JP2006322511A - Bearing - Google Patents

Bearing Download PDF

Info

Publication number
JP2006322511A
JP2006322511A JP2005145517A JP2005145517A JP2006322511A JP 2006322511 A JP2006322511 A JP 2006322511A JP 2005145517 A JP2005145517 A JP 2005145517A JP 2005145517 A JP2005145517 A JP 2005145517A JP 2006322511 A JP2006322511 A JP 2006322511A
Authority
JP
Japan
Prior art keywords
bearing
electroformed
shaft
electroformed part
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005145517A
Other languages
Japanese (ja)
Other versions
JP4987248B2 (en
Inventor
Fumitada Satoji
文規 里路
Isao Komori
功 古森
Masashi Okuma
真史 大熊
Kenichi Mitani
健一 三谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Act One KK
Original Assignee
NTN Corp
Act One KK
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, Act One KK, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2005145517A priority Critical patent/JP4987248B2/en
Priority to CN2006800172872A priority patent/CN101203685B/en
Priority to KR1020077016103A priority patent/KR101414110B1/en
Priority to PCT/JP2006/309640 priority patent/WO2006123602A1/en
Priority to US11/795,410 priority patent/US20080212908A1/en
Publication of JP2006322511A publication Critical patent/JP2006322511A/en
Priority to US13/435,915 priority patent/US8931175B2/en
Application granted granted Critical
Publication of JP4987248B2 publication Critical patent/JP4987248B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent an electroforming part from being peeled off even if excessive force is applied on the electroforming part because the electroformed part is held by only bonding force of a rough face formed on an outer surface of the electroformed part and resin when molding the electroformed part on a bearing face requiring precision. <P>SOLUTION: A molding shrinkage rate of resin for molding the electroformed part 4 is 0.02% or more and 2.0% or less to obtain high adhering force between the electroformed part 4 and a resin molded part 15 stably and suppress deformation of the electroformed part 4 due to shrinkage of the resin molded part 15. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、軸受面を電鋳で形成した軸受に関する。   The present invention relates to a bearing having a bearing surface formed by electroforming.

滑り軸受(以下、単に「軸受」と称する)は、軸部材との間の相対的な回転、摺動、もしくは摺動回転を支持する用途に広く用いられている。この種の軸受では、その軸受面精度が軸受性能を大きく左右するので、良好な軸受面精度を得るため、従来から多種多様の提案がなされている。   Sliding bearings (hereinafter simply referred to as “bearings”) are widely used in applications that support relative rotation, sliding, or sliding rotation with a shaft member. In this type of bearing, since the bearing surface accuracy greatly affects the bearing performance, various proposals have been conventionally made in order to obtain good bearing surface accuracy.

例えば、特開2003−56552号公報や特開2003−56569号公報では、軸受面精度を向上するために電鋳部をインサートモールドした軸受(電鋳軸受)が提案されている。両公報に記載の発明は、何れもマスター軸の不必要な部分をマスキングして、マスク部以外に電鋳殻である円筒状の電鋳部を形成し、この電鋳部の外周に射出成形により樹脂を充填して軸受を成形した後、軸受をマスター軸から分離するものである。
特開2003−56552号公報 特開2003−56569号公報
For example, JP 2003-56552 A and JP 2003-56569 A propose a bearing (electroformed bearing) in which an electroformed part is insert-molded in order to improve bearing surface accuracy. In both the inventions described in both publications, unnecessary portions of the master shaft are masked to form a cylindrical electroformed portion which is an electroformed shell other than the mask portion, and injection molding is performed on the outer periphery of the electroformed portion. After the resin is filled by molding the bearing, the bearing is separated from the master shaft.
JP 2003-56552 A JP 2003-56569 A

ところで、電鋳部を円筒状に成形した場合、成形後の電鋳部の内部組織には拡径方向の残留応力が作用すると考えられる。その一方で、円筒状の樹脂モールド部は固化に伴って収縮しようとするので、電鋳部の樹脂モールド後は、電鋳部の外周面と樹脂モールド部の内周面とが互いに相手側に押し付けられる。加えて、電鋳部の内周面はマスター軸の外周面に倣った平滑面となるが、電鋳部の外周面は一般に粗面となるので、樹脂モールド後は電鋳部の表面凹凸に樹脂が入り込み、アンカー効果を生じる。これらの複合作用により、電鋳部と樹脂モールド部との間に強固な固着力が得られる。   By the way, when an electroformed part is shape | molded cylindrically, it is thought that the residual stress of a diameter expansion direction acts on the internal structure of the electroformed part after shaping | molding. On the other hand, since the cylindrical resin mold portion tends to shrink as it solidifies, the outer peripheral surface of the electroformed portion and the inner peripheral surface of the resin mold portion are opposite to each other after the resin molding of the electroformed portion. Pressed. In addition, the inner peripheral surface of the electroformed part is a smooth surface that follows the outer peripheral surface of the master shaft, but the outer peripheral surface of the electroformed part is generally rough, so that the surface irregularities of the electroformed part are uneven after resin molding. Resin enters and produces an anchor effect. By these combined actions, a strong fixing force can be obtained between the electroformed part and the resin mold part.

この電鋳軸受を工業製品として実用化するためには、電鋳部と樹脂モールド部との間で強固な固着力を安定して確保することが必要となる。その一方、高い固着力が得られても、軸受面精度等の他の軸受特性が犠牲になるようでは、電鋳軸受の実用化に支障を来す。   In order to put this electroformed bearing into practical use as an industrial product, it is necessary to stably secure a strong fixing force between the electroformed part and the resin mold part. On the other hand, even if a high adhering force is obtained, if other bearing characteristics such as bearing surface accuracy are sacrificed, the practical application of the electroformed bearing is hindered.

そこで、本発明では、強固な固着力および高い軸受面精度を両立できる電鋳軸受の提供を目的とする。   Accordingly, an object of the present invention is to provide an electroformed bearing that can achieve both a strong fixing force and high bearing surface accuracy.

上記課題を解決するために本発明の軸受は、電鋳部からなる軸受面を備えると共に、電鋳部を樹脂の射出成形にてモールドしたものであって、前記樹脂の成形収縮率を0.02%以上、2.0%以下としたものである。   In order to solve the above-described problems, the bearing of the present invention has a bearing surface made of an electroformed part, and is formed by molding the electroformed part by resin injection molding. 02% or more and 2.0% or less.

電鋳部からなる軸受面は、電鋳加工の特性上、マスター軸の表面が精度よく転写され、マスター軸の表面精度に倣った面精度となる。従って、マスター軸の表面精度を高めておけば、高い軸受面精度が得られ、軸受の回転精度や摺動精度を既存品よりも飛躍的に高めることができる。   Due to the characteristics of electroforming, the surface of the master shaft is accurately transferred to the bearing surface made of the electroformed part, and the surface accuracy follows the surface accuracy of the master shaft. Therefore, if the surface accuracy of the master shaft is increased, high bearing surface accuracy can be obtained, and the rotation accuracy and sliding accuracy of the bearing can be dramatically increased as compared with existing products.

特に樹脂の成形収縮率を0.02%以上に設定することにより、溶融樹脂の固化時に樹脂モールド部で生じる収縮力が大きくなるので、電鋳部と樹脂モールド部との間で必要な固着力を確実に確保することができる。その一方で、樹脂の成形収縮率が大きすぎると、樹脂モールド部の収縮力が過大となり、この収縮力の伝播による電鋳部の変形が懸念されるが、成形収縮率の上限を2.0%に設定することにより、この種の弊害を回避することができる。   In particular, by setting the molding shrinkage rate of the resin to 0.02% or more, the shrinkage force generated in the resin mold part when the molten resin is solidified increases, so the necessary adhesion force between the electroformed part and the resin mold part Can be ensured. On the other hand, if the molding shrinkage rate of the resin is too large, the shrinkage force of the resin mold part becomes excessive, and there is a concern about deformation of the electroformed part due to propagation of this shrinkage force. By setting to%, this kind of harmful effect can be avoided.

また、前記電鋳部にフランジを設けるのが望ましい。   Moreover, it is desirable to provide a flange in the electroformed part.

このフランジを有する電鋳部を樹脂でモールド(インサート成形)すると、電鋳部と一体のフランジと、これに密着するモールド部との間で抜け止め、あるいは回り止めがなされるので、電鋳部とモールド部との間で高い固着力を得ることができる。特にフランジの外周面を非真円形状とすることで、より一層高い回り止め効果を得ることが可能となる。フランジには、軸心の直交方向に延びたもの(図5参照)の他、軸心の斜め方向に延びたもの(図8参照)も含まれる。   When the electroformed part having this flange is molded with resin (insert molding), the electroformed part is prevented from coming off or prevented from rotating between the flange integral with the electroformed part and the mold part closely contacting with the flange. A high fixing force can be obtained between the mold part and the mold part. In particular, by making the outer peripheral surface of the flange non-circular, it is possible to obtain an even higher anti-rotation effect. The flange includes those extending in the direction perpendicular to the axis (see FIG. 5) and those extending in the oblique direction of the axis (see FIG. 8).

電鋳部のフランジは、電鋳部を塑性変形させることで形成することができる。例えばマスター軸の外周に密着した電鋳部の端面を軸方向に加圧すれば、被加圧部はマスター軸と密着した内径側へは変形することができないため、電鋳部の端部が外径側に塑性変形し、これにより外向きのフランジが容易に成形可能となる。   The flange of the electroformed part can be formed by plastically deforming the electroformed part. For example, if the end surface of the electroformed part that is in close contact with the outer periphery of the master shaft is pressed in the axial direction, the pressed part cannot be deformed to the inner diameter side that is in close contact with the master shaft. Plastic deformation to the outer diameter side makes it possible to easily form an outward flange.

以上に説明した軸受の内周に軸部材を挿入することにより高い軸受面精度および耐久性を有する軸受装置を提供することが可能となる。軸部材としては、電鋳部の成形時に使用したマスター軸を使用する他、マスター軸と別部材を使用することもできる。この軸受装置を有するモータは、回転精度が良好で、かつ耐久性も高い、という特徴を備える。   By inserting the shaft member into the inner periphery of the bearing described above, it is possible to provide a bearing device having high bearing surface accuracy and durability. As the shaft member, in addition to using the master shaft used at the time of forming the electroformed part, a member different from the master shaft can also be used. A motor having this bearing device is characterized by good rotational accuracy and high durability.

本発明によれば、電鋳部と樹脂モールド部との相互間で高い固着力を安定して得ることができる。その一方で、樹脂モールド部の収縮による電鋳部の変形を抑えることができ、これにより高い軸受精度が得られる。   According to the present invention, a high fixing force can be stably obtained between the electroformed part and the resin mold part. On the other hand, deformation of the electroformed part due to shrinkage of the resin mold part can be suppressed, and thereby high bearing accuracy can be obtained.

本発明の実施の形態1を図1〜図8を参考に説明する。   A first embodiment of the present invention will be described with reference to FIGS.

図1に示す本発明の軸受5は、マスター軸2の所要個所をマスキングする工程(図3参照)、非マスク部に電鋳加工を行って電鋳軸1を形成する工程(図4参照)、電鋳軸1の電鋳部4を樹脂等でモールドする工程(図6および図7参照)、および電鋳部4とマスター軸2とを分離する工程を経て製作される。   The bearing 5 of the present invention shown in FIG. 1 includes a step of masking a required portion of the master shaft 2 (see FIG. 3) and a step of forming an electroformed shaft 1 by performing electroforming on a non-mask portion (see FIG. 4). The electroformed shaft 4 is manufactured through a process of molding the electroformed portion 4 of the electroformed shaft 1 with a resin or the like (see FIGS. 6 and 7) and a step of separating the electroformed portion 4 and the master shaft 2.

なお、以下の説明において、「回転用の軸受」とは、軸との間の相対回転を支持するための軸受5を意味し、軸受5が回転側となるか固定側となるかを問わない。「摺動用の軸受」とは、軸との間の相対的な直線運動を支持するための軸受5を意味し、同様に軸受5が移動側となるか固定側となるかを問わない。「回転摺動用の軸受」とは、前記二つの軸受の機能を併せ持つもので、軸との間の回転運動および直線運動の双方を支持するための軸受5を意味する。   In the following description, the “rotating bearing” means the bearing 5 for supporting the relative rotation with the shaft, regardless of whether the bearing 5 is on the rotating side or the fixed side. . The “sliding bearing” means the bearing 5 for supporting the relative linear motion between the shafts, and it does not matter whether the bearing 5 is the moving side or the fixed side. The “rotating and sliding bearing” has the functions of the two bearings, and means the bearing 5 for supporting both the rotational motion and the linear motion between the shafts.

前記マスター軸2は、導電性材料、例えば焼入処理をしたステンレス鋼で、ストレートな横断面円形の軸として製作される。もちろんステンレス鋼に限定されるものでなく、剛性などの機械的強度、摺動性、耐熱性、耐薬品性、電鋳部4の加工性および分離性など、軸受の機能上あるいは軸受製作の都合上求められる特性に適合した材料、さらには熱処理方法が選択される。セラミック等の非金属材料でも、導電処理を施すことにより(例えば表面に導電性の金属被膜を形成することにより)使用可能となる。なお、マスター軸2の表面には、電鋳部4との間の摩擦力を減じるための表面処理、例えばフッ素系の樹脂コーティングを施すのが望ましい。   The master shaft 2 is made of a conductive material, for example, hardened stainless steel, and is manufactured as a straight shaft having a circular cross section. Of course, the material is not limited to stainless steel, but it has a mechanical function such as rigidity, slidability, heat resistance, chemical resistance, workability and separability of the electroformed part 4, and so on. A material and a heat treatment method suitable for the characteristics required above are selected. Even non-metallic materials such as ceramics can be used by conducting a conductive treatment (for example, by forming a conductive metal film on the surface). The surface of the master shaft 2 is preferably subjected to a surface treatment for reducing the frictional force with the electroformed part 4, for example, a fluorine-based resin coating.

マスター軸2は、中空軸の他、中空軸や中空部に樹脂を充填した中実軸であっても良い。また、回転用の軸受では、マスター軸の横断面は基本的に円形に形成されるが、摺動用の軸受の場合は横断面は任意形状にすることができ、円形の他に多角形状や非真円形状とすることもできる。また、摺動用の軸受では、基本的にマスター軸2の横断面形状は軸方向で一定であるが、回転用の軸受や回転摺動用の軸受では、軸の全長にわたって一定の横断面形状ではない形態をとることもある。   In addition to the hollow shaft, the master shaft 2 may be a solid shaft in which a hollow shaft or a hollow portion is filled with resin. In the rotation bearing, the cross section of the master shaft is basically circular, but in the case of the sliding bearing, the cross section can be arbitrarily shaped. It can also be a perfect circle shape. In a sliding bearing, the cross-sectional shape of the master shaft 2 is basically constant in the axial direction. However, a rotating bearing or a rotating / sliding bearing does not have a constant cross-sectional shape over the entire length of the shaft. May take the form.

マスター軸2の外周面精度は、後述する軸受隙間の精度を直接左右するので、真円度、円筒度、表面粗さ等の軸受機能上重要となる表面精度を予め高精度に仕上げておく必要がある。例えば回転用の軸受では、軸受面との接触回避の観点から真円度が重視されるので、マスター軸2の外周面はできるだけ真円度を高めておくのが望ましい。本発明者らが検証したところ、マスター軸2の外周面の真円度が、後述する軸受隙間の平均幅(半径寸法)の8割以下にまで仕上げられていると、軸受面との接触を抑え、良好な回転精度を得られることが判明した。従って、例えば軸受隙間の平均幅を2μmに設定する場合、マスター軸外周面は1.6μm以下の真円度に仕上げるのが望ましい。   Since the accuracy of the outer peripheral surface of the master shaft 2 directly affects the accuracy of the bearing gap described later, the surface accuracy that is important for bearing functions such as roundness, cylindricity, and surface roughness must be finished in advance. There is. For example, in a bearing for rotation, since roundness is important from the viewpoint of avoiding contact with the bearing surface, it is desirable to increase the roundness of the outer peripheral surface of the master shaft 2 as much as possible. As a result of verification by the present inventors, when the roundness of the outer peripheral surface of the master shaft 2 is finished to 80% or less of an average width (radial dimension) of a bearing gap described later, contact with the bearing surface is prevented. It was found that good rotation accuracy can be obtained. Therefore, for example, when the average width of the bearing gap is set to 2 μm, it is desirable that the outer peripheral surface of the master shaft is finished to a roundness of 1.6 μm or less.

マスター軸2の外周面には、図3に示すように、電鋳部4の形成予定部を除き、マスキングが施される。マスキング用の被覆材3としては、非導電性、および電解質溶液に対する耐食性を有する既存品が選択使用される。   As shown in FIG. 3, masking is performed on the outer peripheral surface of the master shaft 2 except for a portion where the electroformed portion 4 is to be formed. As the covering material 3 for masking, an existing product having non-conductivity and corrosion resistance against the electrolyte solution is selectively used.

電鋳加工は、NiやCu等の金属イオンを含んだ電解質溶液にマスター軸2を浸漬し、電解質溶液に通電して目的の金属をマスター軸2の表面に析出させることにより行われる。電解質溶液には、カーボンなどの摺動材、あるいはサッカリン等の応力緩和材を必要に応じて含有させてもよい。電着金属の種類は、軸受の軸受面に求められる硬度、疲れ強さ等の物理的性質、化学的性質に応じて適宜選択される。電鋳部4の厚みは、これが厚すぎるとマスター軸2からの剥離性が低下し、薄すぎると軸受面の耐久性低下等につながるので、求められる軸受性能や軸受サイズ、さらには用途等に応じて最適な厚みに設定される。例えば軸径1mm〜6mmの回転用の軸受では、10μm〜200μmの厚さとするのが好ましい。   The electroforming process is performed by immersing the master shaft 2 in an electrolyte solution containing metal ions such as Ni and Cu, and energizing the electrolyte solution to deposit a target metal on the surface of the master shaft 2. If necessary, the electrolyte solution may contain a sliding material such as carbon or a stress relaxation material such as saccharin. The type of electrodeposited metal is appropriately selected according to physical properties and chemical properties such as hardness and fatigue strength required for the bearing surface of the bearing. If the thickness of the electroformed part 4 is too thick, the peelability from the master shaft 2 is reduced, and if it is too thin, the durability of the bearing surface is reduced. The optimum thickness is set accordingly. For example, in a rotating bearing having a shaft diameter of 1 mm to 6 mm, the thickness is preferably 10 μm to 200 μm.

以上の工程を経ることにより、図4に示すように、マスター軸2外周の一部領域に円筒状の電鋳部4を被着した電鋳軸1が製作される。なお、マスキング用の被覆材3が薄い場合、電鋳部4の両端は被覆材3側に迫り出し、内周面にテーパ状の面取り部4aが形成される場合もある。   Through the above steps, as shown in FIG. 4, the electroformed shaft 1 in which the cylindrical electroformed portion 4 is attached to a partial region of the outer periphery of the master shaft 2 is manufactured. When the covering material 3 for masking is thin, both ends of the electroformed part 4 protrude toward the covering material 3 side, and a tapered chamfered part 4a may be formed on the inner peripheral surface.

電鋳軸1は、図6および図7に示すモールド工程に移送され、電鋳部4およびマスター軸2をインサート部品とするインサート成形が行われる。   The electroformed shaft 1 is transferred to the molding process shown in FIGS. 6 and 7, and insert molding is performed using the electroformed portion 4 and the master shaft 2 as insert parts.

このモールド工程では、電鋳軸1は、図6に示すようにその軸方向を型締め方向(図面上下方向)と平行にして、上型6、および下型7からなる金型内部に供給される。下型7には、マスター軸2の外径寸法に適合した位置決め穴9が形成され、この位置決め穴9に前工程から移送した電鋳軸1の下端を挿入して電鋳軸1の位置決めがなされる。この位置決め状態では、電鋳軸1のうち電鋳部4の下端面が下型7の成形面と係合し、電鋳部4の上端が金型のパーティングラインP.L.よりも相手型(本実施形態では上型6)の側に突出している。位置決め穴9の深さL3は、マスター軸2の下端と電鋳部4の下端との間の距離L4よりも大きく(L3>L4)、従って、型締め前の状態では、マスター軸2の下端面は位置決め穴9の底から浮上した状態にある。この浮上量を調整することで、電鋳部4の下端に形成するフランジの塑性変形量を変更することができる。   In this molding step, the electroformed shaft 1 is supplied into the mold composed of the upper mold 6 and the lower mold 7 with its axial direction parallel to the mold clamping direction (the vertical direction in the drawing) as shown in FIG. The The lower die 7 is formed with a positioning hole 9 adapted to the outer diameter of the master shaft 2, and the lower end of the electroformed shaft 1 transferred from the previous process is inserted into the positioning hole 9 to position the electroformed shaft 1. Made. In this positioning state, the lower end surface of the electroformed part 4 of the electroformed shaft 1 is engaged with the molding surface of the lower mold 7, and the upper end of the electroformed part 4 is the parting line P.D. L. Rather than the other mold (upper mold 6 in this embodiment). The depth L3 of the positioning hole 9 is larger than the distance L4 between the lower end of the master shaft 2 and the lower end of the electroformed part 4 (L3> L4). Therefore, in the state before mold clamping, The end face floats from the bottom of the positioning hole 9. By adjusting the flying height, the plastic deformation amount of the flange formed at the lower end of the electroformed portion 4 can be changed.

前記上型6には、位置決め穴9と同軸にガイド穴10が形成されている。このガイド穴10の深さL5は、図7に示す型締め時において、マスター軸2の上端がガイド穴10の底に突き当たらない程度であれば足りる(なお、マスター軸2の下端は位置決め穴9の底に突き当たる)。   A guide hole 10 is formed in the upper mold 6 coaxially with the positioning hole 9. The depth L5 of the guide hole 10 is sufficient as long as the upper end of the master shaft 2 does not abut against the bottom of the guide hole 10 during mold clamping shown in FIG. 7 (note that the lower end of the master shaft 2 is a positioning hole). It hits the bottom of 9).

以上の金型において、可動型(本実施形態でいえば上型6)を固定型(本実施形態では下型7)に接近させて型締めすると、先ずマスター軸2の上端がガイド穴10に挿入されてマスター軸2の芯出しが行われ、さらに上型6の成形面に電鋳部4の上側端面が当接する。さらなる上型6の接近で電鋳軸1の全体が下方に押し込まれ、下型7の成形面と当接した電鋳部4の下端部、および上型6の成形面と当接した電鋳部4の上端部がそれぞれ外径側に塑性変形し、図7に示すように電鋳部4の軸方向両端にフランジ11(図5参照)が形成される。金型構造を変更することにより、電鋳部4の軸方向一端にのみフランジ11を形成することも可能である。   In the above mold, when the movable mold (upper mold 6 in this embodiment) is brought close to the fixed mold (lower mold 7 in the present embodiment) and clamped, the upper end of the master shaft 2 is first brought into the guide hole 10. The master shaft 2 is centered by being inserted, and the upper end surface of the electroformed part 4 comes into contact with the molding surface of the upper mold 6. When the upper die 6 is further approached, the entire electroformed shaft 1 is pushed downward, and the lower end portion of the electroformed portion 4 that is in contact with the molding surface of the lower die 7 and the electroforming that is in contact with the molding surface of the upper die 6. The upper ends of the parts 4 are plastically deformed to the outer diameter side, and flanges 11 (see FIG. 5) are formed at both ends in the axial direction of the electroformed part 4 as shown in FIG. It is also possible to form the flange 11 only at one axial end of the electroformed part 4 by changing the mold structure.

型締め完了後、スプール12、ランナー13、およびゲート14を介してキャビティ8に樹脂材料を射出し、インサート成形を行う。この樹脂材料としては、成形収縮率(充填材添加後の予想値)が0.02%以上、2.0%以下の範囲のものが選択される。この範囲内にある樹脂材料として、例えば液晶ポリマー(LCP)、ポリフェニレンサルファイド(PPS)樹脂、ポリアセタール樹脂、ポリアミド樹脂等の高機能結晶性ポリマーが使用可能である。もちろんこれらは例示にすぎず、上記成形収縮率の範囲内にある限り、既存の各種樹脂材料の中から軸受の用途や使用環境に適合した樹脂材料が選択され得る。必要に応じて強化材(繊維状、粉末状等の形態は問わない)や潤滑剤等の各種充填材を加えても良い。   After completion of the mold clamping, a resin material is injected into the cavity 8 through the spool 12, the runner 13, and the gate 14, and insert molding is performed. As this resin material, one having a molding shrinkage ratio (expected value after addition of filler) in the range of 0.02% or more and 2.0% or less is selected. As a resin material within this range, for example, a highly functional crystalline polymer such as a liquid crystal polymer (LCP), a polyphenylene sulfide (PPS) resin, a polyacetal resin, or a polyamide resin can be used. Of course, these are merely examples, and as long as they are within the range of the molding shrinkage rate, a resin material suitable for the application and use environment of the bearing can be selected from various existing resin materials. You may add various fillers, such as a reinforcement (regardless of forms, such as a fiber form and a powder form) and a lubricant, as needed.

型開き後、脱型した成形品は、図5で示すように、マスター軸2、電鋳部4、およびモールド部15が一体となった構造を有する。この成形品は、その後分離工程に移送され、電鋳部4およびモールド部15からなる軸受5と、マスター軸2とに分離される。この分離工程は、例えばマスター軸2やモールド部15に衝撃を加えたり、あるいは電鋳部4とマスター軸2とを加熱し(冷却してもよい)、両者間に熱膨張量差を生じさせることによって行われる。これらの操作により電鋳金属組織中の拡径方向の残留応力が解放されるため、電鋳部4の内径が拡径し、マスター軸2の外周面との間に、半径寸法で1μm〜数十μm程度の微小隙間が形成される。この微小隙間は軸受隙間として機能するので、一体化した電鋳部4とモールド部15とで、マスター軸2を相対的に回転自在または摺動自在に支持する軸受5(図1参照)が構成される。この軸受5において、電鋳部4の内周面は、マスター軸2の相対的な回転もしくは摺動を支持する軸受面4bとして機能する。   After the mold opening, the molded product removed from the mold has a structure in which the master shaft 2, the electroformed part 4, and the mold part 15 are integrated as shown in FIG. This molded product is then transferred to a separation step and separated into a bearing 5 composed of an electroformed part 4 and a mold part 15 and a master shaft 2. In this separation step, for example, an impact is applied to the master shaft 2 and the mold portion 15, or the electroformed portion 4 and the master shaft 2 are heated (may be cooled), and a difference in thermal expansion is generated between them. Is done by. Since the residual stress in the diameter expansion direction in the electroformed metal structure is released by these operations, the inner diameter of the electroformed portion 4 is increased, and the radial dimension between the outer diameter of the master shaft 2 is 1 μm to several A minute gap of about 10 μm is formed. Since this minute gap functions as a bearing gap, a bearing 5 (see FIG. 1) that supports the master shaft 2 so as to be relatively rotatable or slidable by the integrated electroformed portion 4 and mold portion 15 is configured. Is done. In the bearing 5, the inner peripheral surface of the electroformed part 4 functions as a bearing surface 4 b that supports relative rotation or sliding of the master shaft 2.

この軸受隙間は、電鋳加工の特性から、クリアランスが極めて小さく、かつ高精度であるという特徴を有する。従って、マスター軸2をそのまま軸部材として使用し、これを軸受5の内周に挿入することにより、高い回転精度または摺動性を有する軸受装置の提供が可能となる。なお、軸部材としてマスター軸2を使用する必要は必ずしもなく、マスター軸と同程度の精度で別途製作した軸部材と置き換えて軸受装置を構成することもできる。   This bearing gap is characterized by a very small clearance and high precision due to the characteristics of electroforming. Therefore, by using the master shaft 2 as a shaft member as it is and inserting it into the inner periphery of the bearing 5, it is possible to provide a bearing device having high rotational accuracy or slidability. In addition, it is not always necessary to use the master shaft 2 as a shaft member, and a bearing device can be configured by replacing it with a shaft member separately manufactured with the same degree of accuracy as the master shaft.

この場合、一度マスター軸を製作すれば、これを繰返し転用することができるので、マスター軸2の製作コストを抑え、軸受装置のさらなる低コスト化を図ることが可能となる。   In this case, once the master shaft is manufactured, it can be repeatedly used, so that the manufacturing cost of the master shaft 2 can be suppressed and the cost of the bearing device can be further reduced.

また、電鋳部4にフランジ11を一体に形成し、このフランジ11を含めて樹脂でモールドしているので、樹脂モールド部15に対し電鋳部4の抜け止めおよび回り止めを行うことが可能となる。   Further, since the flange 11 is formed integrally with the electroformed part 4 and is molded with resin including the flange 11, it is possible to prevent the electroformed part 4 from being detached and prevented from rotating with respect to the resin mold part 15. It becomes.

また、図6および図7に示す実施形態のように、電鋳部4を塑性変形させてフランジ11を形成する場合、図1に示すように、その外周面16の形状は、ランダムな凹凸を有する非真円形状となるので、高い回り止め効果が得られる。なお、図1では、外周面16の凹凸が理解の容易化のために誇張して描かれている。   Moreover, when the electroformed part 4 is plastically deformed to form the flange 11 as in the embodiment shown in FIGS. 6 and 7, the shape of the outer peripheral surface 16 has random irregularities as shown in FIG. 1. Since it has a non-circular shape, a high detent effect is obtained. In FIG. 1, the irregularities on the outer peripheral surface 16 are exaggerated for easy understanding.

なお、この軸受装置は無給油で使用する他、軸受隙間に油等の潤滑剤を供給して使用することもできる。   In addition to using this bearing device without lubrication, it can also be used by supplying a lubricant such as oil into the bearing gap.

上述のように本発明では、樹脂の成形収縮率を0.02%以上、2.0%以下(より好ましくは、0.05%以上、1.0%以下)とした。本発明者らが検証したところ、成形収縮率が0.02%未満であると、電鋳部4と樹脂の間で十分な固着力を確保することができず、軸受の耐久性に不安が残る結果となった。その一方で、成形収縮率が2.0%を超えると樹脂モールド部15の収縮力が過大となり、その影響から軸受面精度に悪影響が及ぶことが判明した。   As described above, in the present invention, the molding shrinkage of the resin is set to 0.02% or more and 2.0% or less (more preferably 0.05% or more and 1.0% or less). As a result of verification by the present inventors, if the molding shrinkage rate is less than 0.02%, a sufficient fixing force cannot be secured between the electroformed part 4 and the resin, and there is concern about the durability of the bearing. The remaining results. On the other hand, it has been found that when the molding shrinkage rate exceeds 2.0%, the shrinkage force of the resin mold portion 15 becomes excessive, and the influence thereof adversely affects the bearing surface accuracy.

ところで、上述のように、塑性変形でフランジ11を形成する場合、電鋳部4に作用する金型からの加圧力が大きすぎると、その時の衝撃により、マスター軸2に密着した電鋳部4の内周面がマスター軸2の外周面から剥離するおそれがある。電鋳部4が剥離すると、その瞬間に電鋳部4が拡径してマスター軸2との間に隙間が形成されため、その後の射出成形時には、射出圧力によって電鋳部4の内周面がランダムに縮径し、軸受面4bの精度低下を招くおそれがある。かかる事態を防止するには、射出成形前における電鋳部4のマスター軸2からの剥離防止に努める必要があり、これは電鋳部4の塑性変形量の上限を管理することで達成できると考えられる。   By the way, as described above, when the flange 11 is formed by plastic deformation, if the pressure applied from the mold acting on the electroformed part 4 is too large, the electroformed part 4 in close contact with the master shaft 2 due to the impact at that time. There is a possibility that the inner peripheral surface of the master shaft 2 is peeled off from the outer peripheral surface of the master shaft 2. When the electroformed part 4 is peeled off, the diameter of the electroformed part 4 is expanded at that moment, and a gap is formed between the electroformed part 4 and the master shaft 2. May randomly reduce the diameter of the bearing surface 4b. In order to prevent such a situation, it is necessary to try to prevent peeling of the electroformed part 4 from the master shaft 2 before injection molding. This can be achieved by managing the upper limit of the plastic deformation amount of the electroformed part 4. Conceivable.

かかる観点から検討したところ、塑性変形後における電鋳部4(図5に実線で示す)の軸方向の長さをL1とし、塑性変形前における電鋳部4(図5に破線で示す)の軸方向の長さをL2とした時、電鋳部4の軸方向長さの変化A=L2−L1が、塑性変形後の電鋳部4の軸方向の長さL1の50%以内(望ましくは20%以内)であれば、塑性変形による射出成形前の電鋳部4の剥離を防止できることが判明した。その一方、A=0ではフランジ11が形成できない。従って、   From this viewpoint, the length in the axial direction of the electroformed part 4 (shown by a solid line in FIG. 5) after plastic deformation is L1, and the electroformed part 4 (shown by a broken line in FIG. 5) before plastic deformation. When the axial length is L2, the change in the axial length A = L2-L1 of the electroformed part 4 is within 50% of the axial length L1 of the electroformed part 4 after plastic deformation (desirably Is within 20%), it has been found that peeling of the electroformed part 4 before injection molding due to plastic deformation can be prevented. On the other hand, when A = 0, the flange 11 cannot be formed. Therefore,

0<A/L1≦0.5
を満たすように、L1、L2を定めるのが望ましい。
0 <A / L1 ≦ 0.5
It is desirable to determine L1 and L2 so as to satisfy the above.

以上の説明では、塑性変形によってフランジ11を形成する場合を例示したが、塑性変形以外の方法でフランジ11を形成することもできる。例えば図8に示すように、マスター軸2を段付き軸状に形成しておけば、これを電鋳工程にて電解溶液中に浸漬すると、一般にマスター軸2の角部2aでは他の平面部分に比べて金属粒子の析出量が多くなるため、電鋳条件によっては、電鋳の終了後にこの角部2aに図示のような傾斜状のフランジ11を形成することができる。従って、その後、このフランジ11を含めて電鋳部を射出成形でモールドすれば(二点鎖線で示す)、同様に抜け止め、あるいは回り止めとしての効果を得ることができる。   In the above description, the case where the flange 11 is formed by plastic deformation is illustrated, but the flange 11 can also be formed by a method other than plastic deformation. For example, as shown in FIG. 8, if the master shaft 2 is formed in a stepped shaft shape, when the master shaft 2 is immersed in an electrolytic solution in the electroforming process, generally, the corner portion 2 a of the master shaft 2 has another plane portion. Since the amount of metal particles deposited is larger than that of the above, depending on the electroforming conditions, an inclined flange 11 as shown in the figure can be formed at the corner 2a after the end of electroforming. Accordingly, if the electroformed part including the flange 11 is thereafter molded by injection molding (indicated by a two-dot chain line), it is possible to obtain the same effect as retaining or rotating.

次に、以上に説明した軸受装置をモータ21の回転軸の支持に適用し、その一実施形態を図9に基いて説明する。   Next, the bearing device described above is applied to support the rotating shaft of the motor 21, and one embodiment thereof will be described with reference to FIG.

図示例のモータ21は、HDD等のディスク駆動装置に用いられるスピンドルモータである。このモータ21の軸受装置は、軸部材22をラジアル方向に回転自在に支持するラジアル軸受部Rと、スラスト方向に回転自在に支持するスラスト軸受部Tとを有する。ラジアル軸受部Rは、軸部材22を軸受5の内周に挿入して構成され、スラスト軸受Tは、軸部材22の凸球面状の軸端を、軸受5の端面に対向させたスラストプレート23で接触支持することによって構成される。軸受5は、以上の説明で述べたとおり、電鋳部4を射出成形によりモールドして形成され、電鋳部4の軸方向両端にはそれぞれフランジ11が形成されている。   The motor 21 in the illustrated example is a spindle motor used in a disk drive device such as an HDD. The bearing device of the motor 21 includes a radial bearing portion R that supports the shaft member 22 rotatably in the radial direction, and a thrust bearing portion T that supports the shaft member 22 rotatably in the thrust direction. The radial bearing portion R is configured by inserting the shaft member 22 into the inner periphery of the bearing 5, and the thrust bearing T is a thrust plate 23 in which the convex spherical shaft end of the shaft member 22 faces the end surface of the bearing 5. It is configured by supporting in contact. As described in the above description, the bearing 5 is formed by molding the electroformed part 4 by injection molding, and flanges 11 are formed at both ends of the electroformed part 4 in the axial direction.

そして、モータ21は、この軸受装置以外にも、軸部材を装着したロータ(ディスクハブ)24と、例えば半径方向のギャップを介して対向させたステータコイル25およびロータマグネット26とを備えている。ステータコイル25は、ブラケット27の外周に取付けられ、ロータマグネット26はディスクハブ24の内周に取付けられている。ディスクハブ24には、磁気ディスクDが一又は複数枚保持されている。   In addition to this bearing device, the motor 21 includes a rotor (disk hub) 24 on which a shaft member is mounted, and a stator coil 25 and a rotor magnet 26 that face each other with a gap in the radial direction, for example. The stator coil 25 is attached to the outer periphery of the bracket 27, and the rotor magnet 26 is attached to the inner periphery of the disk hub 24. The disk hub 24 holds one or more magnetic disks D.

ステータコイル25に通電すると、ステータコイル25とロータマグネット26との間の電磁力でロータマグネット26が回転し、それによって、ディスクハブ24及び軸部材22が一体となって回転する。   When the stator coil 25 is energized, the rotor magnet 26 is rotated by the electromagnetic force between the stator coil 25 and the rotor magnet 26, whereby the disk hub 24 and the shaft member 22 are rotated together.

このモータ21の軸部材22としては、マスター軸2のみならず、マスター軸2と置換した別部材の何れもが使用可能である。また、図9では、スラスト軸受部Tをピボット軸受で構成した場合を例示しているが、この他にも、動圧溝等の動圧発生手段で軸部材22をスラスト方向に非接触支持する動圧軸受も使用可能である。   As the shaft member 22 of the motor 21, not only the master shaft 2 but also another member replaced with the master shaft 2 can be used. FIG. 9 illustrates the case where the thrust bearing portion T is constituted by a pivot bearing. In addition to this, the shaft member 22 is supported in a non-contact manner in the thrust direction by dynamic pressure generating means such as a dynamic pressure groove. A hydrodynamic bearing can also be used.

本発明の軸受装置は、以上の例示に限らず、モータの回転軸支持用として広く適用可能である。この軸受装置は、上記のとおりラジアル軸受部Rにおいて高精度の軸受隙間(ラジアル軸受隙間)を備えるので、上記HDD等の磁気ディスク駆動用のスピンドルモータを初めとして、高回転精度が要求される情報機器用の小型モータ、例えば光ディスクの光磁気ディスク駆動用のスピンドルモータ、あるいはレーザビームプリンタのポリゴンスキャナモータ等における回転軸支持用として特に適合するものである。   The bearing device of the present invention is not limited to the above examples, and can be widely applied to support a rotating shaft of a motor. Since this bearing device has a high-precision bearing gap (radial bearing gap) in the radial bearing portion R as described above, information that requires high rotational accuracy, such as a spindle motor for driving a magnetic disk such as the HDD described above. It is particularly suitable for supporting a rotating shaft in a small motor for equipment, for example, a spindle motor for driving a magneto-optical disk of an optical disk or a polygon scanner motor of a laser beam printer.

本発明の軸受の斜視図である。It is a perspective view of the bearing of this invention. 本発明の電鋳軸の製造工程を示すマスター軸の斜視図である。It is a perspective view of the master axis | shaft which shows the manufacturing process of the electroformed axis | shaft of this invention. 図2のマスター軸にマスキングをした状態を示す斜視図である。It is a perspective view which shows the state which masked the master axis | shaft of FIG. 本発明の電鋳軸の斜視図である。It is a perspective view of the electroformed shaft of the present invention. 本発明のマスター軸を備えた状態の樹脂軸受の断面図である。It is sectional drawing of the resin bearing of the state provided with the master axis | shaft of this invention. 射出成形金型に電鋳軸を取付けた状態を説明する模式図である。It is a schematic diagram explaining the state which attached the electroformed shaft to the injection mold. 射出成形金型によりフランジの形成を説明する模式図である。It is a schematic diagram explaining formation of a flange with an injection mold. 本発明の軸受の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of the bearing of this invention. 本発明の実施の形態2のモータ構造を示す模式図である。It is a schematic diagram which shows the motor structure of Embodiment 2 of this invention.

符号の説明Explanation of symbols

1 電鋳軸
2 マスター軸
2a 角部
3 被覆材
4 電鋳部
4a 面取り部
4b 軸受面
5 軸受
6 上型
7 下型
8 キャビティ
9 位置決め穴
10 ガイド穴
11 フランジ
12 スプール
13 ランナー
14 ゲート
15 モールド部
16 外周面
21 モータ
22 軸部材
23 スラスト軸受
24 ロータ(ディスクハブ)
25 ステータコイル
26 ロータマグネット
27 ブラケット
DESCRIPTION OF SYMBOLS 1 Electroformed shaft 2 Master shaft 2a Corner | angular part 3 Coating | covering material 4 Electroformed part 4a Chamfered part 4b Bearing surface 5 Bearing 6 Upper mold 7 Lower mold 8 Cavity 9 Positioning hole 10 Guide hole 11 Flange 12 Spool 13 Runner 14 Gate 15 Mold part 16 outer peripheral surface 21 motor 22 shaft member 23 thrust bearing 24 rotor (disc hub)
25 Stator coil 26 Rotor magnet 27 Bracket

Claims (7)

電鋳部からなる軸受面を備えると共に、電鋳部を樹脂の射出成形にてモールドしたものであって、前記樹脂の成形収縮率を0.02%以上、2.0%以下としたことを特徴とする軸受。   A bearing surface comprising an electroformed part is provided, and the electroformed part is molded by resin injection molding, and the molding shrinkage of the resin is set to 0.02% or more and 2.0% or less. A featured bearing. 前記電鋳部にフランジを形成したことを特徴とする請求項1記載の軸受。   The bearing according to claim 1, wherein a flange is formed in the electroformed part. 前記フランジが、電鋳部の塑性変形によって形成されたことを特徴とする請求項2に記載の軸受。   The bearing according to claim 2, wherein the flange is formed by plastic deformation of an electroformed part. 請求項1〜3の何れかに記載した軸受と、軸受の内周に挿入した軸部材とを有する軸受装置。   The bearing apparatus which has a bearing in any one of Claims 1-3, and the shaft member inserted in the inner periphery of a bearing. 前記軸部材が、電鋳部の成形時に使用したマスター軸であることを特徴とする請求項4に記載の軸受装置。   The bearing device according to claim 4, wherein the shaft member is a master shaft used during molding of the electroformed part. 前記軸部材が、電鋳部の成形時に使用したマスター軸と別部材であることを特徴とする請求項4記載の軸受装置。   The bearing device according to claim 4, wherein the shaft member is a separate member from the master shaft used when forming the electroformed part. 請求項4〜6の何れかに記載した軸受装置を備えるモータ。   A motor comprising the bearing device according to any one of claims 4 to 6.
JP2005145517A 2005-05-18 2005-05-18 Bearing device and motor having the bearing device Expired - Fee Related JP4987248B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2005145517A JP4987248B2 (en) 2005-05-18 2005-05-18 Bearing device and motor having the bearing device
CN2006800172872A CN101203685B (en) 2005-05-18 2006-05-15 Fluid dynamic bearing apparatus
KR1020077016103A KR101414110B1 (en) 2005-05-18 2006-05-15 Bearing device
PCT/JP2006/309640 WO2006123602A1 (en) 2005-05-18 2006-05-15 Bearing and bearing device
US11/795,410 US20080212908A1 (en) 2005-05-18 2006-05-15 Fluid Dynamic Bearing Device
US13/435,915 US8931175B2 (en) 2005-05-18 2012-03-30 Fluid dynamic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005145517A JP4987248B2 (en) 2005-05-18 2005-05-18 Bearing device and motor having the bearing device

Publications (2)

Publication Number Publication Date
JP2006322511A true JP2006322511A (en) 2006-11-30
JP4987248B2 JP4987248B2 (en) 2012-07-25

Family

ID=37542351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005145517A Expired - Fee Related JP4987248B2 (en) 2005-05-18 2005-05-18 Bearing device and motor having the bearing device

Country Status (2)

Country Link
JP (1) JP4987248B2 (en)
CN (1) CN101203685B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102606598A (en) * 2011-01-25 2012-07-25 博尔霍夫.奥塔陆股份有限公司 Thread insert to be embedded and shaped and method for embedding and shaping
FR2975630A1 (en) * 2011-05-23 2012-11-30 Clusienne Clufix Device for connecting part manufactured by molding or injection with/on element, has deformable section longitudinally deforming as constitutive material of deformable section radially creeps under effect of longitudinal compressive force
US8931175B2 (en) 2005-05-18 2015-01-13 Ntn Corporation Fluid dynamic bearing device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5398223B2 (en) * 2008-10-23 2014-01-29 上村工業株式会社 Gate device for treatment tank
CN103286315B (en) * 2012-02-24 2016-09-07 富瑞精密组件(昆山)有限公司 The manufacture method of bearing arrangement
JP5932700B2 (en) * 2013-03-29 2016-06-08 ダイセルポリマー株式会社 Method for producing composite molded body
CN107654654B (en) * 2014-02-24 2019-07-26 伊格尔工业股份有限公司 Slide unit
CN113556010B (en) * 2021-07-09 2022-09-16 深圳市日野精密科技有限公司 Mounting process of high-speed electric spindle motor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002538392A (en) * 1999-03-03 2002-11-12 セイント−ゴベイン・パーフォーマンス・プラスチックス・コーポレイション Rollers with self-lubricating bearings
JP2003056569A (en) * 2001-08-09 2003-02-26 Akutowan:Kk Resin-bearing component and manufacturing method for the same
JP2003056552A (en) * 2001-08-09 2003-02-26 Akutowan:Kk Resin-made bearing part and method for manufacturing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6427330B1 (en) * 1997-10-07 2002-08-06 Sankyo Seiki Mfg. Co., Ltd. Method for forming a lubricant coating on a hydrodynamic bearing apparatus by electrode positioning
JP3925155B2 (en) * 2001-10-24 2007-06-06 ソニー株式会社 Bearing unit and motor having bearing unit
JP4159332B2 (en) * 2002-04-05 2008-10-01 Ntn株式会社 Hydrodynamic bearing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002538392A (en) * 1999-03-03 2002-11-12 セイント−ゴベイン・パーフォーマンス・プラスチックス・コーポレイション Rollers with self-lubricating bearings
JP2003056569A (en) * 2001-08-09 2003-02-26 Akutowan:Kk Resin-bearing component and manufacturing method for the same
JP2003056552A (en) * 2001-08-09 2003-02-26 Akutowan:Kk Resin-made bearing part and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8931175B2 (en) 2005-05-18 2015-01-13 Ntn Corporation Fluid dynamic bearing device
CN102606598A (en) * 2011-01-25 2012-07-25 博尔霍夫.奥塔陆股份有限公司 Thread insert to be embedded and shaped and method for embedding and shaping
FR2975630A1 (en) * 2011-05-23 2012-11-30 Clusienne Clufix Device for connecting part manufactured by molding or injection with/on element, has deformable section longitudinally deforming as constitutive material of deformable section radially creeps under effect of longitudinal compressive force

Also Published As

Publication number Publication date
CN101203685A (en) 2008-06-18
CN101203685B (en) 2012-06-06
JP4987248B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
JP4987248B2 (en) Bearing device and motor having the bearing device
KR101414110B1 (en) Bearing device
US8876386B2 (en) Fluid dynamic bearing device
US8052328B2 (en) Bearing device with sliding bearing
JP2006322500A (en) Bearing device
JP4896429B2 (en) Bearing, bearing device, motor, and bearing manufacturing method
JP4794964B2 (en) Bearing device and motor equipped with the same
JP4896430B2 (en) Bearing device and motor using the bearing device
JP4794966B2 (en) Bearing device, motor provided with the same, and method for manufacturing bearing device
JP4633591B2 (en) Plain bearing
JP2006342912A (en) Bearing device
JP2006322522A (en) Bearing device and manufacturing method for bearing member
JP4813211B2 (en) Sliding bearing, motor equipped with the same, and manufacturing method of sliding bearing
JP2006322523A (en) Bearing device
JP4584093B2 (en) Plain bearing
JP4890066B2 (en) Hydrodynamic bearing device and fan motor having the same
JP4804894B2 (en) Bearing device and manufacturing method thereof
JP2007263312A (en) Manufacturing method of slide bearing
JP2007092845A (en) Bearing device
JP4896428B2 (en) Hydrodynamic bearing device and motor having the same
JP4948825B2 (en) Bearing member and manufacturing method thereof
JP4937675B2 (en) Hydrodynamic bearing device
JP4937618B2 (en) Hydrodynamic bearing device
JP2006322502A (en) Bearing member and its manufacturing method
JP2007051718A (en) Fluid bearing device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070613

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080428

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120313

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120411

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120425

R150 Certificate of patent or registration of utility model

Ref document number: 4987248

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees