JP2015148285A - slide bearing - Google Patents

slide bearing Download PDF

Info

Publication number
JP2015148285A
JP2015148285A JP2014021718A JP2014021718A JP2015148285A JP 2015148285 A JP2015148285 A JP 2015148285A JP 2014021718 A JP2014021718 A JP 2014021718A JP 2014021718 A JP2014021718 A JP 2014021718A JP 2015148285 A JP2015148285 A JP 2015148285A
Authority
JP
Japan
Prior art keywords
resin
bearing
fluororesin
sliding
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2014021718A
Other languages
Japanese (ja)
Inventor
則義 吉塚
Noriyoshi Yoshizuka
則義 吉塚
石井 卓哉
Takuya Ishii
卓哉 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2014021718A priority Critical patent/JP2015148285A/en
Priority to EP15746685.5A priority patent/EP3104029A4/en
Priority to US15/117,408 priority patent/US20160341251A1/en
Priority to CN201580007375.3A priority patent/CN105980723A/en
Priority to PCT/JP2015/053335 priority patent/WO2015119231A1/en
Publication of JP2015148285A publication Critical patent/JP2015148285A/en
Ceased legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a slide bearing capable of suppressing its price while maintaining a bearing characteristic over a long period.SOLUTION: A slide bearing 1 includes a bearing outer peripheral part 2 comprising a metal base material, and a resin layer 3 molded integrally to a surface to be the slide surface of the bearing outer peripheral part by injection molding with a resin material. The resin material mainly comprises a polyethylene resin A enabling injection molding, and contains a non-injection molding fluorine resin B. In the resin material, the mass of the fluorine resin B has over 10 mass% and 40 mass% or less based on the total mass of the PE resin A and the fluorine resin B.

Description

本発明はすべり軸受に関し、特に、金属製基材の摺動面にポリエチレン樹脂を主成分とする樹脂層が射出成形で形成されたすべり軸受に関する。   The present invention relates to a sliding bearing, and more particularly to a sliding bearing in which a resin layer mainly composed of polyethylene resin is formed by injection molding on a sliding surface of a metal substrate.

近年、軸受に関し、各種検討が行われている。例えば、内・外輪の間に保持器を介して複数個の転動体を保持して構成され、さらに内・外輪の軌道面および転動体の表面に0.03〜20μmの膜厚で潤滑剤膜を成膜してなる転がり軸受であって、潤滑剤膜を構成する基油と相溶性のある潤滑油をその全重量の10重量%以上含有し、かつJIS K2220で規定されるちょう度No.3より大きいちょう度を有する潤滑油保持体を、容積比で軸受空間の1〜10%を占め、かつ内・外輪の軌道面および転動体表面と接触しないように保持器の適所に配置させた転がり軸受が提案されている(特許文献1参照)。   In recent years, various studies have been made on bearings. For example, a plurality of rolling elements are held between inner and outer rings via a cage, and a lubricant film with a film thickness of 0.03 to 20 μm on the raceway surfaces of the inner and outer rings and the surface of the rolling elements. In which a lubricating oil compatible with the base oil constituting the lubricant film is contained in an amount of 10% by weight or more of the total weight, and a consistency No. defined in JIS K2220. Lubricating oil holders having a consistency greater than 3 occupy 1 to 10% of the bearing space by volume, and are arranged at appropriate positions in the cage so as not to contact the inner and outer raceway surfaces and the rolling element surface. A rolling bearing has been proposed (see Patent Document 1).

特開平08−303467号公報Japanese Patent Laid-Open No. 08-303467

特許文献1の転がり軸受においては、その製造工程中に、内・外輪の軌道面および転動体の表面に0.03〜20μmの膜厚で潤滑剤膜を成膜させる工程が必要とされる。また、この工程に加えて、潤滑油保持体を、容積比で軸受空間の1〜10%を占め、かつ内・外輪の軌道面および転動体表面と接触しないように保持器の適所に配置させる工程が必要とされる。   In the rolling bearing of Patent Document 1, a step of forming a lubricant film with a film thickness of 0.03 to 20 μm on the raceway surfaces of the inner and outer rings and the surface of the rolling element is required during the manufacturing process. In addition to this step, the lubricating oil holder is disposed at a proper position of the cage so as to occupy 1 to 10% of the bearing space by volume and not to contact the raceway surface of the inner and outer rings and the surface of the rolling element. A process is required.

このような転がり軸受を製造しようとした場合、転がり軸受の製造工程に煩雑な工程が増加し、その煩雑な工程の管理などのために生産性が低下し、その結果、転がり軸受の価格を低く抑えることは困難となることが推察される。また、煩雑な工程を追加しても、大きな長寿命化の効果は期待できず、転がり軸受の使用部位によっては、過剰品質となることも懸念される。   When trying to manufacture such a rolling bearing, complicated processes are increased in the manufacturing process of the rolling bearing, and productivity is reduced due to management of the complicated processes. As a result, the price of the rolling bearing is reduced. It is inferred that it will be difficult to suppress. Moreover, even if a complicated process is added, the effect of greatly extending the service life cannot be expected, and there is a concern that the quality may be excessive depending on the use part of the rolling bearing.

また、市場から、転がり軸受に対する更なる低価格化も要求され、これに対応するために部品点数を大幅に減らしたすべり軸受が求められつつある。ここで、すべり軸受を転がり軸受の代替として用いる場合、その代替可能範囲は、すべり軸受の対応し得るPV値(面圧(P)と滑り速度(V)を乗じたもの)に大きく依存し、5MPa・m/min.をこえる程度で約20%、15MPa・m/min.以上で約85%の代替が可能となる。このため、転がり軸受代替のすべり軸受としては、長期間にわたり低摩擦係数を維持しつつ高PV値に対応し得るなどの安定した軸受特性を有することも求められている。   In addition, the market demands further reduction in the price of rolling bearings, and in order to meet this demand, a sliding bearing having a significantly reduced number of parts is being demanded. Here, when a slide bearing is used as an alternative to a rolling bearing, the substitutable range largely depends on the PV value (multiplied by the surface pressure (P) and the sliding speed (V)) that the slide bearing can handle, 5 MPa · m / min. About 20%, 15 MPa · m / min. This will allow about 85% substitution. For this reason, a sliding bearing alternative to a rolling bearing is also required to have stable bearing characteristics such as being able to cope with a high PV value while maintaining a low coefficient of friction over a long period of time.

本発明はこのような問題に対処するためになされたものであり、長期間にわたって軸受特性を維持させつつ価格を低く抑えることが可能なすべり軸受を提供することを目的とする。   The present invention has been made to cope with such problems, and an object of the present invention is to provide a plain bearing capable of keeping the price low while maintaining the bearing characteristics over a long period of time.

本発明のすべり軸受は、金属製基材と、この基材の摺動面となる表面に樹脂材料を用いて射出成形により一体に成形された樹脂層とを有するすべり軸受であって、上記樹脂材料が、射出成形可能なポリエチレン(以下、「PE」と記す)樹脂(A)を主成分とし、非射出成形性のフッ素樹脂(B)を含む材料であり、上記樹脂材料において、上記フッ素樹脂(B)が、上記PE樹脂(A)と上記フッ素樹脂(B)との合計質量に対して10質量%をこえ、40質量%以下含まれることを特徴とする。   The sliding bearing of the present invention is a sliding bearing having a metal base material and a resin layer integrally formed by injection molding using a resin material on a surface which becomes a sliding surface of the base material. The material is a material mainly composed of injection-moldable polyethylene (hereinafter referred to as “PE”) resin (A) and containing non-injectable fluororesin (B). In the resin material, the fluororesin (B) is more than 10% by mass and 40% by mass or less with respect to the total mass of the PE resin (A) and the fluororesin (B).

上記フッ素樹脂(B)は、再生ポリテトラフルオロエチレン(以下、「PTFE」と記す)樹脂であることを特徴とする。また、上記フッ素樹脂(B)は、上記樹脂材料に平均粒子径5〜50μmの粉末状で配合されたことを特徴とする。なお、この平均粒子径は、レーザ回析法による測定値である。   The fluororesin (B) is a recycled polytetrafluoroethylene (hereinafter referred to as “PTFE”) resin. Moreover, the said fluororesin (B) was mix | blended with the said resin material by the powder form with an average particle diameter of 5-50 micrometers. The average particle diameter is a value measured by a laser diffraction method.

上記PE樹脂(A)は、JIS K 7210に基づき、荷重10kg、190℃で測定したときのMFRが1〜30g/10分であることを特徴とする。   The PE resin (A) is characterized in that the MFR is 1 to 30 g / 10 min when measured at a load of 10 kg and 190 ° C. based on JIS K 7210.

上記すべり軸受は、面圧(P)と滑り速度(V)を乗じたPV値が、5MPa・m/min.をこえる条件で使用される軸受であることを特徴とする。   The sliding bearing has a PV value obtained by multiplying the surface pressure (P) and the sliding speed (V) by 5 MPa · m / min. It is a bearing that is used under conditions that exceed the above.

本発明のすべり軸受は、金属製基材と、この基材の摺動面となる表面に樹脂材料を用いて射出成形により一体に成形された樹脂層とを有し、上記樹脂材料が、射出成形可能なPE樹脂(A)を主成分とし、非射出成形性のフッ素樹脂(B)を含む材料であり、該樹脂材料において、フッ素樹脂(B)がPE樹脂(A)とフッ素樹脂(B)との合計質量に対して10質量%をこえ、40質量%以下含まれるので、高PV条件においても長期間にわたり低摩擦係数を維持でき、耐摩耗性にも優れる。また、樹脂層をインサート射出成形可能であり、煩雑な製造工程も不要であるため生産性に優れ、転がり軸受と比較して部品点数も少ないので、価格を低く抑えることが可能となる。これらの結果、本発明のすべり軸受は、多くの用途における転がり軸受の代替品として期待される。   The plain bearing of the present invention has a metal base material and a resin layer integrally formed by injection molding using a resin material on a surface which becomes a sliding surface of the base material. It is a material mainly composed of a moldable PE resin (A) and containing a non-injection-moldable fluororesin (B). In the resin material, the fluororesin (B) is composed of PE resin (A) and fluororesin (B ) And exceeding 40% by mass with respect to the total mass, the low friction coefficient can be maintained over a long period of time even under high PV conditions, and the wear resistance is excellent. In addition, the resin layer can be insert injection molded, and a complicated manufacturing process is not required. Therefore, the resin layer is excellent in productivity, and the number of parts is smaller than that of a rolling bearing, so that the price can be kept low. As a result, the plain bearing of the present invention is expected as a substitute for the rolling bearing in many applications.

本発明のすべり軸受の一例を示す斜視図および断面図である。It is the perspective view and sectional drawing which show an example of the slide bearing of this invention. 軸受外周部に形成される樹脂層の構造の態様を示す断面図である。It is sectional drawing which shows the aspect of the structure of the resin layer formed in a bearing outer peripheral part. PV値と摩耗係数との関係を示す図である。It is a figure which shows the relationship between PV value and a wear coefficient.

本発明のすべり軸受は、金属製基材と、この基材の摺動面となる表面に樹脂材料を用いて射出成形により一体に成形(インサート成形)された樹脂層とを有するものであり、この樹脂層を形成する樹脂材料が、射出成形可能なPE樹脂(A)を主成分とし、非射出成形性のフッ素樹脂(B)を所定量含む材料である。   The plain bearing of the present invention has a metal base material and a resin layer integrally molded (insert molding) by injection molding using a resin material on the surface which becomes the sliding surface of the base material. The resin material for forming this resin layer is a material mainly composed of injection-moldable PE resin (A) and a predetermined amount of non-injection-moldable fluororesin (B).

樹脂材料の主成分となるPE樹脂(A)としては、射出成形可能なPE樹脂あればよい。射出成形条件としては、例えば、成形温度200℃〜270℃、射出圧力100〜160MPaで射出成形可能なものであればよい。また、耐摩耗性、自己潤滑性、耐衝撃性、耐薬品性、水の比重より軽いという軽量性、低吸水性による寸法安定性などの各諸特性に優れる高密度、高分子量化PE樹脂が好ましい。例えば、密度(ASTM D 1505)が942kg/m以上である高密度PE樹脂が好ましく、高密度PE樹脂の密度の上限値は1000kg/m未満、厳密には980kg/m以下である。 The PE resin (A) as the main component of the resin material may be any PE resin that can be injection molded. As injection molding conditions, for example, any injection molding conditions may be used as long as the molding temperature is 200 ° C. to 270 ° C. and the injection pressure is 100 to 160 MPa. In addition, high-density, high-molecular-weight PE resin with excellent properties such as wear resistance, self-lubrication, impact resistance, chemical resistance, lightness that is lighter than the specific gravity of water, and dimensional stability due to low water absorption. preferable. For example, a high density PE resin having a density (ASTM D 1505) of 942 kg / m 3 or more is preferable, and the upper limit of the density of the high density PE resin is less than 1000 kg / m 3 , strictly speaking, 980 kg / m 3 or less.

PE樹脂(A)のMFR(メルトフローレイト:JIS K 7210(190℃、10kgf))としては、1〜30g/10分が好ましく、1〜15g/10分がより好ましく、2〜6g/10分が特に好ましい。重量平均分子量としては、100万未満であり、好ましくは25万〜95万程度である。また、構造としては、直鎖状のものや、メチル基の分岐を含む分岐状のものであってもよい。なお、(A)成分のPE樹脂は、1種を単独で使用してもよく、2種以上を混合して使用してもよい。   The MFR (melt flow rate: JIS K 7210 (190 ° C., 10 kgf)) of the PE resin (A) is preferably 1 to 30 g / 10 minutes, more preferably 1 to 15 g / 10 minutes, and 2 to 6 g / 10 minutes. Is particularly preferred. As a weight average molecular weight, it is less than 1 million, Preferably it is about 250,000-950,000. Moreover, as a structure, a linear thing and the branched thing containing the branch of a methyl group may be sufficient. In addition, PE resin of (A) component may be used individually by 1 type, and 2 or more types may be mixed and used for it.

本発明に使用できるPE樹脂(A)の市販品としては、三井化学社製の商品名リュブマーL3000(密度:969kg/m、MFR:15g/10分)、同L4000(密度:967kg/m、MFR:6g/10分)、同L5000(密度:966kg/m、MFR:2g/10分)などが挙げられる。 Commercially available products of PE resin (A) that can be used in the present invention include trade names Lübmer L3000 (density: 969 kg / m 3 , MFR: 15 g / 10 min) and L4000 (density: 967 kg / m 3 ) manufactured by Mitsui Chemicals. , MFR: 6 g / 10 min), L5000 (density: 966 kg / m 3 , MFR: 2 g / 10 min), and the like.

樹脂材料に配合するフッ素樹脂(B)は、非射出成形性のフッ素樹脂であり、例えば、PTFE樹脂などが挙げられる。PTFE樹脂は、結晶性熱可塑性樹脂であり、その融点は通常便宜的に327℃とされているが、溶融粘度が380℃でも1011 ポアズと極めて高く、成形時の溶融粘度が10〜10 ポアズである一般の熱可塑性樹脂とは異なり、射出成形などの溶融成形法を適用できない。このためPTFE樹脂は、主に、粉末状樹脂を予備成形し、これを融点以上の360〜390℃に加熱し、粒子を焼結する成形法が採用される。本発明において上記フッ素樹脂(B)は、射出成形で形成される樹脂層の主成分ではなく、ベースとなるPE樹脂(A)に対して充填剤(粉末状)として配合される。フッ素樹脂(B)を含むことで、摺動面に潤滑油やグリースを介さないドライ環境下において、低摩擦化が図れ、摩擦発熱が軽減され、高負荷でも摩擦摩耗特性に優れる。 The fluororesin (B) blended in the resin material is a non-injection moldable fluororesin, and examples thereof include PTFE resin. PTFE resin is a crystalline thermoplastic resin, and its melting point is usually set to 327 ° C. for convenience, but the melt viscosity is extremely high at 10 11 poise even at 380 ° C., and the melt viscosity at the time of molding is 10 3 to 10 Unlike a general thermoplastic resin having 4 poise, a melt molding method such as injection molding cannot be applied. For this reason, the PTFE resin mainly employs a molding method in which a powdery resin is preformed and heated to 360 to 390 ° C. above the melting point to sinter the particles. In the present invention, the fluororesin (B) is blended as a filler (powder) with respect to the PE resin (A) as a base, not the main component of the resin layer formed by injection molding. By containing the fluororesin (B), friction can be reduced, frictional heat generation can be reduced, and frictional wear characteristics are excellent even at high loads in a dry environment where no lubricating oil or grease is used on the sliding surface.

PTFE樹脂としては、−(CF−CF−で表される一般のPTFE樹脂を用いることができ、また、一般のPTFE樹脂に、パーフルオロアルキルエーテル基(−C2p−O−)(pは1−4の整数)やポリフルオロアルキル基(H(CF−)(qは1−20の整数)などを導入した変性PTFE樹脂も使用できる。 As the PTFE resin, a general PTFE resin represented by — (CF 2 —CF 2 ) n — can be used, and a perfluoroalkyl ether group (—C p F 2p —O) is added to the general PTFE resin. Modified PTFE resin into which-) (p is an integer of 1-4) or a polyfluoroalkyl group (H (CF 2 ) q- ) (q is an integer of 1-20) or the like can also be used.

PTFE樹脂としては、懸濁重合法によるモールディングパウダー、乳化重合法によるファインパウダー、再生PTFE樹脂のいずれを用いてもよい。ここで、再生PTFE樹脂とは、バージン材ではないPTFE樹脂であり、例えば、モールディングパウダーまたはファインパウダーを融点以上で加熱および加圧した成形体、またはその加工品などを加熱焼成後に粉砕した粉末、また、この粉末にさらにγ線または電子線などを照射した粉末などのタイプがある。   As the PTFE resin, any of a molding powder by a suspension polymerization method, a fine powder by an emulsion polymerization method, and a recycled PTFE resin may be used. Here, the recycled PTFE resin is a PTFE resin that is not a virgin material. For example, a molded product obtained by heating and pressing a molding powder or fine powder at a melting point or higher, or a powder obtained by pulverizing a processed product after heating and firing, In addition, there is a type such as a powder obtained by further irradiating the powder with γ rays or electron beams.

PTFE樹脂としては、再生PTFE樹脂を用いることが好ましい。樹脂層の耐摩耗性を向上させるためには分子量が高いPTFE樹脂を用いることが好適であるが、一般に分子量が高いバージン材のPTFE樹脂を用いる場合、成形条件によっては樹脂材料が増粘して射出成形が阻害されるおそれがある。これに対して、再生PTFE樹脂を用いることで成形時における繊維化を防止でき、増粘による射出成形阻害が起こらない。また、均一分散性に優れるとともに、加熱焼成されているので、耐摩耗性にも優れる。なお、PTFE樹脂の分子量としては、数平均分子量(Mn)が約10万〜1000万であるものが好ましい。   As the PTFE resin, it is preferable to use a recycled PTFE resin. In order to improve the abrasion resistance of the resin layer, it is preferable to use a PTFE resin having a high molecular weight, but in general, when a PTFE resin of a virgin material having a high molecular weight is used, the resin material increases in viscosity depending on molding conditions. Injection molding may be hindered. On the other hand, by using the regenerated PTFE resin, fiber formation at the time of molding can be prevented, and injection molding inhibition due to thickening does not occur. Moreover, since it is excellent in uniform dispersibility and it is heat-fired, it is excellent also in abrasion resistance. In addition, as a molecular weight of PTFE resin, that whose number average molecular weight (Mn) is about 100,000 to 10 million is preferable.

フッ素樹脂(B)であるPTFE樹脂は、樹脂材料の射出成形に際しての溶融混練時において粉末状で配合される。PTFE樹脂粉末の平均粒子径は、5〜50μmが好ましく、9〜15μmがより好ましい。平均粒子径が5μm未満であると、該粉末が凝集して塊となり、すべり軸受の摺動面が円滑な面とならないおそれがある。また、平均粒子径が50μmをこえると、すべり軸受の摺動面における摩擦摩耗特性にバラつきが生じるおそれがある。   The PTFE resin that is the fluororesin (B) is blended in a powder form at the time of melt-kneading at the time of injection molding of the resin material. The average particle diameter of the PTFE resin powder is preferably 5 to 50 μm, and more preferably 9 to 15 μm. If the average particle size is less than 5 μm, the powder aggregates into a lump, and the sliding surface of the slide bearing may not be a smooth surface. Further, if the average particle diameter exceeds 50 μm, the frictional wear characteristics on the sliding surface of the slide bearing may vary.

本発明で使用できるPTFE樹脂の市販品としては、喜多村社製:KTL−610、KTL−450、KTL−350、KTL−8N、KTL−400H、三井・デュポンフロロケミカル社製:テフロン(登録商標)7−J、TLP−10、旭硝子社製:フルオンG163、L150J、L169J、L170J、L172J、L173J、ダイキン工業社製:ポリフロンM−15、ルブロンL−5、ヘキスト社製:ホスタフロンTF9205、TF9207などが挙げられる。   Examples of commercially available PTFE resins that can be used in the present invention include Kitamura Co., Ltd .: KTL-610, KTL-450, KTL-350, KTL-8N, KTL-400H, Mitsui DuPont Fluorochemical Co., Ltd .: Teflon (registered trademark). 7-J, TLP-10, Asahi Glass Co., Ltd .: Fullon G163, L150J, L169J, L170J, L172J, L173J, Daikin Industries, Ltd .: Polyflon M-15, Lubron L-5, Hoechst: Hostaflon TF9205, TF9207, etc. Can be mentioned.

樹脂材料において、非射出成形性のフッ素樹脂(B)が、PE樹脂(A)とフッ素樹脂(B)との合計質量(A+B)に対して、10質量%をこえ、40質量%以下含まれる。10質量%以下であると、耐摩耗性の向上効果が乏しく、5MPa・m/min.をこえるようなPV値での使用に際して、耐摩耗性に劣るおそれがある。一方、40質量%をこえると、射出成形性を阻害するおそれがある。好ましくは、10質量%をこえ、30質量%以下であり、より好ましくは20〜30質量%である。   In the resin material, the non-injectable fluororesin (B) is contained in an amount of more than 10% by mass and 40% by mass or less with respect to the total mass (A + B) of the PE resin (A) and the fluororesin (B). . When it is 10% by mass or less, the effect of improving the wear resistance is poor, and 5 MPa · m / min. When using at a PV value exceeding 100%, the wear resistance may be inferior. On the other hand, when it exceeds 40 mass%, there exists a possibility that injection moldability may be inhibited. Preferably, it exceeds 10 mass% and is 30 mass% or less, More preferably, it is 20-30 mass%.

その他、すべり軸受の樹脂層を形成する樹脂材料には、摩擦摩耗特性を改善するために、また、線膨張係数を小さくするために、適当な充填材を添加することができる。例えば、ガラス繊維、カーボン繊維、ピッチ系炭素繊維、PAN系炭素繊維、アラミド繊維、アルミナ繊維、ポリエステル繊維、ボロン繊維、炭化珪素繊維、窒化硼素繊維、窒化珪素繊維、金属繊維などの繊維類、炭酸カルシウムやタルク、シリカ、クレー、マイカなどの鉱物類、硼酸アルミニウムウィスカー、チタン酸カリウムウィスカーなどの無機ウィスカー類、ポリイミド樹脂やポリベンゾイミダゾールなどの各種耐熱性樹脂などが挙げられる。なお、軟質相手材を攻撃するおそれがある場合には、繊維状の充填材は配合しない。さらに、この発明の効果を阻害しない配合量で公知の添加剤を併用してもよい。例えば、帯電防止剤(カーボンナノ繊維、カーボンブラック、黒鉛など)、離型剤、難燃剤、耐候性改良剤、酸化防止剤、顔料などの添加剤を適宜添加してもよく、これらを添加する方法も特に限定されるものではない。   In addition, an appropriate filler can be added to the resin material forming the resin layer of the slide bearing in order to improve the friction and wear characteristics and reduce the linear expansion coefficient. For example, glass fibers, carbon fibers, pitch-based carbon fibers, PAN-based carbon fibers, aramid fibers, alumina fibers, polyester fibers, boron fibers, silicon carbide fibers, boron nitride fibers, silicon nitride fibers, metal fibers, etc., carbonic acid Examples thereof include minerals such as calcium, talc, silica, clay and mica, inorganic whiskers such as aluminum borate whisker and potassium titanate whisker, and various heat resistant resins such as polyimide resin and polybenzimidazole. If there is a risk of attacking the soft mating material, the fibrous filler is not blended. Furthermore, you may use a well-known additive together with the compounding quantity which does not inhibit the effect of this invention. For example, additives such as antistatic agents (carbon nanofibers, carbon black, graphite, etc.), mold release agents, flame retardants, weather resistance improvers, antioxidants, pigments, and the like may be added as appropriate. The method is not particularly limited.

上記樹脂材料の特に好ましい態様としては、実質的にPE樹脂(A)とフッ素樹脂(B)である再生PTFE樹脂の2成分からなる場合(微量成分として顔料などを含めてもよい)である。この場合、繊維状充填材などを含まず、また、再生PTFE樹脂も成形時に繊維化しないことから、樹脂材料の流動方向〔例:MD(molding direction)〕に略沿った線膨張係数と、樹脂材料の流動方向に略直交する方向〔例:CD(cross molding direction)〕に略沿った線膨張係数とを略同じとできる。さらに、潤滑油(含油シリカ)などを含まないことで、これを含む場合と比較して曲げ弾性率や曲げ強度の大幅な向上が図れる。これらにより、高PV条件下でのすべり軸受使用時において、金属製基材からの樹脂層の剥がれ、樹脂層自体の変形や偏摩耗などを防止できる。なお、ここでの線膨張係数は、例えば、R.T.(室温)〜60℃における平均線膨張係数であり、TMA(熱機械分析)法により測定できる。   A particularly preferable embodiment of the resin material is a case where the resin material is substantially composed of two components of a recycled PTFE resin which is a PE resin (A) and a fluororesin (B) (a pigment or the like may be included as a trace component). In this case, since the fibrous filler is not included and the recycled PTFE resin is not fiberized at the time of molding, the linear expansion coefficient substantially along the flow direction of the resin material (eg, MD (molding direction)) and the resin The linear expansion coefficient substantially along the direction (eg, CD (cross molding direction)) substantially orthogonal to the flow direction of the material can be made substantially the same. Furthermore, by not including lubricating oil (oil-impregnated silica) or the like, the bending elastic modulus and bending strength can be greatly improved as compared with the case of including this. As a result, when the sliding bearing is used under high PV conditions, it is possible to prevent the resin layer from peeling off from the metal base material, deformation of the resin layer itself, uneven wear, and the like. The linear expansion coefficient here is, for example, R.I. T. T. et al. It is an average linear expansion coefficient at (room temperature) to 60 ° C. and can be measured by TMA (thermomechanical analysis) method.

すべり軸受の樹脂層を形成する樹脂材料において、諸原材料を混合し、混練する手段は、特に限定するものではなく、ヘンシェルミキサー、ボールミキサー、リボンブレンダー、レディゲミキサーなどにて混合し、さらに二軸押出し機などの溶融押出し機にて溶融混練し、成形用ペレットを得ることができる。また、充填材の一部材料の投入は、二軸押出し機などで溶融混練する際にサイドフィードを採用してもよい。この成形用ペレットを用い、金属製基材に対して樹脂層をインサート成形により射出成形する。射出成形を採用することで、精密成形性および生産性などに優れる。また、物性改善のためにアニール処理などの処理を採用してもよい。   In the resin material for forming the resin layer of the slide bearing, the means for mixing and kneading the raw materials is not particularly limited, and is mixed with a Henschel mixer, a ball mixer, a ribbon blender, a Redige mixer, etc. Melting and kneading can be performed with a melt extruder such as a shaft extruder to obtain molding pellets. In addition, as a part of the filler material, side feed may be employed when melt-kneading with a twin screw extruder or the like. Using this molding pellet, a resin layer is injection-molded by insert molding on a metal substrate. By adopting injection molding, it is excellent in precision moldability and productivity. Moreover, you may employ | adopt treatments, such as an annealing process, for physical property improvement.

樹脂材料の樹脂母材としてPE樹脂(A)を用いるのみでは、潤滑成分としてシリコーン油を含浸した多孔質シリカを配合する場合でも、PV値が3MPa・m/min.程度までの条件で使用できるに留まり、これをこえるPV値では耐摩耗性が満足されにくかった。これに対して、多孔質シリカを用いずに、PE樹脂(A)に非射出成形性のフッ素樹脂(B)を所定割合で配合することで、高PV値での耐摩耗性を著しく向上させることができた(後述の実施例参照)。この結果、本発明のすべり軸受は、多くの用途における転がり軸受の代替品として好適に利用できる。   When only the PE resin (A) is used as the resin base material of the resin material, even when porous silica impregnated with silicone oil is blended as a lubricating component, the PV value is 3 MPa · m / min. However, it was difficult to satisfy the wear resistance when the PV value exceeded this level. On the other hand, the abrasion resistance at a high PV value is remarkably improved by blending the non-injectable fluororesin (B) with the PE resin (A) at a predetermined ratio without using porous silica. (See Examples below). As a result, the plain bearing of the present invention can be suitably used as a substitute for a rolling bearing in many applications.

本発明のすべり軸受を図1により説明する。図1(a)はすべり軸受の斜視図を、図1(b)はA−A断面図をそれぞれ示す。すべり軸受1は、軸受外周部2が焼結金属製基材で形成され、この軸受外周部2の摺動部となる内周側に、上述の樹脂材料(成形用ペレット)を用いて樹脂層3がトンネルゲートを経てインサート成形されている。この樹脂層3は、軸受摺動面に複数の溝4を有し、該溝4の底部位置にゲート痕5が形成されている。図1(a)において、この複数の溝4は円筒状軸受のラジアル摺動面に軸方向溝4A、4Bとして形成され、軸方向溝4Aの底部位置にゲート痕5が形成され、軸方向溝4Bにはゲート痕5が形成されていない。また、複数の溝4は、円筒状軸受のラジアル摺動面、スラスト摺動面、またはラジアル摺動面およびスラスト摺動面の両方に設けることができる。   The plain bearing of the present invention will be described with reference to FIG. FIG. 1A is a perspective view of a plain bearing, and FIG. 1B is a cross-sectional view taken along line AA. The sliding bearing 1 has a bearing outer peripheral portion 2 formed of a sintered metal base material, and a resin layer using the above-described resin material (molding pellet) on the inner peripheral side which is a sliding portion of the bearing outer peripheral portion 2. 3 is insert-molded through a tunnel gate. The resin layer 3 has a plurality of grooves 4 on the bearing sliding surface, and a gate mark 5 is formed at the bottom of the groove 4. In FIG. 1A, the plurality of grooves 4 are formed as axial grooves 4A and 4B on the radial sliding surface of the cylindrical bearing, and a gate mark 5 is formed at the bottom position of the axial groove 4A. The gate mark 5 is not formed on 4B. Further, the plurality of grooves 4 can be provided on the radial sliding surface, the thrust sliding surface, or both the radial sliding surface and the thrust sliding surface of the cylindrical bearing.

トンネルゲートを経たインサート成形は、公知の金型構造を用いて行なうことができる。トンネルゲート痕が溝の底部位置に形成されるので、成形工程におけるゲート処理が必要なく、高精度を有しつつ、大量生産が可能となる。   Insert molding through a tunnel gate can be performed using a known mold structure. Since the tunnel gate trace is formed at the bottom of the groove, no gate processing is required in the molding process, and mass production is possible while having high accuracy.

複数の軸方向溝4は、トンネルゲート痕を有する溝4Aと、トンネルゲート痕を有さない溝4Bとから構成される。また、溝4Aの両側から溝4Bに至る軸受摺動面上の距離が等しくなるように配置されている。好ましくは溝Aと溝Bとが等間隔で同数形成される。この配置とすることにより、射出成形時のウエルド部が溝B内に形成される。さらに、溝4に摩耗粉を捕捉し、異常摩耗の発生を抑制することができる。   The plurality of axial grooves 4 are composed of a groove 4A having a tunnel gate trace and a groove 4B having no tunnel gate trace. Moreover, it arrange | positions so that the distance on the bearing sliding surface from the both sides of the groove | channel 4A to the groove | channel 4B may become equal. Preferably, the same number of grooves A and grooves B are formed at equal intervals. With this arrangement, a weld portion at the time of injection molding is formed in the groove B. Further, the wear powder can be captured in the groove 4 to suppress the occurrence of abnormal wear.

軸受外周部2は、すべり軸受の外周部を構成する筒状の部材であり、摺動部を有する部材である。この摺動部とは、例えばラジアル方向の荷重を支持するための内径側摺動部もしくは外径側摺動部の何れか一方または両方をいい、また、スラスト方向にも荷重を支持する場合には、端面摺動部を含む。例えば摺動部は、内径側摺動部、外径側摺動部、端面摺動部の少なくとも何れか一つ以上の摺動部とされる。   The bearing outer peripheral portion 2 is a cylindrical member that constitutes the outer peripheral portion of the slide bearing, and is a member having a sliding portion. This sliding part means, for example, one or both of the inner diameter side sliding part and the outer diameter side sliding part for supporting the load in the radial direction, and when supporting the load also in the thrust direction. Includes an end face sliding portion. For example, the sliding portion is at least one of the inner diameter side sliding portion, the outer diameter side sliding portion, and the end surface sliding portion.

軸受外周部2を構成する焼結金属製基材の材質は、Fe系焼結金属、Cu系焼結金属、Fe−Cu系焼結金属が挙げられ、成分としてC、Zn、Snを含んでもよい。また、成形性や離型性を向上させるためバインダーを少量添加してもよい。さらに、アルミニウム系でCu、Mg、Siを配合した材料や金属−合成樹脂で鉄粉をエポキシ系の合成樹脂で結合させた材料でもよい。さらにまた、樹脂層との密着性を向上させるため、成形を阻害しない程度であれば、表面処理を施す、または、接着剤を介在させることも可能である。   Examples of the material of the sintered metal base material constituting the bearing outer peripheral portion 2 include Fe-based sintered metal, Cu-based sintered metal, and Fe-Cu-based sintered metal, and may include C, Zn, and Sn as components. Good. Further, a small amount of a binder may be added in order to improve moldability and releasability. Further, an aluminum-based material containing Cu, Mg, Si, or a metal-synthetic resin material in which iron powder is bonded with an epoxy-based synthetic resin may be used. Furthermore, in order to improve the adhesion with the resin layer, it is possible to perform a surface treatment or to interpose an adhesive as long as the molding is not hindered.

高い寸法精度および回転精度と共に、機械的強度および耐久性に優れたすべり軸受を得る場合にはFe系焼結金属が好ましい。ここで、「Fe系」とはFeの含有量が質量比で90%以上であることを意味する。この条件を満たす限り、Cu、Sn、Zn、Cなどの他の成分を含有していてもよい。また、「Fe」にはステンレスも含まれる。Fe系焼結金属は、例えば、Feを上記の含有量配合した原料金属粉末(成形性や離型性を向上させるためバインダーを少量添加してもよい)を所定形状に成形し、脱脂し、焼成して得られた焼結体に、必要に応じてサイジングなどの後処理を施して形成できる。焼結金属の内部には多孔質組織による多数の内部細孔があり、また、その表面には内部細孔が外部に開口して形成された多数の表面開孔がある。内部細孔には、例えば真空含浸によって上述の潤滑油を含浸させることができる。   An Fe-based sintered metal is preferable in order to obtain a slide bearing excellent in mechanical strength and durability as well as high dimensional accuracy and rotational accuracy. Here, “Fe-based” means that the Fe content is 90% or more by mass ratio. As long as this condition is satisfied, other components such as Cu, Sn, Zn, and C may be contained. “Fe” also includes stainless steel. Fe-based sintered metal is formed by, for example, forming a raw metal powder containing Fe in the above content (a small amount of a binder may be added to improve moldability and releasability) into a predetermined shape, degreasing, The sintered body obtained by firing can be formed by subjecting it to a post-treatment such as sizing, if necessary. The sintered metal has a large number of internal pores due to a porous structure, and the surface has a large number of surface pores formed by opening the internal pores to the outside. The internal pores can be impregnated with the above-described lubricating oil, for example, by vacuum impregnation.

焼結金属製基材からなる軸受外周部2の摺動部には樹脂層3がインサート成形され、軸部材と摺動する軸受面を形成する。成形時、樹脂層を形成する溶融樹脂が表面開孔から表層部の内部細孔に入り込んで固化するため、樹脂層は一種のアンカー固化によって母体表面に強固に密着する。そのため、軸部材との摺動による樹脂層の剥離、脱落が生じにくく、高い耐久性が得られる。   A resin layer 3 is insert-molded on the sliding portion of the bearing outer peripheral portion 2 made of a sintered metal base material to form a bearing surface that slides with the shaft member. At the time of molding, the molten resin forming the resin layer enters the internal pores of the surface layer portion from the surface opening and solidifies, so that the resin layer adheres firmly to the base surface by a kind of anchor solidification. For this reason, the resin layer is hardly peeled off or dropped off by sliding with the shaft member, and high durability is obtained.

焼結金属製基材からなる樹脂層が形成される表面の表面開孔率は20〜50%とするのが好ましい。表面開孔率が20%未満であると、樹脂層に対するアンカー効果が十分に得られず、表面開孔率が50%をこえると寸法精度および機械的強度を保持できなくなる場合がある。なお、「表面開孔率」とは表面の単位面積当りに占める表面開孔の総面積の割合(面積比)である。   The surface porosity of the surface on which the resin layer made of a sintered metal substrate is formed is preferably 20 to 50%. If the surface area ratio is less than 20%, the anchor effect on the resin layer cannot be sufficiently obtained, and if the surface area ratio exceeds 50%, the dimensional accuracy and mechanical strength may not be maintained. The “surface aperture ratio” is the ratio (area ratio) of the total area of surface apertures per unit area of the surface.

また、軸受外周部2は、溶製金属製基材で形成してもよい。溶製金属材質としては、鉄、アルミニウム、アルミニウム合金、銅、または銅合金であることが好ましい。鉄としては一般構造用炭素鋼(SS400など)、軟鋼(SPCC、SPCEなど)、ステンレス鋼(SUS304、SUS316など)などが挙げられ、これら鉄に亜鉛、ニッケル、銅などのめっきを施してもよい。アルミニウムとしてはA1100、A1050、アルミニウム合金としてはA2017、A5052(アルマイト処理品も含む)、銅としてはC1100、銅合金としてはC2700、C2801などがそれぞれ挙げられる。   Moreover, you may form the bearing outer peripheral part 2 with a molten metal base material. The molten metal material is preferably iron, aluminum, an aluminum alloy, copper, or a copper alloy. Examples of iron include general structural carbon steel (SS400, etc.), mild steel (SPCC, SPCE, etc.), stainless steel (SUS304, SUS316, etc.), and these irons may be plated with zinc, nickel, copper, or the like. . Examples of aluminum include A1100 and A1050, examples of aluminum alloys include A2017 and A5052 (including anodized products), examples of copper include C1100, and examples of copper alloys include C2700 and C2801.

軸受外周部2を溶製金属製基材とする場合、インサート成形時の樹脂層との密着性を高めるために、接合面をショットブラスト、タンブラー、機械加工などにより、凹凸形状に荒らす(例えば、Ra4μm以上)ことが好ましい。また、酸性溶液処理(硫酸、硝酸、塩酸など、もしくは他の溶液との混合)、アルカリ性溶液処理(水酸化ナトリウム、水酸化カリウムなど、もしくは他の溶液との混合)などの化学表面処理を施し、接合面に微細凹凸形状を形成することが好ましい。化学表面処理により形成された微細凹凸形状は、多孔質のような複雑な立体構造となっているため、アンカー効果を発揮しやすく、強固な密着が可能となる。   When the bearing outer peripheral portion 2 is made of a molten metal base material, the joint surface is roughened into an uneven shape by shot blasting, tumbler, machining or the like in order to improve adhesion with the resin layer at the time of insert molding (for example, (Ra 4 μm or more). In addition, chemical surface treatment such as acidic solution treatment (mixed with sulfuric acid, nitric acid, hydrochloric acid, etc., or other solutions), alkaline solution treatment (mixed with sodium hydroxide, potassium hydroxide, etc., or other solutions) is performed. It is preferable to form a fine uneven shape on the joint surface. Since the fine uneven shape formed by the chemical surface treatment has a complicated three-dimensional structure such as a porous structure, the anchor effect can be easily exerted, and strong adhesion can be achieved.

樹脂層における、(樹脂材料の線膨張係数(単位:1/℃)×(樹脂層の肉厚(単位:μm))は、0.15以下がよく、0.13以下が好ましく、0.10以下がさらに好ましい。上記値が0.15より大きい場合、樹脂層の肉厚または膨張も大きくなる。このとき、樹脂層の外径側は金属製基材で拘束されていることから、金属の膨張分以上は膨張できず、内径側へ膨張し、内径寸法が小さくなる。その結果、軸との隙間が減少し、初期の隙間設定によっては、温度上昇により軸へのダキツキが発生する可能性がある。また、過度の隙間の変動は、トルク変動を引き起こすため好ましくなく、回転精度の点からは隙間は小さいほうが好ましい。また、吸水による寸法変化も大きくなり、過度の隙間の変動が生じる場合がある。   In the resin layer, (the linear expansion coefficient of the resin material (unit: 1 / ° C.) × (the thickness of the resin layer (unit: μm)) is preferably 0.15 or less, preferably 0.13 or less, 0.10 When the above value is greater than 0.15, the thickness or expansion of the resin layer also increases, and since the outer diameter side of the resin layer is constrained by the metal base, It cannot expand beyond the expansion, but expands toward the inner diameter side, reducing the inner diameter dimension, resulting in a decrease in the clearance with the shaft, and depending on the initial clearance setting, the shaft may be stiff due to temperature rise. In addition, excessive gap fluctuation is not preferable because it causes torque fluctuation, and it is preferable that the gap is small from the viewpoint of rotational accuracy.In addition, dimensional change due to water absorption increases, and excessive gap fluctuation occurs. There is.

また、成形が可能である樹脂層の肉厚は、50μm程度であり、これより薄いと形成が困難となる。従って、樹脂膨張係数×肉厚は0.003以上が必要であり、好ましくは0.01以上、さらに好ましくは0.015以上必要である。   Moreover, the thickness of the resin layer that can be molded is about 50 μm, and if it is thinner than this, formation becomes difficult. Accordingly, the resin expansion coefficient × thickness needs to be 0.003 or more, preferably 0.01 or more, more preferably 0.015 or more.

樹脂層の肉厚は、0.1〜0.5mm(100〜500μm)に設定することが好ましい。なお、本発明における「樹脂層の肉厚」は、金属製基材に入り込まない表面部分の厚さ(径方向の厚さ)である。樹脂層の肉厚が0.1mm未満では、長期使用時の耐久性に劣るおそれがある。一方、樹脂層の厚さが0.5mmをこえると、ヒケが発生し寸法精度が低下するおそれがある。また、摩擦による熱が摩擦面から金属製基材に逃げ難く、摩擦面温度が高くなる。さらに、荷重による変形量が大きくなるとともに、摩擦面における真実接触面積も大きくなり、摩擦力、摩擦発熱が高くなるおそれがある。   The thickness of the resin layer is preferably set to 0.1 to 0.5 mm (100 to 500 μm). The “thickness of the resin layer” in the present invention is the thickness (the thickness in the radial direction) of the surface portion that does not enter the metal substrate. If the thickness of the resin layer is less than 0.1 mm, the durability during long-term use may be poor. On the other hand, if the thickness of the resin layer exceeds 0.5 mm, sink marks may occur and dimensional accuracy may be reduced. In addition, heat due to friction is difficult to escape from the friction surface to the metal substrate, and the friction surface temperature increases. Furthermore, the amount of deformation due to the load increases and the real contact area on the friction surface also increases, which may increase the frictional force and frictional heat generation.

本発明のすべり軸受の形状としては、ラジアル型、平板型、フランジ付きブッシュなど、摺動部の形状に合わせて最適な軸受形状を選択することができる。また、図1では、軸受摺動面に複数の溝を有する態様を説明したが、これに限定されず、該溝を形成しない態様であってもよい。   As the shape of the plain bearing of the present invention, an optimum bearing shape can be selected according to the shape of the sliding portion such as a radial type, a flat plate type, and a flanged bush. Moreover, although the aspect which has a some groove | channel on the bearing sliding surface was demonstrated in FIG. 1, it is not limited to this, The aspect which does not form this groove | channel may be sufficient.

また、樹脂層の軸受外周部へインサート成形する箇所は、軸受外周部の摺動部であれば特に限定されない。例えば、図2(a)〜(e)に示すような場合が挙げられる。図2(a)(e)は、ラジアル方向への荷重を支持するため、軸受外周部2の内径側ラジアル摺動面に樹脂層3を形成したものである。図2(b)(c)(d)は、ラジアル方向およびスラスト方向への荷重を支持するため、軸受外周部2の内径側ラジアル摺動面およびスラスト摺動面に樹脂層3を形成したものである。なお、図示しないが、必要に応じて、軸受の外径部に樹脂層を付与することも可能である。なお、図2(c)(e)に示すように、軸受外周部と樹脂層とが剥がれないような引っ掛け部を有する樹脂層の形状を採用してもよい。   Moreover, the place which insert-molds to the bearing outer peripheral part of a resin layer will not be specifically limited if it is a sliding part of a bearing outer peripheral part. For example, the cases as shown in FIGS. FIGS. 2A and 2E show a resin layer 3 formed on the radially inner radial sliding surface of the bearing outer peripheral portion 2 in order to support a load in the radial direction. FIGS. 2B, 2C and 2D are views in which a resin layer 3 is formed on the inner radial radial sliding surface and the thrust sliding surface of the bearing outer peripheral portion 2 in order to support loads in the radial direction and the thrust direction. It is. Although not shown, a resin layer can be applied to the outer diameter portion of the bearing as necessary. As shown in FIGS. 2C and 2E, the shape of a resin layer having a hooking portion that does not peel off the outer peripheral portion of the bearing and the resin layer may be adopted.

樹脂層の樹脂材料として、上述した、樹脂材料の流動方向(MD)に略沿った線膨張係数と樹脂材料の流動方向に略直交する方向(CD)に略沿った線膨張係数とが略同じものを用いることで、図2(b)〜(e)に示すような形状で樹脂層を形成した場合にも、軸受温度変化に対する形状/寸法精度の安定に優れ、該樹脂層の剥がれ、変形、偏摩耗などを防止できる。   As the resin material of the resin layer, the linear expansion coefficient substantially along the flow direction (MD) of the resin material and the linear expansion coefficient substantially along the direction (CD) substantially orthogonal to the flow direction of the resin material are substantially the same. Even when the resin layer is formed in the shape as shown in FIGS. 2B to 2E, the shape / dimensional accuracy with respect to the change in bearing temperature is excellent, and the resin layer is peeled off and deformed. Uneven wear can be prevented.

本発明のすべり軸受は、高精度であり、摺動特性(低摩擦、低摩耗)に優れており、アルミ軸などの軟質相手材を攻撃せず、さらに異音の発生も抑制できる。このため、複写機やプリンターなどの事務機器の現像部、感光部、転写部などにおける回転部品の回転軸を支持する軸受として使用できる。なお、PE樹脂を主成分とすることから、主に80℃以下の温度雰囲気において好適に利用できる。   The plain bearing of the present invention has high accuracy, excellent sliding characteristics (low friction, low wear), does not attack a soft mating material such as an aluminum shaft, and can also suppress the generation of abnormal noise. For this reason, it can be used as a bearing that supports the rotating shaft of a rotating part in a developing unit, a photosensitive unit, a transfer unit, and the like of office equipment such as a copying machine and a printer. In addition, since it has PE resin as a main component, it can be suitably used mainly in a temperature atmosphere of 80 ° C. or lower.

また、15MPa・m/min.以上の高PV値での使用も可能であることから、従来は、転がり軸受で対応していた荷重、速度で使用される部位についても、該転がり軸受に置き換えて使用できる。   Further, 15 MPa · m / min. Since it is possible to use at the above high PV value, it is possible to use a part that is used at a load and speed that is conventionally supported by a rolling bearing instead of the rolling bearing.

実施例および比較例のすべり軸受を、以下の材料および成形方法により製造して所定の摩擦摩耗試験を行なった。   The sliding bearings of Examples and Comparative Examples were manufactured by the following materials and molding methods and subjected to a predetermined friction and wear test.

1.樹脂材料
ベース樹脂;
(A)射出成形可能なPE樹脂[三井化学社製の商品名リュブマーL5000P](密度(ASTM D 1505):966kg/m、MFR(JIS K 7210(190℃、10kgf)):2g/10分)
充填剤;
(B)再生PTFE樹脂(非射出成形性のフッ素樹脂)[喜多村社製の商品名KTL−610](平均粒子径(レーザ回析法):12μm)
(C)多孔質シリカ[AGCエスアイテック社製の商品名サンスフェアH53]
(D)シリコーン油[信越化学工業社製の商品名KF−96H]
これら樹脂材料を用いて表1に示す配合割合で配合したものを2軸押し出し装置で溶融混練し、成形用ペレットを作成した。なお、比較例1については、多孔質シリカとシリコーン油との混合比を1:3(質量換算)とする混合物(含油多孔質シリカ)を得て、この混合物を樹脂に配合したものを2軸押し出し装置で溶融混練し、成形用ペレットを作成した。各樹脂材料を用いて試験片を射出成形で作成し、物性評価を行なった。試験方法および物性結果を表1に併記する。
1. Resin material Base resin;
(A) PE resin that can be injection-molded [trade name Lübmer L5000P manufactured by Mitsui Chemicals, Inc.] (Density (ASTM D 1505): 966 kg / m 3 , MFR (JIS K 7210 (190 ° C., 10 kgf)): 2 g / 10 minutes )
filler;
(B) Recycled PTFE resin (non-injectable fluororesin) [trade name KTL-610 manufactured by Kitamura Co., Ltd.] (average particle diameter (laser diffraction method): 12 μm)
(C) Porous silica [trade name Sunsphere H53 manufactured by AGC S-Itech Co., Ltd.]
(D) Silicone oil [trade name KF-96H manufactured by Shin-Etsu Chemical Co., Ltd.]
These resin materials were blended at the blending ratios shown in Table 1 and melt kneaded with a biaxial extruder to form molding pellets. In Comparative Example 1, a mixture (oil-containing porous silica) having a mixing ratio of porous silica and silicone oil of 1: 3 (mass conversion) was obtained, and this mixture was blended with a resin. Melt-kneading was carried out with an extrusion device to produce molding pellets. A test piece was prepared by injection molding using each resin material, and physical properties were evaluated. The test methods and physical property results are also shown in Table 1.

Figure 2015148285
Figure 2015148285

表1に示すように、実施例1の樹脂材料は、含油多孔質シリカを含む比較例1の樹脂材料に対して曲げ強度および曲げ弾性率が大幅に高いことが分かる。また、実施例1の樹脂材料は、線膨張係数が流動方向(MD)とその直交方向(CD)でほぼ同じであることが分かる。   As shown in Table 1, it can be seen that the resin material of Example 1 has significantly higher bending strength and flexural modulus than the resin material of Comparative Example 1 containing oil-containing porous silica. Moreover, it turns out that the resin material of Example 1 has the substantially same linear expansion coefficient by the flow direction (MD) and its orthogonal direction (CD).

2.焼結金属製基材からなる外環(焼結外環)
サイズ:φ8.5mm(内径)、φ16mm(外径)、5mm(高さ)
成分:銅(0.5〜2.5質量%)、その他(3質量%以下)、鉄(残量)
製造工程:材料粉末ブレンド、フォーミング、シンタリング、サイジング、防錆・乾燥
2. Outer ring made of sintered metal substrate (sintered outer ring)
Size: φ8.5mm (inner diameter), φ16mm (outer diameter), 5mm (height)
Ingredients: copper (0.5-2.5% by mass), other (3% by mass or less), iron (remaining amount)
Manufacturing process: material powder blending, forming, sintering, sizing, rust prevention and drying

3.インサート成形条件
金型内に上記形状の焼結外環を挿入し、上記で得られた成形用ペレットを用いてトンネルゲートを経て、下記条件でインサート成形を行なった。なお、樹脂層の厚みは0.25mmである。なお、実施例、比較例のいずれも射出成形可能であった。
完成品サイズ:φ8mm(内径)、φ16mm(外径)、5mm(高さ)
金型温度:120℃
成形温度:250℃
射出圧力:100〜140MPa
3. Insert molding conditions A sintered outer ring having the above-mentioned shape was inserted into a mold, and the molding pellets obtained above were passed through a tunnel gate, and insert molding was performed under the following conditions. The resin layer has a thickness of 0.25 mm. It should be noted that both the examples and comparative examples could be injection molded.
Finished product size: φ8mm (inner diameter), φ16mm (outer diameter), 5mm (height)
Mold temperature: 120 ° C
Molding temperature: 250 ° C
Injection pressure: 100-140 MPa

4.摩擦摩耗試験
下記表2の条件で摩擦摩耗試験を行なった。相手材軸とすべり軸受の隙間は、20μm(20℃で測定)とした。また、摩耗係数は下記式により算出した。この摩擦摩耗試験を複数回行ない、PV値と摩耗係数との関係を調べた。結果を図3に示す。なお、図3は、PV値を横軸に、摩耗係数を縦軸にしてプロットした図である。

Figure 2015148285
摩耗係数
k=δ/(F×D)
k:摩耗係数 mm/(N×m) 定義:単位仕事量当たりの真円度増加量
F:ラジアル荷重 N
D:総滑り距離 m
δ:摩耗量(真円度の増加量) mm δ=δ1−δ0
δ0:試験前の供試軸受の内径2断面真円度(半径法)の平均値
δ1:試験後の供試軸受の内径2断面真円度(半径法)の平均値 4). Friction and wear test A friction and wear test was performed under the conditions shown in Table 2 below. The clearance between the mating material shaft and the slide bearing was 20 μm (measured at 20 ° C.). The wear coefficient was calculated by the following formula. This frictional wear test was performed a plurality of times, and the relationship between the PV value and the wear coefficient was examined. The results are shown in FIG. FIG. 3 is a plot in which the PV value is plotted on the horizontal axis and the wear coefficient is plotted on the vertical axis.
Figure 2015148285
Wear coefficient k = δ / (F × D)
k: Wear coefficient mm / (N × m) Definition: Roundness increase per unit work F: Radial load N
D: Total slip distance m
δ: Amount of wear (increase in roundness) mm δ = δ1-δ0
δ0: Average value of the inner diameter 2 section roundness (radius method) of the test bearing before the test δ1: Average value of the inner diameter 2 section roundness (radius method) of the test bearing after the test

図3に示すように、含油多孔質シリカを含んでいるが非射出成形性のフッ素樹脂をまったく含まない比較例1は、PV値が3MPa・m/minこえると、耐摩耗性が満足されにくいことが分かる。また、高PV値では、測定毎の摩耗係数のバラつきも大きくなっている。これに対して、非射出成形性のフッ素樹脂を所定量含む実施例1では、PV値5、10、15MPa・m/minのいずれにおいても、十分な耐摩耗性を有し、また、そのバラつきも小さいことが分かる。   As shown in FIG. 3, in Comparative Example 1 that contains oil-containing porous silica but does not contain any non-injectable fluororesin, the wear resistance is difficult to be satisfied when the PV value exceeds 3 MPa · m / min. I understand that. Also, at high PV values, the variation in wear coefficient for each measurement is large. On the other hand, in Example 1 including a predetermined amount of non-injectable fluororesin, it has sufficient wear resistance at any of PV values of 5, 10, and 15 MPa · m / min, and the variations thereof. Is also small.

本発明のすべり軸受は、高PV条件においても長期間にわたり低摩擦係数を維持でき、かつ、価格を低く抑えることが可能であるので、事務機器などにおける転がり軸受の代替品として好適に利用できる。   Since the sliding bearing of the present invention can maintain a low coefficient of friction over a long period of time even under high PV conditions and can keep the price low, it can be suitably used as a substitute for a rolling bearing in office equipment and the like.

1 すべり軸受
2 軸受外周部
3 樹脂層
4 溝
5 ゲート痕
DESCRIPTION OF SYMBOLS 1 Slide bearing 2 Bearing outer peripheral part 3 Resin layer 4 Groove 5 Gate trace

Claims (5)

金属製基材と、この基材の摺動面となる表面に樹脂材料を用いて射出成形により一体に成形された樹脂層とを有するすべり軸受であって、
前記樹脂材料が、射出成形可能なポリエチレン樹脂(A)を主成分とし、非射出成形性のフッ素樹脂(B)を含む材料であり、
前記樹脂材料において、前記フッ素樹脂(B)が、前記ポリエチレン樹脂(A)と前記フッ素樹脂(B)との合計質量に対して10質量%をこえ、40質量%以下含まれることを特徴とするすべり軸受。
A sliding bearing having a metal base material and a resin layer integrally formed by injection molding using a resin material on a surface which becomes a sliding surface of the base material,
The resin material is a material mainly composed of injection-moldable polyethylene resin (A) and non-injectable fluororesin (B),
The said resin material WHEREIN: The said fluororesin (B) exceeds 10 mass% with respect to the total mass of the said polyethylene resin (A) and the said fluororesin (B), and is contained 40 mass% or less, It is characterized by the above-mentioned. Slide bearing.
前記フッ素樹脂(B)は、再生ポリテトラフルオロエチレン樹脂であることを特徴とする請求項1記載のすべり軸受。   The plain bearing according to claim 1, wherein the fluororesin (B) is a recycled polytetrafluoroethylene resin. 前記フッ素樹脂(B)は、前記樹脂材料に平均粒子径5〜50μmの粉末状で配合されたことを特徴とする請求項1または請求項2記載のすべり軸受。   The plain bearing according to claim 1 or 2, wherein the fluororesin (B) is blended with the resin material in a powder form having an average particle diameter of 5 to 50 µm. 前記ポリエチレン樹脂(A)は、JIS K 7210に基づき、荷重10kg、190℃で測定したときのMFRが1〜30g/10分であることを特徴とする請求項1、請求項2または請求項3記載のすべり軸受。   The polyethylene resin (A) has an MFR of 1 to 30 g / 10 minutes when measured at a load of 10 kg and 190 ° C. based on JIS K 7210. The plain bearing described. 前記すべり軸受は、面圧(P)と滑り速度(V)を乗じたPV値が、5MPa・m/min.をこえる条件で使用される軸受であることを特徴とする請求項1から請求項4のいずれか1項記載のすべり軸受。   The sliding bearing has a PV value obtained by multiplying the surface pressure (P) and the sliding speed (V) by 5 MPa · m / min. The plain bearing according to any one of claims 1 to 4, wherein the bearing is used under conditions exceeding the above.
JP2014021718A 2014-02-06 2014-02-06 slide bearing Ceased JP2015148285A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014021718A JP2015148285A (en) 2014-02-06 2014-02-06 slide bearing
EP15746685.5A EP3104029A4 (en) 2014-02-06 2015-02-06 Plain bearing
US15/117,408 US20160341251A1 (en) 2014-02-06 2015-02-06 Sliding bearing
CN201580007375.3A CN105980723A (en) 2014-02-06 2015-02-06 Plain bearing
PCT/JP2015/053335 WO2015119231A1 (en) 2014-02-06 2015-02-06 Plain bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014021718A JP2015148285A (en) 2014-02-06 2014-02-06 slide bearing

Publications (1)

Publication Number Publication Date
JP2015148285A true JP2015148285A (en) 2015-08-20

Family

ID=53891807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014021718A Ceased JP2015148285A (en) 2014-02-06 2014-02-06 slide bearing

Country Status (1)

Country Link
JP (1) JP2015148285A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019142843A1 (en) * 2018-01-17 2019-07-25 Ntn株式会社 Sliding bearing, bearing device, and image formation device
JP2019124356A (en) * 2018-01-17 2019-07-25 Ntn株式会社 Slide bearing, bearing device and image formation device
JP2019191452A (en) * 2018-04-27 2019-10-31 株式会社横井製作所 Bearing member

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60191490A (en) * 1984-03-12 1985-09-28 Asahi Porisuraidaa:Kk Tape guide for vtr cassette
JPS62223488A (en) * 1986-03-22 1987-10-01 Toyota Autom Loom Works Ltd Seal member for scroll compressor
JPH03215541A (en) * 1990-01-19 1991-09-20 Mitsui Petrochem Ind Ltd Cycloolefin resin composition
JP2003239976A (en) * 2001-12-12 2003-08-27 Ntn Corp High precision sliding bearing
JP2004176892A (en) * 2002-11-29 2004-06-24 Ntn Corp Seal ring
JP2005024094A (en) * 2003-06-10 2005-01-27 Ntn Corp Sliding bearing
JP2005337381A (en) * 2004-05-27 2005-12-08 Ntn Corp Accurate slide bearing
JP2006002907A (en) * 2004-06-21 2006-01-05 Ntn Corp Conductive high-precision sliding bearing
JP2008111477A (en) * 2006-10-30 2008-05-15 Ntn Corp Seal ring
JP2010032059A (en) * 2001-12-12 2010-02-12 Ntn Corp High precision sliding bearing
JP2010175020A (en) * 2009-01-30 2010-08-12 Starlite Co Ltd Bearing device with sealing function
JP2013204646A (en) * 2012-03-27 2013-10-07 Ntn Corp Composite plain bearing
JP2013204463A (en) * 2012-03-27 2013-10-07 Ntn Corp Cradle guide for variable capacity type axial piston pump, and variable capacity type axial piston pump

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60191490A (en) * 1984-03-12 1985-09-28 Asahi Porisuraidaa:Kk Tape guide for vtr cassette
JPS62223488A (en) * 1986-03-22 1987-10-01 Toyota Autom Loom Works Ltd Seal member for scroll compressor
JPH03215541A (en) * 1990-01-19 1991-09-20 Mitsui Petrochem Ind Ltd Cycloolefin resin composition
JP2010032059A (en) * 2001-12-12 2010-02-12 Ntn Corp High precision sliding bearing
JP2003239976A (en) * 2001-12-12 2003-08-27 Ntn Corp High precision sliding bearing
JP2004176892A (en) * 2002-11-29 2004-06-24 Ntn Corp Seal ring
JP2005024094A (en) * 2003-06-10 2005-01-27 Ntn Corp Sliding bearing
JP2005337381A (en) * 2004-05-27 2005-12-08 Ntn Corp Accurate slide bearing
JP2006002907A (en) * 2004-06-21 2006-01-05 Ntn Corp Conductive high-precision sliding bearing
JP2008111477A (en) * 2006-10-30 2008-05-15 Ntn Corp Seal ring
JP2010175020A (en) * 2009-01-30 2010-08-12 Starlite Co Ltd Bearing device with sealing function
JP2013204646A (en) * 2012-03-27 2013-10-07 Ntn Corp Composite plain bearing
JP2013204463A (en) * 2012-03-27 2013-10-07 Ntn Corp Cradle guide for variable capacity type axial piston pump, and variable capacity type axial piston pump

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019142843A1 (en) * 2018-01-17 2019-07-25 Ntn株式会社 Sliding bearing, bearing device, and image formation device
JP2019124356A (en) * 2018-01-17 2019-07-25 Ntn株式会社 Slide bearing, bearing device and image formation device
CN111615591A (en) * 2018-01-17 2020-09-01 Ntn株式会社 Sliding bearing, bearing device, and image forming apparatus
US11346398B2 (en) 2018-01-17 2022-05-31 Ntn Corporation Sliding bearing, bearing apparatus, and image forming apparatus
CN111615591B (en) * 2018-01-17 2022-10-04 Ntn株式会社 Sliding bearing, bearing device, and image forming apparatus
JP7332299B2 (en) 2018-01-17 2023-08-23 Ntn株式会社 Plain bearing, bearing device, and image forming device
JP2019191452A (en) * 2018-04-27 2019-10-31 株式会社横井製作所 Bearing member

Similar Documents

Publication Publication Date Title
WO2015119231A1 (en) Plain bearing
JP4515824B2 (en) High precision plain bearing
JP5715504B2 (en) Multilayer bearing manufacturing method and multilayer bearing
KR101835911B1 (en) Composite slide bearing
JP5889945B2 (en) Seal ring
KR102418834B1 (en) Water-lubricated bearing material
WO2004111476A1 (en) Sliding bearing
JP2003239976A (en) High precision sliding bearing
JP2012251616A (en) Multi-layered bearing, thrust multi-layered bearing, and thrust multi-layered bearing device
JP2015148285A (en) slide bearing
US20190226525A1 (en) Sliding member
US20150126663A1 (en) Tribological aromatic polyimide compositions
JP2010032059A (en) High precision sliding bearing
JPH03292366A (en) Wear-resistant resin composition
JP6317057B2 (en) Plain bearing
JP5841186B2 (en) Compound plain bearing
JP2016180440A (en) Radial sliding bearing
US10598167B2 (en) Semispherical shoe for swash plate compressor and swash plate compressor
JP6545781B2 (en) Sliding bearing
JP5806363B2 (en) Manufacturing method of compound plain bearing
JP6199196B2 (en) Plain bearing
JP2013145029A (en) Sliding key and continuously variable transmission
JP2006250262A (en) Sliding bearing for precision sliding-component
JP2006225433A (en) Resin composition for slide member and slide member
JP2018059085A (en) Sliding member and method of producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190409

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20190827