
    The lubricating member is disposed also in the inner diameter portion of the base body,
    Sliding member.
  2.  摺動面を有する摺動部材であって、
     Fe粉、Cu粉、Sn粉および黒鉛粉を含む成形体の焼結体である基体と、
     熱可塑性樹脂とカーボン材料とを含む樹脂組成物の成形体である、潤滑部材とを含み、
     前記基体は、前記潤滑部材を収容するための収容部を有し、
     前記摺動面の少なくとも一部は、前記収容部に収容された前記潤滑部材で構成され、かつ、
     前記基体の内径小口にも、前記潤滑部材が配置されている、
     摺動部材。
    A sliding member having a sliding surface, wherein
    A substrate which is a sintered body of a compact containing Fe powder, Cu powder, Sn powder and graphite powder;
    And a lubricating member, which is a molded product of a resin composition containing a thermoplastic resin and a carbon material,
    The base body has an accommodating portion for accommodating the lubricating member,
    At least a part of the sliding surface is constituted by the lubricating member housed in the housing portion, and
    The lubricating member is disposed also in the inner diameter portion of the base body,
    Sliding member.
  3.  前記樹脂組成物における前記カーボン材料の含有率が、5質量%以上70質量%以下である、請求項1または請求項2に記載の摺動部材。 The sliding member according to claim 1 or 2 whose content rate of said carbon material in said resin composition is 5 mass% or more and 70 mass% or less.
  4.  前記基体は内部空孔を有し、
     前記内部空孔内に潤滑油が含浸されている、請求項1から請求項3のいずれか1項に記載の摺動部材。
    The substrate has an internal void,
    The sliding member according to any one of claims 1 to 3, wherein lubricating oil is impregnated in the internal cavity.
  5.  前記基体は、10%以上50%以下の開放気孔率を有する、請求項4に記載の摺動部材。 The sliding member according to claim 4, wherein the base has an open porosity of 10% or more and 50% or less.
  6.  前記基体は、前記収容部の内表面において10%以上50%以下の表面開孔率を有する、請求項1から請求項5のいずれか1項に記載の摺動部材。 The sliding member according to any one of claims 1 to 5, wherein the base has a surface open area ratio of 10% to 50% on an inner surface of the housing portion.
  7.  前記カーボン材料は、カーボンナノ繊維、カーボンブラックおよび黒鉛からなる群より選択される少なくとも1つである、請求項1から請求項6のいずれか1項に記載の摺動部材。 The sliding member according to any one of claims 1 to 6, wherein the carbon material is at least one selected from the group consisting of carbon nanofibers, carbon black and graphite.
PCT/JP2018/037279 2017-10-04 2018-10-04 Sliding member WO2019070041A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-194340 2017-10-04
JP2017194340 2017-10-04
JP2018189340A JP2019066044A (en) 2017-10-04 2018-10-04 Slide member
JP2018-189340 2018-10-04

Publications (1)

Publication Number Publication Date
WO2019070041A1 true WO2019070041A1 (en) 2019-04-11

Family

ID=65994319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037279 WO2019070041A1 (en) 2017-10-04 2018-10-04 Sliding member

Country Status (1)

Country Link
WO (1) WO2019070041A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024006723A1 (en) 2022-06-30 2024-01-04 The Procter & Gamble Company Absorbent articles and methods and apparatuses for making absorbent articles with frangible pathways

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6069324A (en) * 1983-09-22 1985-04-20 Nippon Seiko Kk Slide bearing
JPH0932856A (en) * 1995-07-21 1997-02-04 Ntn Corp Sliding bearing and its manufacture
JP2002039183A (en) * 2000-05-19 2002-02-06 Asmo Co Ltd Oil-impregnated sintered bearing
JP2002327749A (en) * 2001-04-27 2002-11-15 Asmo Co Ltd Oil impregnated sintered bearing and manufacturing method of the same
JP2007263311A (en) * 2006-03-29 2007-10-11 Ntn Corp Dynamic pressure bearing device
JP2009097598A (en) * 2007-10-16 2009-05-07 Ntn Corp Sliding bearing and its manufacturing method
JP2016065638A (en) * 2014-09-24 2016-04-28 Ntn株式会社 Sliding member and method of manufacturing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6069324A (en) * 1983-09-22 1985-04-20 Nippon Seiko Kk Slide bearing
JPH0932856A (en) * 1995-07-21 1997-02-04 Ntn Corp Sliding bearing and its manufacture
JP2002039183A (en) * 2000-05-19 2002-02-06 Asmo Co Ltd Oil-impregnated sintered bearing
JP2002327749A (en) * 2001-04-27 2002-11-15 Asmo Co Ltd Oil impregnated sintered bearing and manufacturing method of the same
JP2007263311A (en) * 2006-03-29 2007-10-11 Ntn Corp Dynamic pressure bearing device
JP2009097598A (en) * 2007-10-16 2009-05-07 Ntn Corp Sliding bearing and its manufacturing method
JP2016065638A (en) * 2014-09-24 2016-04-28 Ntn株式会社 Sliding member and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024006723A1 (en) 2022-06-30 2024-01-04 The Procter & Gamble Company Absorbent articles and methods and apparatuses for making absorbent articles with frangible pathways

Similar Documents

Publication Publication Date Title
KR101081808B1 (en) A manufacturing method of sliding bearing
JP4515824B2 (en) High precision plain bearing
KR101171366B1 (en) Multilayer sliding member
JP5635352B2 (en) Compound plain bearing
WO2015119231A1 (en) Plain bearing
US20190249716A1 (en) Slide member and method for producing same
JP2003239976A (en) High precision sliding bearing
JP2007051705A (en) High-precision plain bearing
CN109702199A (en) A kind of high-entropy alloy-base self-lubricating oily bearing material
WO2006073090A1 (en) Sintered metallic material, oil-retaining bearing constituted of the metallic material, and fluid bearing apparatus
WO2018062357A1 (en) Slide member
JP2006214003A (en) Sintered metallic material and sintered oil-retaining bearing constituted of the metallic material
US20190226525A1 (en) Sliding member
JP4866411B2 (en) Oil-impregnated sliding material and slide bearing
JP2012251616A (en) Multi-layered bearing, thrust multi-layered bearing, and thrust multi-layered bearing device
JP2010032059A (en) High precision sliding bearing
WO2019070041A1 (en) Sliding member
JP2019066044A (en) Slide member
JP6608224B2 (en) Manufacturing method of sliding member
JP2003269455A (en) Slide bearing
JP2018059085A (en) Sliding member and method of producing the same
JP6317057B2 (en) Plain bearing
JP4310053B2 (en) Oil-impregnated sliding material and slide bearing
JP2856861B2 (en) Method of manufacturing sliding member embedded with solid lubricant
JP4282887B2 (en) Roller bearing cage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18864768

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18864768

Country of ref document: EP

Kind code of ref document: A1