JP4794966B2 - Bearing device, motor provided with the same, and method for manufacturing bearing device - Google Patents

Bearing device, motor provided with the same, and method for manufacturing bearing device Download PDF

Info

Publication number
JP4794966B2
JP4794966B2 JP2005281561A JP2005281561A JP4794966B2 JP 4794966 B2 JP4794966 B2 JP 4794966B2 JP 2005281561 A JP2005281561 A JP 2005281561A JP 2005281561 A JP2005281561 A JP 2005281561A JP 4794966 B2 JP4794966 B2 JP 4794966B2
Authority
JP
Japan
Prior art keywords
bearing
shaft
oil
electroformed
master
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005281561A
Other languages
Japanese (ja)
Other versions
JP2007092847A (en
Inventor
建治 日比
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2005281561A priority Critical patent/JP4794966B2/en
Priority to PCT/JP2006/318749 priority patent/WO2007037169A1/en
Priority to CN2006800443696A priority patent/CN101321963B/en
Priority to US11/992,313 priority patent/US8052328B2/en
Priority to KR1020087009485A priority patent/KR20080046746A/en
Publication of JP2007092847A publication Critical patent/JP2007092847A/en
Application granted granted Critical
Publication of JP4794966B2 publication Critical patent/JP4794966B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、滑り軸受を備えた軸受装置に関するものである。   The present invention relates to a bearing device provided with a sliding bearing.

滑り軸受(以下、単に「軸受」と称する)を備えた軸受装置は、軸受と軸部材との間の相対的な回転、摺動、もしくは摺動回転を支持する用途に広く用いられている。   BACKGROUND ART A bearing device provided with a sliding bearing (hereinafter simply referred to as “bearing”) is widely used in applications that support relative rotation, sliding, or sliding rotation between a bearing and a shaft member.

このような軸受装置として、例えば特許文献1では、樹脂成形部の軸心に電鋳加工による電鋳部をインサートして型成形した軸受部品を備えた軸受装置が提案されている。このように、軸受面となる軸受の内周面を電鋳加工で形成することにより、耐摩耗性に優れた軸受面が得られるとともに、内周に挿入される軸部材との間に形成される軸受隙間を高い精度で設定することができる。
特開2003−56552号公報
As such a bearing device, for example, Patent Document 1 proposes a bearing device including a bearing component that is molded by inserting an electroformed part formed by electroforming into an axis of a resin molded part. Thus, by forming the inner peripheral surface of the bearing serving as the bearing surface by electroforming, a bearing surface having excellent wear resistance can be obtained and formed between the shaft member inserted into the inner periphery. The bearing gap can be set with high accuracy.
JP 2003-56552 A

上記のような軸受装置が、例えば、高速回転、高回転精度が求められるHDDの磁気ディスク駆動用のスピンドルモータの回転軸支持等に用いられる場合は、軸受と軸部材との潤滑を良好にするため、油潤滑が必要となる場合がある。   When the bearing device as described above is used, for example, to support a rotating shaft of a spindle motor for driving a magnetic disk of an HDD that requires high speed rotation and high rotation accuracy, lubrication between the bearing and the shaft member is improved. Therefore, oil lubrication may be necessary.

しかし、軸受の内周面と軸部材の外周面との間の軸受隙間は、軸部材のがたつきを抑えるために、できるだけ微小な隙間幅に設定され、この軸受隙間に保持される潤滑油の量は極少量である。このため、潤滑油が飛散、蒸発などにより減少すると、潤滑油不足による潤滑不良を招き、異音の発生や、軸受と軸部材との接触摺動による部材の摩耗などの不具合が生じていた。   However, the bearing gap between the inner circumferential surface of the bearing and the outer circumferential surface of the shaft member is set to a gap width as small as possible in order to suppress the shakiness of the shaft member. The amount of is very small. For this reason, if the lubricating oil is reduced due to scattering, evaporation, etc., it causes a lubrication failure due to insufficient lubricating oil, and causes problems such as generation of abnormal noise and wear of the member due to contact sliding between the bearing and the shaft member.

本発明の課題は、軸受と軸部材との潤滑が良好で、異音の発生や部材の摩耗を防ぎ、製品寿命の長い滑り軸受を備えた軸受装置を提供することである。   An object of the present invention is to provide a bearing device having a sliding bearing with good lubrication between the bearing and the shaft member, which prevents generation of abnormal noise and wear of the member, and has a long product life.

前記課題を解決するため、本発明の軸受装置は、マスター軸の外周面に析出形成され、内周に軸受面を有する電鋳部、電鋳部を内周にインサートして成形された樹脂部と、電鋳部の内周に挿入された軸部材と、前記軸受面と前記軸部材の外周面との間に形成され、潤滑油で満たされた軸受隙間と、母材の内部に保持した油を軸受隙間に供給する環状の補油部材とを備え、前記軸受面が、マスター軸の表面に析出し始めた面からなり、マスター軸、マスター軸の外周面に析出形成した電鋳部、及びマスター軸の外周に配置した補油部材をインサート部品として樹脂で射出成形することにより、電鋳部及び補油部材を内周に保持する樹脂部を成形したことを特徴とするTo solve the above problems, a bearing device of the present invention is deposited formed on the outer peripheral surface of the master axis, the electroformed portion having a bearing surface on the inner periphery, electroformed part is molded by insert to the inner periphery of the resin And a shaft member inserted in the inner periphery of the electroformed part , a bearing gap formed between the bearing surface and the outer peripheral surface of the shaft member , filled with lubricating oil, and held in the base material And an annular auxiliary oil supply member for supplying the oil to the bearing gap, and the bearing surface is formed of a surface that starts to precipitate on the surface of the master shaft, and is formed by deposition on the outer peripheral surface of the master shaft and the master shaft. And the resin part which hold | maintains an electroformed part and a supplementary oil member in an inner periphery is injection-molded by resin as an insert part about the supplementary oil member arrange | positioned on the outer periphery of a master axis | shaft, It is characterized by the above-mentioned .

このように本発明の軸受装置は、軸受隙間に油を供給する補油部材を有する。これにより、補油部材に保持された油が軸受隙間に供給されるため、軸受隙間に形成された油膜によって軸受装置がスムーズに作動し、潤滑不良による異音の発生や、軸受と軸部材との接触摺動による摩耗を回避できる。また、補油部材から油を供給させることで、毛細管現象により極微量ずつ給油することができるため、長期間に渡り適度な油膜を軸受隙間に形成することができる。   As described above, the bearing device of the present invention includes the oil filler member that supplies oil to the bearing gap. As a result, the oil retained in the bunkering member is supplied to the bearing gap, so that the bearing device operates smoothly by the oil film formed in the bearing gap, the generation of abnormal noise due to poor lubrication, the bearing and the shaft member Wear due to contact sliding can be avoided. In addition, by supplying oil from the oil filler member, it is possible to supply an extremely small amount of oil by a capillary phenomenon, so that an appropriate oil film can be formed in the bearing gap over a long period of time.

補油部材を軸部材と接した位置に設けると、軸受隙間に油を供給しやすくなり、よりスムーズな潤滑が得られる。一方、補油部材を軸部材と非接触の位置に設け、連通孔を介して軸受隙間に油を供給すると、補油部材により軸受面の面積が侵食されることがなく、軸受性能の低下を回避できる。   When the oil filler member is provided at a position in contact with the shaft member, oil can be easily supplied to the bearing gap, and smoother lubrication can be obtained. On the other hand, if the oil supply member is provided at a position not in contact with the shaft member and oil is supplied to the bearing gap through the communication hole, the surface of the bearing surface is not eroded by the oil supply member, and the bearing performance is reduced. Can be avoided.

上記のような軸受装置と、ロータマグネットと、ステータコイルとを備えたモータは円滑に作動するため、異音の発生がなく、製品寿命が長い。   Since the motor including the bearing device, the rotor magnet, and the stator coil as described above operates smoothly, no abnormal noise is generated and the product life is long.

以上のように、本発明の軸受装置は、軸受と軸部材との潤滑が良好なため、異音の発生や部材の摩耗を防止でき、高速回転化や製品寿命の延長を図ることができる。   As described above, in the bearing device of the present invention, since the lubrication between the bearing and the shaft member is good, the generation of abnormal noise and the wear of the member can be prevented, and the rotation speed can be increased and the product life can be extended.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の第1の実施形態に係る軸受装置1の断面図である。軸受装置1は、軸受3と、軸受3の内周に挿入された軸部材2と、補油部材6とで構成される。軸受3は、電鋳加工で形成される電鋳部4と、電鋳部4を内周に保持する樹脂部5とを備える。   FIG. 1 is a cross-sectional view of a bearing device 1 according to a first embodiment of the present invention. The bearing device 1 includes a bearing 3, a shaft member 2 inserted on the inner periphery of the bearing 3, and a lubricating oil member 6. The bearing 3 includes an electroformed part 4 formed by electroforming, and a resin part 5 that holds the electroformed part 4 on the inner periphery.

以下、軸受3の製造工程を説明する。軸受3は、マスター軸7の所要個所にマスキングした上、非マスク部に電鋳加工等を行って電鋳軸9を形成する工程(図2、図3参照)、電鋳軸9の電鋳部4を樹脂で射出成形する工程(図4参照)、及び電鋳部4をマスター軸7から剥離し、軸受3とマスター軸7とを分離する工程を経て製作される。   Hereinafter, the manufacturing process of the bearing 3 will be described. The bearing 3 is formed by masking a required portion of the master shaft 7 and forming an electroformed shaft 9 by performing electroforming or the like on an unmasked portion (see FIGS. 2 and 3). The parts 4 are manufactured through a process of injection molding the resin 4 with a resin (see FIG. 4) and a process of separating the electroformed part 4 from the master shaft 7 and separating the bearing 3 and the master shaft 7.

なお、以下の説明において、「回転用の軸受」とは、軸部材との間の相対回転を支持する軸受を意味し、軸受が回転側となるか固定側となるかを問わない。「摺動用の軸受」とは、軸との間の相対的な直線運動を支持する軸受を意味し、同様に軸受が移動側となるか固定側となるかを問わない。「回転摺動用の軸受」とは、前記二つの軸受の機能を併せ持つもので、軸との間の回転運動及び直線運動の双方を支持する軸受を意味する。また、「揺動用の軸受」とは、例えばボールジョイントのように、軸の三次元方向の運動が許容される軸受を意味する。   In the following description, the “rotating bearing” means a bearing that supports relative rotation with the shaft member, and it does not matter whether the bearing is on the rotating side or the fixed side. “Sliding bearing” means a bearing that supports relative linear motion with respect to the shaft, and it does not matter whether the bearing is on the moving side or the stationary side. The “rotating and sliding bearing” has both functions of the two bearings, and means a bearing that supports both rotational motion and linear motion between the shafts. Further, the “oscillating bearing” means a bearing that allows movement in the three-dimensional direction of the shaft, such as a ball joint.

マスター軸7は、導電性材料、例えば焼入処理をしたステンレス鋼で、ストレートな横断面円形の軸として製作される。もちろんステンレス鋼に限定されるものでなく、剛性などの機械的強度、摺動性、耐熱性、耐薬品性、電鋳部4の加工性及び剥離性など、軸受の機能上あるいは軸受製作の都合上求められる特性に適合した材料、さらには熱処理方法が選択される。セラミック等の非金属材料でも、導電処理を施すことにより(例えば表面に導電性の金属皮膜を形成することにより)使用可能となる。なお、マスター軸7の表面には、電鋳部4との間の摩擦力を減じるための表面処理、例えばフッ素系の樹脂コーティングを施すのが望ましい。   The master shaft 7 is made of a conductive material, for example, hardened stainless steel, and is manufactured as a straight shaft having a circular cross section. Of course, the material is not limited to stainless steel, and the mechanical function such as rigidity, slidability, heat resistance, chemical resistance, workability and peelability of the electroformed part 4, etc. A material and a heat treatment method suitable for the characteristics required above are selected. Even non-metallic materials such as ceramics can be used by conducting a conductive treatment (for example, by forming a conductive metal film on the surface). The surface of the master shaft 7 is preferably subjected to a surface treatment for reducing the frictional force with the electroformed part 4, for example, a fluorine-based resin coating.

マスター軸7は、中実軸の他、中空軸や中空部に樹脂を充填した中実軸であっても良い。また、回転用の軸受では、マスター軸の横断面は基本的に円形に形成されるが、摺動用の軸受の場合は横断面を任意形状にすることができ、円形のほかに多角形状や非真円形状とすることもできる。また、摺動用の軸受では、基本的にマスター軸7の横断面形状は軸方向で一定であるが、回転用の軸受や回転摺動用の軸受では、軸の全長にわたって一定の横断面形状ではない形態をとることもある。   In addition to the solid shaft, the master shaft 7 may be a solid shaft in which a hollow shaft or a hollow portion is filled with resin. In addition, in the bearing for rotation, the cross section of the master shaft is basically formed in a circular shape, but in the case of a sliding bearing, the cross section can be made into an arbitrary shape. It can also be a perfect circle shape. In the sliding bearing, the cross-sectional shape of the master shaft 7 is basically constant in the axial direction. However, in the rotating bearing and the rotating sliding bearing, the cross-sectional shape is not constant over the entire length of the shaft. May take the form.

マスター軸7の外周面精度は、後述する軸受隙間の精度を直接左右するので、真円度、円筒度、表面粗さ等の軸受機能上重要となる表面精度を、予め高精度に仕上げておく必要がある。例えば回転用の軸受では、軸受面との接触回避の観点から真円度が重視されるので、マスター軸7の外周面はできるだけ真円度を高める必要がある。例えば、後述する軸受隙間の平均幅(半径寸法)の8割以下にまで仕上げておくのが望ましい。従って、例えば軸受隙間の平均幅を2μmに設定する場合、マスター軸外周面は1.6μm以下の真円度に仕上げるのが望ましい。   Since the accuracy of the outer peripheral surface of the master shaft 7 directly affects the accuracy of the bearing gap described later, surface accuracy that is important for bearing functions such as roundness, cylindricity, and surface roughness is finished in advance with high accuracy. There is a need. For example, in a bearing for rotation, roundness is important from the viewpoint of avoiding contact with the bearing surface. Therefore, it is necessary to increase the roundness of the outer peripheral surface of the master shaft 7 as much as possible. For example, it is desirable to finish to 80% or less of an average width (radial dimension) of a bearing gap described later. Therefore, for example, when the average width of the bearing gap is set to 2 μm, it is desirable that the outer peripheral surface of the master shaft is finished to a roundness of 1.6 μm or less.

マスター軸7の外周面には、電鋳部4の形成予定部を除き、マスキングが施される(図2に散点で示す)。マスキング用の被覆材8としては、非導電性、及び電解質溶液に対する耐食性を有する既存品が選択使用される。   Masking is performed on the outer peripheral surface of the master shaft 7 except for the portion where the electroformed portion 4 is to be formed (shown as dots in FIG. 2). As the masking covering 8, an existing product having non-conductivity and corrosion resistance against the electrolyte solution is selectively used.

電鋳加工は、NiやCu等の金属イオンを含んだ電解質溶液にマスター軸7を浸漬し、電解質溶液に通電して目的の金属をマスター軸7の表面に析出させることにより行われる。電解質溶液には、カーボンなどの摺動材、あるいはサッカリン等の応力緩和材を必要に応じて含有させてもよい。電着金属の種類は、軸受の軸受面に求められる硬度や耐摩耗性、疲れ強さ等の物理的性質、化学的性質に応じて適宜選択される。電鋳部4の厚みは、これが厚すぎるとマスター軸7からの剥離性が低下し、薄すぎると軸受面の耐久性低下等につながるので、求められる軸受性能や軸受サイズ、さらには用途等に応じて最適な厚みに設定される。例えば軸径1mm〜6mmの回転用の軸受では、10μm〜200μmの厚さとするのが好ましい。   The electroforming is performed by immersing the master shaft 7 in an electrolyte solution containing metal ions such as Ni and Cu, and energizing the electrolyte solution to deposit the target metal on the surface of the master shaft 7. If necessary, the electrolyte solution may contain a sliding material such as carbon or a stress relaxation material such as saccharin. The type of electrodeposited metal is appropriately selected according to physical properties and chemical properties such as hardness, wear resistance, and fatigue strength required for the bearing surface of the bearing. If the thickness of the electroformed part 4 is too thick, the peelability from the master shaft 7 is reduced, and if it is too thin, the durability of the bearing surface is reduced. The optimum thickness is set accordingly. For example, in a rotating bearing having a shaft diameter of 1 mm to 6 mm, the thickness is preferably 10 μm to 200 μm.

以上の工程を経ることにより、図2に示すように、マスター軸7外周に円筒状の電鋳部4が形成される。なお、マスキング用の被覆材8が薄い場合、電鋳部4の両端は被覆材8側に迫り出し、内周面にテーパ状の面取り部が形成される場合がある。この面取り部を利用して、電鋳部の樹脂部からの抜け落ちを防止するフランジ部を形成することもできる。本実施形態では、面取り部が形成されない場合を例示する。   By passing through the above process, the cylindrical electroformed part 4 is formed in the outer periphery of the master shaft 7, as shown in FIG. In addition, when the masking covering material 8 is thin, both ends of the electroformed portion 4 may protrude toward the covering material 8 and a tapered chamfered portion may be formed on the inner peripheral surface. Using this chamfered portion, a flange portion that prevents the electroformed portion from falling off from the resin portion can be formed. In this embodiment, the case where a chamfer part is not formed is illustrated.

その後、図3に示すように、マスター軸7の外周面に補油部材6を電鋳部4と軸方向に隣接して配置する。補油部材6の材料として、例えば、焼結金属等の多孔質金属に潤滑油を含浸させた含油金属が使用できる。この他、多孔質樹脂に潤滑油を含浸させた含油樹脂、潤滑成分を樹脂中に分散保持した含油樹脂、含油した多孔質粒子を配合した含油樹脂、あるいは、フェルトなどの繊維材料に潤滑油を含浸させた含油繊維なども補油部材として使用できる。なお、樹脂で補油部材6を形成する場合は、後の射出成形時に射出される高温の樹脂材料によって溶融しないように、射出される樹脂材料よりも高い融点を有する必要がある。また、補油部材6に、潤滑油を含浸させる必要のある材料(多孔質金属、多孔質樹脂、繊維材料等)を使用する場合、後述の軸受装置1の軸受隙間に潤滑油を充填するときに、同時に補油部材6に潤滑油を含浸させることもできる。   Thereafter, as shown in FIG. 3, the oil filler member 6 is disposed on the outer peripheral surface of the master shaft 7 adjacent to the electroformed portion 4 in the axial direction. As a material of the oil filler member 6, for example, an oil-containing metal obtained by impregnating a porous metal such as a sintered metal with a lubricating oil can be used. In addition, an oil-containing resin obtained by impregnating a porous resin with a lubricating oil, an oil-containing resin in which a lubricating component is dispersed and held in the resin, an oil-containing resin containing oil-containing porous particles, or a fiber material such as felt. Impregnated oil-impregnated fibers and the like can also be used as a supplementary oil member. In addition, when forming the oil filler member 6 with resin, it is necessary to have a higher melting point than the resin material to be injected so as not to be melted by the high-temperature resin material injected at the time of subsequent injection molding. Further, when a material (porous metal, porous resin, fiber material, etc.) that needs to be impregnated with lubricating oil is used for the lubricating oil member 6, when lubricating oil is filled in a bearing gap of the bearing device 1 described later. At the same time, the lubricating oil can be impregnated into the lubricating oil member 6.

補油部材6の形状や配置する場所、配置する数は、上記に限られない。例えば、補油部材6の断面形状は、図1に示すような矩形の他、半円状や台形状など適宜の形状に形成することができる。また、図3では、補油部材6は軸受3の一端部に配置されているが、複数箇所に配置してもよく、例えば、軸受3の両端部に設けることができる。あるいは、電鋳部4を軸方向に離隔した複数箇所に形成し、その電鋳部の間に補油部材6を配置することもできる。また、補油部材6と電鋳部4とを軸方向に離隔して配置することもできる。   The shape of the bunkering member 6, the place to be placed, and the number to be placed are not limited to the above. For example, the cross-sectional shape of the oil filler member 6 can be formed in an appropriate shape such as a semicircular shape or a trapezoidal shape in addition to the rectangular shape shown in FIG. In FIG. 3, the oil filler member 6 is disposed at one end of the bearing 3, but may be disposed at a plurality of locations, for example, at both ends of the bearing 3. Alternatively, the electroformed part 4 may be formed at a plurality of locations separated in the axial direction, and the oil filler member 6 may be disposed between the electroformed parts. In addition, the oil filler member 6 and the electroformed part 4 can be spaced apart in the axial direction.

以上により、マスター軸7の外周面に電鋳部4と補油部材6が設置された電鋳軸9が形成される。電鋳軸9は、図4に示す射出成形工程に移送され、電鋳部4、補油部材6、及びマスター軸7をインサート部品とするインサート成形が行われる。   Thus, the electroformed shaft 9 in which the electroformed part 4 and the oil filler member 6 are installed on the outer peripheral surface of the master shaft 7 is formed. The electroformed shaft 9 is transferred to the injection molding step shown in FIG. 4, and insert molding is performed using the electroformed portion 4, the oil filler member 6, and the master shaft 7 as insert parts.

図4は、樹脂部5のインサート成形工程を概念的に示すもので、可動型10、およ固定動型11からなる金型には、ランナ12およびゲート13と、キャビティ14とが設けられる。ゲート13は、この実施形態では、点状ゲートであり、成形金型(固定型11)の、樹脂部5の軸方向一端面に対応する位置に、かつ円周方向等間隔に複数箇所(例えば三箇所)形成される。各ゲート13のゲート面積は、充填する溶融樹脂の粘度や、成形品の
形状に合わせて適切な値に設定される。
FIG. 4 conceptually shows an insert molding process of the resin portion 5, and a mold including the movable mold 10 and the fixed movable mold 11 is provided with a runner 12, a gate 13, and a cavity 14. In this embodiment, the gate 13 is a dotted gate, and is formed at a plurality of locations (for example, at equal intervals in the circumferential direction) at positions corresponding to one end surface in the axial direction of the resin portion 5 of the molding die (fixed die 11). Three places) formed. The gate area of each gate 13 is set to an appropriate value according to the viscosity of the molten resin to be filled and the shape of the molded product.

上記構成の金型において、電鋳軸9を所定位置に位置決めした状態で可動型10を固定型11に接近させて型締めする。次に、型締めした状態で、スプール(図示は省略)、ランナ12、およびゲート13を介してキャビティ14内に溶融樹脂Pを射出、充填し、樹脂部5を電鋳軸9と一体に成形する。   In the mold configured as described above, the movable mold 10 is brought close to the fixed mold 11 and clamped while the electroformed shaft 9 is positioned at a predetermined position. Next, in a state where the mold is clamped, molten resin P is injected and filled into the cavity 14 through the spool (not shown), the runner 12, and the gate 13, and the resin portion 5 is molded integrally with the electroformed shaft 9. To do.

なお、溶融樹脂Pは熱可塑性樹脂であり、非晶性樹脂として、ポリサルフォン(PSF)、ポリエーテルサルフォン(PES)、ポリフェニルサルフォン(PPSU)、ポリエーテルイミド(PEI)等、結晶性樹脂として、液晶ポリマー(LCP)、ポリエーテルエーテルケトン(PEEK)、ポリブチレンテレフタレート(PBT)、ポリフェニレンサルファイド(PPS)等を用いることができる。また、上記の樹脂に充填する充填材の種類も特に限定されないが、例えば、充填材として、ガラス繊維等の繊維状充填材、チタン酸カリウム等のウィスカー状充填材、マイカ等の鱗片状充填材、カーボンファイバー、カーボンブラック、黒鉛、カーボンナノマテリアル、金属粉末等の繊維状又は粉末状の導電性充填材を用いることができる。これらの充填材は、単独で用い、あるいは、二種以上を混合して使用しても良い。   Note that the molten resin P is a thermoplastic resin, and amorphous resins such as polysulfone (PSF), polyethersulfone (PES), polyphenylsulfone (PPSU), and polyetherimide (PEI) are used as crystalline resins. As the liquid crystal polymer (LCP), polyether ether ketone (PEEK), polybutylene terephthalate (PBT), polyphenylene sulfide (PPS), or the like can be used. The type of filler to be filled in the resin is not particularly limited. For example, as the filler, fibrous filler such as glass fiber, whisker-like filler such as potassium titanate, and scaly filler such as mica. A fibrous or powdery conductive filler such as carbon fiber, carbon black, graphite, carbon nanomaterial, or metal powder can be used. These fillers may be used alone or in combination of two or more.

型開き後、マスター軸7、電鋳部4、補油部材6、および樹脂部5が一体となった成形品を金型から脱型する。この成形品は、その後の剥離工程において電鋳部4、樹脂部5、及び補油部材6からなる軸受3(図1を参照)と、マスター軸7とに分離される。   After the mold is opened, the molded product in which the master shaft 7, the electroformed part 4, the oil filler member 6, and the resin part 5 are integrated is removed from the mold. This molded product is separated into a bearing 3 (see FIG. 1) composed of the electroformed part 4, the resin part 5, and the oil filler member 6 and the master shaft 7 in the subsequent peeling step.

この剥離工程では、電鋳部4に蓄積された内部応力を解放することにより、電鋳部4の内周面4aを拡径させ、マスター軸7の外周面から剥離させる。内部応力の解放は、マスター軸7又は軸受3に衝撃を与えることにより、あるいは電鋳部4の内周面4aとマスター軸7の外周面との間に軸方向の加圧力を付与することにより行われる。内部応力の解放により、電鋳部4の内周面を半径方向に拡径させて、電鋳部4の内周面4aとマスター軸7の外周面との間に適当な大きさの隙間を形成することにより、電鋳部4の内周面4aからマスター軸7を軸方向にスムーズに引き抜くことができ、これにより成形品を、電鋳部4、樹脂部5、及び補油部材6からなる軸受3と、マスター軸7とに分離される。なお、電鋳部4の拡径量は、例えば電鋳部4の肉厚や電解質溶液の組成、電鋳条件を変えることによって制御できる。   In this peeling step, the internal stress accumulated in the electroformed part 4 is released, so that the inner peripheral surface 4 a of the electroformed part 4 is expanded and peeled off from the outer peripheral surface of the master shaft 7. The internal stress is released by giving an impact to the master shaft 7 or the bearing 3, or by applying an axial pressure between the inner peripheral surface 4 a of the electroformed part 4 and the outer peripheral surface of the master shaft 7. Done. By releasing the internal stress, the inner peripheral surface of the electroformed part 4 is radially expanded, and a gap of an appropriate size is provided between the inner peripheral surface 4a of the electroformed part 4 and the outer peripheral surface of the master shaft 7. By forming, the master shaft 7 can be smoothly pulled out in the axial direction from the inner peripheral surface 4 a of the electroformed part 4, whereby the molded product can be removed from the electroformed part 4, the resin part 5, and the oil filler member 6. The bearing 3 and the master shaft 7 are separated. The diameter expansion amount of the electroformed part 4 can be controlled, for example, by changing the thickness of the electroformed part 4, the composition of the electrolyte solution, and the electroforming conditions.

衝撃の付与だけでは電鋳部4の内周を十分に拡径さえることができない場合、電鋳部4とマスター軸7とを加熱又は冷却し、両者間に熱膨張量差を生じさせることによって、マスター軸7と軸受3とを分離することもできる。   When the diameter of the inner periphery of the electroformed part 4 cannot be sufficiently increased only by applying an impact, the electroformed part 4 and the master shaft 7 are heated or cooled, thereby causing a difference in thermal expansion between them. The master shaft 7 and the bearing 3 can also be separated.

その後、軸受3に軸部材2を挿入し、軸受3の内周面と軸部材2の外周面との間の軸受隙間に潤滑油を充填することで、図1に示す軸受装置1が完成する。   Thereafter, the shaft member 2 is inserted into the bearing 3, and the bearing gap between the inner peripheral surface of the bearing 3 and the outer peripheral surface of the shaft member 2 is filled with lubricating oil, whereby the bearing device 1 shown in FIG. 1 is completed. .

本実施形態では、図1のように、軸受3の内周面3aが、電鋳部4の内周面4aと樹脂部5の小径内周面5aとで形成され、電鋳部4の内周面4aが軸受面として作用する。射出成形後の固化時に、樹脂部5の小径内周面5aが成形収縮により拡径するよう樹脂材料の組成や成形条件等を配慮することにより、マスター軸7の外周面との間に微小隙間を形成することができる。これにより、樹脂部5とマスター軸7とを容易に分離することが可能となる。微小隙間の幅が適切であれば、図1に示す軸受装置1において、樹脂部5の小径内周面5aと軸部材2の外周面2aとの間の微小隙間を毛細管シールとして機能させることができ、軸受隙間からの潤滑油の流出防止に有効となる。この他、マスター軸7の分離後、機械加工等で小径内周面5aを形成しても良い。   In the present embodiment, as shown in FIG. 1, the inner peripheral surface 3 a of the bearing 3 is formed by the inner peripheral surface 4 a of the electroformed part 4 and the small diameter inner peripheral surface 5 a of the resin part 5. The peripheral surface 4a acts as a bearing surface. By considering the composition of the resin material and molding conditions so that the small-diameter inner circumferential surface 5a of the resin portion 5 expands due to molding shrinkage when solidified after injection molding, a minute gap is formed between the outer circumferential surface of the master shaft 7 and the like. Can be formed. Thereby, the resin part 5 and the master shaft 7 can be easily separated. If the width of the minute gap is appropriate, in the bearing device 1 shown in FIG. 1, the minute gap between the small-diameter inner peripheral surface 5a of the resin portion 5 and the outer peripheral surface 2a of the shaft member 2 can function as a capillary seal. This is effective in preventing the lubricating oil from flowing out of the bearing gap. In addition, after the master shaft 7 is separated, the small-diameter inner peripheral surface 5a may be formed by machining or the like.

このように毛細管シールは、樹脂部5の小径内周面5aを拡径させる他、小径内周面5aに対向する軸部材2の外周面2aに小径外周面(図示省略)を形成することで構成することもできる。また、毛細管シールを、軸受隙間側ほど隙間幅を徐々に縮径させたテーパシールとすれば、より有効な潤滑油の流出防止が可能となる。   As described above, the capillary seal expands the small-diameter inner peripheral surface 5a of the resin portion 5, and also forms a small-diameter outer peripheral surface (not shown) on the outer peripheral surface 2a of the shaft member 2 facing the small-diameter inner peripheral surface 5a. It can also be configured. Further, if the capillary seal is a taper seal in which the gap width is gradually reduced toward the bearing gap side, it is possible to prevent the lubricating oil from flowing out more effectively.

軸部材2として、マスター軸7を使用する場合、電鋳部4とマスター軸7との剥離工程でできた、電鋳部4の内周面4aとマスター軸7の外周面との間の微小隙間は軸受隙間として機能する。この軸受隙間は、電鋳加工の特性から、クリアランスが極めて小さく、かつ高精度であるという特徴を有するため、高い回転精度または摺動性を有する軸受の提供が可能となる。なお、軸部材2としてマスター軸7を使用する必要は必ずしもなく、マスター軸7と同程度の精度で別途製作した軸部材と置き換えて軸受を構成することもできる。この場合、一度マスター軸7を製作すれば、これを繰返し転用することができるので、マスター軸7の製作コストを抑え、軸受装置1のさらなる低コスト化を図ることが可能となる。   When the master shaft 7 is used as the shaft member 2, the minute distance between the inner peripheral surface 4 a of the electroformed part 4 and the outer peripheral surface of the master shaft 7, which is obtained by the peeling process between the electroformed part 4 and the master shaft 7. The gap functions as a bearing gap. Since this bearing gap has the characteristics that the clearance is extremely small and has high accuracy due to the characteristics of electroforming, it is possible to provide a bearing having high rotational accuracy or slidability. It is not always necessary to use the master shaft 7 as the shaft member 2, and a bearing can be configured by replacing the shaft member separately manufactured with the same degree of accuracy as the master shaft 7. In this case, once the master shaft 7 is manufactured, the master shaft 7 can be repeatedly used. Therefore, the manufacturing cost of the master shaft 7 can be suppressed, and the cost of the bearing device 1 can be further reduced.

また、本実施形態では、電鋳部4、樹脂部5、及び補油部材6を一体成形する場合を例示したが、参考例として、例えば樹脂部5に凹部を形成し、その凹部に補油部材6を固定することもできる。樹脂部5の凹部は、例えば射出成形時の金型の形状により形成したり、あるいは、射出成形後に旋削等の機械加工により樹脂部5の一部を除去することにより形成することができる。 Moreover, in this embodiment, although the case where the electroformed part 4, the resin part 5, and the oil filler member 6 were integrally formed was illustrated, as a reference example , a recessed part is formed in the resin part 5, for example , and oil is provided in the recessed part. The member 6 can also be fixed. The concave portion of the resin portion 5 can be formed by, for example, the shape of a mold at the time of injection molding, or can be formed by removing a part of the resin portion 5 by machining such as turning after injection molding.

軸受装置1の作動(回転、摺動、回転摺動、又は揺動)時には、補油部材6から供給された油が電鋳部4の内周面4aと軸部材2の外周面2aとの間に油膜を形成することにより、油不足による潤滑不良による異音の発生や、軸部材2と軸受3との接触摺動による摩耗が回避され、製品寿命が延長される。また、補油部材に油を保持させることにより、油溜まり等の空間から給油するよりも微量ずつ油を供給することができるため、長期間に渡り適度な油膜を軸受隙間に形成することができる。   During operation (rotation, sliding, rotation sliding, or swinging) of the bearing device 1, oil supplied from the lubricating oil member 6 is formed between the inner peripheral surface 4 a of the electroformed part 4 and the outer peripheral surface 2 a of the shaft member 2. By forming an oil film between them, generation of abnormal noise due to poor lubrication due to lack of oil and wear due to contact sliding between the shaft member 2 and the bearing 3 are avoided, and the product life is extended. Also, by holding the oil in the oil filler member, it is possible to supply the oil in small amounts rather than supplying oil from a space such as an oil reservoir, so that an appropriate oil film can be formed in the bearing gap over a long period of time. .

本発明は、上記実施形態に限られない。上記実施形態では、補油部材6が軸部材2と接触した場合を例示しているが、例えば、図5に示す本発明の第2の実施形態に係る軸受装置21のように、補油部材6を軸部材2と非接触となる位置に配置し、電鋳部4を貫通する連通孔17を介して軸受隙間に油を供給することもできる。軸受装置21は、カップ状に形成された軸受3の内周面及び内底面に電鋳部4が形成され、軸受3の内周に軸部材2が挿入される。電鋳部4の内底面4cと軸部材2の凸球面部2bの先端との間には、軸部材2をスラスト方向に接触支持するスラスト軸受部Tが形成される。補油部材6は、例えば図5に示すように、電鋳部4の外径面に接する位置に配置することができる。この他、補油部材6を電鋳部4の底部の下端面4dに接する位置に設けてもよい。あるいは、補油部材6を電鋳部4と径方向に離隔した樹脂部5の内部に配置し、連通孔17を通して軸受隙間と連通させることもできる。   The present invention is not limited to the above embodiment. In the above embodiment, the case where the bunkering member 6 is in contact with the shaft member 2 is illustrated. However, for example, as in the bearing device 21 according to the second embodiment of the present invention shown in FIG. 6 can be disposed at a position that is not in contact with the shaft member 2, and oil can be supplied to the bearing gap through the communication hole 17 penetrating the electroformed part 4. In the bearing device 21, the electroformed part 4 is formed on the inner peripheral surface and the inner bottom surface of the bearing 3 formed in a cup shape, and the shaft member 2 is inserted into the inner periphery of the bearing 3. Between the inner bottom surface 4c of the electroformed portion 4 and the tip of the convex spherical surface portion 2b of the shaft member 2, a thrust bearing portion T that contacts and supports the shaft member 2 in the thrust direction is formed. For example, as shown in FIG. 5, the oil filler member 6 can be disposed at a position in contact with the outer diameter surface of the electroformed portion 4. In addition, the oil filler member 6 may be provided at a position in contact with the lower end surface 4 d of the bottom of the electroformed part 4. Alternatively, the oil filler member 6 can be disposed inside the resin portion 5 that is radially separated from the electroformed portion 4 and communicated with the bearing gap through the communication hole 17.

図6に示す本発明の第3の実施形態に係る軸受装置31は、カップ状の軸受3の側部15と底部16とが別体に形成される。側部17は、樹脂の射出成形により形成され、大径内周面5b及び小径内周面を有する。樹脂部5の大径内周面5bに補油部材6が配置される。底部16は、例えば金属材料で形成され、接着、高周波溶着、超音波溶着などの方法で、側部15に固定される。軸部材2の凸球面部2bの先端と底部16の上端面16aとの間には、軸部材2をスラスト方向に接触支持するスラスト軸受部Tが形成される。この場合、図6のように側部15側に補油部材6を設ける他、底部16に補油部材6を設けることもできる。   In the bearing device 31 according to the third embodiment of the present invention shown in FIG. 6, the side portion 15 and the bottom portion 16 of the cup-shaped bearing 3 are formed separately. The side portion 17 is formed by resin injection molding, and has a large-diameter inner peripheral surface 5b and a small-diameter inner peripheral surface. The oil filler member 6 is disposed on the large-diameter inner peripheral surface 5 b of the resin portion 5. The bottom portion 16 is formed of, for example, a metal material, and is fixed to the side portion 15 by a method such as adhesion, high frequency welding, or ultrasonic welding. A thrust bearing portion T that contacts and supports the shaft member 2 in the thrust direction is formed between the tip of the convex spherical surface portion 2b of the shaft member 2 and the upper end surface 16a of the bottom portion 16. In this case, as shown in FIG. 6, the lubricating oil member 6 may be provided on the side portion 15 side, and the lubricating oil member 6 may be provided on the bottom portion 16.

以上で示した軸受は、電鋳部4の内周面4aと軸部材2の外周面2aとの間の軸受隙間
に、流体の動圧作用で圧力を発生させる動圧軸受として使用することも可能である。この動圧軸受は、例えば軸部材2の外周面2aに、ヘリングボーン形状等に形成した動圧溝、多円弧面、あるいはステップ面等の動圧発生部を形成し、この動圧発生部を電鋳部4の真円状内周面4aと対向させることで構成することができる。これとは逆に、電鋳部4の内周面4aに動圧発生部を形成することもでき、この場合、電鋳部内周面4aの動圧発生部は、マスター軸7の外周面に動圧発生部の形状に対応した型を形成して電鋳加工を行うことで形成可能である。その後、同様の手順で軸受3とマスター軸7の分離を行い、さらに軸受3の内周に真円状の外周面を有する軸部材2を挿入することで、動圧軸受が構成される。
The bearing shown above can also be used as a hydrodynamic bearing that generates pressure by the hydrodynamic action of fluid in the bearing gap between the inner peripheral surface 4a of the electroformed part 4 and the outer peripheral surface 2a of the shaft member 2. Is possible. In this dynamic pressure bearing, for example, a dynamic pressure generating part such as a dynamic pressure groove, a multi-arc surface, or a step surface formed in a herringbone shape or the like is formed on the outer peripheral surface 2a of the shaft member 2, and the dynamic pressure generating part is It can be configured by facing the perfect inner circumferential surface 4a of the electroformed part 4. On the contrary, a dynamic pressure generating part can be formed on the inner peripheral surface 4 a of the electroformed part 4. In this case, the dynamic pressure generating part of the inner peripheral surface 4 a of the electroformed part is formed on the outer peripheral surface of the master shaft 7. It can be formed by forming a mold corresponding to the shape of the dynamic pressure generating portion and performing electroforming. Thereafter, the bearing 3 and the master shaft 7 are separated in the same procedure, and the shaft member 2 having a perfect circular outer peripheral surface is inserted into the inner periphery of the bearing 3 to constitute a hydrodynamic bearing.

また、軸受装置のスラスト軸受部にも動圧軸受を採用することができる。この場合、下端面を有する軸部材2を使用し、例えば軸部材2の下端面にスパイラル形状に形成した動圧溝やステップ面等の動圧発生部を形成し、この動圧発生部を軸部材2の下端面と対向する面、例えば電鋳部4の内底面4cと対向させることでスラスト軸受部を構成することができる。これとは逆に、電鋳部4の内底面4cに動圧発生部を形成することもできる。   Further, a dynamic pressure bearing can also be employed for the thrust bearing portion of the bearing device. In this case, a shaft member 2 having a lower end surface is used. For example, a dynamic pressure generating portion such as a dynamic pressure groove or a step surface formed in a spiral shape is formed on the lower end surface of the shaft member 2, and the dynamic pressure generating portion is The thrust bearing portion can be configured by facing the surface facing the lower end surface of the member 2, for example, the inner bottom surface 4 c of the electroformed portion 4. On the contrary, a dynamic pressure generating portion can be formed on the inner bottom surface 4 c of the electroformed portion 4.

以上説明した軸受装置は、例えば情報機器用のモータに組み込んで使用可能である。以下、軸受装置1を上記モータ用の回転軸支持装置として使用した例を、図7に基づいて説明する。   The bearing device described above can be used by being incorporated in a motor for information equipment, for example. Hereinafter, the example which used the bearing apparatus 1 as a rotating shaft support apparatus for the said motor is demonstrated based on FIG.

図7に示すように、このモータ100は、例えばHDD等のディスク駆動装置用のスピンドルモータとして使用されるものであって、軸部材2を回転自在に非接触支持する軸受装置1と、軸部材2に装着されたロータ(ディスクハブ)103と、例えば半径方向のギャップを介して対向させたステータコイル104およびロータマグネット105とを備えている。ステータコイル104は、ブラケット106の外周に取付けられ、ロータマグネット105はディスクハブ103の内周に取付けられている。ディスクハブ103には、磁気ディスク等のディスクDが一又は複数枚保持されている。ステータコイル104に通電すると、ステータコイル104とロータマグネット105との間の電磁力でロータマグネット105が回転し、それによって、ディスクハブ103及びディスクハブ103に保持されたディスクDが軸部材2と一体に回転する。   As shown in FIG. 7, the motor 100 is used as a spindle motor for a disk drive device such as an HDD, and includes a bearing device 1 that rotatably supports a shaft member 2 in a non-contact manner, and a shaft member. 2, and a stator coil 104 and a rotor magnet 105 that are opposed to each other with a gap in the radial direction, for example. The stator coil 104 is attached to the outer periphery of the bracket 106, and the rotor magnet 105 is attached to the inner periphery of the disk hub 103. The disk hub 103 holds one or more disks D such as magnetic disks. When the stator coil 104 is energized, the rotor magnet 105 is rotated by the electromagnetic force between the stator coil 104 and the rotor magnet 105, whereby the disk hub 103 and the disk D held by the disk hub 103 are integrated with the shaft member 2. Rotate to.

この実施形態において、軸受装置1は、軸受3と、軸受3の内周に挿入される軸部材2と、軸受3の一端に装着されるスラストプレート107とを備える。図7では、軸受装置として図1に示す軸受装置1を例示しているが、図5、図6に示す軸受装置21、31も使用可能である。スラストプレート107の上端面には、スラスト動圧発生部として、複数の動圧溝をスパイラル状に配列した領域(スラスト軸受面)107aが形成される。軸部材2の回転時には、軸部材2の外周面2aと軸受3のラジアル軸受面となる電鋳部4の内周面4aとのラジアル軸受隙間に油膜が形成され、これにより軸部材2をラジアル方向に回転自在に非接触支持するラジアル軸受部Rが形成される。同時に、軸部材2の下端面2bとスラストプレート107の上端面107aとの間のスラスト軸受隙間に、動圧溝による潤滑油の動圧作用で軸部材2をスラスト方向に回転自在に非接触支持するスラスト軸受部Tが形成される。   In this embodiment, the bearing device 1 includes a bearing 3, a shaft member 2 inserted into the inner periphery of the bearing 3, and a thrust plate 107 attached to one end of the bearing 3. Although FIG. 7 illustrates the bearing device 1 shown in FIG. 1 as the bearing device, the bearing devices 21 and 31 shown in FIGS. 5 and 6 can also be used. On the upper end surface of the thrust plate 107, a region (thrust bearing surface) 107a in which a plurality of dynamic pressure grooves are arranged in a spiral shape is formed as a thrust dynamic pressure generating portion. When the shaft member 2 is rotated, an oil film is formed in a radial bearing gap between the outer peripheral surface 2a of the shaft member 2 and the inner peripheral surface 4a of the electroformed portion 4 serving as the radial bearing surface of the bearing 3, and thereby the shaft member 2 is radially A radial bearing portion R that is supported in a non-contact manner so as to be rotatable in the direction is formed. At the same time, in the thrust bearing gap between the lower end surface 2b of the shaft member 2 and the upper end surface 107a of the thrust plate 107, the shaft member 2 is supported in a non-contact manner so as to be rotatable in the thrust direction by the dynamic pressure action of the lubricating oil by the dynamic pressure grooves. A thrust bearing portion T is formed.

本発明の軸受装置は、以上の例示に限らず、光ディスクの光磁気ディスク駆動用のスピンドルモータ等、高速回転下で使用される情報機器用の小型モータ、あるいはレーザビームプリンタのポリゴンスキャナモータ等における回転軸支持用としても好適に使用することができる。また、長寿命が要求されるファンモータなどにも適用できる。   The bearing device of the present invention is not limited to the above examples, and is used in a small motor for information equipment used under high-speed rotation, a polygon scanner motor of a laser beam printer, etc. It can also be suitably used for rotating shaft support. It can also be applied to fan motors that require a long service life.

以上の説明では、軸受3を回転用の軸受に使用する場合を例示しているが、この他にも軸受3は、摺動用の軸受や、回転摺動用の軸受、あるいは揺動用の軸受の何れにも適用す
ることができる。
Although the case where the bearing 3 is used as a bearing for rotation is illustrated in the above description, the bearing 3 can be any one of a sliding bearing, a rotating / sliding bearing, and a swinging bearing. It can also be applied to.

本発明の第1の実施形態に係る軸受装置1の断面図である。1 is a cross-sectional view of a bearing device 1 according to a first embodiment of the present invention. マスター軸7に電鋳部4を形成した状態を示す斜視図である。It is a perspective view which shows the state which formed the electroformed part 4 in the master axis | shaft 7. FIG. 電鋳軸9の斜視図である。3 is a perspective view of an electroformed shaft 9. FIG. 射出成形金型に電鋳軸9を取付けた状態を示す断面図である。It is sectional drawing which shows the state which attached the electroformed shaft 9 to the injection mold. 本発明の第2の実施形態に係る軸受装置21の断面図である。It is sectional drawing of the bearing apparatus 21 which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る軸受装置31の断面図である。It is sectional drawing of the bearing apparatus 31 which concerns on the 3rd Embodiment of this invention. 本発明を適用したモータ100の概略構造を示す断面図である。It is sectional drawing which shows schematic structure of the motor 100 to which this invention is applied.

符号の説明Explanation of symbols

1 軸受装置
2 軸部材
3 軸受
4 電鋳部
5 樹脂部
6 補油部材
7 マスター軸
8 被覆材
9 電鋳軸
17 連通孔
100 モータ
R ラジアル軸受部
T スラスト軸受部

DESCRIPTION OF SYMBOLS 1 Bearing apparatus 2 Shaft member 3 Bearing 4 Electroformed part 5 Resin part 6 Refueling member 7 Master shaft 8 Coating material 9 Electroformed shaft 17 Communication hole 100 Motor R Radial bearing part T Thrust bearing part

Claims (5)

マスター軸の外周面に析出形成され、内周に軸受面を有する電鋳部、電鋳部を内周にインサートして成形された樹脂部と、電鋳部の内周に挿入された軸部材と、前記軸受面と前記軸部材の外周面との間に形成され、潤滑油で満たされた軸受隙間と、母材の内部に保持した油を軸受隙間に供給する環状の補油部材とを備え、前記軸受面が、マスター軸の表面に析出し始めた面からなる軸受装置であって、
マスター軸、マスター軸の外周面に析出形成した電鋳部、及びマスター軸の外周に配置した補油部材をインサート部品として樹脂で射出成形することにより、電鋳部及び補油部材を内周に保持する樹脂部を成形したことを特徴とする軸受装置。
Is deposited formed on the outer peripheral surface of the master axis, the inner and electroformed portion having a bearing surface in a circumferential, a resin portion molded by insert to the inner peripheral of the electroformed part, the shaft inserted into the inner circumference of the electroformed part A member, a bearing gap formed between the bearing surface and the outer peripheral surface of the shaft member , filled with lubricating oil, and an annular oil-retaining member that supplies oil retained inside the base material to the bearing gap. A bearing device comprising a surface where the bearing surface starts to precipitate on the surface of the master shaft,
Master molding, electroformed part deposited and formed on the outer peripheral surface of the master shaft, and the oil filling member arranged on the outer circumference of the master shaft are injection-molded with resin as an insert part, so that the electroformed part and the lubricating oil member are placed on the inner circumference. A bearing device in which a resin part to be held is formed .
前記補油部材が、前記軸部材に接触している請求項1記載の軸受装置。   The bearing device according to claim 1, wherein the oil filler member is in contact with the shaft member. 前記補油部材が、前記軸部材と非接触であり、連通孔を介して軸受隙間に油を供給する請求項1記載の軸受装置。   The bearing device according to claim 1, wherein the oil supply member is in non-contact with the shaft member and supplies oil to the bearing gap through the communication hole. 請求項1〜3の何れかに記載の軸受装置と、ロータマグネットと、ステータコイルとを備えたモータ。   A motor comprising the bearing device according to claim 1, a rotor magnet, and a stator coil. マスター軸の外周面に電鋳部を析出形成するステップと、マスター軸の外周に、母材の内部に油を保持可能な環状の補油部材を配置するステップと、マスター軸、電鋳部、及び補油部材からなる電鋳軸をインサート部品として樹脂で射出成形することにより、電鋳部及び補油部材を内周に保持した樹脂部を成形するステップと、電鋳部とマスター軸とを剥離し、電鋳部、補油部材、及び樹脂部からなる軸受からマスター軸を分離するステップと、前記軸受の内周に軸部材を挿入し、電鋳部の内周面と軸部材の外周面との間の軸受隙間に潤滑油を充填するステップとを順に経て行う軸受装置の製造方法。Depositing and forming an electroformed part on the outer peripheral surface of the master shaft, placing an annular oil-retaining member capable of holding oil inside the base material on the outer periphery of the master shaft, a master shaft, an electroformed part, And forming an electroformed part and a resin part holding the oil-retaining member on the inner periphery by injection molding with resin as an insert part of an electroformed shaft made of a lubricating oil member, and an electroformed part and a master shaft. The step of separating and separating the master shaft from the bearing made of the electroformed part, the oil filler member, and the resin part, and inserting the shaft member into the inner periphery of the bearing, the inner peripheral surface of the electroformed part and the outer periphery of the shaft member A method for manufacturing a bearing device, comprising sequentially filling a bearing gap with a surface with a lubricating oil.
JP2005281561A 2005-09-27 2005-09-28 Bearing device, motor provided with the same, and method for manufacturing bearing device Expired - Fee Related JP4794966B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005281561A JP4794966B2 (en) 2005-09-28 2005-09-28 Bearing device, motor provided with the same, and method for manufacturing bearing device
PCT/JP2006/318749 WO2007037169A1 (en) 2005-09-27 2006-09-21 Bearing device with sliding bearing
CN2006800443696A CN101321963B (en) 2005-09-27 2006-09-21 Bearing device with sliding bearing
US11/992,313 US8052328B2 (en) 2005-09-27 2006-09-21 Bearing device with sliding bearing
KR1020087009485A KR20080046746A (en) 2005-09-27 2006-09-21 Bearing device with sliding bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005281561A JP4794966B2 (en) 2005-09-28 2005-09-28 Bearing device, motor provided with the same, and method for manufacturing bearing device

Publications (2)

Publication Number Publication Date
JP2007092847A JP2007092847A (en) 2007-04-12
JP4794966B2 true JP4794966B2 (en) 2011-10-19

Family

ID=37978815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005281561A Expired - Fee Related JP4794966B2 (en) 2005-09-27 2005-09-28 Bearing device, motor provided with the same, and method for manufacturing bearing device

Country Status (1)

Country Link
JP (1) JP4794966B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016056879A (en) * 2014-09-10 2016-04-21 日本電産サンキョーシーエムアイ株式会社 motor
CN116604118B (en) * 2023-07-06 2023-12-22 兰州工业学院 Main shaft structure of electrolytic machining machine tool

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0438102Y2 (en) * 1985-03-13 1992-09-07
DE3605781A1 (en) * 1986-02-22 1987-09-03 Kernforschungsz Karlsruhe USE OF A FILM OR PLATE-SHAPED FORM AS A BEARING MATERIAL FOR SLIDING BEARINGS
JP2000352414A (en) * 1999-06-11 2000-12-19 Ntn Corp Dynamic pressure type bearing unit
JP3820480B2 (en) * 2001-08-09 2006-09-13 株式会社ティ・アンド・ティホールディングス A pair of shafts and resin bearing parts and method of manufacturing the same
JP2003230250A (en) * 2002-01-31 2003-08-15 Nidec Copal Corp Motor

Also Published As

Publication number Publication date
JP2007092847A (en) 2007-04-12

Similar Documents

Publication Publication Date Title
WO2007099790A1 (en) Fluid bearing device
US8419281B2 (en) Bearing member and method for manufacturing the same, and bearing unit having bearing member and method for manufacturing the same
JP2007232140A (en) Fluid bearing device
US8052328B2 (en) Bearing device with sliding bearing
JP4987248B2 (en) Bearing device and motor having the bearing device
JP4794922B2 (en) Hydrodynamic bearing device and motor having the same
JP4794964B2 (en) Bearing device and motor equipped with the same
JP4794966B2 (en) Bearing device, motor provided with the same, and method for manufacturing bearing device
JP5058516B2 (en) Hydrodynamic bearing device
JP4813211B2 (en) Sliding bearing, motor equipped with the same, and manufacturing method of sliding bearing
JP2007092845A (en) Bearing device
JP4584093B2 (en) Plain bearing
JP4804894B2 (en) Bearing device and manufacturing method thereof
JP2006342912A (en) Bearing device
JP4633591B2 (en) Plain bearing
JP2006322522A (en) Bearing device and manufacturing method for bearing member
JP4901171B2 (en) Bearing device and motor equipped with the same
JP4890066B2 (en) Hydrodynamic bearing device and fan motor having the same
JP4896429B2 (en) Bearing, bearing device, motor, and bearing manufacturing method
JP2006322523A (en) Bearing device
JP4846470B2 (en) DYNAMIC PRESSURE BEARING DEVICE AND MOTOR HAVING THE SAME
JP4937621B2 (en) Hydrodynamic bearing device
JP2007333153A (en) Hydrostatic bearing device
JP2007051718A (en) Fluid bearing device
JP4937618B2 (en) Hydrodynamic bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080901

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110727

R150 Certificate of patent or registration of utility model

Ref document number: 4794966

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees