JP4633591B2 - Plain bearing - Google Patents

Plain bearing Download PDF

Info

Publication number
JP4633591B2
JP4633591B2 JP2005274467A JP2005274467A JP4633591B2 JP 4633591 B2 JP4633591 B2 JP 4633591B2 JP 2005274467 A JP2005274467 A JP 2005274467A JP 2005274467 A JP2005274467 A JP 2005274467A JP 4633591 B2 JP4633591 B2 JP 4633591B2
Authority
JP
Japan
Prior art keywords
bearing
metal plating
shaft
plating layer
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005274467A
Other languages
Japanese (ja)
Other versions
JP2007085445A (en
Inventor
功 古森
哲也 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2005274467A priority Critical patent/JP4633591B2/en
Publication of JP2007085445A publication Critical patent/JP2007085445A/en
Application granted granted Critical
Publication of JP4633591B2 publication Critical patent/JP4633591B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rotational Drive Of Disk (AREA)
  • Motor Or Generator Frames (AREA)
  • Sliding-Contact Bearings (AREA)

Description

本発明は、滑り軸受に関するものである。   The present invention relates to a sliding bearing.

滑り軸受(以下、単に「軸受」と称する)は、軸部材との間の相対的な回転、摺動、もしくは摺動回転を支持する用途に広く用いられている。特に樹脂製の軸受は、軽量で慣性力が小さいことや大量生産が可能であること等の理由から、幅広く利用されている。   Sliding bearings (hereinafter simply referred to as “bearings”) are widely used in applications that support relative rotation, sliding, or sliding rotation with a shaft member. In particular, resin-made bearings are widely used because they are lightweight and have a small inertial force and can be mass-produced.

このような軸受とその内周に挿入された軸部材とを備えた軸受装置では、装置の起動、停止時等に、軸受と軸部材との一時的な接触摺動により軸受の軸受面が摩耗し、軸受性能が低下するおそれがある。このような不具合を回避するために、例えば特許文献1では、樹脂成形部の軸心に電鋳加工による電鋳部をインサートして型成形した軸受が提案されている。このように、樹脂成形部の内周に電鋳部(金属メッキ層)を設け、軸受面となる内周面を金属で形成することにより、軸受面の耐摩耗性が向上し、耐久性の高い軸受が得られる。
特開2003−56552号公報
In a bearing device having such a bearing and a shaft member inserted in the inner periphery thereof, the bearing surface of the bearing is worn due to temporary contact sliding between the bearing and the shaft member when the device is started and stopped. However, the bearing performance may be reduced. In order to avoid such a problem, for example, Patent Document 1 proposes a bearing that is molded by inserting an electroformed part by electroforming into the shaft center of a resin molded part. Thus, by providing an electroformed part (metal plating layer) on the inner periphery of the resin molded part and forming the inner peripheral surface as a bearing surface with metal, the wear resistance of the bearing surface is improved and the durability is improved. High bearings can be obtained.
JP 2003-56552 A

しかしながら、軸が高速回転する場合には、金属メッキ層でも耐摩耗性が不足する場合がある。特にHDD等の情報機器用スピンドルモータに装備される回転軸支持用の軸受のように、今後さらなる高速化が予想される用途においては、軸受面のさらなる耐摩耗性の向上が急務となっている。   However, when the shaft rotates at a high speed, the metal plating layer may have insufficient wear resistance. Especially in applications where higher speed is expected in the future, such as bearings for rotating shafts installed in spindle motors for information devices such as HDDs, there is an urgent need to further improve the wear resistance of bearing surfaces. .

本発明の課題は、軸部材との接触摺動に対する耐摩耗性に優れ、且つ低コストに製造できる滑り軸受を提供することである。   An object of the present invention is to provide a plain bearing that has excellent wear resistance against contact sliding with a shaft member and can be manufactured at low cost.

前記課題を解決するため、本発明の軸受は、電鋳加工で形成された金属メッキ層と、その外側にインサートモールドで一体に設けられた樹脂部とからなり、金属メッキ層の内周面に、マスター軸の外周面から剥離された軸受面を備えた滑り軸受であって、金属メッキ層の最内径部にその外側よりも硬度の高い高硬度層を有し、該高硬度層の内周面に軸受面を設けたものである。 In order to solve the above-mentioned problems, the bearing of the present invention comprises a metal plating layer formed by electroforming and a resin portion integrally provided by an insert mold on the outside thereof, on the inner peripheral surface of the metal plating layer. A sliding bearing having a bearing surface peeled off from the outer peripheral surface of the master shaft, and having a high hardness layer whose hardness is higher than the outside at the innermost diameter portion of the metal plating layer, and the inner periphery of the high hardness layer The surface is provided with a bearing surface .

このように本発明では、金属メッキ層の最内径部に高硬度層を設けた。これにより、従来からステンレス鋼等の高硬度材料で形成されていた軸との間の硬度差を小さくすることができるので、軸部材との接触摺動による軸受面の摩耗が抑えられる。また、本発明の軸受では、金属メッキ層の高硬度化がその一部で行われるため、金属メッキ層全体を高硬度化する場合よりも、低コスト化、および生産性の向上が図られる。   Thus, in the present invention, the high hardness layer is provided at the innermost diameter portion of the metal plating layer. Thereby, since the hardness difference between the shafts conventionally formed of a high hardness material such as stainless steel can be reduced, wear of the bearing surface due to contact sliding with the shaft member can be suppressed. Further, in the bearing of the present invention, since the hardness of the metal plating layer is increased in part, the cost can be reduced and the productivity can be improved as compared with the case of increasing the hardness of the entire metal plating layer.

樹脂部と接する金属メッキ層の外周面の表面粗さを、内周面よりも粗くすると、金属メッキ層の外周面の微小な凹凸に樹脂材料が入り込み、金属メッキ層と樹脂部との結合力を向上させることができる。   If the surface roughness of the outer peripheral surface of the metal plating layer in contact with the resin part is made rougher than the inner peripheral surface, the resin material enters the minute irregularities on the outer peripheral surface of the metal plating layer, and the bonding force between the metal plating layer and the resin part Can be improved.

金属メッキ層の高硬度層は、例えば、無電解メッキにより形成することができる。あるいは、金属メッキ層の最内径部に熱処理を施すことにより形成することもできる。   The high hardness layer of the metal plating layer can be formed by, for example, electroless plating. Or it can also form by heat-processing to the innermost diameter part of a metal plating layer.

上記の軸受を有する軸受装置と、ステータコイルと、ロータマグネットとを備えたモータは、耐久性に優れ、低コストに製造できる。   A motor including a bearing device having the above-described bearing, a stator coil, and a rotor magnet is excellent in durability and can be manufactured at low cost.

以上のように、本発明によれば、軸部材との接触摺動に対する耐摩耗性に優れた軸受を低コストに提供することができる。   As described above, according to the present invention, it is possible to provide a bearing having excellent wear resistance against sliding contact with the shaft member at a low cost.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の実施形態を示す軸受3を有する軸受装置1の断面図である。軸受装置1は、軸受3と、その内周に挿入された軸部材2とで構成され、軸受3は、金属メッキ層4とその外側に設けられた樹脂部5とを有する。   FIG. 1 is a sectional view of a bearing device 1 having a bearing 3 showing an embodiment of the present invention. The bearing device 1 includes a bearing 3 and a shaft member 2 inserted in the inner periphery thereof. The bearing 3 includes a metal plating layer 4 and a resin portion 5 provided outside the metal plating layer 4.

以下、軸受装置1の製造工程を、軸受3の製造工程を中心に説明する。なお、以下の説明において、「回転用の軸受」とは、軸との間の相対回転を支持するための軸受を意味し、軸受が回転側となるか固定側となるかを問わない。「摺動用の軸受」とは、軸との間の相対的な直線運動を支持するための軸受を意味し、同様に軸受が移動側となるか固定側となるかを問わない。「回転摺動用の軸受」とは、前記二つの軸受の機能を併せ持つもので、軸との間の回転運動及び直線運動の双方を支持するための軸受を意味する。また、「揺動用の軸受」とは、例えばボールジョイントのように、軸の三次元方向の運動が許容される軸受を意味する。   Hereinafter, the manufacturing process of the bearing device 1 will be described focusing on the manufacturing process of the bearing 3. In the following description, the “rotating bearing” means a bearing for supporting relative rotation with the shaft, regardless of whether the bearing is on the rotating side or the fixed side. The “sliding bearing” means a bearing for supporting a relative linear motion between the shafts, and it does not matter whether the bearing is on the moving side or the fixed side. The “rotating and sliding bearing” has both functions of the two bearings, and means a bearing for supporting both rotational motion and linear motion between the shafts. Further, the “oscillating bearing” means a bearing that allows movement in the three-dimensional direction of the shaft, such as a ball joint.

軸受3は、マスター軸20の所要個所をマスキングする工程(図2参照)、非マスク部に電鋳加工を行って電鋳軸11を形成する工程(図3及び図4参照)、電鋳軸11をインサートして樹脂で型成形する工程(図5参照)、及び金属メッキ層4とマスター軸20とを分離する工程を経て製作される。 The bearing 3 includes a step of masking a required portion of the master shaft 20 (see FIG. 2), a step of performing electroforming on the non-mask portion to form the electroformed shaft 11 (see FIGS. 3 and 4), an electroformed shaft. 11 is inserted and molded with resin (see FIG. 5), and the metal plating layer 4 and the master shaft 20 are separated.

前記マスター軸20は、導電性材料、例えば焼入処理をしたステンレス鋼で、ストレートな横断面円形の軸として製作される。もちろんステンレス鋼に限定されるものでなく、剛性などの機械的強度、摺動性、耐熱性、耐薬品性、金属メッキ層4の加工性及び剥離性など、軸受の機能上あるいは軸受製作の都合上求められる特性に適合した材料、さらには熱処理方法が選択される。セラミック等の非金属材料でも、導電処理を施すことにより(例えば表面に導電性の金属皮膜を形成することにより)使用可能となる。なお、マスター軸20の表面には、金属メッキ層4との間の摩擦力を減じるための表面処理、例えばフッ素系の樹脂コーティングを施すのが望ましい。   The master shaft 20 is made of a conductive material, for example, hardened stainless steel, and is manufactured as a straight shaft having a circular cross section. Of course, the material is not limited to stainless steel, and the mechanical function such as rigidity, slidability, heat resistance, chemical resistance, workability and peelability of the metal plating layer 4, and the convenience of bearing production. A material and a heat treatment method suitable for the characteristics required above are selected. Even non-metallic materials such as ceramics can be used by conducting a conductive treatment (for example, by forming a conductive metal film on the surface). The surface of the master shaft 20 is preferably subjected to a surface treatment for reducing the frictional force with the metal plating layer 4, for example, a fluorine-based resin coating.

マスター軸20は、中実軸の他、中空軸や中空部に樹脂を充填した中実軸であっても良い。また、回転用の軸受では、マスター軸20の横断面は基本的に円形に形成されるが、摺動用の軸受の場合は横断面を任意形状にすることができ、円形のほかに多角形状や非真円形状とすることもできる。また、摺動用の軸受では、基本的にマスター軸20の横断面形状は軸方向で一定であるが、回転用の軸受や回転摺動用の軸受では、軸の全長にわたって一定の横断面形状ではない形態をとることもある。   In addition to the solid shaft, the master shaft 20 may be a solid shaft in which a hollow shaft or a hollow portion is filled with resin. In addition, in the bearing for rotation, the cross section of the master shaft 20 is basically formed in a circular shape, but in the case of the bearing for sliding, the cross section can be an arbitrary shape. A non-circular shape can also be used. In the sliding bearing, the cross-sectional shape of the master shaft 20 is basically constant in the axial direction. However, in the rotating bearing and the rotating sliding bearing, the cross-sectional shape is not constant over the entire length of the shaft. May take the form.

マスター軸20の外周面精度は、後述する軸受隙間の精度を直接左右するので、真円度、円筒度、表面粗さ等の軸受機能上重要となる表面精度を、予め高精度に仕上げておく必要がある。例えば回転用の軸受では、軸受面との接触回避の観点から真円度が重視されるので、マスター軸20の外周面はできるだけ真円度を高める必要がある。例えば、後述する軸受隙間の平均幅(半径寸法)の8割以下にまで仕上げておくのが望ましい。従って、例えば軸受隙間の平均幅を2μmに設定する場合、マスター軸20の外周面は1.6μm以下の真円度に仕上げるのが望ましい。   Since the accuracy of the outer peripheral surface of the master shaft 20 directly affects the accuracy of a bearing gap described later, surface accuracy that is important for bearing functions such as roundness, cylindricity, and surface roughness is finished in advance with high accuracy. There is a need. For example, in a bearing for rotation, roundness is important from the viewpoint of avoiding contact with the bearing surface, and therefore the outer peripheral surface of the master shaft 20 needs to have as high roundness as possible. For example, it is desirable to finish to 80% or less of an average width (radial dimension) of a bearing gap described later. Therefore, for example, when the average width of the bearing gap is set to 2 μm, it is desirable that the outer peripheral surface of the master shaft 20 be finished to a roundness of 1.6 μm or less.

マスター軸20の外周面には、図2の散点で示すように、金属メッキ層4の形成予定部を除き、マスキングが施される。マスキング用の被覆材6としては、非導電性、及び電解質溶液に対する耐食性を有する既存品が選択使用される。   Masking is performed on the outer peripheral surface of the master shaft 20 except for the portion where the metal plating layer 4 is to be formed, as indicated by the dotted points in FIG. As the masking covering material 6, an existing product having non-conductivity and corrosion resistance against the electrolyte solution is selectively used.

電鋳加工は、無電解メッキ工程と電解メッキ工程とに分けて行われ、無電解メッキ工程によって形成される高硬度層41と、電解メッキ工程によって形成される低硬度層42とで多層構造の金属メッキ層4が形成される。   The electroforming process is performed separately in an electroless plating process and an electrolytic plating process, and has a multilayer structure including a high hardness layer 41 formed by the electroless plating process and a low hardness layer 42 formed by the electroplating process. A metal plating layer 4 is formed.

無電解メッキ工程では、NiやCu等の金属イオンと、SiC粒子等の強化材を含んだ溶液にマスター軸20を浸漬し、無電解メッキにより目的の金属をマスター軸20の表面の非マスク部に析出させることで、図3のような高硬度層41が形成される。電着金属の種類は、軸受の軸受面に求められる硬度、疲れ強さ等の物理的性質、化学的性質に応じて適宜選択される。高硬度層41の厚みは、これが薄すぎると軸受面の耐久性低下等につながり、厚すぎると製造時間がかかり過ぎるため、3〜15μm、望ましくは5〜10μmとするのが好ましい。   In the electroless plating step, the master shaft 20 is immersed in a solution containing metal ions such as Ni and Cu and a reinforcing material such as SiC particles, and the target metal is removed from the surface of the master shaft 20 by electroless plating. As a result, the high hardness layer 41 as shown in FIG. 3 is formed. The type of electrodeposited metal is appropriately selected according to physical properties and chemical properties such as hardness and fatigue strength required for the bearing surface of the bearing. If the thickness of the high hardness layer 41 is too thin, it will lead to a decrease in the durability of the bearing surface, and if it is too thick, it takes too much production time, so it is preferably 3 to 15 μm, preferably 5 to 10 μm.

電解メッキ工程では、前記の高硬度層41が表面の非マスク部に形成されたマスター軸20を、NiやCu等の金属イオンを含んだ電解質溶液に浸漬し、その溶液に通電する。これにより、目的の金属を、マスター軸20の表面に形成された高硬度層41の外側に析出させることにより、図4のような低硬度層42が形成される。低硬度層42の厚みは、求められる軸受性能や軸受サイズ、さらには用途等に応じて最適な厚みに設定される。なお、図面上では、高硬度層41および低硬度層42の厚みを、理解しやすいように誇張して示している。   In the electrolytic plating step, the master shaft 20 having the high hardness layer 41 formed on the non-mask portion on the surface is immersed in an electrolyte solution containing metal ions such as Ni and Cu, and the solution is energized. Thereby, the low hardness layer 42 as shown in FIG. 4 is formed by depositing the target metal on the outside of the high hardness layer 41 formed on the surface of the master shaft 20. The thickness of the low hardness layer 42 is set to an optimum thickness in accordance with the required bearing performance, bearing size, and application. In the drawings, the thicknesses of the high hardness layer 41 and the low hardness layer 42 are exaggerated for easy understanding.

以上の二種類のメッキ工程を経ることにより、高硬度層41とその外側の低硬度層42からなる金属メッキ層4が形成される。金属メッキ層4の被膜厚さTと高硬度層41の被膜厚さTの比(T/T)は、2〜40の範囲が望ましい。 Through the two kinds of plating processes described above, the metal plating layer 4 composed of the high hardness layer 41 and the low hardness layer 42 on the outside thereof is formed. The ratio of the coating thickness T H of the coating thickness T and the high hardness layer 41 of the metal plating layer 4 (T / T H) is desirably a range of 2 to 40.

上記の無電解メッキ工程、電解メッキ工程の何れの工程に使用する溶液にも、目的の金属だけでなく、例えば、PTFEやカーボンなどの摺動剤、あるいはサッカリン等の応力緩和剤を必要に応じて含有させてもよい。   In addition to the target metal, for example, a sliding agent such as PTFE or carbon, or a stress relaxation agent such as saccharin is used in the solution used in any of the above electroless plating process and electrolytic plating process as necessary. May be included.

以上の工程を経ることにより、マスター軸20外周に、高硬度層41と低硬度層42とからなる円筒状の金属メッキ層4を被着した電鋳軸11が製作される(図4を参照)。なお、マスキング用の被覆材6が薄い場合、金属メッキ層4の両端は被覆材6側に迫り出し、内周面にテーパ状の面取り部が形成される場合がある。この面取り部を利用して、金属メッキ層のモールド部からの抜け落ちを防止するフランジ部を形成することもできる。本実施形態では、面取り部が形成されない場合を例示する。   Through the above steps, the electroformed shaft 11 is manufactured in which the cylindrical metal plating layer 4 composed of the high hardness layer 41 and the low hardness layer 42 is deposited on the outer periphery of the master shaft 20 (see FIG. 4). ). When the masking covering material 6 is thin, both ends of the metal plating layer 4 may protrude toward the covering material 6 and a tapered chamfered portion may be formed on the inner peripheral surface. By using this chamfered portion, a flange portion that prevents the metal plating layer from falling off from the mold portion can be formed. In this embodiment, the case where a chamfer part is not formed is illustrated.

電鋳軸11は、図5に示すモールド工程に移送され、電鋳軸11をインサート部品とするインサート成形が行われる。   The electroformed shaft 11 is transferred to the molding step shown in FIG. 5, and insert molding is performed using the electroformed shaft 11 as an insert part.

このモールド工程では、電鋳軸11は、図5に示すようにその軸方向を型締め方向(図面上下方向)と平行にして、上型7a、および下型7bからなる金型内部に供給される。電鋳軸11の下端が下型7bの位置決め穴9に挿入されることで、電鋳軸11の位置決めが行われる。この状態で型締めされると、電鋳軸11の上端が上型7aのガイド穴10に挿入され、電鋳軸11の芯出しが行われる。このとき、金属メッキ層4の下端4bは下型7bの成形面の内底面と接し、金属メッキ層4の上端4cは上型7aの成形面と接している。   In this molding step, the electroformed shaft 11 is supplied into the mold composed of the upper mold 7a and the lower mold 7b with its axial direction parallel to the mold clamping direction (the vertical direction in the drawing) as shown in FIG. The The electroformed shaft 11 is positioned by inserting the lower end of the electroformed shaft 11 into the positioning hole 9 of the lower mold 7b. When the mold is clamped in this state, the upper end of the electroformed shaft 11 is inserted into the guide hole 10 of the upper mold 7a, and the electroformed shaft 11 is centered. At this time, the lower end 4b of the metal plating layer 4 is in contact with the inner bottom surface of the molding surface of the lower die 7b, and the upper end 4c of the metal plating layer 4 is in contact with the molding surface of the upper die 7a.

型締め完了後、スプール12、ランナー13、およびゲート14を介してキャビティ8に樹脂材料を射出し、インサート成形を行う。なお、溶融樹脂Pは熱可塑性樹脂であり、非晶性樹脂として、ポリサルフォン(PSF)、ポリエーテルサルフォン(PES)、ポリフェニルサルフォン(PPSU)、ポリエーテルイミド(PEI)等、結晶性樹脂として、液晶ポリマー(LCP)、ポリエーテルエーテルケトン(PEEK)、ポリブチレンテレフタレート(PBT)、ポリフェニレンサルファイド(PPS)等を用いることができる。また、上記の樹脂に充填する充填材の種類も特に限定されないが、例えば、充填材として、ガラス繊維等の繊維状充填材、チタン酸カリウム等のウィスカー状充填材、マイカ等の鱗片状充填材、カーボンファイバー、カーボンブラック、黒鉛、カーボンナノマテリアル、金属粉末等の繊維状又は粉末状の導電性充填材を用いることができる。これらの充填材は、単独で用い、あるいは、二種以上を混合して使用しても良い。   After completion of the mold clamping, a resin material is injected into the cavity 8 through the spool 12, the runner 13, and the gate 14, and insert molding is performed. Note that the molten resin P is a thermoplastic resin, and amorphous resins such as polysulfone (PSF), polyethersulfone (PES), polyphenylsulfone (PPSU), and polyetherimide (PEI) are used as crystalline resins. As the liquid crystal polymer (LCP), polyether ether ketone (PEEK), polybutylene terephthalate (PBT), polyphenylene sulfide (PPS), or the like can be used. The type of filler to be filled in the resin is not particularly limited. For example, as the filler, fibrous filler such as glass fiber, whisker-like filler such as potassium titanate, and scaly filler such as mica. A fibrous or powdery conductive filler such as carbon fiber, carbon black, graphite, carbon nanomaterial, or metal powder can be used. These fillers may be used alone or in combination of two or more.

型開き後、脱型した成形品は、図6に示すように、マスター軸20、金属メッキ層4、および樹脂部5が一体となった構造を有する。この状態で、必要に応じて高硬度層41に加熱処理を施すことにより、高硬度層41の硬度をさらに高めることができる。   After the mold opening, the molded product removed from the mold has a structure in which the master shaft 20, the metal plating layer 4, and the resin portion 5 are integrated as shown in FIG. In this state, the hardness of the high hardness layer 41 can be further increased by subjecting the high hardness layer 41 to heat treatment as necessary.

この成形品は、その後剥離工程に移送され、金属メッキ層4および樹脂部5からなる軸受3と、マスター軸20とに分離される。   This molded product is then transferred to a peeling process and separated into a bearing 3 composed of a metal plating layer 4 and a resin portion 5 and a master shaft 20.

この剥離工程では、金属メッキ層4に蓄積された内部応力を解放することにより、金属メッキ層4の内周面を拡径させ、マスター軸20の外周面から剥離させる。内部応力の解放は、マスター軸20又は軸受3に衝撃を与えることにより、あるいは金属メッキ層4の内周面とマスター軸20の外周面との間に軸方向の加圧力を付与することにより行われる。内部応力の解放により、金属メッキ層4の内周面を半径方向に拡径させて、金属メッキ層4の内周面とマスター軸20の外周面との間に適当な大きさの隙間を形成することにより、金属メッキ層4の内周面からマスター軸20を軸方向にスムーズに引き抜くことができ、これにより成形品を、金属メッキ層4及び樹脂部5からなる軸受3と、マスター軸20とに分離される。なお、金属メッキ層4の拡径量は、例えば金属メッキ層4の肉厚を変えることによって制御できる。   In this stripping step, the internal stress accumulated in the metal plating layer 4 is released, so that the inner peripheral surface of the metal plating layer 4 is expanded and peeled off from the outer peripheral surface of the master shaft 20. The internal stress is released by applying an impact to the master shaft 20 or the bearing 3 or by applying axial pressure between the inner peripheral surface of the metal plating layer 4 and the outer peripheral surface of the master shaft 20. Is called. By releasing the internal stress, the inner peripheral surface of the metal plating layer 4 is radially expanded to form a suitable gap between the inner peripheral surface of the metal plating layer 4 and the outer peripheral surface of the master shaft 20. By doing so, the master shaft 20 can be smoothly pulled out in the axial direction from the inner peripheral surface of the metal plating layer 4, whereby the molded product is obtained as a bearing 3 composed of the metal plating layer 4 and the resin portion 5, and the master shaft 20. And separated. In addition, the diameter expansion amount of the metal plating layer 4 can be controlled, for example, by changing the thickness of the metal plating layer 4.

衝撃の付与だけでは金属メッキ層4の内周を十分に拡径さえることができない場合、金属メッキ層4とマスター軸20とを加熱又は冷却し、両者間に熱膨張量差を生じさせることによって、マスター軸20と軸受3とを分離することもできる。 When the inner circumference of the metal plating layer 4 cannot be sufficiently enlarged only by applying an impact, the metal plating layer 4 and the master shaft 20 are heated or cooled to cause a difference in thermal expansion between them. The master shaft 20 and the bearing 3 can also be separated.

こうして形成された軸受3の内周に軸部材2を挿入することにより、軸受装置1が完成する。軸部材2には、マスター軸20をそのまま利用しても良いし、別部材を使用しても良い。   By inserting the shaft member 2 into the inner periphery of the bearing 3 formed in this way, the bearing device 1 is completed. As the shaft member 2, the master shaft 20 may be used as it is, or another member may be used.

マスター軸20を軸部材2として使用した場合、軸受3の軸受面3aと軸部材2の外周面との間の軸受隙間は、電鋳加工の特性から、クリアランスが極めて小さく、かつ高精度であるという特徴を有する。従って、高い回転精度または摺動性を有する軸受装置の提供が可能となる。一方、別部材を軸部材として使用した場合は、一度マスター軸20を製作すれば、これを繰返し転用することができるので、マスター軸20の製作コストを抑え、軸受装置1のさらなる低コスト化を図ることが可能となる。   When the master shaft 20 is used as the shaft member 2, the bearing gap between the bearing surface 3a of the bearing 3 and the outer peripheral surface of the shaft member 2 has a very small clearance and high accuracy due to the characteristics of electroforming. It has the characteristics. Accordingly, it is possible to provide a bearing device having high rotational accuracy or slidability. On the other hand, when another member is used as the shaft member, once the master shaft 20 is manufactured, it can be reused repeatedly. Therefore, the manufacturing cost of the master shaft 20 can be reduced, and the cost of the bearing device 1 can be further reduced. It becomes possible to plan.

この軸受3において、金属メッキ層4のうち内径側は、SiC等の強化材を添加した無電解メッキで形成される。この無電解メッキ層はSiC粒子を含む高硬度の層であるから、この高硬度層41の内周面を軸部材2の相対的な回転もしくは摺動を支持する軸受面3aとして使用すれば、両者の接触摺動による摩耗を抑えることができ、高速回転下でも長期間安定して軸受性能を維持することが可能となる。   In the bearing 3, the inner diameter side of the metal plating layer 4 is formed by electroless plating to which a reinforcing material such as SiC is added. Since this electroless plating layer is a high-hardness layer containing SiC particles, if the inner peripheral surface of this high-hardness layer 41 is used as a bearing surface 3a that supports relative rotation or sliding of the shaft member 2, Wear due to contact sliding between the two can be suppressed, and bearing performance can be maintained stably for a long period of time even under high-speed rotation.

ところで、軸受面3aを構成する高硬度層41と、軸部材2の外周面との硬度の差が過大だと、部材が過度に摩耗し、軸受性能に支障をきたすおそれがある。このため、高硬度層41と軸部材2との硬度差は、Hv200以内であることが望ましい。例えば、軸部材2を硬度Hv600のステンレス鋼で形成する場合、高硬度層41の硬度は、Hv400〜800の範囲内であればよい。例えば、高硬度層41を、NiにSiCを添加した溶液による無電解メッキ層に熱処理を施すと、硬度はおおよそHv400〜500となり、前記条件を満たす。なお、回転用の軸受では、軸部材2の外周面の硬度を軸受面3aの硬度よりも大きくするのが望ましい。摺動用の軸受では、軸部材2の素材としてアルミニウム(硬度Hv50〜110程度)を使用することもあり、この場合は、上記とは逆に軸部材2の外周面の硬度を軸受面3aの硬度よりも小さくするのが望ましい。   By the way, if the difference in hardness between the high hardness layer 41 constituting the bearing surface 3a and the outer peripheral surface of the shaft member 2 is excessive, the member may be excessively worn and the bearing performance may be hindered. For this reason, the hardness difference between the high hardness layer 41 and the shaft member 2 is preferably within Hv200. For example, when the shaft member 2 is formed of stainless steel having a hardness of Hv600, the hardness of the high hardness layer 41 may be in the range of Hv400 to 800. For example, when the high-hardness layer 41 is heat-treated on an electroless plating layer made of a solution obtained by adding SiC to Ni, the hardness is approximately Hv 400 to 500, which satisfies the above condition. In the rotation bearing, it is desirable that the hardness of the outer peripheral surface of the shaft member 2 is larger than the hardness of the bearing surface 3a. In the sliding bearing, aluminum (hardness Hv 50 to 110) may be used as the material of the shaft member 2, and in this case, the hardness of the outer peripheral surface of the shaft member 2 is set to the hardness of the bearing surface 3a. It is desirable to make it smaller.

また、高硬度層41よりも外径側の電解メッキで形成された低硬度層42は、高硬度層41と比べて形成速度が早いため、その外周面の表面粗さが高硬度層41の外周面に比べて粗くなる。よって、電解メッキで形成される低硬度層42の表面には微小な凹凸が形成され、そこに樹脂部5が入り込み、アンカー効果を発揮する。これにより、金属メッキ層4と樹脂部5との間に強固な固着力が発揮され、両部材間での回り止めおよび抜け止めが行われる。低硬度層42と樹脂部5との固着力をさらに向上させるために、電解浴中に非導電性粉末を混入させ、低硬度層42の外周に取り込むことで外周表面をさらに粗面化したり、電鋳時に、低硬度層42の外周に気泡を付着させることで外周表面に凹凸を付けたりすることもできる。   In addition, the low hardness layer 42 formed by electrolytic plating on the outer diameter side of the high hardness layer 41 has a higher formation speed than the high hardness layer 41, and thus the surface roughness of the outer peripheral surface thereof is that of the high hardness layer 41. Rougher than the outer peripheral surface. Therefore, minute irregularities are formed on the surface of the low hardness layer 42 formed by electrolytic plating, and the resin portion 5 enters there to exert an anchor effect. As a result, a strong fixing force is exerted between the metal plating layer 4 and the resin portion 5, and rotation prevention and removal prevention between both members are performed. In order to further improve the fixing force between the low hardness layer 42 and the resin portion 5, non-conductive powder is mixed in the electrolytic bath, and the outer peripheral surface is further roughened by incorporating it into the outer periphery of the low hardness layer 42, At the time of electroforming, the outer peripheral surface can be made uneven by attaching bubbles to the outer periphery of the low hardness layer 42.

本発明は、上記実施形態に限られない。上記実施形態では、強化材を添加した無電解メッキにより高硬度層41を形成する場合を例示したが、例えば、金属メッキ層4を電解メッキあるいは強化材を添加しない無電解メッキの何れか一方でのみ形成した後、その内径部に高周波焼入れ等による熱処理を施すことにより、高硬度層を形成することもできる。このうち、前者の場合は、熱処理でも顕著な高硬度化は期待できず、例えば純Niメッキの場合はHv200〜300程度の硬度が限度であるが、後者の場合は、熱処理により容易に高い硬度(Hv400〜500程度)が得られる。   The present invention is not limited to the above embodiment. In the above embodiment, the case where the high hardness layer 41 is formed by electroless plating to which a reinforcing material is added has been exemplified. For example, the metal plating layer 4 is either electroplated or electroless plated without adding a reinforcing material. After the formation of only the inner layer, a high hardness layer can be formed by subjecting the inner diameter portion to heat treatment by induction hardening or the like. Of these, in the former case, a significant increase in hardness cannot be expected even by heat treatment. For example, in the case of pure Ni plating, the hardness is limited to about Hv 200 to 300, but in the latter case, the hardness is easily increased by heat treatment. (About Hv 400 to 500) is obtained.

以上に示した軸受3は、軸部材2の外周面との間の軸受隙間に、流体の動圧作用で圧力を発生させる動圧軸受装置として使用することも可能である。この動圧軸受装置は、例えば軸部材2の外周面に、へリングボーン形状等に形成した動圧溝、多円弧面、あるいはステップ面等の動圧発生部を形成し、この動圧発生部を金属部4の真円状内周面4aと対向させることで構成することができる。これとは逆に、軸受3の内周面(金属部4の内周面4a)に動圧発生部を形成することもでき、この場合、金属部内周面4aの動圧発生部は、図7に示すように、マスター軸7の外周面に動圧発生部の形状に対応した型20a、20bを形成し、このマスター軸7を用いて電鋳加工を行うことで形成することが可能である。その後、上記と同様の手法で軸受3とマスター軸7の分離を行い、さらに軸受3の内周面に真円状外周面を有する軸部材を挿入することで、動圧軸受装置が構成される。これにより、軸部材2の回転時には、前記動圧溝が、軸部材2の外周面と軸受3の軸受面3aとの間の軸受隙間に充填された潤滑流体(例えば潤滑油)に動圧作用を発生させることにより、軸部材2がラジアル方向に非接触支持される。 The bearing 3 described above can also be used as a hydrodynamic bearing device that generates pressure by a hydrodynamic action of fluid in a bearing gap between the shaft member 2 and the outer peripheral surface thereof. In this dynamic pressure bearing device, for example, a dynamic pressure generating portion such as a dynamic pressure groove, a multi-arc surface, or a step surface formed in a herringbone shape or the like is formed on the outer peripheral surface of the shaft member 2, and the dynamic pressure generating portion Can be configured to face the perfect circular inner peripheral surface 4a of the metal part 4. On the contrary, a dynamic pressure generating part can be formed on the inner peripheral surface of the bearing 3 (the inner peripheral surface 4a of the metal part 4). In this case, the dynamic pressure generating part of the inner peripheral surface 4a of the metal part is 7, molds 20 a and 20 b corresponding to the shape of the dynamic pressure generating portion are formed on the outer peripheral surface of the master shaft 7, and it can be formed by performing electroforming using the master shaft 7. is there. Thereafter, the bearing 3 and the master shaft 7 are separated by the same method as described above, and a shaft member having a perfectly circular outer peripheral surface is inserted into the inner peripheral surface of the bearing 3 to constitute a hydrodynamic bearing device. . Thereby, when the shaft member 2 rotates, the dynamic pressure groove acts on the lubricating fluid (for example, lubricating oil) filled in the bearing gap between the outer peripheral surface of the shaft member 2 and the bearing surface 3 a of the bearing 3. As a result, the shaft member 2 is supported in a non-contact manner in the radial direction.

以上の軸受では、軸受の内周面の全面が金属メッキ層で形成される場合を示しているが、内周面の軸方向の一部領域が金属メッキ層4で形成されても良い。必要な箇所のみに金属メッキ層4を形成することにより、低コスト化及び生産性の向上が図られる。   In the above-described bearing, the case where the entire inner peripheral surface of the bearing is formed by the metal plating layer is shown, but a partial region in the axial direction of the inner peripheral surface may be formed by the metal plating layer 4. By forming the metal plating layer 4 only at a necessary location, the cost can be reduced and the productivity can be improved.

次に、以上に説明した軸受装置1をモータ21の回転軸の支持に適用し、その一実施形態を図8に基いて説明する。   Next, the bearing device 1 described above is applied to support the rotating shaft of the motor 21, and one embodiment thereof will be described with reference to FIG.

図8に示すのモータ21は、HDD等のディスク駆動装置に用いられるスピンドルモータである。このモータ21の軸受装置は、軸部材22をラジアル方向に回転自在に支持するラジアル軸受部Rと、スラスト方向に回転自在に支持するスラスト軸受部Tとを有する。ラジアル軸受部Rは、軸部材22を軸受3の内周に挿入して構成され、スラスト軸受部Tは、軸部材22の凸球面状の軸端を、軸受3の端面に対向させたスラストプレート23で接触支持することによって構成される。軸受3は、以上の説明で述べたとおり、金属メッキ層4をインサートして射出成形することにより形成される。そして、モータ21は、この軸受装置以外にも、軸部材を装着したロータ(ディスクハブ)24と、例えば半径方向のギャップを介して対向させたステータコイル25およびロータマグネット26とを備えている。ステータコイル25は、ブラケット27の外周に取付けられ、ロータマグネット26はディスクハブ24の内周に取付けられている。ディスクハブ24には、磁気ディスクDが一又は複数枚保持されている。   A motor 21 shown in FIG. 8 is a spindle motor used in a disk drive device such as an HDD. The bearing device of the motor 21 includes a radial bearing portion R that supports the shaft member 22 rotatably in the radial direction, and a thrust bearing portion T that supports the shaft member 22 rotatably in the thrust direction. The radial bearing portion R is configured by inserting the shaft member 22 into the inner periphery of the bearing 3, and the thrust bearing portion T is a thrust plate in which the convex spherical shaft end of the shaft member 22 faces the end surface of the bearing 3. It is comprised by carrying out contact support by 23. The bearing 3 is formed by inserting and molding the metal plating layer 4 as described in the above description. In addition to the bearing device, the motor 21 includes a rotor (disk hub) 24 on which a shaft member is mounted, and a stator coil 25 and a rotor magnet 26 that are opposed to each other with a gap in the radial direction, for example. The stator coil 25 is attached to the outer periphery of the bracket 27, and the rotor magnet 26 is attached to the inner periphery of the disk hub 24. The disk hub 24 holds one or more magnetic disks D.

ステータコイル25に通電すると、ステータコイル25とロータマグネット26との間の電磁力でロータマグネット26が回転し、それによって、ディスクハブ24及び軸部材22が一体となって回転する。   When the stator coil 25 is energized, the rotor magnet 26 is rotated by the electromagnetic force between the stator coil 25 and the rotor magnet 26, whereby the disk hub 24 and the shaft member 22 are rotated together.

このモータ21の軸部材22としては、マスター軸20のみならず、マスター軸20と置換した別部材の何れもが使用可能である。また、図8では、スラスト軸受部Tをピボット軸受で構成した場合を例示しているが、この他にも、動圧溝等の動圧発生手段で軸部材22をスラスト方向に非接触支持する動圧軸受も使用可能である。   As the shaft member 22 of the motor 21, not only the master shaft 20 but any other member replaced with the master shaft 20 can be used. Further, FIG. 8 illustrates the case where the thrust bearing portion T is constituted by a pivot bearing, but in addition, the shaft member 22 is supported in a non-contact manner in the thrust direction by dynamic pressure generating means such as a dynamic pressure groove. A hydrodynamic bearing can also be used.

本発明の軸受装置は、以上の例示に限らず、モータの回転軸支持用として広く適用可能である。この軸受装置は、上記のとおりラジアル軸受部Rにおいて高精度の軸受隙間(ラジアル軸受隙間)を備えるので、上記HDD等の磁気ディスク駆動用のスピンドルモータを初めとして、高回転精度が要求される情報機器用の小型モータ、例えば光ディスクや光磁気ディスク駆動用のスピンドルモータ、あるいはレーザビームプリンタのポリゴンスキャナモータ等における回転軸支持用として特に適合するものである。また、長寿命が要求されるファンモータなどにも適用できる。   The bearing device of the present invention is not limited to the above examples, and can be widely applied to support a rotating shaft of a motor. Since this bearing device has a high-precision bearing gap (radial bearing gap) in the radial bearing portion R as described above, information that requires high rotational accuracy, such as a spindle motor for driving a magnetic disk such as the HDD described above. It is particularly suitable for supporting a rotating shaft in a small motor for equipment, for example, a spindle motor for driving an optical disk or a magneto-optical disk, or a polygon scanner motor of a laser beam printer. It can also be applied to fan motors that require a long service life.

以上の説明では、軸受3を回転軸の支持に使用する場合を例示しているが、この他にも軸受3は、軸との間の直線的な相対摺動を支持する摺動用の軸受や、相対摺動と相対回転の双方を支持する摺動回転用の軸受、あるいは軸の三次元方向の運動を支持する揺動用の軸受の何れにも適用することができる。   In the above description, the case where the bearing 3 is used for supporting the rotating shaft is illustrated, but in addition to this, the bearing 3 is a sliding bearing that supports linear relative sliding with respect to the shaft. The present invention can be applied to either a sliding rotation bearing that supports both relative sliding and relative rotation, or a rocking bearing that supports the movement of the shaft in the three-dimensional direction.

本発明の実施形態に係る軸受3を有する軸受装置1を示す断面図である。It is sectional drawing which shows the bearing apparatus 1 which has the bearing 3 which concerns on embodiment of this invention. マスター軸20にマスキングをした状態を示す斜視図である。FIG. 4 is a perspective view showing a state where the master shaft 20 is masked. マスター軸20に高硬度層41が形成された状態を示す斜視図である。3 is a perspective view showing a state in which a high hardness layer 41 is formed on a master shaft 20. FIG. マスター軸20に金属部4が形成された状態を示す斜視図である。FIG. 3 is a perspective view showing a state where a metal part 4 is formed on a master shaft 20. 射出成形金型に電鋳軸11を取付けた状態を示す断面図である。It is sectional drawing which shows the state which attached the electroformed shaft 11 to the injection mold. 射出成形後における、マスター軸20、金属メッキ層4、および樹脂部5の一体品の断面図である。It is sectional drawing of the integral product of the master axis | shaft 20, the metal plating layer 4, and the resin part 5 after injection molding. マスター軸20の他の実施形態を示す斜視図である。It is a perspective view which shows other embodiment of the master axis | shaft 20. FIG. 本発明を適用したモータ21の概略構造を示す断面図である。It is sectional drawing which shows schematic structure of the motor 21 to which this invention is applied.

符号の説明Explanation of symbols

1 軸受装置
2 軸部材
3 軸受
3a 軸受面
4 金属メッキ層
41 高硬度層
42 低硬度層
5 樹脂部
6 被覆材
11 電鋳軸
20 マスター軸
21 モータ
22 軸部材
23 スラストプレート
24 ディスクハブ
25 ステータコイル
26 ロータマグネット
27 ブラケット
R ラジアル軸受部
T スラスト軸受部
DESCRIPTION OF SYMBOLS 1 Bearing apparatus 2 Shaft member 3 Bearing 3a Bearing surface 4 Metal plating layer 41 High hardness layer 42 Low hardness layer 5 Resin part 6 Coating material 11 Electroformed shaft 20 Master shaft 21 Motor 22 Shaft member 23 Thrust plate 24 Disc hub 25 Stator coil 26 Rotor magnet 27 Bracket R Radial bearing part T Thrust bearing part

Claims (5)

電鋳加工で形成された金属メッキ層と、その外側にインサートモールドで一体に設けられた樹脂部とからなり、金属メッキ層の内周面に、マスター軸の外周面から剥離された軸受面を備えた滑り軸受であって、
金属メッキ層の最内径部にその外側よりも硬度の高い高硬度層を有し、該高硬度層の内周面に前記軸受面を設けた滑り軸受。
It consists of a metal plating layer formed by electroforming and a resin part integrally provided on the outside by an insert mold. A bearing surface peeled off from the outer peripheral surface of the master shaft is formed on the inner peripheral surface of the metal plating layer. A sliding bearing with
A sliding bearing having a high hardness layer whose hardness is higher than that of the outermost inner diameter portion of the metal plating layer, and the bearing surface is provided on an inner peripheral surface of the high hardness layer .
前記金属メッキ層の外周面の表面粗さが内周面よりも粗い請求項1記載の滑り軸受。   The sliding bearing according to claim 1, wherein a surface roughness of the outer peripheral surface of the metal plating layer is rougher than that of the inner peripheral surface. 前記金属メッキ層の高硬度層が無電解メッキで形成される請求項1記載の滑り軸受。   The sliding bearing according to claim 1, wherein the high hardness layer of the metal plating layer is formed by electroless plating. 前記金属メッキ層の高硬度層が熱処理で形成される請求項1記載の滑り軸受。   The plain bearing according to claim 1, wherein the high hardness layer of the metal plating layer is formed by heat treatment. 請求項1〜4の何れかに記載の滑り軸受を有する軸受装置と、ステータコイルと、ロータマグネットとを備えたモータ。 The motor provided with the bearing apparatus which has a sliding bearing in any one of Claims 1-4, a stator coil, and a rotor magnet.
JP2005274467A 2005-09-21 2005-09-21 Plain bearing Expired - Fee Related JP4633591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005274467A JP4633591B2 (en) 2005-09-21 2005-09-21 Plain bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005274467A JP4633591B2 (en) 2005-09-21 2005-09-21 Plain bearing

Publications (2)

Publication Number Publication Date
JP2007085445A JP2007085445A (en) 2007-04-05
JP4633591B2 true JP4633591B2 (en) 2011-02-16

Family

ID=37972620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005274467A Expired - Fee Related JP4633591B2 (en) 2005-09-21 2005-09-21 Plain bearing

Country Status (1)

Country Link
JP (1) JP4633591B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101948303B1 (en) * 2016-12-09 2019-02-14 경북대학교 산학협력단 Plain bearing, and rotating anode type X-ray tube
CN112208266A (en) * 2020-11-25 2021-01-12 海宁奥通汽车零件有限公司 Consumption-reducing energy-saving type conical hub unit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03138374A (en) * 1989-10-23 1991-06-12 Mitsubishi Electric Corp Production of wear resistant sliding contact member
JP2001164394A (en) * 1999-12-03 2001-06-19 Ricoh Co Ltd Seamless flexible endless member and producing method therefor
JP2002039185A (en) * 2000-07-27 2002-02-06 Canon Inc Dynamic pressure bearing and method of manufacturing it
JP2003056569A (en) * 2001-08-09 2003-02-26 Akutowan:Kk Resin-bearing component and manufacturing method for the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03138374A (en) * 1989-10-23 1991-06-12 Mitsubishi Electric Corp Production of wear resistant sliding contact member
JP2001164394A (en) * 1999-12-03 2001-06-19 Ricoh Co Ltd Seamless flexible endless member and producing method therefor
JP2002039185A (en) * 2000-07-27 2002-02-06 Canon Inc Dynamic pressure bearing and method of manufacturing it
JP2003056569A (en) * 2001-08-09 2003-02-26 Akutowan:Kk Resin-bearing component and manufacturing method for the same

Also Published As

Publication number Publication date
JP2007085445A (en) 2007-04-05

Similar Documents

Publication Publication Date Title
US8876386B2 (en) Fluid dynamic bearing device
KR101414110B1 (en) Bearing device
US20070252461A1 (en) Fluid Dynamic Bearing Device and Motor Equipped With the Same
JP4987248B2 (en) Bearing device and motor having the bearing device
JP2007232140A (en) Fluid bearing device
US8052328B2 (en) Bearing device with sliding bearing
JP4794922B2 (en) Hydrodynamic bearing device and motor having the same
JP4633591B2 (en) Plain bearing
JP4794964B2 (en) Bearing device and motor equipped with the same
JP4794966B2 (en) Bearing device, motor provided with the same, and method for manufacturing bearing device
JP4813211B2 (en) Sliding bearing, motor equipped with the same, and manufacturing method of sliding bearing
JP2007192317A (en) Sliding bearing unit
JP4584093B2 (en) Plain bearing
JP2006342912A (en) Bearing device
JP4896429B2 (en) Bearing, bearing device, motor, and bearing manufacturing method
JP2007092845A (en) Bearing device
JP4804894B2 (en) Bearing device and manufacturing method thereof
JP4890066B2 (en) Hydrodynamic bearing device and fan motor having the same
JP4896430B2 (en) Bearing device and motor using the bearing device
JP2006322522A (en) Bearing device and manufacturing method for bearing member
JP4901171B2 (en) Bearing device and motor equipped with the same
JP2007263312A (en) Manufacturing method of slide bearing
JP4846470B2 (en) DYNAMIC PRESSURE BEARING DEVICE AND MOTOR HAVING THE SAME
JP2007051718A (en) Fluid bearing device
JP4937621B2 (en) Hydrodynamic bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080901

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101004

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees