JPH03292366A - Wear-resistant resin composition - Google Patents

Wear-resistant resin composition

Info

Publication number
JPH03292366A
JPH03292366A JP9431590A JP9431590A JPH03292366A JP H03292366 A JPH03292366 A JP H03292366A JP 9431590 A JP9431590 A JP 9431590A JP 9431590 A JP9431590 A JP 9431590A JP H03292366 A JPH03292366 A JP H03292366A
Authority
JP
Japan
Prior art keywords
wear
spherical
composition
resin composition
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9431590A
Other languages
Japanese (ja)
Inventor
Teruo Aramaki
荒牧 輝夫
Masaru Konno
大 金野
Takahiko Uchiyama
貴彦 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP9431590A priority Critical patent/JPH03292366A/en
Publication of JPH03292366A publication Critical patent/JPH03292366A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain a resin composition excellent in wear resistance, prevention of friction, and mechanical properties by mixing a linear polyphenylene sulfide resin with a fluororesin and a spherical or fibrous filler. CONSTITUTION:50-85 pts.wt. linear polyphenylene sulfide resin (A) [e.g. Photoron KPS (trade name: Kureha Chemical Industries K.K.)] is mixed with 10-40 pts.wt. fluororesin (B) (e.g. a polytetrafluoroethylene) and 0-20 pts.wt. at least one filler (C) selected from the group consisting of spherical fillers (e.g. spherical silica particles) and fibrous fillers (e.g. highly heat-resistant aramide fibers or Teflon fibers) (the total of the components A, B, and C amounts to 100 pts.wt.). A resin composition is obtained which is extremely excellent in wear resistance, low friction properties, and mechanical properties. The composition can be used as a wear-resistant resin composition for a retainer for a dental spindle bearing wherein ultra-high speed rotation is required and a part related to a bearing which is used under severe conditions such as a piston ring wherein extremely high wear resistance is required.

Description

【発明の詳細な説明】 [産業上の利用分野〕 本発明は滑り軸受、カム及び軸受用保持器等の摺動部に
使用できる耐摩耗性樹脂組成物に関し、詳細には、耐熱
性、摩擦・摩耗特性に優れ且つ射出成形による精密成形
が可能で、機械的特性においてもバランスのとれたポリ
フェニレンサルファイド樹脂組成物からなる耐摩耗性樹
脂組成物に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a wear-resistant resin composition that can be used for sliding parts such as sliding bearings, cams, and bearing cages. -Relates to a wear-resistant resin composition made of a polyphenylene sulfide resin composition that has excellent wear properties, can be precisely molded by injection molding, and has well-balanced mechanical properties.

[従来の技術〕 軸受なとの摺動部品には軽量化、生産性の点で射出成形
可能な耐熱性プラスチック材料が大量に使用されている
。ポリフェニレンサルファイド樹脂は耐熱性、耐薬品性
に優れた熱可塑性樹脂として知られており、これにガラ
ス繊維、炭素繊維などの繊維状材、ポリテトラフロロエ
チレンに代表されるフッ素樹脂、黒鉛、二硫化モリブデ
ンなどの固体潤滑剤、鉱油1合成油などの潤滑油を配合
した摺動材用組成物はよく知られている。
[Prior Art] A large amount of heat-resistant plastic materials, which can be injection molded, are used for sliding parts such as bearings in order to reduce weight and improve productivity. Polyphenylene sulfide resin is known as a thermoplastic resin with excellent heat resistance and chemical resistance. Compositions for sliding materials containing solid lubricants such as molybdenum and lubricating oils such as mineral oil and synthetic oil are well known.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、該組成物を軸受などに使用した場合は繊
維状充填材によって相手材が損傷され、ザラツキ摩耗挙
動となり、プラスチック側の摩耗も著しく促進されるこ
とが多い。
However, when this composition is used for bearings, etc., the fibrous filler damages the mating material, resulting in rough wear behavior and often significantly accelerating wear on the plastic side.

また、従来使用されている代表的なボリフェニレンサル
ファイド樹脂は、米国のフィリップスペトロリアム社よ
りライドン(登録商標)として市販されているものであ
って、その製造過程において高温下での熱処理を施した
り意図的に架橋剤や分岐剤を添加することにより、部分
的に架橋又は分岐構造を導入して高分子量体としたもの
であるため、元来脆弱な樹脂である(以下、この樹脂を
分岐状PPS樹脂と記す)。このような靭性の劣る分岐
状PPS樹脂にフッ素樹脂や二硫化モリブデン等の粒状
固体潤滑剤及びその他の充填材を充填して得られる組成
物にあっては、固体潤滑剤の添加量の増大と共に摩擦係
数は向上するが、機械的特性は反対に低下する。特に、
添加物の添加量の合計(すなわちフッ素樹脂等の固体潤
滑剤の添加量と、その他の充填材の添加量との合計)が
50重量%を越えた場合、該組成物は著しく跪くなるた
め成形性が極めて悪くなる。この組成物から製造される
摺動部品は脆弱で破損し易く、また破損しないまでも摺
動に際して摺動部の一部が欠落し摺動面の摩耗を促進す
るという問題点があった。
In addition, the typical polyphenylene sulfide resin that has been used in the past is commercially available as Rydon (registered trademark) from Phillips Petroleum Company in the United States, and during the manufacturing process it is heat treated at high temperatures and By adding a cross-linking agent or a branching agent, a partially cross-linked or branched structure is introduced into a high molecular weight resin, so it is an inherently fragile resin (hereinafter referred to as branched PPS). (written as resin). In a composition obtained by filling such a branched PPS resin with poor toughness with a granular solid lubricant such as a fluororesin or molybdenum disulfide and other fillers, as the amount of solid lubricant added increases, Although the coefficient of friction increases, the mechanical properties conversely decrease. especially,
If the total amount of additives (i.e., the total amount of solid lubricants such as fluororesin and other fillers) exceeds 50% by weight, the composition will become extremely bulky and cannot be molded. Sexuality becomes extremely bad. Sliding parts manufactured from this composition are brittle and easily damaged, and even if they do not break, there is a problem in that part of the sliding part is missing during sliding, accelerating wear on the sliding surface.

そこで本発明者等は上記の問題点を解決して、耐熱性、
摩擦・摩耗特性に優れ、かつ相手材の損傷が非常に少な
く、機械的強度の面においてもバランスのとれたポリフ
ェニレンサルファイド樹脂を開発するべく研究を重ねた
結果、重合段階で高分子量にまで分子鎖を直鎖状に成長
させたポリフェニレンサルファイド樹脂を用い、この直
鎖状ポリフェニレンサルファイド樹脂30〜85重量%
、オキシベンゾイルポリエステル5〜30重量%および
フッ素樹脂10〜60重量%とからなるポリフェニレン
サルファイド樹脂組成物を、提案するに到った(特開昭
63−175065号)。
Therefore, the present inventors solved the above problems and improved heat resistance and
As a result of repeated research to develop a polyphenylene sulfide resin that has excellent friction and wear characteristics, very little damage to the mating material, and is well-balanced in terms of mechanical strength, the molecular chain is increased to a high molecular weight during the polymerization stage. 30 to 85% by weight of this linear polyphenylene sulfide resin is used.
proposed a polyphenylene sulfide resin composition comprising 5 to 30% by weight of oxybenzoyl polyester and 10 to 60% by weight of fluororesin (Japanese Unexamined Patent Publication No. 175065/1983).

しかしながら耐摩耗性をより一層向上させる点で、なお
改良の余地があった。
However, there was still room for improvement in terms of further improving wear resistance.

本発明の目的とするところは、直鎖状ポリフェニレンサ
ルファイド樹脂をマトリックスとする、より優れた摩擦
・摩耗特性と機械的、熱的特性を有する耐摩耗性樹脂組
成物を提供することにある。
An object of the present invention is to provide a wear-resistant resin composition that has a linear polyphenylene sulfide resin as a matrix and has better friction and wear characteristics as well as mechanical and thermal properties.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成する本発明は、直鎖状ポリフェニレンサ
ルファイド樹脂50〜85重量%とフッ素樹脂10〜4
0重量%と球状充填材及び繊維状充填材のうちの少なく
とも一種O〜20重量%とからなる耐摩耗性樹脂組成物
である。
The present invention achieves the above object by combining 50 to 85% by weight of linear polyphenylene sulfide resin and 10 to 4% by weight of fluororesin.
This is a wear-resistant resin composition comprising 0% by weight and O to 20% by weight of at least one of a spherical filler and a fibrous filler.

前記フッ素樹脂はポリテトラフロロエチレンを用いるこ
とができる。
Polytetrafluoroethylene can be used as the fluororesin.

また、前記球状充填材は球状の等方性無定形炭素粒子1
球状シリカ粒子9球状シリコン樹脂の少なくとも一種と
することができる。
Further, the spherical filler is spherical isotropic amorphous carbon particles 1
Spherical silica particles 9 can be made of at least one type of spherical silicone resin.

更に、繊維状充填材は耐熱性有機繊維又は炭素繊維の少
なくとも一種とすることができる。
Furthermore, the fibrous filler can be at least one type of heat-resistant organic fiber or carbon fiber.

以下、さらに詳細に説明する。This will be explained in more detail below.

本発明に使用される直鎖状ポリフェニレンサルファイド
樹脂(以下、直鎖状PPS樹脂と記す)は、重合時に架
橋剤や分岐剤などが添加されておらず、また重合後、高
温下での熱処理を受けていないため、分子中に架橋や分
岐構造を含まない高重合体であり、特開昭61−733
2号公報、特開昭61−66720号公報などに開示の
方法により好適に製造される。分子量の尺度となる溶融
粘土は、310°Cでせん断速度200(秒)−1で測
定した場合500ポアズ以上であり、呉羽化学工業株よ
り「フォトロン(登録商標)KPS、として入手するこ
とができる。
The linear polyphenylene sulfide resin (hereinafter referred to as linear PPS resin) used in the present invention has no crosslinking agent or branching agent added during polymerization, and is not heat treated at high temperatures after polymerization. It is a high polymer that does not contain crosslinks or branched structures in its molecules, and is disclosed in Japanese Patent Application Laid-open No. 61-733.
It is suitably produced by the method disclosed in Japanese Patent Publication No. 2, Japanese Unexamined Patent Publication No. 61-66720, and the like. Molten clay, which is a measure of molecular weight, is 500 poise or more when measured at 310°C and a shear rate of 200 (sec)-1, and can be obtained from Kureha Chemical Industry Co., Ltd. as "Photron (registered trademark) KPS. can.

本発明に使用される球状充填材としては、球状の等方性
無定形炭素粒子2球状シリカ、球状シリコーン樹脂1球
状アルミナ等を例示できるが、特に球状の等方性無定形
炭素粒子や球状シリカが好ましい。
Examples of the spherical filler used in the present invention include spherical isotropic amorphous carbon particles, spherical silica, spherical silicone resin, and spherical alumina, but in particular spherical isotropic amorphous carbon particles and spherical silica. is preferred.

球状の等方性無定形炭素粒子は、フェノール類を用いて
、例えば特開昭58−17114号公報及び特開昭57
−177011号公報に開示の方法により好適に製造さ
れる球状のフェノール硬化物粒子を、不活性雰囲気中で
500°C以上の温度で焼成し炭化させて得られる平均
粒径が1〜30μmの粒子であり、鐘紡株式会社より「
ヘルパール(登録商標)−C」として入手することがで
きる。該粒子は形状が球形の微粒子であることから流動
性がよく、樹脂に配合した場合に極めて均一に分散され
、滑らかな表面を持つ成形品を製造するのに好適である
Spherical isotropic amorphous carbon particles are produced using phenols, for example, as described in JP-A-58-17114 and JP-A-57.
Particles with an average particle size of 1 to 30 μm obtained by firing and carbonizing spherical cured phenol particles suitably produced by the method disclosed in Publication No. 177011 at a temperature of 500°C or higher in an inert atmosphere. From Kanebo Co., Ltd., “
It can be obtained as "Helpearl (registered trademark)-C". Since the particles are spherical fine particles, they have good fluidity and are dispersed extremely uniformly when blended into a resin, making them suitable for producing molded products with smooth surfaces.

本発明に使用される繊維状充填材としては、デュポン社
製のケブラー、ノーメックス;奇人■製のコーネックス
等で代表される高耐熱性のアラミド繊維、テフロン繊維
、炭素繊維等を例示できる。
Examples of the fibrous filler used in the present invention include highly heat-resistant aramid fibers such as Kevlar and Nomex manufactured by DuPont; Conex manufactured by Kijin ■, Teflon fibers, and carbon fibers.

本発明に使用されるフッ素樹脂としてはポリテトラフロ
ロエチレン(以下、PTFEと記す)。
The fluororesin used in the present invention is polytetrafluoroethylene (hereinafter referred to as PTFE).

テトラフロロエチレン−ヘキサフロロプロピレン共重合
体、ポリトリクロロフロロエチレン、テトラフロロエチ
レン−パーフロロアルキルビニルエーテル共重合体等を
挙げることができるが、特にPTFEが好ましい。また
、PTFEのなかでも平均粒径が20μm未満の滑剤縁
PTFE粉末が好ましく、デュポン社製のテフロン(登
録商標)TLP−10,TLP−10F−1;ダイキン
エ業■製のルブロン(登録商標)L−2,L−5゜LD
−1;IC1社製のフルオン(登録商標)Li2Q、L
i2O,L171等が好適である。
Examples include tetrafluoroethylene-hexafluoropropylene copolymer, polytrichlorofluoroethylene, and tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, with PTFE being particularly preferred. Among the PTFEs, lubricant-edge PTFE powder with an average particle size of less than 20 μm is preferable; Teflon (registered trademark) TLP-10, TLP-10F-1 manufactured by DuPont; Lublon (registered trademark) L manufactured by Daikin Industries, Ltd. -2,L-5゜LD
-1; Fluon (registered trademark) Li2Q, L manufactured by IC1
i2O, L171, etc. are suitable.

本発明の耐摩耗性樹脂組成物の配合量としては、直鎖状
PPS樹脂が50〜85重量%、フッ素樹脂が10〜4
0重量%2球状充填剤材が0〜20重量%、繊維状充填
材が0〜20重量%であり、フッ素樹脂1球状充填材及
び繊維状充填材の合計(以下、充填材の合計量という)
は全樹脂組成物の20〜50重量%であるものが好適で
ある。特に、フッ素樹脂の配合量が15〜30重量%2
球状充填剤材の配合量が2〜15重量%、繊維状充填材
の配合量が2〜15重量%である組成物は、摩擦・摩耗
特性と機械的特性のバランスがよく好ましい。
The blending amount of the wear-resistant resin composition of the present invention is 50 to 85% by weight of linear PPS resin and 10 to 4% by weight of fluororesin.
0% by weight 2 Spherical filler material 0 to 20% by weight, fibrous filler 0 to 20% by weight )
is preferably 20 to 50% by weight of the total resin composition. In particular, the blending amount of fluororesin is 15 to 30% by weight2.
A composition containing 2 to 15% by weight of the spherical filler material and 2 to 15% by weight of the fibrous filler material is preferred because it has a good balance of friction/wear characteristics and mechanical properties.

充填材の合計量が全樹脂組成物の50重量%を越える場
合には、十分な混練ができないために均一な組成物が得
られず、樹脂組成物の流動性が不十分で成形が困難とな
り、組成物の機械的強度も極めて脆弱なものになる。一
方、充填材の合計量が全樹脂組成物の20重量%未満で
ある場合は、樹脂組成物の摩擦・摩耗特性が十分でない
If the total amount of fillers exceeds 50% by weight of the total resin composition, sufficient kneading will not be possible and a uniform composition will not be obtained, and the fluidity of the resin composition will be insufficient and molding will become difficult. , the mechanical strength of the composition also becomes extremely weak. On the other hand, if the total amount of fillers is less than 20% by weight of the entire resin composition, the friction and wear characteristics of the resin composition will not be sufficient.

また、充填材の合計量が全樹脂組成物の20〜50重量
%であっても、球状充填材及び繊維状充填材の配合量が
共に2重量%未満である場合には、耐クリープ性、耐摩
耗性の面で十分ではない。
In addition, even if the total amount of fillers is 20 to 50% by weight of the entire resin composition, if the amounts of both spherical fillers and fibrous fillers are less than 2% by weight, creep resistance, Not sufficient in terms of wear resistance.

方、球状充填材及び繊維状充填材をそれぞれ20重量%
を越えて配合しても耐クリープ性、耐摩耗性の顕著な改
良はみられず、むしろ成形性や表面性状の悪化を生じる
On the other hand, 20% by weight each of spherical filler and fibrous filler.
Even if the amount is exceeded, no significant improvement in creep resistance or abrasion resistance is observed, but rather deterioration of moldability and surface properties occurs.

また、フッ素樹脂の配合量が15重量%未満の場合は摩
擦特性の改良効果が不十分であり、一方、30重量%を
越えると溶融混練が難しくなり、均一に分散した組成物
を得ることができなくなる。
Furthermore, if the amount of fluororesin blended is less than 15% by weight, the effect of improving friction properties will be insufficient, while if it exceeds 30% by weight, melt-kneading will become difficult and it will be difficult to obtain a uniformly dispersed composition. become unable.

本発明の耐摩耗性樹脂組成物の製造に用いられる原料成
分の配合手段は特に限定されない。直鎖状PPS樹脂、
フン素樹脂1球状充填材及び繊維状充填材をおのおの別
々に溶融混練することが可能であり、また、予めこれら
の原料をヘンシェルミキサー リボンブレンダー等の混
合機で予備混合した後に溶融混合機へ供給することもで
きる。
There are no particular limitations on the means of blending the raw material components used for producing the wear-resistant resin composition of the present invention. linear PPS resin,
Fluorine resin 1 Spherical filler and fibrous filler can be melt-kneaded separately, and these raw materials can be pre-mixed in a mixer such as a Henschel mixer or ribbon blender before being fed to the melt-mixer. You can also.

溶融混合機としては、単軸または二輪押出し機。The melt mixer is a single-screw or two-wheel extruder.

混合ロール、加圧ニーダ−、プラベンダープラストグラ
フ等の任意の装置が使用できる。
Any equipment such as mixing rolls, pressure kneaders, pravender plastographs, etc. can be used.

なお、本発明の耐摩耗性樹脂組成物は、本発明の効果を
減殺しない範囲において用途に応じて各種の添加材を任
意の量含有させることができる。
The wear-resistant resin composition of the present invention may contain any amount of various additives depending on the intended use as long as the effects of the present invention are not diminished.

その場合、例えば無機質添加材としてはアルミナ粉末、
シリカ粉末、炭化ケイ素粉末、窒化ケイ素粉末、グラフ
ァイト粉末、カーボンラック粉末。
In that case, for example, alumina powder,
Silica powder, silicon carbide powder, silicon nitride powder, graphite powder, carbon lac powder.

−硫化モリブデン粉末等の無機質粉末を例示できる。ま
た繊維状の無機質添加材として、ガラス繊維、チタン酸
カリウム繊維、炭化ケイ素繊維、アルミニウム、銅、鉄
等の金属繊維を例示できる。
- Examples include inorganic powders such as molybdenum sulfide powder. Examples of fibrous inorganic additives include glass fibers, potassium titanate fibers, silicon carbide fibers, and metal fibers such as aluminum, copper, and iron.

更に、有機質添加材としてシリコン樹脂粉末、ポリイミ
ド樹脂粉末、フッ素樹脂繊維等を例示できる。
Furthermore, examples of organic additives include silicone resin powder, polyimide resin powder, and fluororesin fiber.

また、加工安定性1表面性状、靭性等の改良や着色、帯
電防止等の目的で、必要に応じて適量の各種安定剤、流
動性改良剤1表面改質剤9着色剤。
In addition, appropriate amounts of various stabilizers, fluidity improvers, surface modifiers, and coloring agents may be added as necessary for the purpose of improving processing stability, surface properties, toughness, etc., coloring, and preventing static electricity.

帯電防止剤、各種の樹脂等を適宜に添加してもよい。Antistatic agents, various resins, etc. may be added as appropriate.

[作用〕 本発明の耐摩耗性樹脂組成物にあっては、マトリックス
を構成するポリフェニレンサルファイド樹脂として直鎖
状PPS樹脂を使用しており、フッ素樹脂1球状充填材
、繊維状充填材等の機能性充填材を多量に添加しても組
成物の機械的強度の低下は少なく、極めて耐摩耗性に優
れた樹脂組成物が得られる。その理由は、直鎖状PPS
樹脂は物性上の弱点の原因となる末端基数が分岐状PP
S樹脂に比べ少なく、同一分子量で比較すると分子鎖間
の絡み合いを増すため靭性に富むことによると考えられ
る。
[Function] In the wear-resistant resin composition of the present invention, a linear PPS resin is used as the polyphenylene sulfide resin constituting the matrix, and the functions of the fluororesin 1, spherical filler, fibrous filler, etc. Even if a large amount of abrasion filler is added, the mechanical strength of the composition does not decrease much, and a resin composition with extremely excellent wear resistance can be obtained. The reason is that linear PPS
The resin has branched PP terminal groups, which causes weaknesses in physical properties.
This is thought to be due to the fact that the amount is lower than that of S resin, and when compared at the same molecular weight, the entanglement between molecular chains increases, resulting in higher toughness.

マトリックス樹脂の持つこの靭性は、充填材を多量に添
加し、且フその機能を十分に発揮させるためには不可分
の要因である。
This toughness of the matrix resin is an inseparable factor in adding a large amount of filler and in order to fully demonstrate its function.

〔実施例〕〔Example〕

以下、本発明の詳細な説明する。なお、本発明はこれら
の実施例に限定されるものではない。
The present invention will be explained in detail below. Note that the present invention is not limited to these examples.

(実施例1、比較例1) 以下の表1に示す割合の組成物の試験片を作成してスラ
スト摩擦・摩耗試験を実施した。
(Example 1, Comparative Example 1) Test pieces of compositions having the proportions shown in Table 1 below were prepared and thrust friction/wear tests were conducted.

各組成物には、直鎖状PPS樹脂として呉羽化学工業■
製の「フォートロン(登録商標)KPS。
Each composition contains Kureha Chemical Industry Co., Ltd. as a linear PPS resin.
``Fortron (registered trademark) KPS.

W−214Jを使用し、フッ素樹脂として三井デュポン
フロロケミカル社製の[テフロン(登録商標)TLP−
10Jを使用し球状のフェノール樹脂及びその炭化物(
球状の無定形炭素粒子)として鐘紡■製の「ベルパール
(登録商標)R−800及びC−800Jを使用し、黒
鉛として申越黒鉛社製のrBFJを使用し、チタン酸カ
リウム繊維として大塚化学薬品株製のrT I SMO
D 102」を使用し、アラミド繊維として帝人株製ア
ラミドカット繊維「HM−50Jを使用した。
W-214J was used, and [Teflon (registered trademark) TLP-] manufactured by Mitsui DuPont Fluorochemical Co., Ltd. was used as the fluororesin.
Using 10J, spherical phenolic resin and its carbide (
Bell Pearl (registered trademark) R-800 and C-800J manufactured by Kanebo were used as the spherical amorphous carbon particles, rBFJ manufactured by Shinetsu Graphite Co. was used as the graphite, and Otsuka Chemical as the potassium titanate fiber. rT I SMO manufactured by Co., Ltd.
D 102" was used, and Teijin Co., Ltd. aramid cut fiber "HM-50J" was used as the aramid fiber.

各組成物は、上記各原料を表1に示す割合で混合した後
、ハーグ・ブフラーインストルメント社(HAAKE−
BUCHLERJNNSTRUMEN  INC,)製
の混練機ハーグ・レオコードシステム(HAAKE−R
HEOCORD  SYSTEM)40を用いて、回転
数5ORPM。
Each composition was prepared by mixing the above-mentioned raw materials in the proportions shown in Table 1, and then preparing the compositions from Hague Buchler Instruments Co., Ltd. (HAAKE-
BUCHLERJNNSTRUMEN INC.
HEOCORD SYSTEM) 40, rotation speed 5ORPM.

温度300″Cで20分間混練して得た。得られた組成
物は、加熱プレスを用いて300°Cで圧縮成形し、直
径30mm、厚さ2Ilfflの円板状試験片を作成し
た。各試験片について、オリエンチック−製のスラスト
摩擦・摩耗試験機(MODEL  IIIE)によりス
ラストスラスト摩擦・摩耗試験を実施した。スラスト摩
擦・摩耗試験機の試験用シャフトは軸受鋼(SUJ−2
)より作製した外径25m、内径20mm、高さ15薗
の円筒状であり、焼入れ焼戻し硬さHV700以上に熱
処理した後、ニッケルメッキ処理した。
The resulting composition was kneaded for 20 minutes at a temperature of 300''C.The resulting composition was compression molded at 300°C using a hot press to create disk-shaped test pieces with a diameter of 30mm and a thickness of 2lffl. A thrust friction/wear test was performed on the test piece using a thrust friction/wear tester (MODEL IIIE) manufactured by Orientik.The test shaft of the thrust friction/wear tester was made of bearing steel (SUJ-2).
) It was a cylindrical shape with an outer diameter of 25 m, an inner diameter of 20 mm, and a height of 15 mm, and was heat treated to a quenching and tempering hardness of HV700 or more, and then nickel plated.

試験条件は、シャフトのスラスト面圧10.0 kgf
/d、摺動速度2On+/min、温度は室温であり、
試験開始から5時間経過後の動摩擦係数と摩耗係数を測
定した。測定結果は表1に併記した。
The test conditions were a shaft thrust surface pressure of 10.0 kgf.
/d, sliding speed 2On+/min, temperature is room temperature,
The dynamic friction coefficient and wear coefficient were measured 5 hours after the start of the test. The measurement results are also listed in Table 1.

表−1 実施例kAと比較例1−A、1−Cを、また実施例1−
Dと比較例1−Bを比較すると、充填材として球状フェ
ノール樹脂炭化物である球状の無定形炭素粒子を含有す
る組成物は、典型的な固体潤滑剤である非球状の黒鉛を
含有する組成物よりも明らかに低い動摩擦係数と摩耗係
数を示し、また充填材として耐熱性有機繊維であるアラ
ミド繊維を含有する組成物は、無機系繊維状充填材であ
るチタン酸カリウム繊維を含有する組成物よりも温かに
優れた摩擦・摩耗特性を示しており、本発明が優れた摺
動性組成物を与えることがわかる。
Table 1 Example kA, Comparative Examples 1-A, 1-C, and Example 1-
Comparing D and Comparative Example 1-B, the composition containing spherical amorphous carbon particles, which are spherical phenol resin carbide, as a filler is superior to the composition containing non-spherical graphite, which is a typical solid lubricant. A composition containing aramid fiber, which is a heat-resistant organic fiber, as a filler has a significantly lower coefficient of dynamic friction and wear coefficient than a composition containing potassium titanate fiber, which is an inorganic fibrous filler. The results show that the present invention provides a composition with excellent sliding properties.

実施例1−B、1−C,1−Gと比較例1−Eとを比較
すると、充填材である球状の無定形炭素粒子の含有量が
20重量%までの範囲では組成物は良好な摺動性能を示
すが、それより多い35重量%の含有量では摺動性能の
顕著な低下がみられる。また、実施例1−D、1−Eで
示されるように、充填材としてアラミド繊維を含有する
組成物においても充填材含有量が本発明の20重量%ま
での範囲では良好な摺動性が認められる。
Comparing Examples 1-B, 1-C, and 1-G with Comparative Example 1-E, it was found that the composition was good when the content of spherical amorphous carbon particles as a filler was up to 20% by weight. Although it exhibits sliding performance, at a higher content of 35% by weight, a significant decrease in sliding performance is observed. Furthermore, as shown in Examples 1-D and 1-E, compositions containing aramid fibers as fillers also have good sliding properties when the filler content is within the range of 20% by weight of the present invention. Is recognized.

実施例1−A〜1−Hと比較例1−D、1−E。Examples 1-A to 1-H and Comparative Examples 1-D and 1-E.

1−Fとを比較すると、充填材の合計量が20〜50重
量%の範囲では極めて良好な摺動性組成物を与えるが、
充填材の合計量が50重量%を越えると、特に動摩耗係
数が増加し、逆に20重量%未満では特に動摩擦係数が
増加し、いずれも摺動特性の低下が顕著になる。
When compared with 1-F, a composition with extremely good sliding properties is obtained when the total amount of fillers is in the range of 20 to 50% by weight, but
When the total amount of fillers exceeds 50% by weight, the coefficient of dynamic wear particularly increases, and conversely, when the total amount of fillers exceeds 20% by weight, the coefficient of dynamic friction particularly increases, and in both cases, the sliding properties are significantly deteriorated.

(実施例2、比較例2) 以下の表2に示す割合の組成物の試験片を作製して、ラ
ジアル摩耗試験を実施した。
(Example 2, Comparative Example 2) Test pieces of compositions having the proportions shown in Table 2 below were prepared, and a radial wear test was conducted.

各組成物の成分として使用した直鎖状PPS樹脂、フッ
素樹脂2球状フェノール樹脂炭化物、黒鉛、チタン酸カ
リウム繊維、アラミド繊維はいずれも実施例1及び比較
例1と同一である。
The linear PPS resin, fluororesin bispherical phenolic resin carbide, graphite, potassium titanate fiber, and aramid fiber used as components of each composition were all the same as in Example 1 and Comparative Example 1.

表−2 池貝鉄工■製の二軸押出し機(MODEL  PCM−
30)を用いて各成分を混練押出ししてペレットとした
後、テクノプラス■製の射出成形機(MODEL  S
 IM−4749)により射出成形して、外径16mm
、内径12−2長さ10胴の静摩擦係数測定用試験片(
以下、試験片Xという)と、外径14mm、内径Lor
Im、長さ10鵬のラジアル摩擦・摩耗試験片(以下、
試験片Yという)を作製した。
Table-2 Twin-screw extruder manufactured by Ikegai Iron Works (MODEL PCM-
After kneading and extruding each component to make pellets using
Injection molded using IM-4749), outer diameter 16mm
, a test piece for measuring the coefficient of static friction with an inner diameter of 12-2 and a length of 10 mm (
(hereinafter referred to as test piece X), outer diameter 14 mm, inner diameter Lor
Im, a radial friction/wear test piece with a length of 10 mm (hereinafter referred to as
A test piece (referred to as test piece Y) was prepared.

静摩擦係数は、日本精工株制の傾斜台式静摩擦測定器に
より、外径11.9mm、表面粗さ0.2 Raの5U
S304製シヤフト(表面硬さ56HRC)を相手材と
して測定した。シャフトを試験片Xの内径面内に挿入す
ると共に、外径面に重さ62.5gの円筒状の重りを嵌
合し、シャフトを水平位置から徐々に傾斜させ、試験片
χが滑りはじめた時のシャフトの傾斜角の正接として静
止摩擦係数を算出した。その結果は表2に併記した。
The coefficient of static friction was measured using a slope-type static friction measuring device manufactured by NSK Ltd. for a 5U specimen with an outer diameter of 11.9 mm and a surface roughness of 0.2 Ra.
Measurements were made using a shaft made of S304 (surface hardness 56HRC) as a counterpart material. The shaft was inserted into the inner diameter surface of the test piece The coefficient of static friction was calculated as the tangent of the inclination angle of the shaft at the time. The results are also listed in Table 2.

一方、ラジアル摩擦試験は、日本精工■製のラジアル型
摩擦摩耗試験器により、外径9.80閣。
On the other hand, the radial friction test was conducted using a radial friction and wear tester manufactured by NSK ■ with an outer diameter of 9.80 mm.

表面粗さ0.2 Raの5US−420J2製シヤフト
(表面硬さ58HRC)を相手材として、上記試験片Y
を用いて室温で実施した。シャフトを試験片Yの内径面
内に挿入した後、300g/C4の面圧を負荷し、30
0PPMの回転速度でシャフトを回転させて試験片に生
ずるトルク値をロードセルを用いて測定し、そのトルク
値より動摩擦係数μいを求めた。測定開始から18時間
経過後の動摩擦係数μえを表2に併記した。
The above test piece Y was prepared using a 5US-420J2 shaft (surface hardness 58HRC) with a surface roughness of 0.2 Ra as a mating material.
It was carried out at room temperature using After inserting the shaft into the inner diameter surface of the test piece Y, a surface pressure of 300 g/C4 was applied, and the
The shaft was rotated at a rotational speed of 0 PPM, and the torque value generated on the test piece was measured using a load cell, and the dynamic friction coefficient μ was determined from the torque value. The coefficient of dynamic friction μ after 18 hours from the start of the measurement is also listed in Table 2.

ラジアル摩耗試験は、シャフトとして外径9.80m+
+、表面粗さ0.2 Raの5US−304(表面硬さ
56HRC)を用い負荷面圧を3 kgf/dとした以
外は、上述のラジアル摩擦試験と全く同様に実施した。
The radial wear test was performed using a shaft with an outer diameter of 9.80m+
The test was carried out in exactly the same manner as the radial friction test described above, except that 5US-304 (surface hardness 56HRC) with a surface roughness of 0.2 Ra and a load surface pressure of 3 kgf/d was used.

測定開始から18時間経過後のラジアル摩耗深さ(μm
)を表2に併記した。
Radial wear depth (μm) 18 hours after the start of measurement
) are also listed in Table 2.

円環圧砕試験は、金円製作所製プッシュプルスタンド(
H−12型)を用いて行ない、上述の試験片Yの側面に
変形速度8mm/grinで荷重を負荷することにより
、試験片が圧砕されるときの荷重を測定した。結果を表
2に併記した。
The annular crushing test was performed using a push-pull stand manufactured by Kanen Seisakusho (
H-12 type) was used to measure the load when the test piece was crushed by applying a load to the side surface of the above-mentioned test piece Y at a deformation rate of 8 mm/grin. The results are also listed in Table 2.

実施例2−Aと比較例2−A、2−Bとを比較すると、
球状の無定形炭素粒子を含有する組成物は、固体潤滑材
である非球状の黒鉛やチタン酸カリウム繊維を含有する
組成物よりも静止摩擦係数。
Comparing Example 2-A and Comparative Examples 2-A and 2-B,
Compositions containing spherical amorphous carbon particles have a lower coefficient of static friction than compositions containing non-spherical graphite or potassium titanate fibers, which are solid lubricants.

ラジアル摩耗量1円環圧砕荷重において優れている。一
方、球状の無定形炭素粒子とアラミド繊維を含有する実
施例2−Bの組成物は、極めて良好な摩擦・摩耗特性と
円環圧砕荷重を示している。
Radial wear amount: 1 Excellent under annular crushing load. On the other hand, the composition of Example 2-B containing spherical amorphous carbon particles and aramid fibers exhibits extremely good friction and wear characteristics and annular crushing load.

以上の結果は、本発明の組成物が優れた摺動性組成物を
与えることを示している。
The above results show that the composition of the present invention provides a composition with excellent sliding properties.

実施例2−A、2−Bと比較例2−C,2−Dとを比較
すると、PTFE含有量が40重量%を越えると、組成
物において連続相を形成するマトリックス相の強度低下
を反映してラジアル摩耗量の増加と円環圧砕荷重の低下
が生じ、またPTFEの含有量が10重量%以下では摩
擦特性の顕著な低下を生じる。比較例2−Dにおいてみ
られるラジアル摩耗量の増加は、球状フェノール樹脂炭
化物の含有量が20重量%を越えていることが原因であ
ると考えられる(比較例1−E参照)。
Comparing Examples 2-A and 2-B and Comparative Examples 2-C and 2-D, it was found that when the PTFE content exceeds 40% by weight, the strength of the matrix phase that forms the continuous phase in the composition decreases. This results in an increase in radial wear and a decrease in annular crushing load, and if the PTFE content is less than 10% by weight, a significant decrease in frictional properties occurs. The increase in the amount of radial wear seen in Comparative Example 2-D is considered to be due to the content of spherical phenolic resin carbide exceeding 20% by weight (see Comparative Example 1-E).

(実施例3.比較例3) 以下の表3に示す割合の組成物より試験片を作製して、
高速摩耗試験を実施した。
(Example 3. Comparative Example 3) A test piece was prepared from a composition having the proportions shown in Table 3 below.
A high speed wear test was conducted.

各組成物の成分として使用した直鎖状PPS樹脂、フッ
素樹脂1球状フェノール樹脂炭化物、黒鉛、チタン酸カ
リウム繊維、アラミド繊維はいずれも実施例1及び比較
例1と同一である。また炭素繊維としては、呉羽化学工
業■製の炭素カット繊維(M−1077)を使用した。
The linear PPS resin, fluororesin, spherical phenolic resin carbide, graphite, potassium titanate fiber, and aramid fiber used as components of each composition were all the same as in Example 1 and Comparative Example 1. Further, as the carbon fiber, carbon cut fiber (M-1077) manufactured by Kureha Chemical Industry (■) was used.

各成分を実施例1と同じ方法で混練して組成物を作成し
、それらを加熱プレスで圧縮成形して5閣X5mmX6
5mmの板状試験片を作製した。
A composition was prepared by kneading each component in the same manner as in Example 1, and compression molding was performed using a heat press to form a 5-kilometer x 5-mm x 6-cm
A 5 mm plate-shaped test piece was prepared.

摩耗試験は、日本精工■製の試作サバン式摩耗試験機を
用いて、滑り速度48.7m/秒、負荷荷重224gで
、無潤滑状態で実施した。相手材は5US420J2製
(表面粗さ0. I Ra 、表面硬さ45HRC)の
100−Φ×15閣幅の円板であり、試験片は相手材の
円周面に所定荷重で押しつけた。摩耗特性は摺動時間3
時間後の摩耗体積を測定して評価し、表3に結果を併記
した。
The wear test was carried out without lubrication at a sliding speed of 48.7 m/sec and a load of 224 g using a prototype Saban type wear tester manufactured by NSK ■. The mating material was a disc made of 5US420J2 (surface roughness: 0.I Ra, surface hardness: 45 HRC), 100-Φ x 15 cm wide, and the test piece was pressed against the circumferential surface of the mating material with a predetermined load. Wear characteristics are sliding time 3
The wear volume after time was measured and evaluated, and the results are also listed in Table 3.

表−3 実施例3−A、3−Dと比較例3−A、3−Cとを比較
すると、本発明の球状の無定形炭素粒子を含有する組成
物は、類似の非球状の粒子である黒鉛を含有する組成物
よりも明らかに優れた耐摩耗性を示すことがわかる。ま
た、実施例3−B。
Table 3 Comparing Examples 3-A and 3-D and Comparative Examples 3-A and 3-C, it is found that the composition containing spherical amorphous carbon particles of the present invention has similar non-spherical particles. It can be seen that the composition exhibits clearly superior wear resistance to certain graphite-containing compositions. Moreover, Example 3-B.

3−Cと比較例3−Bとを比較すると、同様の繊維強化
系組成物であっても、本発明のアラミド繊維や炭素繊維
を含有する組成物は、チタン酸カリウム繊維を含有する
組成物よりも著しく良好な耐摩耗性を示す。チタン酸カ
リウム繊維の含有量が増加すると、比較例3−Dで示さ
れるように耐摩耗性の顕著な低下が起こる。
Comparing 3-C and Comparative Example 3-B, even though they are similar fiber-reinforced compositions, the composition containing aramid fibers and carbon fibers of the present invention is superior to the composition containing potassium titanate fibers. shows significantly better wear resistance than As the content of potassium titanate fiber increases, a significant decrease in abrasion resistance occurs as shown in Comparative Example 3-D.

実施例3−E、3−Fと比較例3−E、3−Fとを比較
すると、本発明で例示される球状の無定形炭素粒子とア
ラミド繊維または炭素繊維とを併用した組成物は、固体
潤滑材である非球状の黒鉛とチタン酸カリウム繊維また
はアラミド繊維とを併用した組成物よりも逼かに優れた
耐摩耗性を示すことがわかる。
Comparing Examples 3-E and 3-F with Comparative Examples 3-E and 3-F, it is found that the compositions using a combination of spherical amorphous carbon particles and aramid fibers or carbon fibers exemplified in the present invention have It can be seen that the composition exhibits much better wear resistance than a composition that uses a combination of non-spherical graphite, which is a solid lubricant, and potassium titanate fiber or aramid fiber.

以上例示してきたように、直鎖状PPS樹脂と、フッ素
樹脂と、球状の無定形炭素粒子で代表される球状充填材
並びにアラミド繊維や炭素繊維で代表される有機質繊維
状充填材の少なくとも一種よりなる本発明の組成物は、
耐摩耗性、低摩擦性に特に優れた組成物であることが明
らかになった。
As exemplified above, at least one of linear PPS resin, fluororesin, spherical filler represented by spherical amorphous carbon particles, and organic fibrous filler represented by aramid fiber and carbon fiber. The composition of the present invention is
It has been revealed that the composition has particularly excellent wear resistance and low friction properties.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、組成物のベース
となるマトリックス樹脂として靭性1機械的特性及び耐
熱耐薬品性に優れた直鎖状PPS樹脂を使用し、耐摩耗
成分として球状の無定形炭素粒子球状シリカ粒子等の球
状充填材や、アラミド繊維、炭素繊維等で代表される有
機系耐熱繊維状充填材を配合し、更に低摩擦材としてフ
ッ素樹脂を配合した。そのため、極めて耐摩耗性、低摩
擦性1機械的特性に優れた組成物を提供することができ
るという効果か得られる。
As explained above, according to the present invention, a linear PPS resin with excellent toughness, mechanical properties, heat resistance, and chemical resistance is used as the matrix resin serving as the base of the composition, and a spherical inorganic resin is used as the wear-resistant component. Spherical fillers such as regular carbon particles and spherical silica particles, organic heat-resistant fibrous fillers typified by aramid fibers and carbon fibers, and a fluororesin as a low-friction material were blended. Therefore, it is possible to provide a composition with extremely excellent wear resistance, low friction, and mechanical properties.

本発明の組成物は、超高速回転を要求される歯科用スピ
ンドル軸受用の保持器や、極度の耐摩耗性を要求される
ピストンリング等の過酷な条件下で使用される軸受関連
部品の耐摩耗性樹脂組成物として使用可能である。
The composition of the present invention can be used in bearing-related parts used under harsh conditions, such as retainers for dental spindle bearings that require ultra-high speed rotation, and piston rings that require extremely high wear resistance. It can be used as an abrasive resin composition.

Claims (4)

【特許請求の範囲】[Claims] (1)直鎖状ポリフェニレンサルファイド樹脂50〜8
5重量%とフッ素樹脂10〜40重量%と球状充填材及
び繊維状充填材のうちの少なくとも一種0〜20重量%
とからなる耐摩耗性樹脂組成物。
(1) Linear polyphenylene sulfide resin 50-8
5% by weight, 10-40% by weight of fluororesin, and 0-20% by weight of at least one of a spherical filler and a fibrous filler.
A wear-resistant resin composition consisting of.
(2)フッ素樹脂がポリテトラフロロエチレンである請
求項(1)記載の耐摩耗性樹脂組成物。
(2) The wear-resistant resin composition according to claim (1), wherein the fluororesin is polytetrafluoroethylene.
(3)球状充填材が球状の等方性無定形炭素粒子、球状
シリカ粒子、球状シリコン樹脂の少なくとも一種である
耐摩耗性樹脂組成物。
(3) A wear-resistant resin composition in which the spherical filler is at least one of spherical isotropic amorphous carbon particles, spherical silica particles, and spherical silicone resin.
(4)繊維状充填材が耐熱性有機繊維又は炭素繊維の少
なくとも一種である耐摩耗性樹脂組成物。
(4) A wear-resistant resin composition in which the fibrous filler is at least one type of heat-resistant organic fiber or carbon fiber.
JP9431590A 1990-04-10 1990-04-10 Wear-resistant resin composition Pending JPH03292366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9431590A JPH03292366A (en) 1990-04-10 1990-04-10 Wear-resistant resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9431590A JPH03292366A (en) 1990-04-10 1990-04-10 Wear-resistant resin composition

Publications (1)

Publication Number Publication Date
JPH03292366A true JPH03292366A (en) 1991-12-24

Family

ID=14106842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9431590A Pending JPH03292366A (en) 1990-04-10 1990-04-10 Wear-resistant resin composition

Country Status (1)

Country Link
JP (1) JPH03292366A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994010246A1 (en) * 1992-11-05 1994-05-11 Daikin Industries, Ltd. Polyphenylene sulfide resin composition and process for producing the same
JPH0762184A (en) * 1993-08-20 1995-03-07 Nippon Pillar Packing Co Ltd Slidable sealing composition
US5514400A (en) * 1993-06-15 1996-05-07 W. R. Grace & Co.-Conn. Method for application of smoke color to inside of bag
JPH08151497A (en) * 1994-11-29 1996-06-11 Nichias Corp Sliding resin composition
WO1999047607A1 (en) * 1998-03-19 1999-09-23 Asahi Glass Company Ltd. Resin composition
WO2000017273A1 (en) * 1998-09-17 2000-03-30 Kureha Kagaku Kogyo K.K. Sliding member for conveyor apparatus
JP2006273999A (en) * 2005-03-29 2006-10-12 Toray Ind Inc Polyarylene sulfide resin composition
JP2007119638A (en) * 2005-10-28 2007-05-17 Chubu Electric Power Co Inc Polyarylene sulfide-based molding material and pps-based molding
JP2007327009A (en) * 2006-06-09 2007-12-20 Mitsubishi Gas Chem Co Inc Resin composition for bearing
US7384355B2 (en) * 2001-04-13 2008-06-10 Unitta Company Thin autotensioner
JP2009185103A (en) * 2008-02-01 2009-08-20 Mitsubishi Gas Chem Co Inc Bearing for motor
CN101824219A (en) * 2010-04-27 2010-09-08 深圳大学 Amorphous metal enhanced polyphenylene sulfide self-lubricating wear-resistant composite material

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994010246A1 (en) * 1992-11-05 1994-05-11 Daikin Industries, Ltd. Polyphenylene sulfide resin composition and process for producing the same
US5514400A (en) * 1993-06-15 1996-05-07 W. R. Grace & Co.-Conn. Method for application of smoke color to inside of bag
JPH0762184A (en) * 1993-08-20 1995-03-07 Nippon Pillar Packing Co Ltd Slidable sealing composition
JPH08151497A (en) * 1994-11-29 1996-06-11 Nichias Corp Sliding resin composition
US6780944B1 (en) 1998-03-19 2004-08-24 Asahi Glass Company, Limited Resin composition
WO1999047607A1 (en) * 1998-03-19 1999-09-23 Asahi Glass Company Ltd. Resin composition
WO2000017273A1 (en) * 1998-09-17 2000-03-30 Kureha Kagaku Kogyo K.K. Sliding member for conveyor apparatus
US7384355B2 (en) * 2001-04-13 2008-06-10 Unitta Company Thin autotensioner
JP2006273999A (en) * 2005-03-29 2006-10-12 Toray Ind Inc Polyarylene sulfide resin composition
JP2007119638A (en) * 2005-10-28 2007-05-17 Chubu Electric Power Co Inc Polyarylene sulfide-based molding material and pps-based molding
JP2007327009A (en) * 2006-06-09 2007-12-20 Mitsubishi Gas Chem Co Inc Resin composition for bearing
JP2009185103A (en) * 2008-02-01 2009-08-20 Mitsubishi Gas Chem Co Inc Bearing for motor
CN101824219A (en) * 2010-04-27 2010-09-08 深圳大学 Amorphous metal enhanced polyphenylene sulfide self-lubricating wear-resistant composite material

Similar Documents

Publication Publication Date Title
US7670055B2 (en) Sliding bearing
KR101835911B1 (en) Composite slide bearing
EP0120130B1 (en) Polyetherimide bearing compositions
KR102418834B1 (en) Water-lubricated bearing material
WO2015119231A1 (en) Plain bearing
US20100290726A1 (en) Plain bearing
JPH09316323A (en) Sliding member for thrust bearing
JPH07268126A (en) Lubricating resin composition
JP2020502345A (en) Use of polymer materials based on polyetherketoneketone to reduce wear
JPH03292366A (en) Wear-resistant resin composition
US3453208A (en) Low friction bearings with improved wear properties
JPS58160353A (en) Resin composition
Chen et al. Friction and wear mechanisms of PA66/PPS blend reinforced with carbon fiber
US20190226525A1 (en) Sliding member
JP2007269936A (en) Dry lubrication film composition
US20150126663A1 (en) Tribological aromatic polyimide compositions
EP3002307A1 (en) Bearing material
JPS63118357A (en) Tetrafluoroethylene resin composition
Basavaraj et al. Polycarbonate/molybdenum disulfide/carbon black composites: physicomechanical, thermal, wear, and morphological properties
JP2004137371A (en) Lubricant, sliding member and solid lubricant
JP2015148285A (en) slide bearing
JPS6210166A (en) Sliding material composition
JP6317057B2 (en) Plain bearing
JP6545781B2 (en) Sliding bearing
Xian et al. Effects of the combination of solid lubricants and short carbon fibers on the sliding performance of poly (ether imide) matrix composites