JP2010032059A - High precision sliding bearing - Google Patents

High precision sliding bearing Download PDF

Info

Publication number
JP2010032059A
JP2010032059A JP2009259521A JP2009259521A JP2010032059A JP 2010032059 A JP2010032059 A JP 2010032059A JP 2009259521 A JP2009259521 A JP 2009259521A JP 2009259521 A JP2009259521 A JP 2009259521A JP 2010032059 A JP2010032059 A JP 2010032059A
Authority
JP
Japan
Prior art keywords
bearing
resin layer
resin
outer peripheral
sliding portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009259521A
Other languages
Japanese (ja)
Inventor
Akinari Ohira
晃也 大平
Masaki Egami
正樹 江上
Kazutoyo Murakami
和豊 村上
Kenji Nunome
健治 布目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2009259521A priority Critical patent/JP2010032059A/en
Publication of JP2010032059A publication Critical patent/JP2010032059A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Rolls And Other Rotary Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high precision sliding bearing capable of demonstrating an excellent lubricating performance while high preciseness is well maintained. <P>SOLUTION: The sliding bearing is furnished with a metal-made bearing outer circumferential section and a resin layer formed on a sliding section of the bearing outer circumferential section by insert-molding a resin. Fine recesses are provided at least in part of the surface of the bearing outer circumferential section in contact with the resin layer. The resin layer satisfies the relation (linear coefficient of expansion of resin material)×(thickness of resin layer) ≤0.15 and satisfies that the total apparent area occupied by the recesses is 25-95% of the surface area of the bearing outer circumferential section in contact with the resin layer. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、高精度かつ摺動特性に優れたすべり軸受材料に関する。 The present invention relates to a slide bearing material having high accuracy and excellent sliding characteristics.

従来から、回転精度の高いすべり軸受として、焼結金属(多孔質)に油を含浸させたすべり軸受が知られている。このすべり軸受は、焼結金属系の多孔質材料に油を含浸させて使用する場合、油を継続的に摺動界面に供給することが可能であるため、摩擦力を低くすることができる。このすべり軸受の相手材は、一般に金属材料の場合が多く、線膨張の相違によるダキツキ、抜け等の心配がない。また、この金属材料は加工精度を高めることが可能であり、回転精度が要求される個所への使用が適している。   2. Description of the Related Art Conventionally, a slide bearing in which a sintered metal (porous) is impregnated with oil is known as a slide bearing with high rotational accuracy. When this sliding bearing is used by impregnating a sintered metal-based porous material with oil, the oil can be continuously supplied to the sliding interface, so that the frictional force can be reduced. In general, the mating material of the slide bearing is often a metal material, and there is no fear of stiffening or coming off due to differences in linear expansion. In addition, this metal material can improve the processing accuracy, and is suitable for use in a place where rotational accuracy is required.

また、上記以外の自己潤滑性を有するすべり軸受としては、樹脂にPTFEや黒鉛、二硫化モリブデン等の固体潤滑剤配合したり、潤滑油やワックスを配合したものが知られている。   In addition, as a plain bearing having self-lubricating properties other than those described above, those in which a solid lubricant such as PTFE, graphite, or molybdenum disulfide is blended in a resin, or a lubricant or wax is blended are known.

しかしながら、金属系の多孔質材料に油を含浸させてすべり軸受として使用した場合、相手材がアルミ材等の軟質材の場合は、相手材を摩耗させる恐れがある。また、潤滑油の供給が途切れた場合、一時的に金属接触が発生するため、異音が発生し、急速に摩擦が進行する恐れがある。さらに、荷重が極端に大きい場合やすべり速度が低く油膜ができない場合にも金属接触が生じやすい。   However, when a metal-based porous material is impregnated with oil and used as a slide bearing, the mating material may be worn if the mating material is a soft material such as an aluminum material. Further, when the supply of the lubricating oil is interrupted, a metal contact is temporarily generated, so that an abnormal noise is generated, and there is a possibility that the friction proceeds rapidly. Further, when the load is extremely large, the metal contact is likely to occur even when the sliding speed is low and an oil film cannot be formed.

一方、すべり軸受の材料が摺動特性のよい樹脂材料を用いると、軟質材相手でも相手材を攻撃しない。しかし、一般的に樹脂材料は金属材料と比較して線膨張係数、吸水率が大きく、使用温度領域が広い場合、低温時の使用では樹脂すべり材の収縮によりダキツキを発生したり、高温時の使用では、外径側ハウジングからの形状拘束を受けて、体積膨張が内径側へ逃げて、内径寸法が小さくなり軸へのダキツキが発生する。このため、樹脂軸受の場合、必然的に軸受の隙間を大きくとる必要があり、回転精度が悪化するという問題を有する。また、樹脂すべり軸受が吸水すれば、体積膨張が発生するため、軸との隙間が変化して好ましくないという問題もある。   On the other hand, if the material of the slide bearing is a resin material having good sliding characteristics, even the soft material partner will not attack the partner material. However, in general, resin materials have a larger coefficient of linear expansion and water absorption than metal materials, and when the operating temperature range is wide, when used at low temperatures, the resin sliding material may shrink due to shrinkage or at high temperatures. In use, volume restriction escapes to the inner diameter side due to the shape constraint from the outer diameter side housing, and the inner diameter dimension becomes smaller and the shaft is stiffened. For this reason, in the case of a resin bearing, it is inevitably necessary to make a gap between the bearings large, and there is a problem that rotational accuracy deteriorates. Further, if the resin sliding bearing absorbs water, volume expansion occurs, which causes a problem that the gap with the shaft changes, which is not preferable.

この発明は、上記のような問題に対処するためになされたものであり、高精度を有しつつ、潤滑性に優れた高精度すべり軸受を提供することを目的とする。   The present invention has been made to address the above-described problems, and an object of the present invention is to provide a high-accuracy plain bearing excellent in lubricity while having high accuracy.

この発明は、軸受外周部として金属を用い、この軸受外周部の摺動部に樹脂材料をインサート成形して樹脂層を形成すると共に、この軸受外周部の表面のうち、少なくとも上記樹脂層と接触する軸受外周部の表面部分に細かい凹部を設け、上記樹脂層における(樹脂材料の線膨張係数)×(樹脂層の肉厚)を0.15以下とし、上記凹部が占める見かけ面積の合計を、上記樹脂層と接触する軸受外周部の表面部分の面積の25〜95%とすることにより、上記課題を解決したのである。   This invention uses a metal as the bearing outer peripheral portion, inserts a resin material into the sliding portion of the bearing outer peripheral portion to form a resin layer, and contacts at least the resin layer on the surface of the bearing outer peripheral portion. A fine concave portion is provided on the surface portion of the outer peripheral portion of the bearing, and (the linear expansion coefficient of the resin material) × (the thickness of the resin layer) in the resin layer is 0.15 or less, and the total apparent area occupied by the concave portion is The said subject was solved by setting it as 25 to 95% of the area of the surface part of the bearing outer peripheral part which contacts the said resin layer.

軸受外周部の摺動部に所定の樹脂層を形成したので、樹脂層の温度変化による寸法変化が抑えられる。このため、高精度を有しつつ、潤滑性に優れたものとなる。   Since the predetermined resin layer is formed on the sliding portion of the outer peripheral portion of the bearing, the dimensional change due to the temperature change of the resin layer can be suppressed. For this reason, it has excellent lubricity while having high accuracy.

また、軸受外周部の表面のうち、少なくとも上記樹脂層と接触する軸受外周部の表面部分に所定の細かい凹部を設けたので、樹脂層を形成する際、この細かい凹部に樹脂が入り込むので、アンカー効果によって、軸受外周部と樹脂層との密着性を向上させることができる。   In addition, since a predetermined fine recess is provided at least on the surface portion of the bearing outer periphery that is in contact with the resin layer, the resin enters the fine recess when the resin layer is formed. Due to the effect, the adhesion between the outer peripheral portion of the bearing and the resin layer can be improved.

この発明にかかる高精度すべり軸受は、軸受外周部の摺動部に所定の樹脂層を形成させるので、樹脂層の温度変化による寸法変化が抑えられる。このため、高精度を有しつつ、潤滑性に優れたものとなる。   In the high-accuracy plain bearing according to the present invention, since a predetermined resin layer is formed on the sliding portion of the outer peripheral portion of the bearing, a dimensional change due to a temperature change of the resin layer can be suppressed. For this reason, it has excellent lubricity while having high accuracy.

さらに、摺動部に所定の樹脂層を形成させるので、軟質相手材を攻撃したり、異音の発生を抑えることが可能となる。   Further, since the predetermined resin layer is formed on the sliding portion, it is possible to attack the soft mating member and suppress the generation of abnormal noise.

また、軸受外周部の表面のうち、少なくとも上記樹脂層と接触する軸受外周部の表面部分に所定の細かい凹部を設けることができる。これにより、樹脂層を形成する際、この細かい凹部に樹脂が入り込むので、アンカー効果によって、軸受外周部と樹脂層との密着性を向上させることができる。   Moreover, a predetermined | prescribed fine recessed part can be provided in the surface part of the bearing outer peripheral part which contacts the said resin layer at least among the surfaces of a bearing outer peripheral part. Thereby, when forming a resin layer, since resin enters this fine recessed part, the adhesiveness of a bearing outer peripheral part and a resin layer can be improved according to an anchor effect.

(a)〜(d)凹部の大きさを説明するための模式図(A)-(d) The schematic diagram for demonstrating the magnitude | size of a recessed part (a)〜(f)軸受外周部への樹脂層の形成する位置の例を示す断面図(A)-(f) Sectional drawing which shows the example of the position which the resin layer forms in a bearing outer peripheral part

この発明にかかる高精度すべり軸受は、軸受外周部として金属を用い、この軸受外周部の摺動部に樹脂材料をインサート成形して樹脂層を形成したものである。   The high-accuracy plain bearing according to the present invention uses a metal as a bearing outer peripheral portion and inserts a resin material into a sliding portion of the bearing outer peripheral portion to form a resin layer.

上記軸受外周部とは、すべり軸受の外周部を構成する筒状の部材であり、摺動部を有する部材である。この摺動部とは、ラジアル方向の荷重を支持するための内径側摺動部をいい、また、スラスト方向にも荷重を支持する場合には、上記の内部摺動部だけでなく、端面摺動部も含む。   The said bearing outer peripheral part is a cylindrical member which comprises the outer peripheral part of a slide bearing, and is a member which has a sliding part. The sliding portion refers to a sliding portion on the inner diameter side for supporting a load in the radial direction. When supporting a load in the thrust direction, not only the inner sliding portion but also an end surface sliding portion is used. Includes moving parts.

上記軸受外周部を構成する金属は、上記樹脂層との接合性の点から細かい凹部を有する金属を用いるのが好ましく、焼結金属がより好ましい。特に、焼結金属を用いると、焼結金属が有する凹部が内部で連通して連通孔を形成しているので、樹脂材料をインサート成形する際に、上記連通孔に樹脂が浸入し、上記の軸受外周部と樹脂層とがより強固に保持される。   As the metal constituting the outer peripheral portion of the bearing, it is preferable to use a metal having a fine recess from the viewpoint of bondability with the resin layer, and a sintered metal is more preferable. In particular, when a sintered metal is used, the recesses of the sintered metal communicate with each other to form a communication hole. Therefore, when the resin material is insert-molded, the resin enters the communication hole, A bearing outer peripheral part and a resin layer are hold | maintained more firmly.

この焼結金属の材質としては、Cu系、Fe−Cu系等があげられ、成分としてC、Zn、Sn等を含んでもよい。また、成形性や離型性を向上させるためバインダーを少量添加してもよい。さらに、アルミニウム系でCu、Mg、Si等を配合した材料や金属−合成樹脂で鉄粉をエポキシ系の合成樹脂で結合させた材料でもよい。さらにまた、上記樹脂層との密着性を向上させるため、成形を阻害しない程度であれば表面処理を行ったり、接着剤等を使用することも可能である。   Examples of the material of the sintered metal include Cu-based and Fe-Cu-based materials, and may include C, Zn, Sn, and the like as components. Further, a small amount of a binder may be added in order to improve moldability and releasability. Further, an aluminum-based material containing Cu, Mg, Si, or the like, or a metal-synthetic resin material in which iron powder is bonded with an epoxy-based synthetic resin may be used. Furthermore, in order to improve the adhesiveness with the resin layer, it is possible to perform surface treatment or use an adhesive or the like as long as it does not hinder molding.

なお、上記焼結金属は、加圧成形、脱脂、焼成、サイジングの各工程を経て製造することができる。   In addition, the said sintered metal can be manufactured through each process of pressure molding, degreasing, baking, and sizing.

上記軸受外周部の表面のうち、少なくとも上記樹脂層と接触する軸受外周部の表面部分には、細かい凹部が設けられる。樹脂層を形成する際、この細かい凹部に樹脂が入り込むので、アンカー効果によって、軸受外周部と樹脂層との密着性を向上させることができる。   Of the surface of the bearing outer peripheral portion, a fine recess is provided at least on the surface portion of the bearing outer peripheral portion in contact with the resin layer. When the resin layer is formed, the resin enters the fine recesses, so that the adhesion between the bearing outer peripheral portion and the resin layer can be improved by the anchor effect.

上記凹部が占める見かけ面積の合計は、上記樹脂層と接触する軸受外周部の表面部分の面積の20〜95%がよく、40〜90%が好ましい。20%より少ないと、アンカー効果が発揮できず、容易に樹脂が剥がれる場合がある。一方、95%を超えると、寸法精度及び強度を保持できなくなる場合がある。なお、上記見かけ面積とは、上記の軸受外周部の表面部分を上方から見たときに、凹部が占める面積をいう。   The total apparent area occupied by the recesses is preferably 20 to 95%, and preferably 40 to 90%, of the surface area of the outer peripheral portion of the bearing in contact with the resin layer. If it is less than 20%, the anchor effect cannot be exhibited and the resin may be easily peeled off. On the other hand, if it exceeds 95%, dimensional accuracy and strength may not be maintained. In addition, the said apparent area means the area which a recessed part occupies when the surface part of said bearing outer peripheral part is seen from upper direction.

上記凹部の大きさは、5〜300μmがよく、10〜250μmが好ましい。上記の凹部の大きさとは、図1(a)〜(d)に示すように、絶対最大長(凹部の周囲に存在する任意の2点の最大長さ)を表す。大きさが5μm未満だと、溶融樹脂が容易に孔に入り込むことができないため、十分なアンカー効果を発揮することができない。一方、大きさが300μmを超えると寸法精度が出難くかつ機械的強度も極端に低下する為好ましくない。上記凹部の大きさは、金属粒子の粒子径や焼結金属の密度、あるいはサイジング金型の寸法等を調整することで調整できる。   The size of the recess is preferably 5 to 300 μm, and preferably 10 to 250 μm. As shown in FIGS. 1A to 1D, the size of the recess represents the absolute maximum length (the maximum length of any two points existing around the recess). When the size is less than 5 μm, the molten resin cannot easily enter the hole, so that a sufficient anchor effect cannot be exhibited. On the other hand, when the size exceeds 300 μm, it is difficult to obtain dimensional accuracy and the mechanical strength is extremely lowered. The size of the recess can be adjusted by adjusting the particle diameter of the metal particles, the density of the sintered metal, the size of the sizing mold, or the like.

上記凹部の深さは、3〜500μmがよく、3〜300μmが好ましい。3μm未満だと、溶融樹脂が容易に孔に入り込むことができないため、十分なアンカー効果を発揮することができない場合がある。一方、500μmより大きいと、寸法精度がでにくく、かつ機械的強度も極端に低下する場合がある。   The depth of the recess is preferably 3 to 500 μm, and preferably 3 to 300 μm. If the thickness is less than 3 μm, the molten resin cannot easily enter the hole, and thus a sufficient anchor effect may not be exhibited. On the other hand, if it is larger than 500 μm, the dimensional accuracy is difficult to obtain, and the mechanical strength may be extremely lowered.

上記凹部の形成は、例えば、機械加工やサンドブラスト、エッチング、圧力による凹凸の転写等で所定の表面形状にすることができる。また、コスト面を考慮すれば、焼結金属を利用することが好ましい。焼結金属は、金属粒子の粒子径や焼結金属の密度、あるいはサイジング金型の寸法、成形圧力、焼成温度等を調整することによって金属粒子間の隙間に起因する凹部の大きさや深さ、割合を最適化することができ、後加工なしで所定の表面形状を得ることができ、コスト的に安価となる。   The concave portion can be formed into a predetermined surface shape by, for example, machining, sand blasting, etching, or transferring unevenness by pressure. In view of cost, it is preferable to use a sintered metal. Sintered metal is the size and depth of the recesses caused by the gaps between the metal particles by adjusting the particle diameter of the metal particles, the density of the sintered metal, or the dimensions of the sizing mold, molding pressure, firing temperature, etc. The ratio can be optimized, a predetermined surface shape can be obtained without post-processing, and the cost is low.

上記の樹脂層は、樹脂材料を上記軸受外周部の摺動部表面にインサート成形して形成される。この樹脂材料は、樹脂層としたときに摺動性に優れる材料が好ましく、固体潤滑材や潤滑油を配合することも可能である。上記樹脂材料としては、ポリエチレン、ポリアミド、ポリアセタール、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリカーボネート、ポリフェニレンサルファイド、ポリエーテルサルフォン、ポリエーテルイミド、ポリアミドイミド、ポリエーテルエーテルケトン、熱可塑性ポリイミド、熱硬化性ポリイミド、エポキシ樹脂、フェノール樹脂等があげられる。   The resin layer is formed by insert-molding a resin material on the sliding portion surface of the bearing outer peripheral portion. The resin material is preferably a material having excellent slidability when formed into a resin layer, and a solid lubricant or lubricating oil can also be blended. Examples of the resin material include polyethylene, polyamide, polyacetal, polyethylene terephthalate, polybutylene terephthalate, polycarbonate, polyphenylene sulfide, polyethersulfone, polyetherimide, polyamideimide, polyetheretherketone, thermoplastic polyimide, thermosetting polyimide, Examples thereof include an epoxy resin and a phenol resin.

上記固体潤滑材としては、ポリテトラフルオロエチレン、黒鉛、二硫化モリブデン、窒化硼素、二硫化タングステン等一般的な固体潤滑材、スピンドル油、冷凍機油、タービン油、マシン油、ダイナモ油等の鉱油、炭化水素、エステル、ポリグリコール、シリコーン油、フッ素化油、等の合成油等、一般に使用されている潤滑油等の油があげられる。また、これらの油を焼結金属製の軸受外周部に含浸し、樹脂層を介して摺動面に滲出させて潤滑させることも可能である。含浸は、真空含浸等の方法で行うことができる。   As the solid lubricant, polytetrafluoroethylene, graphite, molybdenum disulfide, boron nitride, tungsten disulfide and other common solid lubricants, spindle oil, refrigerator oil, turbine oil, machine oil, dynamo oil and other mineral oils, Examples thereof include generally used lubricating oils such as hydrocarbons, esters, polyglycols, silicone oils, synthetic oils such as fluorinated oils, and the like. It is also possible to impregnate the outer periphery of the sintered metal bearing with these oils, and to exude and lubricate the sliding surface through the resin layer. Impregnation can be performed by a method such as vacuum impregnation.

上記樹脂材料は、摩擦・摩耗特性を改善させたり、線膨張係数を小さくするために、適当な充填材を添加することができる。例としては、ガラス繊維、カーボン繊維、ピッチ系炭素繊維、PAN系炭素繊維、アラミド繊維、アルミナ繊維、ポリエステル繊維、ボロン繊維、炭化珪素繊維、窒化硼素繊維、窒化珪素繊維、金属繊維、アスベスト、石英ウール等の繊維類やこれらを布状に編んだもの、炭酸カルシウムやタルク、シリカ、クレー、マイカ等の鉱物類、硼酸アルミニウムウィスカー、チタン酸カリウムウィスカー等の無機ウィスカー類、カーボンブラック、黒鉛、ポリイミド樹脂やポリベンゾイミダゾール等の各種耐熱性樹脂等があげられる。さらに、潤滑性組成物の熱伝導性を向上させる目的で、カーボン繊維、金属繊維、黒鉛粉末、酸化亜鉛等を添加しても良い。さらにまた、炭酸リチウム、炭酸カルシウム等の炭酸塩、リン酸リチウム、リン酸カルシウム等のリン酸塩等を配合しても良い。   An appropriate filler can be added to the resin material in order to improve the friction / wear characteristics and reduce the linear expansion coefficient. Examples include glass fiber, carbon fiber, pitch-based carbon fiber, PAN-based carbon fiber, aramid fiber, alumina fiber, polyester fiber, boron fiber, silicon carbide fiber, boron nitride fiber, silicon nitride fiber, metal fiber, asbestos, quartz Fibers such as wool, knitted fabrics, minerals such as calcium carbonate, talc, silica, clay, mica, inorganic whiskers such as aluminum borate whisker and potassium titanate whisker, carbon black, graphite, polyimide Examples thereof include various heat-resistant resins such as resins and polybenzimidazoles. Furthermore, carbon fiber, metal fiber, graphite powder, zinc oxide, or the like may be added for the purpose of improving the thermal conductivity of the lubricating composition. Furthermore, carbonates such as lithium carbonate and calcium carbonate, and phosphates such as lithium phosphate and calcium phosphate may be blended.

なお、この発明の効果を阻害しない配合量で一般合成樹脂に広く適用しえる添加剤を併用しても良い。例えば離型剤、難燃剤、帯電防止剤、耐候性改良剤、酸化防止剤、着色剤等の工業用添加剤を適宜添加しても良く、これらを添加する方法も特に限定されるものではない。   In addition, you may use together the additive which can be widely applied to general synthetic resin with the compounding quantity which does not inhibit the effect of this invention. For example, industrial additives such as mold release agents, flame retardants, antistatic agents, weather resistance improvers, antioxidants, and colorants may be added as appropriate, and the method of adding them is not particularly limited. .

更に、この発明の樹脂組成物の潤滑性を損なわない限り、中間製品または最終製品の形態において、別途、たとえばアニール処理等の化学的または物理的な処理によって性質改善のための変性が可能である。   Further, as long as the lubricity of the resin composition of the present invention is not impaired, in the form of the intermediate product or the final product, modification for improving properties can be performed separately by chemical or physical treatment such as annealing treatment. .

上記樹脂層における、(樹脂材料の線膨張係数(単位:℃-1))×(樹脂層の肉厚(単位:μm))は、0.15以下がよく、0.13以下が好ましく、0.10以下がさらに好ましい。上記値が0.15より大きい場合、樹脂部の肉厚又は膨張も大きくなる。このとき、樹脂部の外径側は金属で拘束されていることから、金属の膨張分以上は膨張できず、内径側へ膨張し、内径寸法が小さくなる。その結果、隙間が減少し、初期の隙間設定によっては、温度上昇により軸へのダキツキが発生する可能性がある。また、過度の隙間の変動は、トルク変動を引き起こすため好ましくなく、回転精度の点からは隙間は小さいほうが好ましい。また、吸水による寸法変化も大きくなり、過度の隙間の変動が生じる場合がある。 In the resin layer, (the linear expansion coefficient of resin material (unit: ° C. −1 )) × (thickness of resin layer (unit: μm)) is preferably 0.15 or less, preferably 0.13 or less, 0 10 or less is more preferable. When the said value is larger than 0.15, the thickness or expansion | swelling of a resin part also becomes large. At this time, since the outer diameter side of the resin portion is constrained by the metal, it cannot expand beyond the expansion of the metal, expands toward the inner diameter side, and the inner diameter dimension decreases. As a result, the gap is reduced, and depending on the initial gap setting, there is a possibility that the shaft may be stiff due to the temperature rise. In addition, excessive fluctuation of the gap is not preferable because it causes torque fluctuation. From the viewpoint of rotational accuracy, it is preferable that the gap is small. Moreover, the dimensional change by water absorption also becomes large, and the fluctuation | variation of an excessive gap may arise.

また、成形可能な樹脂層の厚みは、50μm位であり、これより薄いと形成が困難となる。従って、樹脂膨張係数×肉厚は0.003以上が必要であり、好ましくは0.01以上、さらに好ましくは0.015以上必要である。   The moldable resin layer has a thickness of about 50 μm, and if it is thinner than this, it becomes difficult to form. Accordingly, the resin expansion coefficient × thickness needs to be 0.003 or more, preferably 0.01 or more, more preferably 0.015 or more.

この発明にかかる高精度すべり軸受は、金型内に軸受外周部を配置し、摺動部となる内径面又は端面、及び、必要に応じて、外径面に上記樹脂材料をインサート成形することにより製造することができる。具体的には、金型内に軸受外周部をあらかじめ投入し、フィルムゲートやサイドゲートを利用して軸受外周部とコアピンなどの金型部品の隙間に溶融樹脂を注入することで製造される。   The high-accuracy plain bearing according to the present invention includes a bearing outer peripheral portion disposed in a mold, and insert molding of the resin material on the inner diameter surface or end surface serving as a sliding portion and, if necessary, the outer diameter surface. Can be manufactured. Specifically, the outer peripheral part of the bearing is put in the mold in advance, and the molten resin is injected into the gap between the outer peripheral part of the bearing and a mold part such as a core pin using a film gate or a side gate.

この発明にかかる高精度すべり軸受の形状としては、ラジアル型、フランジ付きブッシュ等、摺動部の形状に合わせて、最適な軸受形状を選択することができる。   As the shape of the high-accuracy plain bearing according to the present invention, an optimum bearing shape can be selected according to the shape of the sliding portion such as a radial type or a flanged bush.

また、樹脂層の軸受外周部へインサート成形する場所は、軸受外周部の摺動部であれば特に限定されない。例えば、図2(a)〜(f)に示すような場合があげられる。図2(a)(f)は、ラジアル方向への荷重を支持するため、軸受外周部1の内径側摺動部に樹脂層2を形成したものである。図2(d)は、スラスト方向への荷重を支持するため、軸受外周部1の端面摺動部に樹脂層2を形成したものである。図2(b)(c)(e)は、ラジアル方向及びスラスト方向への荷重を支持するため、軸受外周部1の内径側摺動部及び端面摺動部に樹脂層2を形成したものである。なお、図示しないが、必要に応じて、軸受の外径部に樹脂層を付与することも可能である。なお、図2(c)(f)に示すように、軸受外周部と樹脂層とが剥がれないような引っ掛け部を有する樹脂層の形状を採用してもよい。   Moreover, the place which insert-molds to the bearing outer peripheral part of a resin layer will not be specifically limited if it is a sliding part of a bearing outer peripheral part. For example, there are cases as shown in FIGS. 2A and 2F show the resin layer 2 formed on the inner diameter side sliding portion of the bearing outer peripheral portion 1 in order to support the load in the radial direction. FIG. 2D shows a resin layer 2 formed on the end surface sliding portion of the bearing outer peripheral portion 1 in order to support a load in the thrust direction. FIGS. 2B, 2C, and 2E show the resin layer 2 formed on the inner diameter side sliding portion and the end surface sliding portion of the bearing outer peripheral portion 1 in order to support the load in the radial direction and the thrust direction. is there. Although not shown, a resin layer can be applied to the outer diameter portion of the bearing as necessary. As shown in FIGS. 2C and 2F, the shape of the resin layer having a hooking portion that does not peel off the outer peripheral portion of the bearing and the resin layer may be adopted.

この発明にかかる高精度すべり軸受は、軸の回転精度向上のため、軸受と軸との隙間を小さくすることができる。このとき、摺動によって摩耗粉が発生すると、この摩耗粉が上記の隙間に介在することがある。この場合、回転トルクを上昇させたり、摩耗粉が研磨材として働いて、軸や軸受の異常摩耗を引き起こす場合がある。   The high-accuracy plain bearing according to the present invention can reduce the clearance between the bearing and the shaft in order to improve the rotational accuracy of the shaft. At this time, if wear powder is generated by sliding, the wear powder may be interposed in the gap. In this case, the rotational torque may be increased or the abrasion powder may act as an abrasive to cause abnormal wear of the shaft or the bearing.

上記の異常摩耗の回避策として、軸受の内径側摺動部に設けた樹脂層2や、スラスト荷重用の端面摺動部に設けた樹脂層2に凹部を設けることができる。この凹部を設けることにより、この凹部に摩耗粉を捕捉し、異常摩耗の発生を抑制することができる。   As a measure for avoiding the above abnormal wear, a recess can be provided in the resin layer 2 provided on the inner diameter side sliding portion of the bearing or the resin layer 2 provided on the end surface sliding portion for thrust load. By providing this recess, wear powder can be captured in this recess and the occurrence of abnormal wear can be suppressed.

内径側摺動部の樹脂層2に上記凹部を設ける場合、凹部1個当たりの見かけ面積は、全内径面面積の0.5〜10%が好ましく、かつ、上記凹部の見かけ面積の総和が、全内径面面積の0.5〜30%が好ましい。   When the recess is provided in the resin layer 2 on the inner diameter side sliding portion, the apparent area per recess is preferably 0.5 to 10% of the total inner diameter surface area, and the total apparent area of the recess is 0.5 to 30% of the total inner surface area is preferred.

また、端面摺動部の樹脂層2に上記凹部を設ける場合、片側端面に設けられた上記凹部1個当たりの見かけ面積は、片側端面全体の面積の0.5〜10%が好ましく、かつ、片側端面に設けられた上記凹部の見かけ面積の総和が、片側端面全体の面積の0.5〜30%が好ましい。   Moreover, when providing the said recessed part in the resin layer 2 of an end surface sliding part, 0.5-10% of the area of the whole one side end surface is preferable as the apparent area per said recessed part provided in the one side end surface, and The total sum of the apparent areas of the recesses provided on one end face is preferably 0.5 to 30% of the entire area of the one end face.

いずれの場合も、0.5%未満の場合は、凹部は十分な容積を持たず、長期間の運転に支障がでる場合がある。一方、30%を超えると、荷重を受ける面積が減少して面圧過大となり、異常摩耗の原因となり得る。   In any case, if it is less than 0.5%, the concave portion does not have a sufficient volume, which may hinder long-term operation. On the other hand, if it exceeds 30%, the area that receives the load decreases and the surface pressure becomes excessive, which may cause abnormal wear.

上記凹部は、内径側摺動部や端面摺動部に設けた樹脂層2上に、独立して分散した窪みや、溝状に形成することができ、その形状、寸法及び凹部の個数に特に限定されない。この凹部のうち、最も好ましい形態は、溝状のものであり、この溝状の凹部を、軸受内径の中心軸と平行に配置したり、角度を持たせた、いわゆる螺旋溝の配置をとることができる。また、その凹部の長さ及び個数は、上記の凹部の見かけ面積の比を満たす程度の長さ及び個数を採用することができる。さらに、上記凹部を複数設ける場合、これらを内径側摺動部又は端面摺動部の全体からみて等間隔に配置するのが好ましい。   The recesses can be formed on the resin layer 2 provided on the inner diameter side sliding portion or the end surface sliding portion independently in the form of dents or grooves, and the shape, size, and number of the recesses are particularly limited. It is not limited. Of these recesses, the most preferable form is a groove-like shape, and the groove-like recesses are arranged in parallel with the central axis of the bearing inner diameter, or have an angle so-called spiral groove arrangement. Can do. In addition, the length and the number of the recesses may be a length and the number that satisfy the ratio of the apparent area of the recesses. Furthermore, when providing the said several recessed part, it is preferable to arrange | position these at equal intervals seeing from the whole inside diameter side sliding part or the end surface sliding part.

上記凹部の形成は、機械加工、サンドブラスト、エッチング、圧力による転写等で、所定の形状にすることができる。また、予めインサート成形時の金型に凸部形状を設定しておくことで、成形と同時に凹部が形成される手法を採用してもよい。   The concave portion can be formed into a predetermined shape by machining, sandblasting, etching, pressure transfer, or the like. Moreover, you may employ | adopt the method in which a recessed part is formed simultaneously with shaping | molding by setting a convex part shape to the metal mold | die at the time of insert molding previously.

さらに、この発明にかかる高精度すべり軸受の軸受外周部を構成する金属として多孔質焼結金属を用いる場合、この焼結金属に潤滑油を含浸して用いることができる。この潤滑油が樹脂層2を通じて摺動面に滲み出すことにより、摺動性を更に向上させ、長寿命化させることができる。その際、樹脂層2として多孔質構造を有する樹脂や、潤滑油との親和性に優れる樹脂、多孔質構造を有する充填材を配合した樹脂等を採用した場合、一層効果的となる。   Furthermore, when a porous sintered metal is used as the metal constituting the bearing outer peripheral portion of the high-accuracy plain bearing according to the present invention, the sintered metal can be used by impregnating the lubricant. When this lubricating oil oozes out to the sliding surface through the resin layer 2, the slidability can be further improved and the life can be extended. At that time, when the resin layer 2 is made of a resin having a porous structure, a resin having excellent affinity with a lubricating oil, a resin blended with a filler having a porous structure, or the like, it becomes more effective.

上記の多孔質構造を有する樹脂は、下記の方法で製造することができる。まず、2種類の樹脂(樹脂材料Aと樹脂材料B)とを混練した後、射出成形して合成樹脂層を得る。その後、樹脂材料Bを溶解させず、樹脂材料Aを溶解させる溶剤を用いて処理する。これにより、多孔質構造を有する樹脂を製造することができる。   The resin having the above porous structure can be produced by the following method. First, two types of resins (resin material A and resin material B) are kneaded and then injection molded to obtain a synthetic resin layer. Then, it processes using the solvent which does not dissolve the resin material B but dissolves the resin material A. Thereby, resin which has a porous structure can be manufactured.

上記連通孔を付与させるための樹脂材料(上記樹脂材料B)としては、ポリエチレン、ポリアミド、ポリアセタール、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリカーボネート、ポリフェニレンスルファイド、ポリエーテルサルフォン、ポリエーテルイミド、ポリエポキシ樹脂、フェノール樹脂等があげられる。また、溶剤に溶解しやすい樹脂材料(上記樹脂材料A)としては、ケトン系溶剤に溶解するポリスチレン、水や熱水に溶解するポリビニルアルコール、ポリビニルピロリドン等があげられる。   Examples of the resin material (resin material B) for providing the communication holes include polyethylene, polyamide, polyacetal, polyethylene terephthalate, polybutylene terephthalate, polycarbonate, polyphenylene sulfide, polyethersulfone, polyetherimide, and polyepoxy resin. And phenol resin. Examples of the resin material that easily dissolves in the solvent (resin material A) include polystyrene that dissolves in a ketone solvent, polyvinyl alcohol that dissolves in water and hot water, and polyvinylpyrrolidone.

上記の多孔質構造を有する充填材を配合した樹脂とは、樹脂材料に連通孔を有する充填材を配合したものをいう。この連通孔を有する充填材としては、多孔質シリカ等の多孔質粉末等があげられる。上記多孔質シリカとして好ましいものは、非晶質の二酸化ケイ素を主成分とする粉末である。例えば、一次粒子径が15nm以上の微粒子の集合体である沈降性シリカ、特開2000−143228号等に開示されている、アルカリ金属塩又はアルカリ土類金属塩を含有したケイ酸アルカリ水溶液を有機溶媒中で乳化し、二酸化炭素でゲル化させることにより得られる粒子径が3〜8nmの一次微粒子の集合体である真球状多孔質シリカ等があげられる。   The resin blended with the filler having the above porous structure refers to a resin material blended with a filler having communication holes. Examples of the filler having the communication holes include porous powders such as porous silica. What is preferable as the porous silica is a powder containing amorphous silicon dioxide as a main component. For example, an aqueous solution of alkali silicate containing an alkali metal salt or an alkaline earth metal salt disclosed in Japanese Patent Application Laid-Open No. 2000-143228, which is an aggregate of fine particles having a primary particle diameter of 15 nm or more, Examples thereof include true spherical porous silica which is an aggregate of primary fine particles having a particle diameter of 3 to 8 nm obtained by emulsification in a solvent and gelation with carbon dioxide.

この発明においては、粒子径が3〜8nmの一次微粒子が集合して真球状シリカ粒子を形成した多孔質シリカが、連通孔を有しているため特に好ましい。この真球状シリカ粒子の平均粒子径は、0.5〜100μmが好ましく、取扱い易さや摺動特性の付与を考慮した場合は、1〜20μmが特に好ましい。   In the present invention, porous silica in which primary fine particles having a particle diameter of 3 to 8 nm are aggregated to form true spherical silica particles has communication holes, and thus is particularly preferable. The average particle diameter of the true spherical silica particles is preferably 0.5 to 100 μm, and particularly preferably 1 to 20 μm in consideration of easy handling and imparting sliding properties.

このような真球状多孔質シリカとしては、旭硝子社製;サンスフェア、鈴木油脂工業社製;ゴッドボール等があげられる。また、多孔質バルク状シリカとしては、(株)東海化学工業所製;マイクロイド等があげられる。   Examples of such spherical porous silica include Asahi Glass Co., Ltd .; Sunsphere, Suzuki Yushi Kogyo Co., Ltd .; God Ball and the like. Examples of the porous bulk silica include Tokai Chemical Industries, Ltd .; Microid and the like.

粒子径が3〜8nmの一次微粒子が集合した真球状シリカ粒子は、比表面積が200〜900m/g、好ましくは300〜800m/g、細孔容積が1〜3.5ml/g、細孔径が5〜30nm、好ましくは20〜30nm、吸油量が150〜400ml/100g、好ましくは300〜400ml/100gの特性を有することが好ましい。また、水に浸漬した後に再度乾燥しても、上記細孔容積及び吸油量が浸漬前の90%以上を保つことが好ましい。 True spherical silica particles in which primary fine particles having a particle diameter of 3 to 8 nm are aggregated have a specific surface area of 200 to 900 m 2 / g, preferably 300 to 800 m 2 / g, a pore volume of 1 to 3.5 ml / g, fine particles. It is preferable that the pore diameter is 5 to 30 nm, preferably 20 to 30 nm, and the oil absorption is 150 to 400 ml / 100 g, preferably 300 to 400 ml / 100 g. Moreover, even if it dries again after being immersed in water, it is preferable that the said pore volume and oil absorption amount maintain 90% or more before immersion.

なお、上記の比表面積及び細孔容積は窒素吸着法により、吸油量はJIS K5101に準じて測定した値である。   The specific surface area and the pore volume are values measured by a nitrogen adsorption method, and the oil absorption is a value measured according to JIS K5101.

また、上記真球状シリカ粒子の内部と外表面は、シラノール(Si−OH)で覆われていることが、潤滑剤を内部に保持しやすくなるため好ましい。   In addition, it is preferable that the inside and the outer surface of the spherical silica particles are covered with silanol (Si—OH) because the lubricant can be easily held inside.

さらに、多孔質シリカは、母材に適した有機系、無機系等の表面処理を行うことができる。上記多孔質シリカは、粒子の形状は特に限定されず、平均粒子径、比表面積、吸油量等が上記真球状シリカ粒子の範囲内であれば、非球状多孔質シリカであっても使用できる。なお、摺動相手材への攻撃性や混練性の観点から、球状、真球状の粒子がより好ましい。なお、ここで、球状とは、長径に対する短径の比が0.8〜1.0の球をいい、真球状とは、上記球状よりもっと真球に近い球をいう。   Furthermore, the porous silica can be subjected to surface treatment such as organic or inorganic suitable for the base material. The shape of the above-mentioned porous silica is not particularly limited, and non-spherical porous silica can be used as long as the average particle diameter, specific surface area, oil absorption amount and the like are within the range of the above-mentioned spherical silica particles. In addition, spherical and true spherical particles are more preferable from the viewpoint of the attacking property to the sliding partner material and kneading properties. Here, the spherical shape refers to a sphere having a ratio of the short diameter to the long diameter of 0.8 to 1.0, and the true sphere refers to a sphere closer to the true sphere than the above sphere.

この発明にかかる高精度すべり軸受は、高精度であり、摺動特性に優れており、かつ、アルミ軸等の軟質相手材を攻撃しない特徴を有する。このため、上記高精度すべり軸受を、複写機やプリンター等の事務機の感光ドラム、現像部及び/又は定着部等の回転精度が必要な支持軸受等の箇所に使用できる。これらに使用することにより、異音の発生を抑制することができる。   The high-accuracy plain bearing according to the present invention is highly accurate, has excellent sliding characteristics, and does not attack a soft mating material such as an aluminum shaft. Therefore, the high-accuracy plain bearing can be used in places such as a support bearing that requires rotational accuracy, such as a photosensitive drum, a developing unit, and / or a fixing unit of an office machine such as a copying machine or a printer. By using them, the generation of abnormal noise can be suppressed.

また、上記高精度すべり軸受を、キャリッジ軸受として使用することができる。上記キャリッジ軸受のキャリッジ材には焼結金属が使用されており、摺動性には優れるが、相手軸と金属同士の摺動となるため、潤滑状態が悪化した場合、異音が発生する場合がある。また、キャリッジとして樹脂製を用いた場合、異音は発生しないが、精度維持が困難である。これに対し、この発明にかかる高精度すべり軸受をキャリッジ軸受として使用すると、高精度を保ち続けて樹脂層で摺動するため、異音の発生を抑制することができる。   Further, the high-accuracy plain bearing can be used as a carriage bearing. Sintered metal is used for the carriage material of the above-mentioned carriage bearing, and it is excellent in slidability, but it becomes sliding between the mating shaft and metal, so when the lubrication state deteriorates and abnormal noise occurs There is. Also, when resin is used as the carriage, no abnormal noise is generated, but it is difficult to maintain accuracy. On the other hand, when the high-accuracy slide bearing according to the present invention is used as a carriage bearing, the high-precision sliding bearing is kept sliding with the resin layer, so that the generation of abnormal noise can be suppressed.

さらに、異音の発生抑制を目的に、比較的低荷重、低速で使用される転がり軸受との置き換えも可能である。   Furthermore, for the purpose of suppressing the occurrence of abnormal noise, it can be replaced with a rolling bearing used at a relatively low load and low speed.

(実施例1)
φ8.5mm×φ14mm×t5mmの焼結金属(Cu:90wt%−Sn:10wt%系,孔の大きさの平均値:125μm,平均深さ:20μm,凹部の割合:30%、線膨張係数:2.0×10−5/℃)からなる軸受外周部を用意する。射出成形用の金型内にこの軸受外周部を装着し、内径面に下記に示す樹脂材料を用いて、下記の方法でインサート成形を行い、φ8mm×φ14mm×t5mmの複合すべり軸受を製作した(形状;図2(a)、樹脂層の肉厚:250μm)。得られた複合すべり軸受を用いて、以下の条件で試験を行った。試験結果を表1に示す。
Example 1
φ8.5 mm × φ14 mm × t 5 mm sintered metal (Cu: 90 wt% -Sn: 10 wt% system, average value of pore size: 125 μm, average depth: 20 μm, ratio of recesses: 30%, linear expansion coefficient : 2.0 × 10 −5 / ° C.). This bearing outer periphery was mounted in a mold for injection molding, and insert molding was performed by the following method using the resin material shown below on the inner diameter surface to produce a composite slide bearing of φ8 mm × φ14 mm × t 5 mm. (Shape: FIG. 2A, resin layer thickness: 250 μm). Using the obtained composite plain bearing, the test was performed under the following conditions. The test results are shown in Table 1.

<樹脂材料>
・ベース樹脂:ポリエチレン(三井石油化学社製:リュブマーL5000)−68.4wt%
・充填剤:シリコーン油(信越シリコーン社製:KF96H)、多孔質シリカ(旭硝子(株)製:サンスフェアH33)を用意する。多孔質シリカ:シリコーン油の混合比を1:2.76(重量換算)とし、混合物:31.6wt%とポリエチレン樹脂:68.4wt%を2軸押し出し装置で溶融混練し、ペレットを作製した。
<Resin material>
Base resin: Polyethylene (Mitsui Petrochemical Co., Ltd .: Rybmer L5000)-68.4 wt%
Filler: Silicone oil (manufactured by Shin-Etsu Silicone Co., Ltd .: KF96H) and porous silica (manufactured by Asahi Glass Co., Ltd .: Sunsphere H33) are prepared. The mixing ratio of porous silica: silicone oil was 1: 2.76 (weight conversion), and the mixture: 31.6 wt% and polyethylene resin: 68.4 wt% were melt-kneaded with a biaxial extruder to prepare pellets.

<インサート成形条件>
金型内に所定形状の焼結金属を固定し、油含有ペレットを用いてインサート成形を行った。
・金型温度:100℃
・成形温度:210℃
・射出圧力:140MPa
<Insert molding conditions>
A sintered metal having a predetermined shape was fixed in the mold, and insert molding was performed using oil-containing pellets.
-Mold temperature: 100 ° C
・ Molding temperature: 210 ℃
・ Injection pressure: 140 MPa

<試験条件>
[摩耗・摩擦試験]
・相手材軸:A5056(アルミニウム合金、Ra=0.8μm)、φ7.985mm
・面圧 :1MPa(投影面積に換算)
・周速 :3m/min
・温度 :30℃・時間 :120h
・測定項目は、試験軸受の比摩耗量、軸の摩耗の有無、及び試験終了時の動摩擦係数。なお、軸とすべり軸受の隙間は、15μm(20℃で測定)とした。
<Test conditions>
[Abrasion / friction test]
-Opposite material shaft: A5056 (aluminum alloy, Ra = 0.8 μm), φ7.985 mm
・ Surface pressure: 1 MPa (converted to projected area)
・ Peripheral speed: 3m / min
・ Temperature: 30 ℃ ・ Time: 120h
・ Measurement items are the specific wear amount of the test bearing, the presence or absence of shaft wear, and the dynamic friction coefficient at the end of the test. The clearance between the shaft and the slide bearing was 15 μm (measured at 20 ° C.).

[内径側寸法の変化の測定]
熱による膨張の影響を調査するため、すべり軸受の外径側を焼結金属で拘束し、内径側のみ寸法が変化できるようにして−10℃から60℃までの変化させ、内径側寸法がどの程度変化するか測定した(20℃の寸法を基準とし、−10℃と60℃での寸法変化量を求めた)。各温度での試験片内径の寸法変化量と軸の寸法変化量を測定し、隙間が0〜25μm未満の場合:○、隙間が0未満(軸へのダキツキ発生)あるいは25μm以上の場合:×と判定した。
[Measurement of changes in inner diameter]
In order to investigate the influence of expansion due to heat, the outer diameter side of the slide bearing is constrained with sintered metal, and the dimensions can be changed only from the inner diameter side to -10 ° C to 60 ° C. The degree of change was measured (the amount of dimensional change at −10 ° C. and 60 ° C. was determined based on the 20 ° C. dimension). Measure the dimensional change of the inner diameter of the specimen and the dimensional change of the shaft at each temperature. When the gap is 0 to less than 25 μm: ○, When the gap is less than 0 (shaking on the shaft) or 25 μm or more: × It was determined.

[隙間の測定]
樹脂層と内挿したA5056からなる軸との隙間を、−10℃及び60℃の場合に測定した。なお、初期の隙間は、15μmに設定した。また、軸の寸法変化量は、−5.2μm(−10℃の場合)、7μm(60℃の場合)であった(軸材質の線膨張係数は、2.2×10−5/℃)。
[Measurement of gaps]
The gap between the resin layer and the shaft made of A5056 interpolated was measured at −10 ° C. and 60 ° C. The initial gap was set to 15 μm. Moreover, the dimensional change amount of the shaft was −5.2 μm (in the case of −10 ° C.) and 7 μm (in the case of 60 ° C.) (the linear expansion coefficient of the shaft material was 2.2 × 10 −5 / ° C.). .

(実施例2)
φ9mm×φ14mm×t5mmの焼結金属(Cu:90wt%−Sn:10wt%系,孔の大きさの平均値:125μm,平均深さ:30μm,凹部の割合:30%、線膨張係数:2.0×10−5/℃)からなる軸受外周部を用いた以外は、実施例1と同様にして、φ8mm×φ14mm×t5mmの複合すべり軸受を製作した(形状;図2(a)、樹脂層の肉厚:500μm)。得られた複合すべり軸受を用いて、上記の条件で試験を行った。試験結果を表1に示す。
(Example 2)
φ9 mm × φ14 mm × t 5 mm sintered metal (Cu: 90 wt% -Sn: 10 wt% system, average pore size: 125 μm, average depth: 30 μm, proportion of recess: 30%, linear expansion coefficient: 2 0.0 × 10 −5 / ° C.), except that a bearing outer peripheral portion was used, a composite plain bearing of φ8 mm × φ14 mm × t 5 mm was manufactured in the same manner as in Example 1 (shape; FIG. 2A) Resin layer thickness: 500 μm). Using the obtained composite plain bearing, the test was performed under the above conditions. The test results are shown in Table 1.

(実施例3)
φ9.54mm×φ14mm×t5mmの焼結金属(Cu:90wt%−Sn:10wt%系,孔の大きさの平均値:125μm,平均深さ:30μm,凹部の割合:30%、線膨張係数:2.0×10−5/℃)からなる軸受外周部を用いた以外は、実施例1と同様にして、φ8mm×φ14mm×t5mmの複合すべり軸受(形状;図2(a)、樹脂層の肉厚:770μm)を製作した。得られた複合すべり軸受を用いて、上記の条件で試験を行った。試験結果を表1に示す。
(Example 3)
φ9.54 mm × φ14 mm × t 5 mm sintered metal (Cu: 90 wt% -Sn: 10 wt% system, average value of hole size: 125 μm, average depth: 30 μm, proportion of recess: 30%, linear expansion coefficient : 2.0 × 10 −5 / ° C.), except that a bearing outer peripheral portion was used, in the same manner as in Example 1, a φ8 mm × φ14 mm × t 5 mm compound slide bearing (shape; FIG. 2 (a), resin Layer thickness: 770 μm). Using the obtained composite plain bearing, the test was performed under the above conditions. The test results are shown in Table 1.

(実施例4)
φ9.8mm×φ14mm×t5mmの焼結金属(Cu:90wt%−Sn:10wt%系,孔の大きさの平均値:125μm,平均深さ:30μm,凹部の割合:30%、線膨張係数:2.0×10−5/℃)からなる軸受外周部を用いた以外は、実施例1と同様にして、φ8mm×φ14mm×t5mmの複合すべり軸受(形状;図2(a)、樹脂の肉厚:900μm)を製作した。得られた複合すべり軸受を用いて、上記の条件で試験を行った。試験結果を表1に示す。
Example 4
φ9.8 mm × φ14 mm × t 5 mm sintered metal (Cu: 90 wt% -Sn: 10 wt% system, average value of pore size: 125 μm, average depth: 30 μm, proportion of recess: 30%, linear expansion coefficient : 2.0 × 10 −5 / ° C.), except that a bearing outer peripheral portion was used, in the same manner as in Example 1, a φ8 mm × φ14 mm × t 5 mm compound slide bearing (shape; FIG. 2 (a), resin (Thickness: 900 μm). Using the obtained composite plain bearing, the test was performed under the above conditions. The test results are shown in Table 1.

(実施例5)
φ10.3mm×φ14mm×t5mmの焼結金属(Cu:90wt%−Sn:10wt%系,孔の大きさの平均値:125μm,平均深さ:30μm,凹部の割合:30%、線膨張係数:2.0×10−5/℃)からなる軸受外周部を用いた以外は、実施例1と同様にして、φ8mm×φ14mm×t5mmの複合すべり軸受(形状;図2(a)、樹脂の肉厚:1150μm)を製作した。得られた複合すべり軸受を用いて、上記の条件で試験を行った。試験結果を表1に示す。
(Example 5)
φ10.3 mm × φ14 mm × t 5 mm sintered metal (Cu: 90 wt% -Sn: 10 wt% system, average pore size: 125 μm, average depth: 30 μm, recess ratio: 30%, linear expansion coefficient : 2.0 × 10 −5 / ° C.), except that a bearing outer peripheral portion was used, in the same manner as in Example 1, a φ8 mm × φ14 mm × t 5 mm compound slide bearing (shape; FIG. 2 (a), resin Thickness of 1150 μm). Using the obtained composite plain bearing, the test was performed under the above conditions. The test results are shown in Table 1.

(実施例6)
φ8.5mm×φ14mm×t5mmの焼結金属(Cu:90wt%−Sn:10wt%系,孔の大きさの平均値:250μm,平均深さ:50μm,凹部の割合:90%、線膨張係数:2.0×10−5/℃)からなる軸受外周部を用いた以外は、実施例1と同様にして、φ8mm×φ14mm×t5mmの複合すべり軸受(形状;図2(a)、樹脂の肉厚:250μm)を製作した。得られた複合すべり軸受を用いて、上記の条件で試験を行った。試験結果を表1に示す。
(Example 6)
φ8.5 mm × φ14 mm × t 5 mm sintered metal (Cu: 90 wt% -Sn: 10 wt% system, average value of pore size: 250 μm, average depth: 50 μm, ratio of recesses: 90%, linear expansion coefficient : 2.0 × 10 −5 / ° C.), except that a bearing outer peripheral portion was used, in the same manner as in Example 1, a φ8 mm × φ14 mm × t 5 mm compound slide bearing (shape; FIG. 2 (a), resin (Thickness: 250 μm). Using the obtained composite plain bearing, the test was performed under the above conditions. The test results are shown in Table 1.

(実施例7)
φ8.5mm×φ14mm×t5mmの焼結金属(Cu:90wt%−Sn:10wt%系,孔の大きさの平均値:10μm,平均深さ:5μm,凹部の割合:80%、線膨張係数:2.0×10−5/℃)からなる軸受外周部を用いた以外は、実施例1と同様にして、φ8mm×φ14mm×t5mmの複合すべり軸受(形状;図2(a)、樹脂の肉厚:250μm)を製作した。得られた複合すべり軸受を用いて、上記の条件で試験を行った。試験結果を表1に示す。
(Example 7)
φ8.5 mm × φ14 mm × t 5 mm sintered metal (Cu: 90 wt% -Sn: 10 wt% system, average pore size: 10 μm, average depth: 5 μm, recess ratio: 80%, linear expansion coefficient : 2.0 × 10 −5 / ° C.), except that a bearing outer peripheral portion was used, in the same manner as in Example 1, a φ8 mm × φ14 mm × t 5 mm compound slide bearing (shape; FIG. 2 (a), resin (Thickness: 250 μm). Using the obtained composite plain bearing, the test was performed under the above conditions. The test results are shown in Table 1.

(実施例8)
φ8.5mm×φ14mm×t5mmの焼結金属(Cu:90wt%−Sn:10Wt%系,孔の大きさの平均値:125μm,平均深さ:50μm,凹部の割合:30%、線膨張係数:2.0×10−5/℃)からなる軸受外周部を用い、樹脂材料として下記のものを用い、下記のインサート成形条件を用いた以外は、実施例1と同様にして、φ8mm×φ14mm×t5mmの複合すべり軸受(形状;図2(a)、樹脂の肉厚:250μm)を製作した。得られた複合すべり軸受を用いて、上記の条件で試験を行った。試験結果を表1に示す。
(Example 8)
φ8.5 mm × φ14 mm × t 5 mm sintered metal (Cu: 90 wt% -Sn: 10 Wt% system, average pore size: 125 μm, average depth: 50 μm, ratio of recess: 30%, linear expansion coefficient : 2.0 × 10 −5 / ° C.) φ8 mm × φ14 mm in the same manner as in Example 1, except that the following resin materials were used and the following insert molding conditions were used. X t 5 mm compound plain bearing (shape; FIG. 2A, resin thickness: 250 μm) was manufactured. Using the obtained composite plain bearing, the test was performed under the above conditions. The test results are shown in Table 1.

<樹脂材料>
・ベース樹脂:ポリフェニレンサルファイド(トープレン製:T4AG)−43.6wt%
・充填剤:ポリテトラフルオロエチレン(住友3M製:ホスタフロンTF9205)−25.4wt%アラミド繊維(アクゾノーベル製:トワロンMicrol088)−8.5wt%リン酸リチウム米山化学製:リン酸リチウム)−22.5wt%を用意する。これらの材料を2軸押し出し装置を用いて溶融混練し、ペレットを作製した。
<Resin material>
-Base resin: polyphenylene sulfide (manufactured by Toprene: T4AG)-43.6 wt%
Filler: Polytetrafluoroethylene (manufactured by Sumitomo 3M: Hostaflon TF9205) -25.4 wt% aramid fiber (manufactured by Akzo Nobel: Twaron Microl 088) -8.5 wt% lithium phosphate Yoneyama Chemical: lithium phosphate) -22. Prepare 5 wt%. These materials were melt-kneaded using a biaxial extruder to produce pellets.

<インサート成形条件>
金型内に所定形状の焼結金属を固定し、ペレットを用いてインサート成形を行った。
金型温度:150℃
成形温度:305℃
射出圧力:200MPa
<Insert molding conditions>
A sintered metal having a predetermined shape was fixed in the mold, and insert molding was performed using pellets.
Mold temperature: 150 ° C
Molding temperature: 305 ° C
Injection pressure: 200 MPa

(実施例9)
φ9mm×φ14mm×t5mmの焼結金属(Cu:90wt%−Sn:10wt%系,孔の大きさの平均値:250μm,平均深さ:50μm,凹部の割合:90%、膨張係数:2.0×10−5/℃)からなる軸受外周部を用いた以外は、実施例8と同様にして、φ8mm×φ14mm×t5mmの複合すべり軸受(形状;図2(a)、樹脂の肉厚:500μm)を製作した。得られた複合すべり軸受を用いて、上記の条件で試験を行った。試験結果を表1に示す。
Example 9
φ 9 mm × φ 14 mm × t 5 mm sintered metal (Cu: 90 wt% -Sn: 10 wt% system, average pore size: 250 μm, average depth: 50 μm, ratio of recesses: 90%, expansion coefficient: 2. 0 × 10 −5 / ° C.), except that the outer peripheral portion of the bearing was used in the same manner as in Example 8, φ8 mm × φ14 mm × t 5 mm compound slide bearing (shape; FIG. 2 (a), resin thickness : 500 μm). Using the obtained composite plain bearing, the test was performed under the above conditions. The test results are shown in Table 1.

(実施例10)
実施例1で製作された複合すべり軸受の軸受外周部の金属部にシリコーンオイル(信越シリコーン社製:KF96H)を含浸させた。これを用いて、上記の条件で試験を行った。試験結果を表1に示す。
(Example 10)
Silicone oil (manufactured by Shin-Etsu Silicone Co., Ltd .: KF96H) was impregnated in the metal portion of the outer peripheral portion of the composite slide bearing manufactured in Example 1. Using this, the test was conducted under the above conditions. The test results are shown in Table 1.

(実施例11)
実施例1で製作された複合すべり軸受の軸受内径面の樹脂層に、溝状の凹部(幅×長さ×深さ=1mm×5mm×150μm、断面形状:半円状、配置場所:アキシアル方向に3箇所等配で配置)を形成した。このときの凹部一箇所あたりの見かけ面積の全内径面積に対する割合は、{(1mm×5mm)/(8mm×5mm×π)}×100=3.97(%)である。これを用いて、上記の条件で試験を行った。試験結果を表1に示す。
(Example 11)
In the resin layer on the inner diameter surface of the composite plain bearing manufactured in Example 1, a groove-shaped recess (width × length × depth = 1 mm × 5 mm × 150 μm, cross-sectional shape: semicircular, arrangement location: axial direction 3). At this time, the ratio of the apparent area per one recessed portion to the total inner diameter area is {(1 mm × 5 mm) / (8 mm × 5 mm × π)} × 100 = 3.97 (%). Using this, the test was conducted under the above conditions. The test results are shown in Table 1.

(実施例12)
実施例11で製作された軸受内径面の樹脂層に溝状の凹部を有する複合すべり軸受の軸受外周部の金属部にシリコーンオイル(信越シリコーン社製:KF96H)を含浸させた。これを用いて、上記の条件で試験を行った。試験結果を表1に示す。
Example 12
Silicone oil (manufactured by Shin-Etsu Silicone Co., Ltd .: KF96H) was impregnated in the metal portion of the outer peripheral portion of the composite slide bearing having a groove-like recess in the resin layer on the inner diameter surface of the bearing manufactured in Example 11. Using this, the test was conducted under the above conditions. The test results are shown in Table 1.

(比較例1)
φ8mm×φ14mm×t5mmの焼結金属(Cu:90wt%−Sn:10wt%系,孔の大きさの平均値:250μm,平均深さ:50μm,凹部の割合:30%、膨張係数:2.0×10−5/℃、Cu−Sn系)からなる軸受外周部をすべり軸受として使用する。この焼結金属軸受をエステル油(日本油脂製:H481R)中に浸し、真空含浸処理を行い気孔の部分に油を封入した。この試験軸受を用いて実施例1と同様の条件で各種試験を行った。試験結果を表1に示す。
(Comparative Example 1)
φ8 mm × φ14 mm × t 5 mm sintered metal (Cu: 90 wt% -Sn: 10 wt% system, average value of pore size: 250 μm, average depth: 50 μm, ratio of recess: 30%, expansion coefficient: 2. A bearing outer peripheral portion made of 0 × 10 −5 / ° C., Cu—Sn system) is used as a sliding bearing. This sintered metal bearing was immersed in ester oil (manufactured by Nippon Oil & Fats: H481R), vacuum impregnation treatment was performed, and oil was sealed in the pores. Various tests were performed under the same conditions as in Example 1 using this test bearing. The test results are shown in Table 1.

(比較例2)
実施例1に使用した樹脂材料のみでφ8mm×φ14mm×t5mmのすべり軸受を製造し、実施例1と同様の条件で摩擦・摩耗試験と各種評価試験を行った。試験結果を表1に示す。
(Comparative Example 2)
A plain bearing of φ8 mm × φ14 mm × t 5 mm was manufactured using only the resin material used in Example 1, and a friction / wear test and various evaluation tests were performed under the same conditions as in Example 1. The test results are shown in Table 1.

(比較例3)
φ11.2mm×φ14mm×t5mmの焼結金属(Cu:90wt%−Sn:10wt%系,孔の大きさの平均値:250μm、平均深さ:50μm,凹部の割合:30%、膨張係数:2.0×10−5/℃)からなる軸受外周部を用意する。射出成形用の金型内にこの軸受外周部を装着し、内径面に実施例1の樹脂材料のインサート成形を行い、φ8mm×φ14mm×t5mmの複合すべり軸受(形状;図2(a)、樹脂の肉厚:1600μm)を製作した。実施例1と同様の条件で各種試験を行った。試験結果を表1に示す。
(Comparative Example 3)
φ11.2 mm × φ14 mm × t 5 mm sintered metal (Cu: 90 wt% -Sn: 10 wt% system, average value of pore size: 250 μm, average depth: 50 μm, proportion of recess: 30%, expansion coefficient: 2.0 × 10 −5 / ° C.) is prepared. The outer periphery of the bearing is mounted in a mold for injection molding, insert molding of the resin material of Example 1 is performed on the inner diameter surface, and a composite plain bearing of φ8 mm × φ14 mm × t 5 mm (shape; FIG. 2 (a), Resin thickness: 1600 μm) was manufactured. Various tests were performed under the same conditions as in Example 1. The test results are shown in Table 1.

(比較例4)
φ9mm×φ14mm×t5mmのSUS304(表面あらさRa=0.01μm)からなる軸受外周部を用いた以外は、実施例2と同様にして、φ8mm×φ14mm×t5mmの複合すべり軸受を製作した。得られた複合すべり軸受は、焼結金属層と樹脂層の間で剥がれが発生したため、試験を行うことができなかった。
(Comparative Example 4)
except for using the bearing outer peripheral portion made of SUS304 (surface roughness Ra = 0.01 [mu] m) of φ9mm × φ14mm × t 5mm, the same procedure as in Example 2 was fabricated composite sliding bearing of φ8mm × φ14mm × t 5mm. The resulting composite plain bearing could not be tested because peeling occurred between the sintered metal layer and the resin layer.

(比較例5)
φ8.5mm×φ14mm×t5mmの焼結金属(Cu:90wt%−Sn:10Wt%系,孔の大きさの平均値:250μm,平均深さ:100μm,凹部の割合:10%、膨張係数:2.0×10−5/℃)からなる軸受外周部を用いた以外は、実施例1と同様にして、φ8mm×φ14mm×t5mmの複合すべり軸受を(樹脂の肉厚:250μm)製作した。得られた複合すべり軸受は、焼結金属層と樹脂層の間で剥がれが発生したため、試験を行うことができなかった。
(Comparative Example 5)
φ8.5 mm × φ14 mm × t 5 mm sintered metal (Cu: 90 wt% -Sn: 10 Wt% system, average value of pore size: 250 μm, average depth: 100 μm, ratio of recesses: 10%, expansion coefficient: A composite slide bearing of φ8 mm × φ14 mm × t 5 mm (resin wall thickness: 250 μm) was produced in the same manner as in Example 1 except that the outer peripheral part of the bearing consisting of 2.0 × 10 −5 / ° C.) was used. . The resulting composite plain bearing could not be tested because peeling occurred between the sintered metal layer and the resin layer.

(比較例6)
φ8.5mm×φ14mm×t5mmの焼結金属(Cu:90wt%−Sn:10wt%系,孔の大きさの平均値:3μm,平均深さ:1μm,凹部の割合:30%、膨張係数:2.0×10−5/℃)からなる軸受外周部を用いた以外は、実施例1と同様にして、φ8mm×φ14mm×t5mmの複合すべり軸受(樹脂の肉厚:250μm)を製作した。得られた複合すべり軸受は、焼結金属層と樹脂層の間で剥がれが発生したため、試験を行うことができなかった。
(Comparative Example 6)
φ8.5 mm × φ14 mm × t 5 mm sintered metal (Cu: 90 wt% -Sn: 10 wt% system, average value of hole size: 3 μm, average depth: 1 μm, ratio of recess: 30%, expansion coefficient: 2.0 × 10 −5 / ° C.) A composite plain bearing (resin wall thickness: 250 μm) of φ8 mm × φ14 mm × t 5 mm was manufactured in the same manner as in Example 1 except that the outer peripheral portion of the bearing was used. . The resulting composite plain bearing could not be tested because peeling occurred between the sintered metal layer and the resin layer.

Figure 2010032059
Figure 2010032059

(結果)
実施例1〜11に示すように適切な孔の大きさ、深さ、凹部の割合を持った焼結金属と樹脂層を併用した場合、焼結金属と樹脂層の間で密着力の不足によるはがれは発生しなかった。比摩耗量は100×10-8mm3/(N・m)以下と少なく、かつ相手材軸の摩耗はなく、また動摩擦係数も0.2以下と低い値を示した。また、熱膨張による寸法変化も小さく、寸法安定性に優れていた。
(result)
As shown in Examples 1 to 11, when a sintered metal having an appropriate hole size, depth, and ratio of recesses and a resin layer are used in combination, the adhesion between the sintered metal and the resin layer is insufficient. No peeling occurred. The specific wear amount was as small as 100 × 10 −8 mm 3 / (N · m) or less, the wear of the counterpart material shaft was not found, and the dynamic friction coefficient was as low as 0.2 or less. Further, the dimensional change due to thermal expansion was small, and the dimensional stability was excellent.

それに対し、比較例1の焼結金属層のみですべり軸受を構成した場合、寸法変化は小さいが、軸の摩耗が発生しかつ摩擦係数も0.5と高い値を示した。また、比較例2の樹脂材料のみですべり軸受を構成した場合、比摩耗量は少なく、かつ軸の摩耗もなく、摩擦係数も小さいが、熱膨張による寸法変化が大きかったため、高精度が要求される個所への使用には適さない。比較例3の樹脂層と焼結金属層を併用した軸受の場合、比摩耗量は少なく、かつ軸の摩耗はなく摩擦係数も小さいが、樹脂層が厚いため、高温時、金属層からの形状拘束を受けて、体積膨張が内径側へ逃げて、内径寸法が小さくなる。その結果、軸との隙間が初期値よりも大幅に小さくなり、軸へのダキツキが発生するため好ましくない。比較例4のSUS304と樹脂層を併用した場合、SUS304の表面が滑らかであり、樹脂層との密着力が弱いため、成形収縮により界面ではがれが生じた。金属層表面に凹凸がない場合、金属と樹脂の複合体を得ることは困難である。比較例5の凹部の割合が3%と少ない焼結金属の場合、比較例4のSUS304を使用した場合と同様に樹脂層との密着力が弱いため、成形収縮により界面ではがれが生じた。比較例6の孔の大きさが3μmと小さい場合、溶融樹脂が孔に入り込めない為に密着力が低下し成形収縮により界面ではがれが生じた。   On the other hand, when the plain bearing was constituted only by the sintered metal layer of Comparative Example 1, the dimensional change was small, but the shaft was worn and the friction coefficient was as high as 0.5. In addition, when the plain bearing is configured only with the resin material of Comparative Example 2, the specific wear amount is small, the shaft is not worn, the friction coefficient is small, but the dimensional change due to thermal expansion is large, so high accuracy is required. It is not suitable for use in certain places. In the case of the bearing using the resin layer and the sintered metal layer of Comparative Example 3 in combination, the specific wear amount is small, the shaft is not worn and the friction coefficient is small, but since the resin layer is thick, the shape from the metal layer at high temperatures Under restraint, the volume expansion escapes to the inner diameter side, and the inner diameter dimension becomes smaller. As a result, the gap with the shaft becomes significantly smaller than the initial value, and the shaft is not preferable because it is uneven. When the SUS304 of Comparative Example 4 and the resin layer were used in combination, the surface of the SUS304 was smooth and the adhesion with the resin layer was weak, so peeling occurred at the interface due to molding shrinkage. When there is no unevenness on the surface of the metal layer, it is difficult to obtain a composite of metal and resin. In the case of the sintered metal having a small concave portion ratio of 3% in Comparative Example 5, the adhesion force to the resin layer was weak as in the case of using SUS304 of Comparative Example 4, and peeling occurred at the interface due to molding shrinkage. When the size of the hole of Comparative Example 6 was as small as 3 μm, the molten resin could not enter the hole, so that the adhesion was reduced and peeling occurred at the interface due to molding shrinkage.

Claims (12)

軸受外周部として金属を用い、この軸受外周部の摺動部に樹脂材料をインサート成形して樹脂層を形成し、
の軸受外周部の表面のうち、少なくとも上記樹脂層と接触する軸受外周部の表面部分に細かいアンカー効果用の凹部を設けると共に、上記樹脂層のうち、上記軸受の内径側摺動部に設けた樹脂層や、スラスト荷重用端面摺動部に設けた樹脂層に、摩耗粉捕捉用の凹部を設け、
上記樹脂層における(樹脂材料の線膨張係数)×(樹脂層の肉厚)を0.15以下とし、
上記アンカー効果用の凹部の大きさが5〜300μm、深さが3μm以上であり、このアンカー効果用の凹部が占める見かけ面積の合計を、上記樹脂層と接触する軸受外周部の表面部分の面積の25〜95%とし
上記摩耗粉捕捉用の凹部の見かけ面積は、上記樹脂層を上記軸受の内径側摺動部に設けた場合においては、全内径面面積の0.5〜30%であり、また、上記樹脂層をスラスト荷重用端面摺動部に設けた場合においては、片側端面全体の面積の0.5〜30%である高精度すべり軸受。
Metal is used as the bearing outer periphery, and a resin layer is formed by insert molding a resin material on the sliding portion of the bearing outer periphery .
Of the surface of the bearing outer periphery of this, at least the resin layer recesses for fine anchoring effect on the surface portion of the bearing outer peripheral portion contacting provided with Rutotomoni, among the resin layers, the inner diameter side sliding portion of the bearing The resin layer provided and the resin layer provided on the end load sliding portion for thrust load are provided with a recess for capturing wear powder,
(Linear expansion coefficient of resin material) × (wall thickness of resin layer) in the resin layer is 0.15 or less,
The size of the anchor effect recess is 5 to 300 μm and the depth is 3 μm or more, and the total apparent area occupied by the anchor effect recess is the area of the surface portion of the bearing outer peripheral portion in contact with the resin layer. and 25 to 95% of,
When the resin layer is provided on the inner diameter side sliding portion of the bearing, the apparent area of the concave portion for capturing the wear powder is 0.5 to 30% of the total inner diameter surface area, and the resin layer Is provided in the thrust load end face sliding portion, a high-accuracy plain bearing that is 0.5 to 30% of the entire area of one end face .
上記軸受外周部の摺動部は、ラジアル方向の荷重を支持するための内径側摺動部である請求項1に記載の高精度すべり軸受。   2. The high-accuracy plain bearing according to claim 1, wherein the sliding portion of the outer peripheral portion of the bearing is an inner diameter side sliding portion for supporting a radial load. 上記軸受外周部の摺動部は、ラジアル方向とスラスト方向の両方の荷重を支持するための内径側摺動部及び端面摺動部である請求項1に記載のすべり軸受。   The sliding bearing according to claim 1, wherein the sliding portion of the outer peripheral portion of the bearing is an inner diameter side sliding portion and an end surface sliding portion for supporting loads in both the radial direction and the thrust direction. 上記軸受外周部を構成する金属が焼結金属である請求項1乃至3のいずれかに記載の高精度すべり軸受。   The high-accuracy plain bearing according to any one of claims 1 to 3, wherein the metal constituting the outer peripheral portion of the bearing is a sintered metal. 上記焼結金属は、多孔質焼結金属であり、潤滑油が含浸されていることを特徴とする請求項4記載の高精度すべり軸受。  The high-precision slide bearing according to claim 4, wherein the sintered metal is a porous sintered metal and is impregnated with a lubricating oil. 上記樹脂材料は、多孔質構造を有する樹脂材料であることを特徴とする請求項1乃至5のいずれかに記載の高精度すべり軸受。  The high-precision slide bearing according to any one of claims 1 to 5, wherein the resin material is a resin material having a porous structure. 上記樹脂材料は、潤滑油又は固体潤滑剤が配合されたものである請求項1乃至のいずれかに記載の高精度すべり軸受。 The high-precision slide bearing according to any one of claims 1 to 6 , wherein the resin material is blended with a lubricating oil or a solid lubricant. 上記樹脂材料は、潤滑油が配合されると共に、多孔質構造を有する充填剤を配合されることを特徴とする請求項に記載の高精度すべり軸受。 The high-precision slide bearing according to claim 6 , wherein the resin material is blended with a lubricating oil and a filler having a porous structure. 上記多孔質構造を有する充填剤は、多孔質シリカである請求項に記載の高精度すべり軸受。 The high-precision sliding bearing according to claim 8 , wherein the filler having a porous structure is porous silica. 上記多孔質構造を有する充填剤は、シリコーン油からなる潤滑油を多孔質シリカに混合、吸油させた混合物が配合されたものである、請求項9に記載の高精度すべり軸受。  The high-accuracy plain bearing according to claim 9, wherein the filler having a porous structure is a mixture of a lubricating oil made of silicone oil mixed with porous silica and absorbed. 複写機やプリンターの感光ドラム、現像部及び/又は定着部に使用される請求項1乃至10のいずれかに記載の高精度すべり軸受。 The high-precision slide bearing according to any one of claims 1 to 10 , which is used in a photosensitive drum, a developing unit, and / or a fixing unit of a copying machine or a printer. キャリッジ軸受として使用される請求項1乃至10のいずれかに記載の高精度すべり軸受。 The high-precision slide bearing according to any one of claims 1 to 10 , which is used as a carriage bearing.
JP2009259521A 2001-12-12 2009-11-13 High precision sliding bearing Pending JP2010032059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009259521A JP2010032059A (en) 2001-12-12 2009-11-13 High precision sliding bearing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001378171 2001-12-12
JP2009259521A JP2010032059A (en) 2001-12-12 2009-11-13 High precision sliding bearing

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002110266A Division JP2003239976A (en) 2001-12-12 2002-04-12 High precision sliding bearing

Publications (1)

Publication Number Publication Date
JP2010032059A true JP2010032059A (en) 2010-02-12

Family

ID=41736745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009259521A Pending JP2010032059A (en) 2001-12-12 2009-11-13 High precision sliding bearing

Country Status (1)

Country Link
JP (1) JP2010032059A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130260974A1 (en) * 2012-03-30 2013-10-03 Fuji Xerox Co., Ltd. Rotating body and bearing
JP2014035013A (en) * 2012-08-08 2014-02-24 Ntn Corp Plain bearing
JP2015148285A (en) * 2014-02-06 2015-08-20 Ntn株式会社 slide bearing
JP2018087637A (en) * 2017-12-25 2018-06-07 Ntn株式会社 Slide bearing
JP2018519486A (en) * 2015-06-30 2018-07-19 サン−ゴバン パフォーマンス プラスティックス コーポレイション Sliding bearing
US11719124B2 (en) 2019-02-21 2023-08-08 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Turbocharger

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6069324A (en) * 1983-09-22 1985-04-20 Nippon Seiko Kk Slide bearing
JPS60224529A (en) * 1984-04-21 1985-11-08 Somar Corp Member of polyamide resin
JPH05202937A (en) * 1992-01-29 1993-08-10 Seiko Epson Corp Slide bearing
JPH073074A (en) * 1993-06-18 1995-01-06 Asahi Glass Co Ltd Injection molding resin composition and resin molding
JPH08170634A (en) * 1994-12-19 1996-07-02 Sony Corp Bearing device
JPH08311338A (en) * 1995-05-18 1996-11-26 Ntn Corp Heat-resistant, lubricating resin composition
JPH09184513A (en) * 1995-12-29 1997-07-15 Ntn Corp Electricity and heat insulating sleeve, and bearing structure and fixing device using the sleeve
JPH09262632A (en) * 1996-03-28 1997-10-07 Oiles Ind Co Ltd Production of bearing
JP2000097241A (en) * 1998-09-22 2000-04-04 Koyo Seiko Co Ltd Holder for rolling bearing
JP2000205266A (en) * 1999-01-19 2000-07-25 Daido Steel Co Ltd Low-friction long-life sliding material
JP2001020003A (en) * 1999-07-09 2001-01-23 Eagle Ind Co Ltd Sliding material

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6069324A (en) * 1983-09-22 1985-04-20 Nippon Seiko Kk Slide bearing
JPS60224529A (en) * 1984-04-21 1985-11-08 Somar Corp Member of polyamide resin
JPH05202937A (en) * 1992-01-29 1993-08-10 Seiko Epson Corp Slide bearing
JPH073074A (en) * 1993-06-18 1995-01-06 Asahi Glass Co Ltd Injection molding resin composition and resin molding
JPH08170634A (en) * 1994-12-19 1996-07-02 Sony Corp Bearing device
JPH08311338A (en) * 1995-05-18 1996-11-26 Ntn Corp Heat-resistant, lubricating resin composition
JPH09184513A (en) * 1995-12-29 1997-07-15 Ntn Corp Electricity and heat insulating sleeve, and bearing structure and fixing device using the sleeve
JPH09262632A (en) * 1996-03-28 1997-10-07 Oiles Ind Co Ltd Production of bearing
JP2000097241A (en) * 1998-09-22 2000-04-04 Koyo Seiko Co Ltd Holder for rolling bearing
JP2000205266A (en) * 1999-01-19 2000-07-25 Daido Steel Co Ltd Low-friction long-life sliding material
JP2001020003A (en) * 1999-07-09 2001-01-23 Eagle Ind Co Ltd Sliding material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130260974A1 (en) * 2012-03-30 2013-10-03 Fuji Xerox Co., Ltd. Rotating body and bearing
US9028384B2 (en) * 2012-03-30 2015-05-12 Fuji Xerox Co., Ltd. Rotating body and bearing
JP2014035013A (en) * 2012-08-08 2014-02-24 Ntn Corp Plain bearing
JP2015148285A (en) * 2014-02-06 2015-08-20 Ntn株式会社 slide bearing
JP2018519486A (en) * 2015-06-30 2018-07-19 サン−ゴバン パフォーマンス プラスティックス コーポレイション Sliding bearing
JP2018087637A (en) * 2017-12-25 2018-06-07 Ntn株式会社 Slide bearing
US11719124B2 (en) 2019-02-21 2023-08-08 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Turbocharger

Similar Documents

Publication Publication Date Title
JP4515824B2 (en) High precision plain bearing
KR101081808B1 (en) A manufacturing method of sliding bearing
JP2003239976A (en) High precision sliding bearing
JP2007051705A (en) High-precision plain bearing
KR101835911B1 (en) Composite slide bearing
JP2010032059A (en) High precision sliding bearing
WO2012117938A1 (en) Sliding bearing
JP2005003042A (en) Hydrodynamic bearing device
WO2015119231A1 (en) Plain bearing
JP4489512B2 (en) Conductive high precision plain bearing
JP2009097598A (en) Sliding bearing and its manufacturing method
JP4866411B2 (en) Oil-impregnated sliding material and slide bearing
JP4865015B2 (en) Hydrodynamic bearing device
JP5841186B2 (en) Compound plain bearing
JP4310053B2 (en) Oil-impregnated sliding material and slide bearing
JP6317057B2 (en) Plain bearing
JP2015148285A (en) slide bearing
JP2016180440A (en) Radial sliding bearing
JP5806363B2 (en) Manufacturing method of compound plain bearing
JP2019066044A (en) Slide member
WO2019070041A1 (en) Sliding member
JP6545781B2 (en) Sliding bearing
JP2006250262A (en) Sliding bearing for precision sliding-component
JP2018059085A (en) Sliding member and method of producing the same
JP2009085233A (en) Method for manufacturing plain bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120821