JP2007205491A - Bearing device for fan motor - Google Patents

Bearing device for fan motor Download PDF

Info

Publication number
JP2007205491A
JP2007205491A JP2006025978A JP2006025978A JP2007205491A JP 2007205491 A JP2007205491 A JP 2007205491A JP 2006025978 A JP2006025978 A JP 2006025978A JP 2006025978 A JP2006025978 A JP 2006025978A JP 2007205491 A JP2007205491 A JP 2007205491A
Authority
JP
Japan
Prior art keywords
fan motor
bearing
electroformed
gap
radial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006025978A
Other languages
Japanese (ja)
Inventor
Isao Komori
功 古森
Yasuhiro Yamamoto
康裕 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2006025978A priority Critical patent/JP2007205491A/en
Publication of JP2007205491A publication Critical patent/JP2007205491A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance rotating performance and improve quietness while reducing the manufacturing cost in a fan motor. <P>SOLUTION: A region forming at least a radial bearing gap 16 of the inner peripheral face 12a of a bearing part 12 is formed on the inner peripheral face 15a of an electroformed part 15. A plurality of arc faces 15a1 as dynamic pressure generating parts are formed on the entire surface or one region of the inner peripheral face 15a of the electroformed part 15. Each arc face 15a1 is an eccentric arcuate face with each point offset at an equal distance from a rotating axis O. The arc faces 15a1 are formed at equal intervals in the circumferential direction. The radial bearing gap 16 is formed between the eccentric arcuate faces 15a1 and a separation groove 15a2 of the electroformed part 15, and a circular outer peripheral face 13a of a shaft member 13 by inserting the shaft member 13 in the inner peripheral face 15a of the electroformed part 15. A region in the radial bearing gap 16 formed by the eccentric arcuate faces 15a1 and the circular outer peripheral face 13a becomes a wedge shaped gap 15a3 made by gradually shrinking the gap width in the circumferential direction toward one side (rotational direction of the shaft member 13). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ファンモータ用軸受装置に関する。   The present invention relates to a fan motor bearing device.

従来、パーソナルコンピュータ、携帯情報端末、携帯電話をはじめとする情報機器や、その他の電気機器、例えば複写機やファクシミリ、プリンタ、および電話機等の通信機器をはじめとする事務用電気機器、調理用電気機器、空調用電気機器、清掃用電気機器、照明用電気機器、その他発熱する電気機器に搭載される発熱部品の冷却用装置として、ファンモータが使用されている。   Conventionally, information devices such as personal computers, personal digital assistants, mobile phones, and other electrical devices, such as office electrical devices such as copiers, facsimiles, printers, and telephones, and cooking appliances A fan motor is used as a cooling device for a heat generating component mounted on a device, an electric device for air conditioning, an electric device for cleaning, an electric device for lighting, and other electric devices that generate heat.

この種のファンモータは、そのファン形状によって、軸流ファンモータ(プロペラファンモータともいう)と遠心ファンモータとに大別される。このうち、遠心ファンモータはさらにシロッコファンモータとクロスフローファンモータとに分類される(例えば、特許文献1又は2を参照)。   This type of fan motor is roughly classified into an axial fan motor (also referred to as a propeller fan motor) and a centrifugal fan motor depending on the fan shape. Among these, the centrifugal fan motor is further classified into a sirocco fan motor and a cross flow fan motor (see, for example, Patent Document 1 or 2).

これらファンモータのファンは、通常モータのロータ部に装着され、モータの回転駆動に伴いロータ部と共に回転する。この際、ファンと共に回転するロータ部は、例えばボールベアリング等の転がり軸受により回転自在に支持される場合が多く、使用可能な軸受として、例えば上記転がり軸受の他、滑り軸受や流体動圧軸受などが提案されている(何れも例えば、特許文献3を参照)。後者の場合には、例えばロータ部を構成するシャフトの外周面とステータ部を構成する軸受用スリーブの内周面との間に半径方向の微小隙間が形成され、この微小隙間内にオイル又は気体が充填された状態で各軸受が使用される。
特開2005−86967号公報 特開2001−159397号公報 特開2004−332724号公報
The fans of these fan motors are usually mounted on the rotor portion of the motor, and rotate together with the rotor portion as the motor is driven to rotate. At this time, the rotor portion that rotates together with the fan is often rotatably supported by a rolling bearing such as a ball bearing, and usable bearings include, for example, the above-described rolling bearing, a sliding bearing, a fluid dynamic pressure bearing, and the like. Have been proposed (see, for example, Patent Document 3). In the latter case, for example, a minute radial gap is formed between the outer peripheral surface of the shaft that constitutes the rotor portion and the inner peripheral surface of the bearing sleeve that constitutes the stator portion, and oil or gas is present in the minute gap. Each bearing is used in a state where is filled.
JP 2005-86967 A JP 2001-15997A JP 2004-332724 A

ところで、最近では、各種情報機器の小型化、携帯化に伴い、これに組み込まれるファンモータに対する小サイズ化の要求が高まっている。また、上述のように、この種のファンモータがパーソナルコンピュータなど一般の個人ユーザ向けの情報機器に使用される点を考慮すると、回転性能の向上はもちろんのこと、使用時の静音性(静粛性)向上が重要となる。例えば携帯機器に搭載されるファンモータ用の軸受にボールベアリング等の転がり軸受を使用する場合、携帯時の落下等により容易に転動面に圧痕を生じる。これでは、転動体の接触状態が安定せず、振動の増大化、ひいては静粛性の悪化を招く恐れがある。また、部品点数も多いため、今以上の低価格化は困難な状況にある。   Recently, with the miniaturization and portability of various information devices, there has been an increasing demand for downsizing the fan motor incorporated therein. Further, as described above, considering that this type of fan motor is used for information devices for general personal users such as personal computers, not only the rotation performance is improved, but also the quietness during operation (silence) ) Improvement is important. For example, when a rolling bearing such as a ball bearing is used as a bearing for a fan motor mounted on a portable device, an indentation is easily generated on the rolling surface due to a drop or the like during carrying. In this case, the contact state of the rolling elements is not stable, and there is a risk of increasing the vibrations and eventually deteriorating the quietness. In addition, since the number of parts is large, it is difficult to further reduce the price.

例えば上記転がり軸受に代えてすべり軸受を採用することで、部品点数の削減が図れ、コスト低減が可能となる。しかしながら、この種の軸受では、加工精度上の問題から、どうしても支持すべきロータ部(回転側部材)とステータ部(軸受側部材)との対向面間の隙間を比較的大きく取らざるを得ない。モータの小型化に伴い、上記傾向は特に顕著となる。これでは、軸振れが増大し、ファンモータ用軸受に要求される特性、特に静粛性や耐久性などを満足することができない可能性がある。   For example, by adopting a slide bearing instead of the rolling bearing, the number of parts can be reduced, and the cost can be reduced. However, in this type of bearing, due to a problem in processing accuracy, the gap between the opposed surfaces of the rotor portion (rotation side member) and the stator portion (bearing side member) that must be supported must be relatively large. . With the miniaturization of the motor, the above tendency becomes particularly remarkable. This increases shaft runout and may not satisfy the characteristics required for fan motor bearings, particularly quietness and durability.

本発明の課題は、この種のファンモータにおいて、製造コストの低減を図りつつも、回転性能を高めて静粛性の改善を図ることである。   An object of the present invention is to improve the quietness by improving the rotational performance while reducing the manufacturing cost in this type of fan motor.

前記課題を解決するため、本発明は、固定部材と、ファンを回転させるための回転部材と、固定部材と回転部材とのラジアル対向面間に形成されるラジアル軸受隙間と、ラジアル軸受隙間を満たす流体とを備えたものにおいて、固定部材と回転部材の何れか一方のラジアル対向面の、少なくともラジアル軸受隙間を形成する領域を電鋳部で形成したことを特徴とするファンモータ用軸受装置を提供する。   In order to solve the above-described problems, the present invention satisfies a fixing member, a rotating member for rotating a fan, a radial bearing gap formed between radial facing surfaces of the fixing member and the rotating member, and a radial bearing gap. Provided is a fan motor bearing device characterized in that at least a region for forming a radial bearing gap is formed by an electroformed portion of a radial facing surface of one of a fixed member and a rotating member in a fluid provided with a fluid. To do.

上述のように、本発明は、固定部材と回転部材の何れか一方のラジアル対向面の、少なくともラジアル軸受隙間を形成する領域を電鋳部で形成することを特徴とするものである。電鋳加工は、マスター表面に金属イオンを電着(電解析出)させて金属層を形成する技術であり、電鋳加工の特性上、電鋳部のマスター側の表面(析出開始側の表面)にマスターの表面形状が非常に微細なレベルまで高精度に転写される。そのため、マスターの表面精度を高め、かつ電鋳部の析出開始側の表面をラジアル軸受隙間を形成する面として使用すれば、特段の後加工を施すことなく、高い面精度を有するラジアル軸受面を低コストに得ることができる。これにより、ラジアル軸受隙間の幅を比較的小さくとることができるので、支持すべき回転部材との間で高い回転精度を得ると共に、回転部材と固定部材との間の接触状態を改善し、静粛性の向上を図ることができる。なお、本発明における電鋳部は、上記電鋳加工により形成されたものの他、無電解めっき加工により形成されたものも含む。   As described above, the present invention is characterized in that at least a region where a radial bearing gap is formed on the radial facing surface of one of the fixed member and the rotating member is formed by the electroformed portion. Electroforming is a technique for forming a metal layer by electrodeposition (electrolytic deposition) of metal ions on the master surface. Due to the characteristics of electroforming, the surface on the master side of the electroformed part (surface on the deposition start side) ) The surface shape of the master is transferred to a very fine level with high accuracy. Therefore, if the surface accuracy of the master is increased and the surface on the deposition start side of the electroformed part is used as a surface for forming a radial bearing gap, a radial bearing surface having high surface accuracy can be obtained without any special post-processing. It can be obtained at low cost. As a result, the width of the radial bearing gap can be made relatively small, so that high rotational accuracy can be obtained between the rotating member to be supported, and the contact state between the rotating member and the fixed member can be improved. It is possible to improve the performance. In addition, the electroformed part in this invention contains what was formed by the electroless-plating process other than what was formed by the said electroforming process.

特に、この種のファンモータにおいて、小サイズ化に伴いファンのサイズも限定されるため、モータの小サイズ化と高い冷却性能とを両立しようとすると、どうしても回転数を高めざるを得ないが、本発明では、電鋳加工により軸受面を形成したので、かかるモータを小型化した場合であっても高速回転時の回転精度を確保することができる。従って、高い静粛性および冷却性能を兼備した小型のファンモータを提供することができる。   In particular, in this type of fan motor, the size of the fan is limited as the size is reduced, so if you try to achieve both the reduction in size of the motor and high cooling performance, you must inevitably increase the rotational speed. In the present invention, since the bearing surface is formed by electroforming, the rotational accuracy during high-speed rotation can be ensured even when the motor is downsized. Therefore, it is possible to provide a small fan motor having both high silence and cooling performance.

上記構成のファンモータ用軸受装置において、電鋳部のラジアル軸受隙間を形成する領域とこれに対向する面の何れか一方に、流体の動圧作用を生じるための動圧発生部を形成することもできる。この種の動圧軸受においては、ラジアル軸受隙間における流体の動圧作用を有効に生じるために、かかる軸受隙間の幅を適切に管理することが重要となる。本発明では、ラジアル軸受隙間の形成領域の少なくとも一方を電鋳部で形成したので、動圧発生部のサイズや形状に合わせてラジアル軸受隙間の幅を広狭自在にかつ高精度に設定することができる。従って、ラジアル方向の軸受剛性をさらに高めて回転部材を固定部材に対して非接触で支持することができる。   In the fan motor bearing device having the above-described configuration, a dynamic pressure generating portion for generating a dynamic pressure action of fluid is formed on either one of the region forming the radial bearing gap of the electroformed portion and the surface facing the region. You can also. In this type of dynamic pressure bearing, in order to effectively generate the fluid dynamic pressure action in the radial bearing gap, it is important to appropriately manage the width of the bearing gap. In the present invention, since at least one of the radial bearing gap forming regions is formed by the electroformed part, the width of the radial bearing gap can be freely and precisely set according to the size and shape of the dynamic pressure generating part. it can. Therefore, it is possible to further increase the radial bearing rigidity and support the rotating member in a non-contact manner with respect to the fixed member.

特に、電鋳部の側に動圧発生部を設ける場合には、電鋳加工に使用するマスターの外表面形状を動圧溝に対応した形状としておくことで容易かつ高精度に動圧溝を形成することができる。これによれば、マスターのみの高精度加工で済むため、例えば動圧溝を電鋳部以外の箇所に設ける場合、例えば樹脂の射出成形や焼結金属の塑性加工で動圧発生部を形成する場合と比べて、動圧発生部をより高精度に形成することができ、かつ大幅な加工コストの低減を図ることができる。   In particular, when the dynamic pressure generating part is provided on the electroformed part side, the dynamic pressure groove can be easily and accurately formed by setting the outer surface shape of the master used for electroforming to a shape corresponding to the dynamic pressure groove. Can be formed. According to this, since only high-precision processing of the master is sufficient, for example, when the dynamic pressure groove is provided in a place other than the electroformed portion, the dynamic pressure generating portion is formed by, for example, resin injection molding or plastic processing of sintered metal. Compared to the case, the dynamic pressure generating portion can be formed with higher accuracy, and the processing cost can be greatly reduced.

ところで、ファンモータに対する要求特性、特に軸受の支持形態に関しては、ファンモータに設けられるファンの形状に左右される場合が多い。例えば、ファンの回転遠心方向に送風を行う遠心ファンモータにおいては、ファンの遠心方向(例えば外径方向)への送風と同時に、この送風に準じる抗力(この場合だと半径方向の抗力)を受ける。従って、この種のファンを有するモータにおいては、上述のようにラジアル軸受隙間を形成する領域を電鋳部で形成すればよいが、これとはファン形状の異なるファンモータに対しては、その送風形態に準じた軸受構造およびその軸受性能の向上が要求される。   By the way, the required characteristics for the fan motor, in particular, the support form of the bearing, are often influenced by the shape of the fan provided in the fan motor. For example, in a centrifugal fan motor that blows air in the direction of centrifugal rotation of the fan, simultaneously with the fan blowing in the centrifugal direction (for example, the outer diameter direction), a drag according to the blow (in this case, a radial drag) is received. . Therefore, in a motor having this type of fan, the region where the radial bearing gap is formed may be formed by the electroformed part as described above. The bearing structure according to the form and the improvement of the bearing performance are required.

すなわち、ファンの回転軸方向に送風を行う軸流ファンモータにおいては、回転軸方向への送風と同時に、ファンは送風に準じる抗力(この場合だと回転軸方向の抗力)を受ける。従って、この種のファンモータにおいては、ラジアル方向だけでなくスラスト方向の負荷に対する支持力の向上も重要となる。これに対して、本発明では、固定部材と回転部材とのスラスト対向面間にスラスト軸受隙間を形成すると共に、固定部材と回転部材の何れか一方のスラスト対向面の、少なくともスラスト軸受隙間を形成する領域を電鋳部で形成した。この構成によれば、スラスト方向に大きい負荷が作用する場合であっても、面精度に優れた電鋳部の表面(析出開始側の表面)とこれに対向する面との間のスラスト軸受隙間を高精度に管理した状態で回転部材を支持することができる。そのため、高いスラスト支持力を得ることができると共に、スラスト軸受隙間における両部材間の接触を可及的に避けて、静粛性の向上を図ることができる。   That is, in an axial fan motor that blows air in the direction of the rotation axis of the fan, the fan receives a drag according to the blowing (in this case, a drag in the direction of the rotation axis) simultaneously with the blowing in the rotation axis direction. Therefore, in this type of fan motor, it is important to improve the supporting force against the load in the thrust direction as well as in the radial direction. In contrast, in the present invention, a thrust bearing gap is formed between the thrust facing surfaces of the fixed member and the rotating member, and at least a thrust bearing gap is formed on one of the thrust facing surfaces of the fixed member and the rotating member. A region to be formed was formed by an electroformed part. According to this configuration, even when a large load acts in the thrust direction, the thrust bearing gap between the surface of the electroformed part (surface on the deposition start side) excellent in surface accuracy and the surface facing this surface The rotating member can be supported in a state in which is controlled with high accuracy. Therefore, a high thrust support force can be obtained, and contact between the two members in the thrust bearing gap can be avoided as much as possible to improve quietness.

もちろん、ラジアル軸受隙間と同様に、電鋳部のスラスト軸受隙間を形成する領域とこれに対向する面の何れか一方に、流体の動圧作用を生じるための動圧発生部を形成することもできる。この構成によれば、スラスト方向への軸受剛性をさらに高めて、静粛性および耐久性のさらなる向上を図ることができる。   Of course, similarly to the radial bearing gap, a dynamic pressure generating portion for generating a dynamic pressure action of the fluid may be formed in either one of the region where the thrust bearing gap of the electroformed portion is formed and the surface facing the same. it can. According to this configuration, it is possible to further increase the bearing rigidity in the thrust direction and further improve the silence and durability.

上記構成のファンモータ用軸受装置は、例えばこの軸受装置と、回転部材を回転駆動させる駆動部と、回転部材に設けられ、回転部材と共に回転するファンとを備えたファンモータとして好適に提供可能である。   The fan motor bearing device configured as described above can be suitably provided as a fan motor including, for example, the bearing device, a drive unit that rotationally drives the rotating member, and a fan that is provided on the rotating member and rotates together with the rotating member. is there.

以上のように、本発明によれば、この種のファンモータにおいて、製造コストの低減を図りつつも、回転性能を高めて静粛性の改善を図ることができる。   As described above, according to the present invention, in this type of fan motor, the rotational performance can be improved and the silence can be improved while reducing the manufacturing cost.

以下、本発明の第1実施形態を図1〜図4に基づいて説明する。なお、以下の説明における『上下』方向は単に各図における上下方向を便宜的に示すもので、ファンモータや流体軸受装置の設置方向や使用態様等を特定するものではない。   Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. The “up and down” direction in the following description merely indicates the up and down direction in each drawing for the sake of convenience, and does not specify the installation direction, usage mode, or the like of the fan motor or the fluid bearing device.

図1は本発明の第1実施形態に係るファンモータ1の縦断面図を、図2は同ファンモータ1の平面図をそれぞれ示している。このファンモータ1はいわゆるシロッコファンモータと呼ばれるもので、軸部材13を回転自在に支持するファンモータ用軸受装置(流体軸受装置)10と、軸部材13の一端に装着されたハブ2と、例えば半径方向のギャップを介して対向させたステータコイル3aおよびロータマグネット3bとからなる駆動部3と、ファンモータ用軸受装置10のハウジング11を内周に固定し、かつ冷却すべき部品(図1中1点鎖線で示す部品)に取り付けられたベース4とを備える。ハブ2の内径側にはロータマグネット3bが固定されると共に、その外径側には複数枚のファン(羽根)5が円周方向に亘って立設される。この実施形態では、ベース4の外壁部4aの円周方向一部領域に開口部4bが設けられている。この開口部4bは、ファンモータ1の駆動時、外径側に送られる排気流の排気口として作用する。また、外壁部4aの上端には内径側に向けて延びた一部環状の上壁部4cが設けられ、上壁部4cの内周には孔4dが形成されている。   FIG. 1 is a longitudinal sectional view of a fan motor 1 according to the first embodiment of the present invention, and FIG. 2 is a plan view of the fan motor 1. The fan motor 1 is a so-called sirocco fan motor, which is a fan motor bearing device (fluid bearing device) 10 that rotatably supports a shaft member 13, a hub 2 that is attached to one end of the shaft member 13, for example, A drive unit 3 composed of a stator coil 3a and a rotor magnet 3b opposed to each other through a gap in the radial direction, and a housing 11 of a fan motor bearing device 10 are fixed to the inner periphery and parts to be cooled (in FIG. 1) And a base 4 attached to a component indicated by a one-dot chain line. A rotor magnet 3b is fixed to the inner diameter side of the hub 2, and a plurality of fans (blades) 5 are erected on the outer diameter side in the circumferential direction. In this embodiment, an opening 4 b is provided in a partial region in the circumferential direction of the outer wall 4 a of the base 4. The opening 4b acts as an exhaust port for an exhaust flow sent to the outer diameter side when the fan motor 1 is driven. Further, a partially annular upper wall 4c extending toward the inner diameter side is provided at the upper end of the outer wall 4a, and a hole 4d is formed in the inner periphery of the upper wall 4c.

ステータコイル3aに通電すると、ステータコイル3aとロータマグネット3bとの間の励磁力でロータマグネット3bが回転し、それによって、ハブ2およびハブ2に立設された複数枚のファン5が軸部材13と一体に回転する。この回転により、各ファン5は外径方向(図1中矢印Aの方向)への気流を生じ、この気流に引き込まれる形で、孔4dから吸気流が軸方向下側(図1中矢印Bの方向)に向けて生じる。その一方で、外径方向への気流により押し出される形で、排気流が図1中矢印Cの方向に生じ、外壁部4aに設けられた開口部4bを介して外部に排出される。   When the stator coil 3a is energized, the rotor magnet 3b is rotated by the exciting force between the stator coil 3a and the rotor magnet 3b, whereby the hub 2 and the plurality of fans 5 erected on the hub 2 are connected to the shaft member 13. And rotate together. By this rotation, each fan 5 generates an air flow in the outer diameter direction (the direction of arrow A in FIG. 1), and the intake air flows downward from the hole 4d in the axial direction (arrow B in FIG. 1). Direction). On the other hand, an exhaust flow is generated in the direction of the arrow C in FIG. 1 while being pushed out by an air flow in the outer diameter direction, and is discharged to the outside through the opening 4b provided in the outer wall portion 4a.

この実施形態において、ファンモータ用軸受装置10は、ベース4に取り付けられるハウジング11と、ハウジング11の内部に配設される軸受部12と、軸受部12の内周に挿入される軸部材13と、シール部14とを備えている。この場合、軸部材13で回転部材が構成される。また、ハウジング11と軸受部12、およびシール部14とで固定部材が構成される。   In this embodiment, the fan motor bearing device 10 includes a housing 11 attached to the base 4, a bearing portion 12 disposed in the housing 11, and a shaft member 13 inserted into the inner periphery of the bearing portion 12. , And a seal portion 14. In this case, the shaft member 13 constitutes a rotating member. The housing 11, the bearing portion 12, and the seal portion 14 constitute a fixing member.

軸部材13は、この実施形態では径一定の軸状をなし、例えばSUS等の金属材料から形成される。図4に示すように、軸部材13の外周面13aは断面真円状で、後述するが、ラジアル方向に対向する電鋳部15の内周面15aとの間にラジアル軸受隙間16を形成する。また、図3に示すように、軸部材13の下端面13bは略球面状をなし、軸部材13を軸受部12の内周に挿入した状態では、ハウジング11の底部11aの上端面11a1と当接する。なお、ラジアル軸受隙間16の幅寸法は、軸部材13や軸受部12の幅寸法に比べれば僅かであるが、図4では、理解の容易化のため、実際の寸法よりも拡大して描いている。後述するラジアル軸受隙間36、およびスラスト軸受隙間38、53についても同様である。   In this embodiment, the shaft member 13 has a shaft shape with a constant diameter, and is formed of a metal material such as SUS. As shown in FIG. 4, the outer peripheral surface 13 a of the shaft member 13 has a perfect circular cross section, and as will be described later, a radial bearing gap 16 is formed between the inner peripheral surface 15 a of the electroformed portion 15 facing in the radial direction. . As shown in FIG. 3, the lower end surface 13b of the shaft member 13 has a substantially spherical shape. When the shaft member 13 is inserted into the inner periphery of the bearing portion 12, the lower end surface 13b of the shaft 11 contacts the upper end surface 11a1 of the bottom portion 11a of the housing 11. Touch. Note that the width dimension of the radial bearing gap 16 is slightly smaller than the width dimension of the shaft member 13 and the bearing portion 12, but in FIG. 4, it is drawn larger than the actual dimension for ease of understanding. Yes. The same applies to the radial bearing gap 36 and the thrust bearing gaps 38 and 53 described later.

軸受部12は、電鋳部15、および電鋳部15をインサート部品としてモールドされた型成形部17とを備える。軸受部12の内周面12aの、少なくともラジアル軸受隙間16を形成する領域が電鋳部15の内周面15aで形成されている。   The bearing portion 12 includes an electroformed portion 15 and a mold forming portion 17 molded using the electroformed portion 15 as an insert part. A region of the inner peripheral surface 12 a of the bearing portion 12 where at least the radial bearing gap 16 is formed is formed by the inner peripheral surface 15 a of the electroformed portion 15.

電鋳部15の内周面15aの全面あるいは一部領域には、図4に示すように、動圧発生部を構成する複数の円弧面15a1(同図では3面)が形成されている。各円弧面15a1は、回転軸心Oからそれぞれ等距離にオフセットした点を中心とする偏心円弧面であり、円周方向に等間隔に形成される。各偏心円弧面15a1は軸方向には一定の断面形状をなす。また、各偏心円弧面15a1の間には軸方向の分離溝15a2がそれぞれ形成される。   As shown in FIG. 4, a plurality of arcuate surfaces 15a1 (three surfaces in the figure) constituting the dynamic pressure generating portion are formed on the entire inner surface 15a of the electroformed portion 15 or a partial region thereof. Each arcuate surface 15a1 is an eccentric arcuate surface centered at a point offset from the rotation axis O by an equal distance, and is formed at equal intervals in the circumferential direction. Each eccentric circular arc surface 15a1 has a constant cross-sectional shape in the axial direction. An axial separation groove 15a2 is formed between each eccentric arc surface 15a1.

電鋳部15の内周面15aに軸部材13を挿入することにより、電鋳部15の偏心円弧面15a1および分離溝15a2と、軸部材13の真円状外周面13aとの間にラジアル軸受隙間16が形成される。ラジアル軸受隙間16のうち、偏心円弧面15a1と真円状外周面13aとで形成される領域は、隙間幅を円周方向の一方(軸部材13の回転方向)に向けて漸次縮小させたくさび状隙間15a3となる。   By inserting the shaft member 13 into the inner peripheral surface 15a of the electroformed portion 15, a radial bearing is provided between the eccentric arc surface 15a1 and the separation groove 15a2 of the electroformed portion 15 and the perfect circular outer peripheral surface 13a of the shaft member 13. A gap 16 is formed. In the radial bearing gap 16, the area formed by the eccentric arc surface 15 a 1 and the perfect circular outer peripheral surface 13 a is a wedge in which the gap width is gradually reduced toward one in the circumferential direction (the rotation direction of the shaft member 13). The gap 15a3 is formed.

上記構成の軸受部12は、例えば以下の工程を経て製造される。   The bearing portion 12 having the above-described configuration is manufactured through the following steps, for example.

軸受部12は、電鋳加工で使用するマスター18の外表面を絶縁性材料でマスキングする工程、マスキングを施したマスター18に電鋳加工を行って電鋳部15を形成する工程、電鋳部15およびマスター18をインサート部品として軸受部12の型成形(インサート成形)を行う工程、電鋳部15とマスター18とを分離する工程とを順に経て製造される。   The bearing portion 12 includes a step of masking the outer surface of the master 18 used in electroforming with an insulating material, a step of electroforming the masked master 18 to form the electroformed portion 15, and an electroformed portion. 15 and the master 18 are manufactured through an insert part and a step of performing molding (insert molding) of the bearing portion 12 and a step of separating the electroformed portion 15 and the master 18 in this order.

電鋳部15の成形母体となるマスター18は、例えばステンレス鋼で形成される。マスター18の外表面のうち、電鋳部15の形成領域は、析出形成すべき電鋳部15の内周面15aに倣った形状をなす。この実施形態では、図5に示すように、電鋳部15の内周面15aに複数の偏心円弧面15a1が形成されるよう、かかる偏心円弧面15a1に対応した形状の外周面18aが設けられる。この場合、外周面18aの面精度は、ラジアル軸受面となる電鋳部15の内周面15aの面精度を直接左右するので、なるべく高精度に仕上げておくことが望ましい。後述する電鋳部37の下端面37aや、電鋳部52の上端面52aを形成するためのマスターについても同様のことがいえる。   The master 18 serving as a molding base of the electroformed part 15 is made of, for example, stainless steel. Of the outer surface of the master 18, the formation area of the electroformed part 15 has a shape that follows the inner peripheral surface 15a of the electroformed part 15 to be deposited. In this embodiment, as shown in FIG. 5, an outer peripheral surface 18a having a shape corresponding to the eccentric arc surface 15a1 is provided so that a plurality of eccentric arc surfaces 15a1 are formed on the inner peripheral surface 15a of the electroformed portion 15. . In this case, since the surface accuracy of the outer peripheral surface 18a directly affects the surface accuracy of the inner peripheral surface 15a of the electroformed portion 15 to be a radial bearing surface, it is desirable that the surface accuracy be finished as high as possible. The same can be said for the master for forming the lower end surface 37a of the electroformed portion 37 and the upper end surface 52a of the electroformed portion 52, which will be described later.

マスター18の材料としては、ステンレス鋼以外にも、例えばクロム系合金やニッケル系合金など、マスキング性、導電性、耐薬品性を有するものであれば金属、非金属を問わず任意に選択可能である。また、マスター18は、むく軸(中実軸)に限ることなく、中空軸あるいは中空部を他材料で充填した中実軸であってもよい。   The material of the master 18 can be arbitrarily selected from metals and non-metals as long as it has masking properties, electrical conductivity, and chemical resistance other than stainless steel, such as a chromium-based alloy and a nickel-based alloy. is there. Further, the master 18 is not limited to a peeled shaft (solid shaft), but may be a solid shaft in which a hollow shaft or a hollow portion is filled with another material.

マスター18の外表面には、図5に示すように、電鋳部15の形成予定領域を除き、マスキングが施される。マスキング部19形成用の被覆材としては、絶縁性、および電解質溶液に対する耐食性を有する材料が選択使用される。   As shown in FIG. 5, masking is performed on the outer surface of the master 18 except for a region where the electroformed portion 15 is to be formed. As the covering material for forming the masking portion 19, a material having insulating properties and corrosion resistance against the electrolyte solution is selectively used.

電鋳加工は、NiやCu等の金属イオンを含んだ電解質溶液にマスター18を浸漬し、電解質溶液に通電して目的の金属をマスター18の外表面のうち、マスキング部19を除く領域に電解析出させることにより行われる。電解質溶液には、PTFEやカーボンなどの摺動材、あるいはサッカリン等の応力緩和材を必要に応じて含有させることも可能である。この実施形態では、PTFE粒子を摺動材として電解質溶液中に含有させたものを使用している。析出金属の種類は、軸受の軸受面に求められる硬度、あるいは潤滑油に対する耐性(耐油性)など、必要とされる特性に応じて適宜選択される。   In the electroforming process, the master 18 is immersed in an electrolyte solution containing metal ions such as Ni and Cu, and the electrolyte solution is energized to apply the target metal to a region of the outer surface of the master 18 excluding the masking portion 19. It is done by letting you analyze. The electrolyte solution may contain a sliding material such as PTFE or carbon, or a stress relaxation material such as saccharin, if necessary. In this embodiment, PTFE particles are used as a sliding material that is contained in an electrolyte solution. The kind of the deposited metal is appropriately selected according to required characteristics such as hardness required for the bearing surface of the bearing or resistance to lubricating oil (oil resistance).

以上の工程を経ることにより、図6に示すように、マスター18外周のマスキング部19で被覆されていない領域に薄肉円筒状の電鋳部15が形成される。この場合、析出形成された電鋳部15中には上述のPTFE粒子が分散し、その一部がラジアル軸受面となる内周面15a上に存在している。なお、電鋳部15の厚みは、これが薄すぎると軸受面(内周面15a)の耐久性低下等につながり、厚すぎるとマスター18からの剥離性が低下する可能性があるので、求められる軸受性能や軸受サイズ、用途等に応じて最適な厚み、例えば5μm〜200μmの範囲に設定される。   By passing through the above process, as shown in FIG. 6, the thin cylindrical electroformed part 15 is formed in the area | region which is not coat | covered with the masking part 19 of master 18 outer periphery. In this case, the above-mentioned PTFE particles are dispersed in the electroformed part 15 formed by precipitation, and a part thereof is present on the inner peripheral surface 15a serving as a radial bearing surface. In addition, if the thickness of the electroformed part 15 is too thin, it leads to a decrease in the durability of the bearing surface (inner peripheral surface 15a), and if it is too thick, the peelability from the master 18 may be reduced. The optimum thickness is set in accordance with the bearing performance, bearing size, application, etc., for example, in the range of 5 μm to 200 μm.

上記工程を経て形成された電鋳部15は、軸受部12をインサート成形する成形型内に例えばマスター18と一体にインサート部品として供給配置される。この場合、使用される成形金型は、図3および図4に示す軸受部12に倣ったキャビティを有し、かかるキャビティを有する成形金型を用いてインサート成形を行うことにより、同図に示す形状の型成形部17と電鋳部15とを一体に有する軸受部12が成形される。   The electroformed part 15 formed through the above steps is supplied and arranged as an insert part integrally with, for example, the master 18 in a mold for insert-molding the bearing part 12. In this case, the molding die to be used has a cavity that follows the bearing portion 12 shown in FIGS. 3 and 4, and insert molding is performed using the molding die having such a cavity. The bearing portion 12 integrally having the shape molding portion 17 and the electroformed portion 15 is molded.

型成形部17の材料、すなわち成形金型のキャビティ内に充填される材料は、電鋳部15の材料よりも低い融点を有する材料であればよく、例えば樹脂や金属等が使用可能である。このうち、樹脂材料としては、例えば液晶ポリマー(LCP)、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリアセタール(POM)、ポリアミド(PA)等の結晶性樹脂、あるいは、ポリフェニルサルフォン(PPSU)、ポリエーテルサルフォン(PES)、ポリエーテルイミド(PEI)、ポリアミドイミド(PAI)等の非晶性樹脂がベース樹脂として使用可能である。また、必要に応じて強化材(繊維状、粉末状等の形態は問わない)や潤滑剤、導電化剤等の各種充填材を加えてもよい。   The material of the molding part 17, that is, the material filled in the cavity of the molding die may be any material having a lower melting point than the material of the electroformed part 15. For example, resin, metal, or the like can be used. Among these, examples of the resin material include crystalline resins such as liquid crystal polymer (LCP), polyphenylene sulfide (PPS), polyetheretherketone (PEEK), polyacetal (POM), polyamide (PA), or polyphenylsulfone. Amorphous resins such as (PPSU), polyethersulfone (PES), polyetherimide (PEI), and polyamideimide (PAI) can be used as the base resin. Moreover, you may add various fillers, such as a reinforcement (regardless of forms, such as a fiber form and a powder form), a lubrication agent, and a electrically conductive agent as needed.

成形後、マスター18と、軸受部12(電鋳部15および型成形部17)とが一体となった成形品を金型から脱型する。この成形品は、その後の分離工程において軸受部12とマスター18とに分離される。   After molding, the molded product in which the master 18 and the bearing portion 12 (the electroformed portion 15 and the mold forming portion 17) are integrated is removed from the mold. This molded product is separated into the bearing portion 12 and the master 18 in a subsequent separation step.

分離工程では、例えばマスター18あるいは電鋳部15に衝撃を加えることで、電鋳部15の内周面15aをマスター18の外周面18aから剥離させる。これにより、マスター18が軸受部12(電鋳部15)から引抜かれ、完成品としての軸受部12が得られる。   In the separation step, for example, an impact is applied to the master 18 or the electroformed part 15, thereby peeling the inner peripheral surface 15 a of the electroformed part 15 from the outer peripheral surface 18 a of the master 18. Thereby, the master 18 is pulled out from the bearing part 12 (electroformed part 15), and the bearing part 12 as a finished product is obtained.

なお、電鋳部15の分離手段としては、上記手段以外に、例えば電鋳部15とマスター18とを加熱(又は冷却)し、両者間に熱膨張量差を生じさせることによる方法、あるいは両手段(衝撃と加熱)を併用する手段等が使用可能である。   In addition to the above-described means, the electroformed part 15 may be separated by, for example, a method in which the electroformed part 15 and the master 18 are heated (or cooled) to cause a difference in thermal expansion between them, or both. Means using both means (impact and heating) can be used.

上述の如く形成された軸受部12を、図3に示すハウジング11に固定し、固定した軸受部12の内周に、引抜いたマスター18とは別体の軸部材13を挿入する。そして、軸受部12と軸部材13との間のラジアル軸受隙間16の大気解放側(シール部14の側)から潤滑油を注油する。これにより、ラジアル軸受隙間16を含む軸受内部空間を潤滑油で充満したファンモータ用軸受装置10が完成する。また、シール部14の内周面14aとこれに対向する軸部材13の外周面13aとの間にはシール空間Sが形成されるが、上述のように軸受内部空間を潤滑油で満たした状態では、潤滑油の油面が常時シール空間S内に維持されるようになっている。   The bearing portion 12 formed as described above is fixed to the housing 11 shown in FIG. 3, and the shaft member 13 separate from the extracted master 18 is inserted into the inner periphery of the fixed bearing portion 12. Then, lubricating oil is injected from the air release side (seal portion 14 side) of the radial bearing gap 16 between the bearing portion 12 and the shaft member 13. Thereby, the fan motor bearing device 10 in which the bearing internal space including the radial bearing gap 16 is filled with the lubricating oil is completed. In addition, a seal space S is formed between the inner peripheral surface 14a of the seal portion 14 and the outer peripheral surface 13a of the shaft member 13 facing the seal portion 14, but the bearing inner space is filled with the lubricating oil as described above. Then, the oil level of the lubricating oil is always maintained in the seal space S.

上記構成のファンモータ用軸受装置10において、軸部材13の回転時、電鋳部15の内周面15aに形成された複数の円弧面15a1はラジアル軸受面として、軸部材13の外周面13aとラジアル軸受隙間16を介して対向し、多円弧軸受を構成する。軸部材13の回転に伴い、ラジアル軸受隙間16中の潤滑油がこの隙間16内に形成されたくさび状隙間15a3の漸次縮小方向に押し込まれて、その圧力が上昇する。このような円弧面15a1(くさび状隙間15a3)の動圧作用によって、軸部材13がラジアル方向に非接触支持される。同時に、軸部材13の下端面13bが、これに対向する底部11aの上端面11a1により接触支持(ピボット支持)され、これにより軸部材13がスラスト方向に回転自在に支持される。   In the fan motor bearing device 10 configured as described above, when the shaft member 13 rotates, the plurality of arcuate surfaces 15a1 formed on the inner peripheral surface 15a of the electroformed portion 15 serve as radial bearing surfaces and the outer peripheral surface 13a of the shaft member 13 and It faces through the radial bearing gap 16 to constitute a multi-arc bearing. As the shaft member 13 rotates, the lubricating oil in the radial bearing gap 16 is pushed in the gradually reducing direction of the wedge-shaped gap 15a3 formed in the gap 16, and the pressure rises. The shaft member 13 is supported in a non-contact manner in the radial direction by the dynamic pressure action of the circular arc surface 15a1 (wedge-shaped gap 15a3). At the same time, the lower end surface 13b of the shaft member 13 is contact-supported (pivot supported) by the upper end surface 11a1 of the bottom portion 11a opposite thereto, whereby the shaft member 13 is supported rotatably in the thrust direction.

この場合、ラジアル軸受面を構成する電鋳部15は、マスター18の外周面18aに電解質溶液中の金属イオンを電着(電解析出)させることで形成され、また電鋳部15の内周面15aは、電鋳加工の特性上、マスター18の外周面18aの形状がミクロンオーダーで高精度に転写される面となる。そのため、外周面18aの面精度を高めたマスター18を使用すれば、特に面精度を高めるための後加工を施すことなく、高い面精度を有する内周面15aを低コストに得ることができる。   In this case, the electroformed portion 15 constituting the radial bearing surface is formed by electrodeposition (electrolytic deposition) of metal ions in the electrolyte solution on the outer peripheral surface 18a of the master 18, and the inner periphery of the electroformed portion 15 is also formed. The surface 15a is a surface onto which the shape of the outer peripheral surface 18a of the master 18 is transferred with high accuracy on the order of microns due to the characteristics of electroforming. Therefore, if the master 18 having improved surface accuracy of the outer peripheral surface 18a is used, the inner peripheral surface 15a having high surface accuracy can be obtained at low cost without performing post-processing particularly for increasing the surface accuracy.

従って、電鋳部15の内周面15aを軸受部12のラジアル軸受面として使用すれば、軸部材13の外周面13aとの間で高い回転精度を得ることができる。また、高い軸受面精度を有する軸受部12であれば、軸部材13との間のラジアル軸受隙間16の幅が極力小さくなるように、内周面15aあるいは外周面13aの径寸法を設定することができる。これにより、使用時の軸振れを低減すると共に、軸受部12と軸部材13との間の接触状態を改善して、静粛性の向上を図ることができる。   Therefore, if the inner peripheral surface 15 a of the electroformed portion 15 is used as a radial bearing surface of the bearing portion 12, high rotational accuracy can be obtained between the outer peripheral surface 13 a of the shaft member 13. In the case of the bearing portion 12 having high bearing surface accuracy, the radial dimension of the inner peripheral surface 15a or the outer peripheral surface 13a is set so that the width of the radial bearing gap 16 between the shaft member 13 and the shaft member 13 is as small as possible. Can do. Thereby, while reducing the shaft runout at the time of use, the contact state between the bearing part 12 and the shaft member 13 can be improved, and quietness can be improved.

また、この実施形態では、電鋳部15をインサート部品として軸受部12を型成形することで、軸受部12の電鋳部15以外の箇所(型成形部17)の成形と、これらの組付けとを一工程で同時に行うことができ、コストダウンにもつながる。また、電鋳部15をマスター18と一体にインサートすることで、電鋳部15の肉厚が薄い場合であっても、型成形部17と容易に一体成形することができる。また、成形時の射出圧によって軸受面となる内周面15aが変形する恐れもない。   Moreover, in this embodiment, by molding the bearing portion 12 using the electroformed portion 15 as an insert part, the portion other than the electroformed portion 15 of the bearing portion 12 (molded portion 17) can be molded and assembled. Can be performed simultaneously in one process, leading to cost reduction. Further, by inserting the electroformed part 15 integrally with the master 18, even if the electroformed part 15 is thin, it can be easily integrally formed with the mold forming part 17. Further, there is no fear that the inner peripheral surface 15a serving as the bearing surface is deformed by the injection pressure at the time of molding.

以上、本発明の第1実施形態を説明したが、本発明は上記実施形態に限られるものではなく、他形態に係るファンモータ用軸受装置あるいはこの軸受装置を備えたファンモータに対しても適用可能である。以下、その例を図7〜図9に基づいて説明する。   The first embodiment of the present invention has been described above, but the present invention is not limited to the above-described embodiment, and is applicable to a fan motor bearing device according to another embodiment or a fan motor including this bearing device. Is possible. Hereinafter, the example is demonstrated based on FIGS.

図7は、本発明の第2実施形態に係るファンモータ21の一部断面図を示している。この実施形態に係るファンモータ21は、いわゆる軸流ファンモータと呼ばれるもので、ファン25の回転に伴いファンモータ21の回転軸方向の空気流を生じる点、言い換えると、回転することでファンモータ21の回転軸方向に空気流を生じる形態のファン25を備える点で、第1実施形態に係るファンモータ1と構成を異にする。   FIG. 7 shows a partial cross-sectional view of the fan motor 21 according to the second embodiment of the present invention. The fan motor 21 according to this embodiment is a so-called axial fan motor, and generates an air flow in the direction of the rotation axis of the fan motor 21 as the fan 25 rotates. In other words, the fan motor 21 rotates to rotate. The configuration of the fan motor 1 according to the first embodiment is different from that of the fan motor 1 in that an air flow is generated in the direction of the rotation axis.

また、ファンモータ21に組み込まれるファンモータ用軸受装置30は、ベース4に取り付けられる軸受部31と、軸受部31の内周に挿入される軸部材32と、軸受部31の一端側を閉口する蓋部材34と、シール部14とを備える。この実施形態において、軸部材32の、ハブ2の取付け部とは反対側の端部には抜止めとしてのフランジ部33が一体又は別体に設けられる。軸部材32の外周面32aとこれに対向する軸受部31の内周面との間(ラジアル対向面間)にはラジアル軸受隙間36が形成され、軸受部31のラジアル対向面(内周面)の、少なくともラジアル軸受隙間36を形成する領域が電鋳部35で形成される。また、フランジ部33の上端面33aとこれに対向する軸受部31の下端面との間(スラスト対向面間)にはスラスト軸受隙間38が形成され、軸受部31のスラスト対向面(下端面)の、少なくともスラスト軸受隙間38を形成する領域が電鋳部37で形成される。この場合、軸部材32とフランジ部33で回転部材が構成される。また、軸受部31と蓋部材34、およびシール部14とで固定部材が構成される。   The fan motor bearing device 30 incorporated in the fan motor 21 closes the bearing portion 31 attached to the base 4, the shaft member 32 inserted into the inner periphery of the bearing portion 31, and one end side of the bearing portion 31. A lid member 34 and a seal portion 14 are provided. In this embodiment, a flange portion 33 as a retaining member is provided integrally or separately at an end portion of the shaft member 32 opposite to the attachment portion of the hub 2. A radial bearing gap 36 is formed between the outer peripheral surface 32a of the shaft member 32 and the inner peripheral surface of the bearing portion 31 facing the shaft member 32 (between the radial opposing surfaces), and the radial opposing surface (inner peripheral surface) of the bearing portion 31 is formed. The region where at least the radial bearing gap 36 is formed is formed by the electroformed portion 35. Further, a thrust bearing gap 38 is formed between the upper end surface 33a of the flange portion 33 and the lower end surface of the bearing portion 31 facing the flange portion 33 (between the thrust opposing surfaces), and the thrust opposing surface (lower end surface) of the bearing portion 31 is formed. The region where at least the thrust bearing gap 38 is formed is formed by the electroformed portion 37. In this case, the shaft member 32 and the flange portion 33 constitute a rotating member. The bearing portion 31, the lid member 34, and the seal portion 14 constitute a fixing member.

電鋳部35の内周面35aの全面あるいは一部領域には、図7に示すように、動圧発生部として、複数の傾斜溝35a1(動圧溝ともいう)をへリングボーン形状に配列した領域が形成される。この図示例では、かかる傾斜溝35a1の配列領域が軸方向に離隔して2箇所形成されている。また、電鋳部37の下端面37aの全面あるいは一部領域には、図8に示すように、動圧発生部として、複数の放射状溝37a1をスパイラル形状に配列した領域が形成される。   As shown in FIG. 7, a plurality of inclined grooves 35a1 (also referred to as dynamic pressure grooves) are arranged in a herringbone shape as a dynamic pressure generating portion on the entire inner surface 35a or a partial region of the electroformed portion 35. Region is formed. In the illustrated example, the array regions of the inclined grooves 35a1 are formed at two locations separated in the axial direction. In addition, as shown in FIG. 8, a region where a plurality of radial grooves 37a1 are arranged in a spiral shape is formed as a dynamic pressure generating portion on the entire or partial region of the lower end surface 37a of the electroformed portion 37.

上述の電鋳部35、37およびこれらをインサート部品としてモールドされた型成形部39とを一体に有する軸受部31は、上記と同様に、マスキングを施したマスター(図示は省略)に電鋳加工を行って電鋳部35、37を形成する工程、電鋳部35、37およびマスターをインサート部品として軸受部31の型成形(インサート成形)を行う工程、電鋳部35、37とマスターとを分離する工程とを順に経て形成される。なお、この実施形態では、電鋳部35、37が一体に形成されているが、電鋳加工時、マスキングを工夫する等して電鋳部35と電鋳部37を離隔して形成することも可能である。これ以外の構成については第1実施形態と同じであるので説明を省略する。   The above-mentioned electroformed parts 35 and 37 and the bearing part 31 integrally including the mold forming part 39 molded with these as insert parts are electroformed into a masked master (not shown) in the same manner as described above. Forming the electroformed parts 35 and 37, forming the bearing 31 using the electroformed parts 35 and 37 and the master as insert parts (insert molding), and forming the electroformed parts 35 and 37 and the master. It forms through the process of isolate | separating in order. In this embodiment, the electroformed parts 35 and 37 are integrally formed, but at the time of electroforming, the electroformed part 35 and the electroformed part 37 are formed separately by devising masking or the like. Is also possible. Since the other configuration is the same as that of the first embodiment, the description thereof is omitted.

上記構成のファンモータ21において、ステータコイル3aに通電すると、ステータコイル3aとロータマグネット3bとの間の励磁力でロータマグネット3bが回転し、それによって、ハブ2およびハブ2の外周に設けられたファン25が軸部材32と一体に回転する。この回転により、ファン25はモータ回転軸方向の気流(この実施形態では、図7中矢印Dの方向の気流)を生じ、同時に、かかる気流の方向とは反対向きの力(同図中矢印Eで示す向きの力)がファン25およびファン25と一体的に回転する軸部材32に作用する。   In the fan motor 21 configured as described above, when the stator coil 3a is energized, the rotor magnet 3b is rotated by the exciting force between the stator coil 3a and the rotor magnet 3b, thereby being provided on the outer periphery of the hub 2 and the hub 2. The fan 25 rotates integrally with the shaft member 32. This rotation causes the fan 25 to generate an airflow in the direction of the motor rotation axis (in this embodiment, an airflow in the direction of arrow D in FIG. 7), and at the same time, a force opposite to the direction of the airflow (arrow E in the same figure). Force on the shaft member 32 that rotates integrally with the fan 25.

この場合、電鋳部35の内周面35aのうち、へリングボーン形状に配列された複数の傾斜溝35a1を除く領域がラジアル軸受面として、軸部材32の外周面32aとラジアル軸受隙間36を介して対向する。そして、軸部材32の回転に伴い、ラジアル軸受隙間36内の潤滑油が各傾斜溝35a1により特定の箇所(この実施形態では、各傾斜溝35a1の屈曲部)に押し込まれて、その圧力が上昇する。このような傾斜溝35a1の動圧作用により、軸部材32がラジアル方向に回転自在に非接触支持される。   In this case, of the inner peripheral surface 35a of the electroformed portion 35, the region excluding the plurality of inclined grooves 35a1 arranged in a herringbone shape is a radial bearing surface, and the outer peripheral surface 32a of the shaft member 32 and the radial bearing gap 36 are formed. Opposite through. As the shaft member 32 rotates, the lubricating oil in the radial bearing gap 36 is pushed into a specific location (in this embodiment, the bent portion of each inclined groove 35a1) by each inclined groove 35a1, and the pressure increases. To do. Due to the dynamic pressure action of the inclined groove 35a1, the shaft member 32 is supported in a non-contact manner so as to be rotatable in the radial direction.

また、軸部材32は、図7でいえば、蓋部材34から離隔する方向に向けて力を受けるため、フランジ部33の上端面33aは、これと対向する電鋳部37の下端面37aに押し付けられるが、電鋳部37の下端面37aには、上述の通り、複数の放射状溝37a1をスパイラル形状に配列した領域が形成されている。そのため、軸部材32の回転時、下端面37aの、各放射状溝37a1を除く領域がスラスト軸受面として、フランジ部33の上端面33aとスラスト軸受隙間38を介して対向する。そして、軸部材32の回転に伴い、スラスト軸受隙間38内の潤滑油が各放射状溝37a1の内径側に向けて押し込まれ、その圧力が上昇する。このような放射状溝37a1の動圧作用により、フランジ部33(軸部材32)がスラスト方向に回転自在に非接触支持される。   In addition, in FIG. 7, the shaft member 32 receives a force in a direction away from the lid member 34, so that the upper end surface 33 a of the flange portion 33 is formed on the lower end surface 37 a of the electroformed portion 37 facing the shaft member 32. Although pressed, the lower end surface 37a of the electroformed portion 37 is formed with a region in which a plurality of radial grooves 37a1 are arranged in a spiral shape as described above. Therefore, when the shaft member 32 rotates, a region of the lower end surface 37a excluding each radial groove 37a1 is opposed to the upper end surface 33a of the flange portion 33 via the thrust bearing gap 38 as a thrust bearing surface. As the shaft member 32 rotates, the lubricating oil in the thrust bearing gap 38 is pushed toward the inner diameter side of each radial groove 37a1, and the pressure rises. Due to the dynamic pressure action of the radial grooves 37a1, the flange portion 33 (the shaft member 32) is supported in a non-contact manner so as to be rotatable in the thrust direction.

この実施形態において、ラジアル軸受面が電鋳部35で形成されると共に、スラスト軸受面も電鋳部37で形成される。そのため、各電鋳部35、37を析出形成する面の面精度を高めたマスターを使用することで、特に面精度を高めるための後加工を施すことなく、高い面精度を有するラジアル軸受面(内周面35a)およびスラスト軸受面(下端面37a)を低コストに形成することができる。これにより、軸部材32との間で高い回転精度を得ることができ、また、各軸受隙間36、38の幅寸法を極力小さくできる。従って、ファンモータ21を高速回転で使用する場合であっても、軸受部31と軸部材32との間の接触状態を改善して、騒音の発生を極力抑えることができる。同時に、各軸受面の接触に伴う損傷を低減して、かかるファンモータ用軸受装置30およびこれを組み込んだファンモータ21の長寿命化を図ることができる。   In this embodiment, the radial bearing surface is formed by the electroformed part 35 and the thrust bearing surface is also formed by the electroformed part 37. For this reason, a radial bearing surface having high surface accuracy (without performing post-processing to increase surface accuracy, in particular, by using a master with increased surface accuracy of the surfaces on which the electroformed portions 35 and 37 are formed by precipitation ( The inner peripheral surface 35a) and the thrust bearing surface (lower end surface 37a) can be formed at low cost. Thereby, high rotational accuracy can be obtained between the shaft members 32, and the width dimensions of the bearing gaps 36 and 38 can be minimized. Therefore, even when the fan motor 21 is used at high speed rotation, the contact state between the bearing portion 31 and the shaft member 32 can be improved and noise generation can be suppressed as much as possible. At the same time, it is possible to reduce the damage caused by the contact of each bearing surface, and to extend the life of the fan motor bearing device 30 and the fan motor 21 incorporating the same.

また、この実施形態のように、ファン25の形状(送風方向)によっては、ラジアル方向だけでなくスラスト方向の支持も重要となる場合もあるが、上述のように、スラスト軸受面の少なくとも一方を電鋳部37で構成することにより、スラスト軸受面の面精度やスラスト軸受隙間38の幅寸法を高精度に管理することができる。従って、高いスラスト支持力を安定的に軸部材32に付与することができ、静粛性の向上を図ることができる。特に、この実施形態では、電鋳部37の下端面37aの、スラスト軸受隙間38を形成する領域に動圧発生部としての放射状溝37a1を形成したので、スラスト方向への軸受剛性をさらに高めて、回転精度および静粛性のさらなる向上を図ることができる。   Further, as in this embodiment, depending on the shape of the fan 25 (air blowing direction), support in the thrust direction as well as the radial direction may be important. However, as described above, at least one of the thrust bearing surfaces is By configuring the electroformed portion 37, the surface accuracy of the thrust bearing surface and the width dimension of the thrust bearing gap 38 can be managed with high accuracy. Therefore, a high thrust support force can be stably applied to the shaft member 32, and quietness can be improved. In particular, in this embodiment, since the radial groove 37a1 as the dynamic pressure generating portion is formed in the region where the thrust bearing gap 38 is formed on the lower end surface 37a of the electroformed portion 37, the bearing rigidity in the thrust direction is further increased. Further improvement in rotational accuracy and quietness can be achieved.

なお、この実施形態では、軸部材32の回転に伴い、軸部材32がファンモータ用軸受装置30から抜ける方向の力(図7中矢印Eで示す向きの力)を受けるような形状のファン25が設けられている場合を例示したが、これとは送風方向が反対となるファンを設けたファンモータに対しても本発明を適用することができる。   In this embodiment, as the shaft member 32 rotates, the fan 25 is shaped so as to receive a force in a direction in which the shaft member 32 comes out of the fan motor bearing device 30 (a force indicated by an arrow E in FIG. 7). However, the present invention can also be applied to a fan motor provided with a fan whose air blowing direction is opposite to this.

図9は本発明の第3実施形態に係るファンモータ41を示している。同図に示すファンモータ41は、ファン45の回転に伴いファンモータ41の回転軸方向の空気流を生じる点では、第2実施形態に係るファンモータ21と同じであるが、その送風方向が異なっている。言い換えると、軸部材32の回転に伴い、ファン45は上方向の気流(図9中矢印Fの方向の気流)を生じ、これによりこの気流の方向とは反対向きの力(図9中矢印Gで示す向きの力)が軸部材32に作用する点で、第2実施形態に係るファンモータ21と構成を異にする。   FIG. 9 shows a fan motor 41 according to the third embodiment of the present invention. The fan motor 41 shown in the figure is the same as the fan motor 21 according to the second embodiment in that an air flow in the rotation axis direction of the fan motor 41 is generated with the rotation of the fan 45, but the air blowing direction is different. ing. In other words, as the shaft member 32 rotates, the fan 45 generates an upward airflow (airflow in the direction of arrow F in FIG. 9), and thereby a force opposite to the direction of the airflow (arrow G in FIG. 9). The configuration of the fan motor 21 according to the second embodiment is different from that of the fan motor 21 according to the second embodiment.

具体的には、同図に示すファンモータ用軸受装置50において、ハブ42の下端面42aとこれに対向する軸受部51の上端面との間(スラスト対向面間)にスラスト軸受隙間53が形成されると共に、軸受部51のスラスト対向面(上端面)の、少なくともスラスト軸受隙間53を形成する領域が電鋳部52で形成される。電鋳部52の上端面52aの全面あるいは一部領域には、動圧発生部として、図8と同様の配列態様をなす複数の放射状溝が形成される。この実施形態では、ハブ42の下端面42aから下方に向けて突出した突出部42bが設けられ、この突出部42bの内周面42b1とこれに対向する軸受部51の上端外周面51aとの間にシール空間Sが設けられる。このシール空間Sはスラスト軸受隙間53とその外径側で連通している。なお、図9に示すように、上端外周面51aをテーパ状とすることで、シール空間Sの半径方向寸法を下方に向けて漸次縮小させることも可能である。この場合、回転部材は、軸部材32とハブ42とで構成される。固定部材は、軸受部51と蓋部材34とで構成される。その他の構成に関しては上記実施形態と同様であるので、同一の符号を付してその説明を省略する。   Specifically, in the fan motor bearing device 50 shown in the figure, a thrust bearing gap 53 is formed between the lower end surface 42a of the hub 42 and the upper end surface of the bearing portion 51 facing the hub 42 (between the thrust opposing surfaces). At the same time, at least a region where the thrust bearing gap 53 is formed on the thrust facing surface (upper end surface) of the bearing portion 51 is formed by the electroformed portion 52. A plurality of radial grooves having the same arrangement as in FIG. 8 are formed as a dynamic pressure generating part on the entire upper surface 52a of the electroformed part 52 or a partial region thereof. In this embodiment, a projecting portion 42b projecting downward from the lower end surface 42a of the hub 42 is provided, and between the inner peripheral surface 42b1 of the projecting portion 42b and the upper end outer peripheral surface 51a of the bearing portion 51 facing this. Is provided with a seal space S. The seal space S communicates with the thrust bearing gap 53 on the outer diameter side. In addition, as shown in FIG. 9, it is also possible to gradually reduce the radial dimension of the seal space S downward by forming the upper end outer peripheral surface 51a in a tapered shape. In this case, the rotating member includes the shaft member 32 and the hub 42. The fixing member includes the bearing portion 51 and the lid member 34. Since other configurations are the same as those in the above embodiment, the same reference numerals are given and the description thereof is omitted.

このように、ファンの送風方向が異なる場合であっても、上述の構成を採ることにより、軸部材32(回転部材)に高いスラスト支持力を安定的に付与することができ、静粛性の向上を図ることができる。なお、駆動部3を構成するステータコイル3aとロータマグネット3bとの配置態様によっては、両者間の励磁力に軸方向成分が生じ、これによりファンの送風方向とスラスト軸受面の方向が逆転する場合もあるので、これらを考慮して軸受部31、51のスラスト軸受構造(軸受面の向き)を定めるのが好ましい。もちろん、第2、第3実施形態のように、主にスラスト支持力によって回転部材を支持する場合には、スラスト軸受隙間38、53を形成する領域のみを電鋳部37、52で形成しても構わない。   Thus, even when the fan blowing direction is different, by adopting the above-described configuration, a high thrust support force can be stably applied to the shaft member 32 (rotating member), and quietness is improved. Can be achieved. Depending on the arrangement of the stator coil 3a and the rotor magnet 3b constituting the drive unit 3, an axial component may be generated in the exciting force between the two, thereby reversing the fan blowing direction and the thrust bearing surface direction. Therefore, it is preferable to determine the thrust bearing structure (direction of the bearing surface) of the bearing portions 31 and 51 in consideration of these. Of course, as in the second and third embodiments, when the rotating member is mainly supported by the thrust support force, only the regions where the thrust bearing gaps 38 and 53 are formed are formed by the electroformed portions 37 and 52. It doesn't matter.

また、この他の例としては、例えば第2実施形態に係るファンモータ21(ファンモータ用軸受装置30)において、図示は省略するが、蓋部材34の、フランジ部33の他端面(下端面33b)とスラスト方向で対向する領域を電鋳部で形成した構成が考えられる。この構成であれば、例えば第3実施形態と同様の送風方向を有するファンモータについても軸部材32を高いスラスト支持力で支持することができる。同様に、第1実施形態に係るファンモータ1(ファンモータ用軸受装置10)において、ハウジング11の底部11aの上端面11a1の、軸部材13の下端面13bとスラスト方向に対向する領域を電鋳部で形成することができる。   As another example, in the fan motor 21 (fan motor bearing device 30) according to the second embodiment, for example, although not shown, the other end surface (lower end surface 33b) of the flange portion 33 of the lid member 34 is shown. ) And the region facing in the thrust direction may be formed by an electroformed part. If it is this structure, the shaft member 32 can be supported by high thrust support force also about the fan motor which has the ventilation direction similar to 3rd Embodiment, for example. Similarly, in the fan motor 1 (fan motor bearing device 10) according to the first embodiment, the region of the upper end surface 11a1 of the bottom portion 11a of the housing 11 facing the lower end surface 13b of the shaft member 13 in the thrust direction is electroformed. The part can be formed.

以上の実施形態(第1〜第3実施形態)では、主に軸流ファンモータとシロッコファンモータに本発明を適用した場合を説明したが、本発明は、ラジアル軸受隙間あるいはスラスト軸受隙間を有するファンモータ用軸受装置およびこの軸受装置を備えたファンモータである限り、例えばクロスフローファンモータなど他形態のファンモータについても適用可能である。   In the above embodiments (first to third embodiments), the case where the present invention is applied mainly to an axial fan motor and a sirocco fan motor has been described. However, the present invention has a radial bearing gap or a thrust bearing gap. As long as it is a fan motor bearing device and a fan motor provided with this bearing device, the present invention can be applied to other types of fan motors such as a crossflow fan motor.

また、以上の実施形態では、動圧発生部として、複数の傾斜溝35a1をいわゆるへリングボーン形状に配列した領域や、複数の偏心円弧面15a1を円周方向に亘って配列した領域、あるいは複数の放射状溝37a1を全周に亘って配列した領域を例示したが、もちろんこれら以外の動圧発生部を設けることも可能である。例えば第1実施形態におけるファンモータ用軸受装置10において、電鋳部15の内周面15aに複数の軸方向溝を円周方向に亘って設け、これらと対向する軸部材13の外周面13aとの間にいわゆるステップ軸受を形成することも可能である。また、図示は省略するが、電鋳部15の内周面15aに複数の同心円弧面を設け、これら同心円弧面と対向する外周面13aとの間に、円周両方向に向けて半径方向寸法が漸次縮小するくさび状隙間を形成する多円弧軸受を構成することも可能である。これら動圧発生部は、電鋳部の側に設ける他、これら電鋳部と対向する面の側に形成することも可能である。もちろん、動圧発生部を設けずに、例えば電鋳部15の内周面15aと軸部材13の外周面13aとを共に断面真円状とし、かかる両面でいわゆる流体真円軸受を構成することも可能である。   In the above embodiment, as the dynamic pressure generating portion, a region where a plurality of inclined grooves 35a1 are arranged in a so-called herringbone shape, a region where a plurality of eccentric arc surfaces 15a1 are arranged in the circumferential direction, or a plurality Although the region where the radial grooves 37a1 are arranged over the entire circumference is illustrated, it is of course possible to provide a dynamic pressure generating portion other than these. For example, in the fan motor bearing device 10 according to the first embodiment, a plurality of axial grooves are provided on the inner peripheral surface 15a of the electroformed portion 15 in the circumferential direction, and the outer peripheral surface 13a of the shaft member 13 facing these are provided. It is also possible to form so-called step bearings between them. Although not shown, a plurality of concentric circular arc surfaces are provided on the inner peripheral surface 15a of the electroformed portion 15, and the radial dimension is provided in both circumferential directions between the concentric circular arc surfaces and the outer peripheral surface 13a. It is also possible to constitute a multi-arc bearing that forms a wedge-shaped gap that gradually decreases. These dynamic pressure generating portions can be provided on the electroformed portion side, or can be formed on the surface facing the electroformed portion. Of course, without providing the dynamic pressure generating portion, for example, the inner peripheral surface 15a of the electroformed portion 15 and the outer peripheral surface 13a of the shaft member 13 are both made into a perfect circular cross section, and a so-called fluid true circular bearing is constituted by these both surfaces. Is also possible.

また、以上の実施形態では、電鋳部15をインサート部品として型成形部17を型成形することで軸受部12を形成した場合を例示したが、特にこれに限定される必要はない。電鋳部以外の要素であって、かつ固定部材を構成する要素であれば、軸受部12に限らず、電鋳部15をインサート部品として一体に型成形することも可能である。例えば第1実施形態に係るファンモータ1(ファンモータ用軸受装置10)であれば、ハウジング11やシール部14を、軸受部12の電鋳部15を除く領域(図3で言えば型成形部17)と同一の材料で一体に形成することもできる。また、ファンモータ1のベース4をさらにハウジング11やシール部14と一体に成形することも可能であり、この場合、ベース4はファンモータ用軸受装置10の固定部材の構成要素であると同時に、ファンモータ1の構成要素ともなる。もちろん、電鋳部15と、軸受部12の電鋳部15を除く箇所とを別々に形成し、これらを後で組立てるようにしても構わない。第2および第3実施形態に係る軸受部31、51についても同様の構成を採ることが可能である。   Moreover, in the above embodiment, although the case where the bearing part 12 was formed by forming the mold forming part 17 by using the electroformed part 15 as an insert part was illustrated, it is not particularly limited to this. As long as it is an element other than the electroformed part and constitutes a fixing member, the electroformed part 15 is not limited to the bearing part 12 and can be integrally molded as an insert part. For example, in the case of the fan motor 1 (fan motor bearing device 10) according to the first embodiment, the housing 11 and the seal portion 14 are formed in the region excluding the electroformed portion 15 of the bearing portion 12 (in FIG. It can also be formed integrally with the same material as in 17). Further, the base 4 of the fan motor 1 can be further formed integrally with the housing 11 and the seal portion 14. In this case, the base 4 is a component of the fixing member of the fan motor bearing device 10, It is also a component of the fan motor 1. Of course, the electroformed portion 15 and the portion of the bearing portion 12 excluding the electroformed portion 15 may be formed separately and assembled later. A similar configuration can be adopted for the bearing portions 31 and 51 according to the second and third embodiments.

また、以上の実施形態では、電鋳部を固定部材の側に設ける場合を例示したが、回転部材の側に設けることもできる。例えば第1実施形態に係るファンモータ用軸受装置10であれば、図示は省略するが、軸部材13の外周面13aの、少なくともラジアル軸受隙間16を形成する領域を電鋳部で形成することも可能である。第2実施形態に係るファンモータ用軸受装置30であれば、同じく図示は省略するが、フランジ部33の上端面33aの、少なくともスラスト軸受隙間38を形成する領域を電鋳部で形成することも可能である。あるいは、第3実施形態に係るファンモータ用軸受装置50であれば、同じく図示は省略するが、ハブ42の下端面42aの、少なくともスラスト軸受隙間53を形成する領域を電鋳部で形成することも可能である。また、回転部材を構成する要素、第3実施形態に係るファンモータ用軸受装置50であれば軸部材32およびハブ42を、同一の材料で一体に形成することも可能である。もちろん、各構成要素をそれぞれ別体として形成し、後でそれらを組立てるようにしても構わない。あるいは、一又は複数の構成要素をインサート部品として残りの構成要素を一体に成形しても構わない。   Moreover, in the above embodiment, although the case where the electroformed part was provided in the fixing member side was illustrated, it can also be provided in the rotating member side. For example, in the fan motor bearing device 10 according to the first embodiment, although illustration is omitted, at least a region where the radial bearing gap 16 is formed on the outer peripheral surface 13a of the shaft member 13 may be formed by an electroformed part. Is possible. In the fan motor bearing device 30 according to the second embodiment, although not shown in the drawing, at least a region for forming the thrust bearing gap 38 on the upper end surface 33a of the flange portion 33 may be formed by an electroformed portion. Is possible. Or if it is the fan motor bearing apparatus 50 which concerns on 3rd Embodiment, although illustration is abbreviate | omitted similarly, the area | region which forms the thrust bearing clearance gap 53 of the lower end surface 42a of the hub 42 is formed in an electroformed part. Is also possible. Further, in the case of the elements constituting the rotating member, that is, the fan motor bearing device 50 according to the third embodiment, the shaft member 32 and the hub 42 can be integrally formed of the same material. Of course, each component may be formed separately and assembled later. Or you may shape | mold the remaining component integrally by making one or some component into an insert part.

また、以上の実施形態では、ファンモータ用軸受装置10、30、50の内部に充満し、各軸受隙間に動圧作用を生じる流体、あるいは潤滑膜を形成する流体として、潤滑油を例示したが、それ以外にも動圧作用を生じ得る流体、例えば空気等の気体や、磁性流体等の流動性を有する潤滑剤、あるいは潤滑グリース等を使用することもできる。   Moreover, in the above embodiment, although lubricating oil was illustrated as a fluid which fills the inside of the fan motor bearing apparatus 10, 30, 50 and produces a dynamic pressure action in each bearing gap, or a fluid which forms a lubricating film. In addition, a fluid that can cause a dynamic pressure action, for example, a gas such as air, a fluid lubricant such as a magnetic fluid, or a lubricating grease may be used.

本発明の第1実施形態に係るファンモータの断面図である。It is sectional drawing of the fan motor which concerns on 1st Embodiment of this invention. ファンモータの平面図である。It is a top view of a fan motor. ファンモータ用軸受装置の断面図である。It is sectional drawing of the bearing apparatus for fan motors. ファンモータ用軸受装置の横断面図である。It is a cross-sectional view of the fan motor bearing device. マスキングを施した状態のマスターの斜視図である。It is a perspective view of the master of the state which performed masking. 外周に電鋳部を形成したマスターの斜視図である。It is a perspective view of the master which formed the electroformed part in the outer periphery. 本発明の第2実施形態に係るファンモータの断面図である。It is sectional drawing of the fan motor which concerns on 2nd Embodiment of this invention. ファンモータ用軸受装置の軸受部を矢印Eの方向から見た下端面図である。4 is a bottom view of the bearing portion of the fan motor bearing device as viewed from the direction of arrow E. FIG. 本発明の第3実施形態に係るファンモータの断面図である。It is sectional drawing of the fan motor which concerns on 3rd Embodiment of this invention.

符号の説明Explanation of symbols

1、21、41 ファンモータ
2、42 ハブ
3a ステータコイル
3b ロータマグネット
4 ベース
5、25、45 ファン
10、30、50 ファンモータ用軸受装置
13、32 軸部材
13a、32a 外周面
15、35、37、52 電鋳部
15a1 偏心円弧面
15a3 くさび状隙間
16、36 ラジアル軸受隙間
17、39 型成形部
18 マスター
19 マスキング部
33 フランジ部
35a1 傾斜溝
37a1 放射状溝
38、53 スラスト軸受隙間
1, 21, 41 Fan motor 2, 42 Hub 3a Stator coil 3b Rotor magnet 4 Base 5, 25, 45 Fan 10, 30, 50 Fan motor bearing device 13, 32 Shaft member 13a, 32a Outer peripheral surface 15, 35, 37 , 52 Electroformed part 15a1 Eccentric arc surface 15a3 Wedge-shaped gap 16, 36 Radial bearing gap 17, 39 Molding part 18 Master 19 Masking part 33 Flange part 35a1 Inclined groove 37a1 Radial groove 38, 53 Thrust bearing gap

Claims (6)

固定部材と、ファンを回転させるための回転部材と、固定部材と回転部材とのラジアル対向面間に形成されるラジアル軸受隙間と、ラジアル軸受隙間を満たす流体とを備えたファンモータ用軸受装置において、
固定部材と回転部材の何れか一方のラジアル対向面の、少なくともラジアル軸受隙間を形成する領域を電鋳部で形成したことを特徴とするファンモータ用軸受装置。
In a fan motor bearing device comprising: a fixing member; a rotating member for rotating the fan; a radial bearing gap formed between the radial facing surfaces of the fixing member and the rotating member; and a fluid satisfying the radial bearing gap. ,
A fan motor bearing device, wherein at least a region for forming a radial bearing gap is formed by an electroformed portion on a radial facing surface of one of a fixed member and a rotating member.
電鋳部のラジアル軸受隙間を形成する領域とこれに対向する面の何れか一方に、流体の動圧作用を生じるための動圧発生部を形成した請求項1記載のファンモータ用軸受装置。   The fan motor bearing device according to claim 1, wherein a dynamic pressure generating portion for generating a dynamic pressure action of fluid is formed in either one of a region forming a radial bearing gap of the electroformed portion and a surface opposed to the region. 固定部材と回転部材とのスラスト対向面間にスラスト軸受隙間を形成すると共に、固定部材と回転部材の何れか一方のスラスト対向面の、少なくともスラスト軸受隙間を形成する領域を電鋳部で形成した請求項1記載のファンモータ用軸受装置。   A thrust bearing gap is formed between the thrust facing surfaces of the fixed member and the rotating member, and at least a region of the thrust facing surface of either the fixed member or the rotating member is formed in the electroformed portion. The fan motor bearing device according to claim 1. 電鋳部のスラスト軸受隙間を形成する領域とこれに対向する面の何れか一方に、流体の動圧作用を生じるための動圧発生部を形成した請求項3記載のファンモータ用軸受装置。   4. The fan motor bearing device according to claim 3, wherein a dynamic pressure generating part for generating a dynamic pressure action of fluid is formed in either one of a region forming a thrust bearing gap of the electroformed part and a surface facing the gap. 固定部材と、ファンを回転させるための回転部材と、固定部材と回転部材とのスラスト対向面間に形成されるスラスト軸受隙間と、スラスト軸受隙間を満たす流体とを有するファンモータ用軸受装置において、
固定部材と回転部材の何れか一方のスラスト対向面の、少なくともスラスト軸受隙間を形成する領域を電鋳部で形成したことを特徴とするファンモータ用軸受装置。
In a fan motor bearing device comprising: a fixing member; a rotating member for rotating the fan; a thrust bearing gap formed between thrust opposing surfaces of the fixing member and the rotating member; and a fluid satisfying the thrust bearing gap.
A fan motor bearing device, wherein at least a region for forming a thrust bearing gap is formed by an electroformed portion on a thrust facing surface of one of a fixed member and a rotating member.
請求項1〜5の何れかに記載のファンモータ用軸受装置と、回転部材を回転駆動させる駆動部と、回転部材に設けられ、回転部材と共に回転するファンとを備えたファンモータ。   A fan motor comprising the fan motor bearing device according to claim 1, a drive unit that rotationally drives the rotating member, and a fan that is provided on the rotating member and rotates together with the rotating member.
JP2006025978A 2006-02-02 2006-02-02 Bearing device for fan motor Pending JP2007205491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006025978A JP2007205491A (en) 2006-02-02 2006-02-02 Bearing device for fan motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006025978A JP2007205491A (en) 2006-02-02 2006-02-02 Bearing device for fan motor

Publications (1)

Publication Number Publication Date
JP2007205491A true JP2007205491A (en) 2007-08-16

Family

ID=38485131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006025978A Pending JP2007205491A (en) 2006-02-02 2006-02-02 Bearing device for fan motor

Country Status (1)

Country Link
JP (1) JP2007205491A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012197858A (en) * 2011-03-22 2012-10-18 Ntn Corp Fluid dynamic pressure bearing device and axial fan motor provided with the same
US9051938B2 (en) 2011-06-30 2015-06-09 Nidec Corporation Fan bearing system having a fluid reservoir
CN110594287A (en) * 2019-09-17 2019-12-20 福建福清核电有限公司 Main pump integrated three-liquid-tank radial water guide bearing bush

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11341737A (en) * 1998-05-28 1999-12-10 Nippon Seiko Kk Dynamic pressure bearing device for fan motor
JP2000120695A (en) * 1998-10-19 2000-04-25 Seiko Instruments Inc Dynamic pressure bearing device
JP2003056552A (en) * 2001-08-09 2003-02-26 Akutowan:Kk Resin-made bearing part and method for manufacturing the same
JP2003056569A (en) * 2001-08-09 2003-02-26 Akutowan:Kk Resin-bearing component and manufacturing method for the same
JP2003235199A (en) * 2002-02-07 2003-08-22 Hitachi Powdered Metals Co Ltd Spindle motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11341737A (en) * 1998-05-28 1999-12-10 Nippon Seiko Kk Dynamic pressure bearing device for fan motor
JP2000120695A (en) * 1998-10-19 2000-04-25 Seiko Instruments Inc Dynamic pressure bearing device
JP2003056552A (en) * 2001-08-09 2003-02-26 Akutowan:Kk Resin-made bearing part and method for manufacturing the same
JP2003056569A (en) * 2001-08-09 2003-02-26 Akutowan:Kk Resin-bearing component and manufacturing method for the same
JP2003235199A (en) * 2002-02-07 2003-08-22 Hitachi Powdered Metals Co Ltd Spindle motor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012197858A (en) * 2011-03-22 2012-10-18 Ntn Corp Fluid dynamic pressure bearing device and axial fan motor provided with the same
US9051938B2 (en) 2011-06-30 2015-06-09 Nidec Corporation Fan bearing system having a fluid reservoir
US9341189B2 (en) 2011-06-30 2016-05-17 Nidec Corporation Fan
CN110594287A (en) * 2019-09-17 2019-12-20 福建福清核电有限公司 Main pump integrated three-liquid-tank radial water guide bearing bush

Similar Documents

Publication Publication Date Title
JP4531584B2 (en) Fluid dynamic bearing device and motor provided with the same
US8562219B2 (en) Fluid dynamic bearing device
US7798721B2 (en) Fluid dynamic bearing device
WO2007099790A1 (en) Fluid bearing device
JP2007232140A (en) Fluid bearing device
WO2010125884A1 (en) Dynamic-pressure bearing device
JP4937588B2 (en) Bearing device and motor equipped with the same
JP4302463B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP4476670B2 (en) Hydrodynamic bearing device
JP2007205491A (en) Bearing device for fan motor
JP5058516B2 (en) Hydrodynamic bearing device
JP2010065843A (en) Dynamic pressure bearing device
JP4794964B2 (en) Bearing device and motor equipped with the same
JP2009103280A (en) Dynamic pressure bearing device and its manufacturing method
JP2006112614A (en) Dynamic pressure bearing device
JP4813211B2 (en) Sliding bearing, motor equipped with the same, and manufacturing method of sliding bearing
JP4794966B2 (en) Bearing device, motor provided with the same, and method for manufacturing bearing device
JP2005265119A (en) Fluid bearing device and its manufacturing method
JP2010060034A (en) Hydrodynamic pressure bearing device
JP4937675B2 (en) Hydrodynamic bearing device
JP2007092845A (en) Bearing device
JP4846470B2 (en) DYNAMIC PRESSURE BEARING DEVICE AND MOTOR HAVING THE SAME
JP4890066B2 (en) Hydrodynamic bearing device and fan motor having the same
JP4804894B2 (en) Bearing device and manufacturing method thereof
WO2008056749A1 (en) Motor, method for manufacturing the motor, and blower fan using the motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090107

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091105

A977 Report on retrieval

Effective date: 20100630

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110223