JP2012197858A - Fluid dynamic pressure bearing device and axial fan motor provided with the same - Google Patents

Fluid dynamic pressure bearing device and axial fan motor provided with the same Download PDF

Info

Publication number
JP2012197858A
JP2012197858A JP2011062311A JP2011062311A JP2012197858A JP 2012197858 A JP2012197858 A JP 2012197858A JP 2011062311 A JP2011062311 A JP 2011062311A JP 2011062311 A JP2011062311 A JP 2011062311A JP 2012197858 A JP2012197858 A JP 2012197858A
Authority
JP
Japan
Prior art keywords
thrust
bearing
dynamic pressure
shaft member
radial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011062311A
Other languages
Japanese (ja)
Other versions
JP5687104B2 (en
Inventor
Motohisa Fujiwara
幹久 藤原
Isao Komori
功 古森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2011062311A priority Critical patent/JP5687104B2/en
Publication of JP2012197858A publication Critical patent/JP2012197858A/en
Application granted granted Critical
Publication of JP5687104B2 publication Critical patent/JP5687104B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To prevent, in a fluid dnamic pressure bearing device in which axial thrust is applied to a shaft member during rotation of the shaft member, the contact of a flange of the shaft member with a member facing it even in high-speed rotation.SOLUTION: When a downward thrust F is applied to the shaft member 2 during rotation of the shaft member 2, support force F2 of a second thrust bearing portion T2 which supports the flange 2b of the shaft member 2 downward is set smaller than the support force F1 of a first thrust bearing portion T1 which supports the flange 2b of the shaft member 2 upward.

Description

本発明は、ラジアル軸受隙間及びスラスト軸受隙間に生じる潤滑流体の圧力により、軸部材を相対回転自在に支持する流体動圧軸受装置、及びこれを備えた軸流ファンモータに関する。   The present invention relates to a fluid dynamic bearing device that supports a shaft member so as to be relatively rotatable by the pressure of a lubricating fluid generated in a radial bearing gap and a thrust bearing gap, and an axial fan motor including the fluid dynamic bearing device.

流体動圧軸受装置は、例えば、HDDのスピンドルモータ用や各種ファンモータ用として好適に使用されている。例えば特許文献1に示されている流体動圧軸受装置100は、図8に示すように、軸部102a及びフランジ部102bを有する軸部材102と、内周に軸部102aが挿入された軸受スリーブ108と、内周に軸受スリーブ108が固定された筒状のハウジング107と、ハウジング107の一端開口部を閉塞するスラストブッシュ110とを備える。軸部材102が回転すると、軸部102aの外周面102a1と軸受スリーブ108の内周面108aとの間にラジアル軸受隙間が形成され、このラジアル軸受隙間に生じる油膜の圧力で軸部材102をラジアル方向に支持するラジアル軸受部R1’,R2’が構成される。これと同時に、軸受スリーブ108の一端面108cとフランジ部102bの一端面102b1との間、及び、スラストブッシュ110の端面110aとフランジ部102bの他端面102b2との間にそれぞれスラスト軸受隙間が形成され、各スラスト軸受隙間に生じる油膜の圧力で軸部材102をスラスト方向に支持するスラスト軸受部T1’,T2’が構成される。   The fluid dynamic pressure bearing device is suitably used, for example, for HDD spindle motors and various fan motors. For example, as shown in FIG. 8, a fluid dynamic bearing device 100 disclosed in Patent Document 1 includes a shaft member 102 having a shaft portion 102a and a flange portion 102b, and a bearing sleeve in which the shaft portion 102a is inserted on the inner periphery. 108, a cylindrical housing 107 having a bearing sleeve 108 fixed to the inner periphery, and a thrust bush 110 that closes one end opening of the housing 107. When the shaft member 102 rotates, a radial bearing gap is formed between the outer peripheral surface 102a1 of the shaft portion 102a and the inner peripheral surface 108a of the bearing sleeve 108, and the shaft member 102 is moved in the radial direction by the oil film pressure generated in the radial bearing gap. The radial bearing portions R1 ′ and R2 ′ supported by At the same time, thrust bearing gaps are formed between one end surface 108c of the bearing sleeve 108 and one end surface 102b1 of the flange portion 102b, and between the end surface 110a of the thrust bush 110 and the other end surface 102b2 of the flange portion 102b. The thrust bearing portions T1 ′ and T2 ′ that support the shaft member 102 in the thrust direction are configured by the pressure of the oil film generated in the thrust bearing gaps.

特開2003−83323号公報JP 2003-83323 A

例えば、上記の流体動圧軸受装置100をHDDのスピンドルモータに組み込んだ場合、軸部材102には、搭載されるディスクの重さが軸部材102に加わり、軸部材102が下向きに押し付けられる。軸部材102が回転すると、下側のスラスト軸受部T2の支持力F2’により軸部材102が上向きに支持される。このとき、ディスクの重さにより軸部材102を下向きに押し付ける力は、軸部材102の回転速度が速くなっても変わらないため、軸部材102は、一旦浮上支持されたら、回転が停止したり外力が加わったりしない限り浮上支持され続ける。   For example, when the fluid dynamic pressure bearing device 100 described above is incorporated in a spindle motor of an HDD, the weight of the disc mounted on the shaft member 102 is added to the shaft member 102, and the shaft member 102 is pressed downward. When the shaft member 102 rotates, the shaft member 102 is supported upward by the supporting force F2 'of the lower thrust bearing portion T2. At this time, the force pressing the shaft member 102 downward due to the weight of the disk does not change even if the rotation speed of the shaft member 102 increases, so that once the shaft member 102 is supported by levitation, the rotation stops or the external force Unless it is added, it continues to be supported.

一方、上記の流体動圧軸受装置100を軸流ファンモータに組み込んだ場合、軸部材102の回転に伴って軸部材102に軸方向の推力が加わる。図8では、例えば軸部材102に下向きの推力F’が加わる場合を示す。このとき、軸部材102の回転速度の上昇に伴って軸部材102に加わる軸方向の推力F’が大きくなり、軸部材102が下方に押し込まれる。この推力F’に対して、下側のスラスト軸受部T2’の支持力F2’により軸部材102を上向きに支持するが、軸部材102が10000r/min以上で高速回転すると、軸方向の推力F’が非常に大きくなるため、スラスト軸受部T2’の支持力F2’で支持することができなくなる恐れがある。   On the other hand, when the fluid dynamic bearing device 100 is incorporated in an axial fan motor, axial thrust is applied to the shaft member 102 as the shaft member 102 rotates. FIG. 8 shows a case where, for example, a downward thrust F ′ is applied to the shaft member 102. At this time, the axial thrust F ′ applied to the shaft member 102 increases as the rotational speed of the shaft member 102 increases, and the shaft member 102 is pushed downward. With respect to this thrust F ′, the shaft member 102 is supported upward by the support force F2 ′ of the lower thrust bearing portion T2 ′. When the shaft member 102 rotates at a high speed of 10,000 r / min or more, the axial thrust F Since 'becomes very large, there is a possibility that it cannot be supported by the supporting force F2' of the thrust bearing portion T2 '.

また、軸部材102は、推力F’だけでなく、上側のスラスト軸受部T1’の支持力F1’でさらに下方に押し込まれる。特に、10000r/min以上の高速回転になると、上側のスラスト軸受部T1’の支持力F1’が大きくなって、軸部材102を下向きに押し付ける力が無視できなくなる。このような軸部材102を下向き押し付ける支持力F1’と推力F’との合計量が、下側のスラスト軸受部T2’の支持力F2’よりも大きくなると、軸部材102とスラストブッシュ110とが接触する恐れがある。   Further, the shaft member 102 is pushed further downward not only by the thrust F ′ but also by the support force F1 ′ of the upper thrust bearing portion T1 ′. In particular, at a high speed rotation of 10,000 r / min or more, the supporting force F1 'of the upper thrust bearing portion T1' increases, and the force pressing the shaft member 102 downward cannot be ignored. When the total amount of the support force F1 ′ and the thrust force F ′ for pressing the shaft member 102 downward is larger than the support force F2 ′ of the lower thrust bearing portion T2 ′, the shaft member 102 and the thrust bush 110 are There is a risk of contact.

さらに、図8の軸受スリーブ108の内周面108aには軸方向非対称な形状の動圧溝が形成され、この動圧溝によりラジアル軸受隙間の潤滑油が下方に押し込まれる。この動圧溝による潤滑油の下向きの押し込み力F3’により、軸部材102がさらに下方に押し込まれ、軸部材102とスラストブッシュ110とが接触する恐れが高くなる。   Further, a dynamic pressure groove having an axially asymmetric shape is formed on the inner peripheral surface 108a of the bearing sleeve 108 in FIG. 8, and the lubricating oil in the radial bearing gap is pushed downward by the dynamic pressure groove. Due to the downward pushing force F3 'of the lubricating oil by the dynamic pressure groove, the shaft member 102 is pushed further downward, and there is a high possibility that the shaft member 102 and the thrust bush 110 come into contact with each other.

以上のような不具合は、図8のように軸部材102に下向きの推力F’が加わる場合だけでなく、軸部材102に上向きの推力が加わる場合にも同様に生じる。また、軸部材102が回転する場合だけでなく、軸部材102を固定して軸受スリーブ108側を回転させる場合にも同様の不具合が生じる。   The above problems occur not only when a downward thrust F ′ is applied to the shaft member 102 as shown in FIG. 8 but also when an upward thrust is applied to the shaft member 102. The same problem occurs not only when the shaft member 102 rotates but also when the shaft member 102 is fixed and the bearing sleeve 108 side is rotated.

本発明が解決すべき課題は、軸部材の相対回転に伴って軸部材に軸方向の相対的な推力が加わる流体動圧軸受装置において、高速回転時においても軸部材のフランジ部とこれにスラスト方向で対向する部材との接触を防止することにある。   The problem to be solved by the present invention is that, in a fluid dynamic pressure bearing device in which a relative thrust in the axial direction is applied to the shaft member with relative rotation of the shaft member, the flange portion of the shaft member and the thrust member are added to the thrust member even at high speed It is to prevent contact with a member facing in a direction.

前記課題を解決するためになされた本発明は、軸部及びフランジ部を有する軸部材と、内周に軸部が挿入されたスリーブ部、及び、スリーブ部の一端開口部を閉塞する底部を有する軸受部材と、軸部の外周面とスリーブ部の内周面との間のラジアル軸受隙間に生じる潤滑流体の動圧作用で軸部材をラジアル方向に相対支持するラジアル軸受部と、スリーブ部の一端面とフランジ部の一端面との間のスラスト軸受隙間、及び、底部の端面とフランジ部の他端面との間のスラスト軸受隙間に生じる潤滑流体の動圧作用で軸部材をスラスト方向に相対支持する2つのスラスト軸受部とを備え、軸部材と軸受部材とが10000r/min以上で相対回転する流体動圧軸受装置において、軸部材が、相対回転に伴って軸方向一方に向けて相対的な推力を受けるものであって、2つのスラスト軸受部のうち、軸部材を軸方向一方に向けて相対的に押し込む一方のスラスト軸受部の支持力を、軸部材を軸方向他方に向けて相対的に押し込む他方のスラスト軸受部の支持力よりも小さくしたことを特徴とする。   The present invention made in order to solve the above-mentioned problems has a shaft member having a shaft portion and a flange portion, a sleeve portion in which the shaft portion is inserted on the inner periphery, and a bottom portion that closes one end opening of the sleeve portion. A bearing member, a radial bearing portion that relatively supports the shaft member in the radial direction by the dynamic pressure action of the lubricating fluid generated in the radial bearing gap between the outer peripheral surface of the shaft portion and the inner peripheral surface of the sleeve portion, and a sleeve portion The shaft member is relatively supported in the thrust direction by the dynamic pressure action of the lubricating fluid generated in the thrust bearing gap between the end face and one end face of the flange part and in the thrust bearing gap between the end face of the bottom part and the other end face of the flange part. In the fluid dynamic pressure bearing device in which the shaft member and the bearing member rotate relative to each other at 10,000 r / min or more, the shaft member moves relative to one side in the axial direction along with the relative rotation. Thrust Of the two thrust bearing parts, the thrust force of one thrust bearing part that pushes the shaft member relatively toward one side in the axial direction is pushed relatively toward the other axial direction. It is characterized by being smaller than the supporting force of the other thrust bearing portion.

このように、本発明に係る流体動圧軸受装置では、軸方向一方、すなわち、相対回転に伴って加わる推力と同じ方向に向けて軸部材を押し込む一方のスラスト軸受部の支持力を敢えて低く設定する。これにより、軸部材のフランジ部を、スラスト方向で対向する部材(底部又はスリーブ部)に押し付ける方向の力が低減されるため、10000r/min以上の高速で軸部材が相対回転した場合でも、軸部材のフランジ部とこれに対向する部材との接触を防止することができる。   Thus, in the fluid dynamic pressure bearing device according to the present invention, the supporting force of one thrust bearing portion that pushes the shaft member in one direction in the axial direction, that is, in the same direction as the thrust applied with the relative rotation, is deliberately set low. To do. As a result, the force in the direction of pressing the flange portion of the shaft member against the member (bottom portion or sleeve portion) facing in the thrust direction is reduced, so that even when the shaft member is relatively rotated at a high speed of 10000 r / min or more Contact between the flange portion of the member and the member facing the flange portion can be prevented.

上記の流体動圧軸受装置では、例えば、2つのスラスト軸受部に、スラスト軸受隙間に満たされた潤滑流体に動圧作用を発生させるスラスト動圧発生部を設け、一方のスラスト軸受部のスラスト動圧発生部の面積を、他方のスラスト軸受部のスラスト動圧発生部の面積よりも小さくすることができる。   In the above fluid dynamic pressure bearing device, for example, two thrust bearing portions are provided with a thrust dynamic pressure generating portion that generates a dynamic pressure action on the lubricating fluid filled in the thrust bearing gap, and the thrust motion of one thrust bearing portion is provided. The area of the pressure generating part can be made smaller than the area of the thrust dynamic pressure generating part of the other thrust bearing part.

例えば、上記の推力が、スリーブ部の一端面とフランジ部の一端面とを接近させる方向に生じる場合は、上記の推力と同じ方向に軸部材を押し込む一方のスラスト軸受部のスラスト軸受隙間は、底部の端面とフランジ部の他端面との間に形成される。   For example, when the thrust is generated in a direction in which one end surface of the sleeve portion and one end surface of the flange portion are brought closer, the thrust bearing gap of one thrust bearing portion that pushes the shaft member in the same direction as the thrust is It is formed between the end face of the bottom part and the other end face of the flange part.

ラジアル軸受部に、ラジアル軸受隙間に満たされた潤滑流体に動圧作用を発生させるラジアル動圧発生部を設け、このラジアル動圧発生部を、潤滑流体を軸方向他方、すなわち上記の推力と反対側に向けて押し込むものとすれば、軸部材のフランジ部が対向する部材と接触する事態をより確実に防止できる。   The radial bearing is provided with a radial dynamic pressure generating section that generates a dynamic pressure action on the lubricating fluid filled in the radial bearing gap, and this radial dynamic pressure generating section is connected to the other of the lubricating fluid in the axial direction, that is, opposite to the above thrust. If it pushes in toward the side, the situation where the flange part of a shaft member contacts the member which opposes can be prevented more reliably.

軸部材が停止したときに、他方のスラスト軸受隙間が0となるようにすれば、軸部材の低速回転時(例えばモータの起動直後あるいは停止直前)に、相対的に支持力が大きい他方のスラスト軸受部で軸部材を支持することができるため、軸部材のフランジ部をこれに対向する部材に対して早期に浮上させることができる。   If the other thrust bearing gap is set to 0 when the shaft member is stopped, the other thrust member having a relatively large supporting force can be obtained when the shaft member rotates at a low speed (for example, immediately after starting or immediately before stopping the motor). Since the shaft member can be supported by the bearing portion, the flange portion of the shaft member can be levitated at an early stage relative to the member facing the shaft member.

上記の流体動圧軸受装置は、例えば、軸方向に気流を発生させる軸流ファンモータに組み込むことができる。   The fluid dynamic bearing device described above can be incorporated into, for example, an axial fan motor that generates an airflow in the axial direction.

以上のように、本発明によれば、軸部材の相対回転に伴って軸部材に軸方向の相対的な推力が加わる流体動圧軸受装置において、10000r/min以上の高速回転時においても軸部材のフランジ部とこれに対向する部材との接触を防止することができる。   As described above, according to the present invention, in a fluid dynamic pressure bearing device in which a relative thrust in the axial direction is applied to the shaft member in accordance with the relative rotation of the shaft member, the shaft member even at high speed rotation of 10000 r / min or more. It is possible to prevent contact between the flange portion and the member facing the flange portion.

本発明の一実施形態に係る流体動圧軸受装置が組み込まれた軸流ファンモータの断面図である。1 is a cross-sectional view of an axial fan motor incorporating a fluid dynamic bearing device according to an embodiment of the present invention. 上記流体動圧軸受装置の断面図である。It is sectional drawing of the said fluid dynamic pressure bearing apparatus. 上記流体動圧軸受装置の軸受スリーブの断面図である。It is sectional drawing of the bearing sleeve of the said fluid dynamic pressure bearing apparatus. 上記軸受スリーブの上面図である。It is a top view of the said bearing sleeve. 上記流体動圧軸受装置のスラストブッシュの下面図である。It is a bottom view of the thrust bush of the fluid dynamic pressure bearing device. 他の実施形態に係る流体動圧軸受装置の断面図である。It is sectional drawing of the fluid dynamic pressure bearing apparatus which concerns on other embodiment. 他の実施形態に係る流体動圧軸受装置の断面図である。It is sectional drawing of the fluid dynamic pressure bearing apparatus which concerns on other embodiment. 従来の流体動圧軸受装置の断面図である。It is sectional drawing of the conventional fluid dynamic pressure bearing apparatus.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に、本発明の一実施形態に係る流体動圧軸受装置1が組み込まれた軸流ファンモータを示す。このファンモータは、軸部材2を回転自在に支持する流体動圧軸受装置1と、流体動圧軸受装置1の固定側(軸受部材11)に取り付けられたケーシング6と、流体動圧軸受装置1の回転側(軸部材2)に取り付けられたロータ3と、半径方向のギャップを介して対向させたステータコイル4およびマグネット5とを備えている。ステータコイル4はケーシング6に取り付けられ、マグネット5はロータ3に取り付けられる。ロータ3には、複数のファン3aが一体に設けられる。ステータコイル4に通電すると、ステータコイル4とマグネット5との間の電磁力でマグネット5及びロータ3が回転し、ファン3aにより軸方向の気流が発生する。本実施形態では、図中上側に気流が発生する場合を示す(矢印参照)。このファンモータは、ロータ3が10000r/min以上で高速回転するものであり、例えば医療機器などに組み込まれるターボファンとして用いられる。尚、本実施形態では、ファンモータが図1に示す状態、すなわち軸受部材11から軸部材2が突出する方向を下向きにした状態で使用される場合を示す。   FIG. 1 shows an axial fan motor incorporating a fluid dynamic bearing device 1 according to an embodiment of the present invention. The fan motor includes a fluid dynamic bearing device 1 that rotatably supports a shaft member 2, a casing 6 that is attached to the stationary side (bearing member 11) of the fluid dynamic bearing device 1, and the fluid dynamic bearing device 1. And a stator coil 4 and a magnet 5 that are opposed to each other with a gap in the radial direction. The stator coil 4 is attached to the casing 6, and the magnet 5 is attached to the rotor 3. The rotor 3 is integrally provided with a plurality of fans 3a. When the stator coil 4 is energized, the magnet 5 and the rotor 3 are rotated by electromagnetic force between the stator coil 4 and the magnet 5, and an axial airflow is generated by the fan 3a. In this embodiment, the case where an airflow is generated on the upper side in the figure is shown (see arrows). This fan motor has a rotor 3 that rotates at a high speed of 10,000 r / min or more, and is used as a turbo fan incorporated in a medical device, for example. In this embodiment, the fan motor is used in the state shown in FIG. 1, that is, in a state where the direction in which the shaft member 2 protrudes from the bearing member 11 is downward.

流体動圧軸受装置1は、図2に示すように、軸部材2と軸受部材11とで構成される。軸受部材11は、内周に軸部材2が挿入されたスリーブ部11aと、スリーブ部11aの上端開口部を閉塞する底部11bとを有する。本実施形態では、焼結金属製の軸受スリーブ8と、内周面に軸受スリーブ8が固定された筒状のハウジング7とでスリーブ部11aが構成され、ハウジング7の上端開口部を閉塞するスラストブッシュ10で底部11bが構成される。また、本実施形態では、軸受部材11の下端開口部に、潤滑流体(本実施形態では潤滑油)の外部への漏れ出しを防止するシール部9が設けられ、図示例ではシール部9とハウジング7が一体形成されている。   As shown in FIG. 2, the fluid dynamic bearing device 1 includes a shaft member 2 and a bearing member 11. The bearing member 11 includes a sleeve portion 11a in which the shaft member 2 is inserted on the inner periphery, and a bottom portion 11b that closes the upper end opening of the sleeve portion 11a. In the present embodiment, a sleeve portion 11a is constituted by a bearing sleeve 8 made of sintered metal and a cylindrical housing 7 having the bearing sleeve 8 fixed to the inner peripheral surface, and a thrust that closes the upper end opening of the housing 7 is formed. The bush 10 forms a bottom 11b. In the present embodiment, the lower end opening of the bearing member 11 is provided with a seal portion 9 that prevents leakage of lubricating fluid (lubricating oil in the present embodiment) to the outside. In the illustrated example, the seal portion 9 and the housing are provided. 7 is integrally formed.

軸部材2は、軸部2aと、軸部2aの上端に設けられたフランジ部2bとを備え、例えばステンレス鋼等の溶製材を切削加工することにより一体形成される。軸部2aは、円筒面状のラジアル軸受面2a1と、下方へ向けて漸次縮径したテーパ面2a2とを有する。図示例では、ラジアル軸受面2a1が軸方向に離隔した2箇所に設けられ、これらの軸方向間に、ラジアル軸受面2a1よりも小径な逃げ部2a3が設けられる。軸部2aのラジアル軸受面2a1及び逃げ部2a3は軸受スリーブ8の内周面8aと径方向に対向し、テーパ面2a2はシール部9の内周面9aと径方向に対向する。   The shaft member 2 includes a shaft portion 2a and a flange portion 2b provided at the upper end of the shaft portion 2a, and is integrally formed by cutting a molten material such as stainless steel. The shaft portion 2a has a cylindrical surface-shaped radial bearing surface 2a1 and a tapered surface 2a2 that is gradually reduced in diameter downward. In the illustrated example, the radial bearing surface 2a1 is provided at two locations spaced apart in the axial direction, and a clearance portion 2a3 having a smaller diameter than the radial bearing surface 2a1 is provided between these axial directions. The radial bearing surface 2a1 and the relief portion 2a3 of the shaft portion 2a are opposed to the inner peripheral surface 8a of the bearing sleeve 8 in the radial direction, and the tapered surface 2a2 is opposed to the inner peripheral surface 9a of the seal portion 9 in the radial direction.

軸受スリーブ8は、銅又は鉄あるいはこれらの双方を主成分とする焼結金属で略円筒状に形成される。軸受スリーブ8の内周面8aには、ラジアル軸受隙間に面するラジアル軸受面が設けられ、本実施形態では図3に示すように、内周面8aの軸方向に離隔した2箇所にラジアル軸受面A1,A2が設けられる。ラジアル軸受面A1,A2には、それぞれラジアル軸受隙間の潤滑油に動圧作用を発生させるラジアル動圧発生部が形成される。図示例では、複数のヘリングボーン形状の動圧溝8a1と、動圧溝8a1の円周方向間に設けられた丘部8a2と、ラジアル軸受面A1,A2の軸方向略中央部に設けられた円筒部8a3とで、ラジアル動圧発生部が構成される。丘部8a2と円筒部8a3とは同一円筒面上に連続して設けられる(図3にクロスハッチングで示す)。図示例では、下側のラジアル軸受面A1の動圧溝8a1及び丘部8a2が軸方向非対称に形成されており、具体的には、円筒部8a3より下側領域の軸方向寸法X1が、円筒部8a3より上側領域の軸方向寸法X2よりも大きくなっている(X1>X2)。上側のラジアル軸受面A2の動圧溝8a1及び丘部8a2は軸方向対称に形成されている。 The bearing sleeve 8 is formed in a substantially cylindrical shape with a sintered metal mainly composed of copper, iron, or both. A radial bearing surface facing the radial bearing gap is provided on the inner peripheral surface 8a of the bearing sleeve 8, and in this embodiment, as shown in FIG. 3, the radial bearing is provided at two locations separated in the axial direction of the inner peripheral surface 8a. Surfaces A1 and A2 are provided. On the radial bearing surfaces A1 and A2, radial dynamic pressure generating portions for generating a dynamic pressure action on the lubricating oil in the radial bearing gap are formed. In the illustrated example, a plurality of herringbone-shaped dynamic pressure grooves 8a1, a hill portion 8a2 provided between the circumferential directions of the dynamic pressure grooves 8a1, and a substantially axial center portion of the radial bearing surfaces A1 and A2 are provided. A radial dynamic pressure generating portion is constituted by the cylindrical portion 8a3. The hill portion 8a2 and the cylindrical portion 8a3 are continuously provided on the same cylindrical surface (indicated by cross hatching in FIG. 3). In the illustrated example, the dynamic pressure grooves 8a1 and lands 8a2 of the lower radial bearing surface A1 is formed asymmetrically in the axial direction, specifically, the axial dimension X 1 of the region below the cylindrical portion 8a3, It is larger than the axial dimension X 2 of the upper region from the cylindrical portion 8a3 (X 1> X 2) . The dynamic pressure groove 8a1 and the hill portion 8a2 of the upper radial bearing surface A2 are formed symmetrically in the axial direction.

軸受スリーブ8の上側端面8cには、スラスト軸受隙間に面するスラスト軸受面が形成される。このスラスト軸受面には、スラスト軸受隙間に満たされた潤滑油に動圧作用を発生させるスラスト動圧発生部が形成される。本実施形態では、図4に示すように、ポンプインタイプのスパイラル形状の動圧溝8c1と、動圧溝8c1の円周方向間に設けられた丘部8c2と、丘部8c2の内径端を環状に連結する平坦な環状部8c3とで、スラスト動圧発生部が構成される。丘部8c2と環状部8c3とは同一平面上に連続して設けられる(図4にクロスハッチングで示す)。図示例では、スラスト動圧発生部が、軸受スリーブ8の上側端面8cの全面、すなわち内周チャンファと外周チャンファの間の全域に形成される。   A thrust bearing surface facing the thrust bearing gap is formed on the upper end surface 8 c of the bearing sleeve 8. A thrust dynamic pressure generating portion for generating a dynamic pressure action on the lubricating oil filled in the thrust bearing gap is formed on the thrust bearing surface. In this embodiment, as shown in FIG. 4, the pump-in type spiral-shaped dynamic pressure groove 8c1, the hill part 8c2 provided between the circumferential directions of the dynamic pressure groove 8c1, and the inner diameter end of the hill part 8c2 A thrust dynamic pressure generating portion is configured by the flat annular portion 8c3 connected in an annular shape. The hill portion 8c2 and the annular portion 8c3 are continuously provided on the same plane (shown by cross-hatching in FIG. 4). In the illustrated example, the thrust dynamic pressure generating portion is formed on the entire upper end surface 8c of the bearing sleeve 8, that is, the entire region between the inner peripheral chamfer and the outer peripheral chamfer.

軸受スリーブ8の外周面8dには、軸方向全長にわたって軸方向溝8d1が形成される(図3参照)。軸方向溝8d1の本数は任意であり、本実施形態では例えば3本の軸方向溝8d1が円周方向等間隔に配される(図4参照)。   An axial groove 8d1 is formed on the outer peripheral surface 8d of the bearing sleeve 8 over the entire axial length (see FIG. 3). The number of the axial grooves 8d1 is arbitrary. In the present embodiment, for example, three axial grooves 8d1 are arranged at equal intervals in the circumferential direction (see FIG. 4).

ハウジング7は、図2に示すように、金属の機械加工や樹脂の射出成形で略円筒状に形成される。ハウジング7の内周面7aには、軸受スリーブ8の外周面8dが隙間接着、圧入、圧入接着(接着材介在下での圧入)などの手段で固定される。   As shown in FIG. 2, the housing 7 is formed in a substantially cylindrical shape by metal machining or resin injection molding. The outer peripheral surface 8d of the bearing sleeve 8 is fixed to the inner peripheral surface 7a of the housing 7 by means such as gap adhesion, press-fitting, and press-fitting adhesion (press-fitting with an adhesive interposed).

ハウジング7の下端部には、シール部9が一体に設けられる。シール部9の内周面9aは円筒面状に形成され、軸部2aの外周面に設けられたテーパ面2a2と径方向に対向し、これらの間に上方へ向けて径方向寸法を漸次縮小した断面楔形のシール空間Sが形成される。このシール空間Sの毛細管力により、潤滑油が軸受部材11の閉塞側(図中上側)に引き込まれ、これにより油の漏れ出しが防止される。本実施形態では、軸部2a側にテーパ面2a2を形成しているため、シール空間Sは遠心力シールとしても機能する。シール部9で密封された軸受部材11の内部空間に充満した潤滑油の油面は、常にシール空間Sの範囲内に維持される。すなわち、シール空間Sは、潤滑油の体積変化を吸収できる容積を有する。   A seal portion 9 is integrally provided at the lower end portion of the housing 7. The inner peripheral surface 9a of the seal portion 9 is formed in a cylindrical surface shape, and is opposed to the tapered surface 2a2 provided on the outer peripheral surface of the shaft portion 2a in the radial direction, and the radial dimension is gradually reduced upwardly between them. A wedge-shaped seal space S is formed. Due to the capillary force of the seal space S, the lubricating oil is drawn to the closed side (upper side in the figure) of the bearing member 11, thereby preventing oil leakage. In this embodiment, since the taper surface 2a2 is formed on the shaft portion 2a side, the seal space S also functions as a centrifugal force seal. The oil level of the lubricating oil filled in the internal space of the bearing member 11 sealed by the seal portion 9 is always maintained within the range of the seal space S. That is, the seal space S has a volume that can absorb the volume change of the lubricating oil.

スラストブッシュ10は、金属のプレス加工や樹脂の射出成形で略円盤状に形成され、ハウジング7の内周面7aの上端部に隙間接着、圧入、圧入接着などの手段で固定される。スラストブッシュ10の下側端面10aには、スラスト軸受隙間に面するスラスト軸受面が形成される。このスラスト軸受面には、スラスト軸受隙間に満たされた潤滑油に動圧作用を発生させるためのスラスト動圧発生部が形成される。本実施形態では、図5に示すように、ポンプインタイプのスパイラル形状の動圧溝10a1と、動圧溝10a1の円周方向間に設けられた丘部10a2と、丘部10a2の内径端を環状に連結する平坦な環状部10a3とで、スラスト動圧発生部が構成される。丘部10a2と環状部10a3とは同一平面上に連続して設けられる(図5にクロスハッチングで示す)。環状部10a3の内径側には、一段下がった逃げ部10a4が設けられる。   The thrust bush 10 is formed in a substantially disk shape by metal pressing or resin injection molding, and is fixed to the upper end portion of the inner peripheral surface 7a of the housing 7 by means such as gap bonding, press-fitting, and press-fitting adhesion. A thrust bearing surface that faces the thrust bearing gap is formed on the lower end surface 10 a of the thrust bush 10. A thrust dynamic pressure generating portion for generating a dynamic pressure action on the lubricating oil filled in the thrust bearing gap is formed on the thrust bearing surface. In the present embodiment, as shown in FIG. 5, the pump-in type spiral-shaped dynamic pressure groove 10a1, the hill portion 10a2 provided between the circumferential directions of the dynamic pressure groove 10a1, and the inner diameter end of the hill portion 10a2 A thrust dynamic pressure generating portion is configured by the flat annular portion 10a3 connected in an annular shape. The hill portion 10a2 and the annular portion 10a3 are continuously provided on the same plane (shown by cross-hatching in FIG. 5). On the inner diameter side of the annular portion 10a3, a relief portion 10a4 lowered by one step is provided.

スラストブッシュ10の下側端面10aに設けられたスラスト動圧発生部の面積(図5に示す例では、丘部10a2の外径端と環状部10a3の内径端との間の環状領域の面積)は、図4に示す軸受スリーブ8の上側端面8cに設けられたスラスト動圧発生部の面積(図4に示す例では、丘部8a2の外径端と環状部8a3の内径端との間の環状領域の面積)よりも小さく設定される。図示例では、スラストブッシュ10のスラスト動圧発生部の外径寸法r21及び内径寸法r22(図5参照)が、それぞれ、軸受スリーブ8のスラスト動圧発生部の外径寸法r11及び内径寸法r12(図4参照)よりも小さく設定される(r21<r11、r22<r12)。   The area of the thrust dynamic pressure generating portion provided on the lower end surface 10a of the thrust bush 10 (in the example shown in FIG. 5, the area of the annular region between the outer diameter end of the hill portion 10a2 and the inner diameter end of the annular portion 10a3) Is the area of the thrust dynamic pressure generating portion provided on the upper end surface 8c of the bearing sleeve 8 shown in FIG. 4 (in the example shown in FIG. 4, between the outer diameter end of the hill portion 8a2 and the inner diameter end of the annular portion 8a3). The area of the annular region). In the illustrated example, the outer diameter r21 and the inner diameter r22 (see FIG. 5) of the thrust dynamic pressure generating portion of the thrust bush 10 are respectively the outer diameter r11 and the inner diameter r12 (see FIG. 5) of the thrust dynamic pressure generating portion of the bearing sleeve 8. (Refer to FIG. 4) (r21 <r11, r22 <r12).

上記の部材を組み立てた後、軸受スリーブ8の内部気孔を含めたハウジング7の内部の空間に潤滑油を充満させることにより、図2に示す流体動圧軸受装置1が完成する。このとき、油面はシール空間Sの内部に保持される。   After assembling the above members, the fluid inside the housing 7 including the internal pores of the bearing sleeve 8 is filled with lubricating oil, whereby the fluid dynamic bearing device 1 shown in FIG. 2 is completed. At this time, the oil level is held inside the seal space S.

軸部材2が回転すると、軸受スリーブ8の内周面8aのラジアル軸受面A1,A2と軸部2aのラジアル軸受面2a1との間にラジアル軸受隙間が形成される。そして、ラジアル軸受面A1,A2に形成されたラジアル動圧発生部(動圧溝8a1)により、ラジアル軸受隙間に形成された油膜の圧力が高められ、この圧力(動圧作用)により軸部材2をラジアル方向に回転自在に非接触支持するラジアル軸受部R1,R2が構成される。   When the shaft member 2 rotates, a radial bearing gap is formed between the radial bearing surfaces A1 and A2 of the inner peripheral surface 8a of the bearing sleeve 8 and the radial bearing surface 2a1 of the shaft portion 2a. The pressure of the oil film formed in the radial bearing gap is increased by the radial dynamic pressure generating portion (dynamic pressure groove 8a1) formed on the radial bearing surfaces A1 and A2, and the shaft member 2 is increased by this pressure (dynamic pressure action). The radial bearing portions R1 and R2 are configured to support non-contacting in a radial direction.

これと同時に、フランジ部2bの下側端面2b1と軸受スリーブ8の上側端面8cとの間にスラスト軸受隙間が形成され、このスラスト軸受隙間の油膜の圧力が軸受スリーブ8の上側端面8cのスラスト動圧発生部により高められ、この圧力(動圧作用)により軸部材2を浮上支持する第1のスラスト軸受部T1が構成される。さらに、フランジ部2bの上側端面2b2とスラストブッシュ10の下側端面10aとの間にスラスト軸受隙間が形成され、このスラスト軸受隙間の油膜の圧力がスラストブッシュ10の下側端面10aのスラスト動圧発生部により高められ、この圧力(動圧作用)により軸部材2を下向きに支持する第2のスラスト軸受部T2が構成される。   At the same time, a thrust bearing gap is formed between the lower end face 2b1 of the flange portion 2b and the upper end face 8c of the bearing sleeve 8, and the pressure of the oil film in the thrust bearing gap causes the thrust movement of the upper end face 8c of the bearing sleeve 8. A first thrust bearing portion T1 that is raised by the pressure generating portion and levitates and supports the shaft member 2 is configured by this pressure (dynamic pressure action). Further, a thrust bearing gap is formed between the upper end face 2b2 of the flange portion 2b and the lower end face 10a of the thrust bush 10, and the pressure of the oil film in this thrust bearing gap is the thrust dynamic pressure of the lower end face 10a of the thrust bush 10. A second thrust bearing portion T2 that is raised by the generating portion and supports the shaft member 2 downward is formed by this pressure (dynamic pressure action).

また、軸部材2が回転すると、ファン3aが回転して上向きの気流を発生させ(図1参照)、この反作用によりロータ3及び軸部材2が軸方向下向きの推力Fを受ける(図2参照)。軸部材2は、10000r/min以上、速いときは30000r/min以上(最大40000r/min)の高速で回転するため、ファン3aによる風量も大きくなり、これにより下向きの推力Fも大きくなる。従って、軸部材2を下向きに押し込む力(推力F及び第2スラスト軸受部T2の支持力F2)が、軸部材2を上向きに押し込む力(第1スラスト軸受部T2の支持力F1)よりも大きくなると、フランジ部2bの下側端面2b1が高速回転しながら軸受スリーブ8の上側端面8cと接触する恐れがある。   When the shaft member 2 rotates, the fan 3a rotates to generate an upward airflow (see FIG. 1), and the rotor 3 and the shaft member 2 receive a downward thrust F in the axial direction by this reaction (see FIG. 2). . Since the shaft member 2 rotates at a high speed of 10,000 r / min or more, and at a high speed of 30000 r / min or more (maximum 40000 r / min) when the speed is high, the air volume by the fan 3a is increased, and thus the downward thrust F is also increased. Therefore, the force that pushes the shaft member 2 downward (the thrust F and the support force F2 of the second thrust bearing portion T2) is larger than the force that pushes the shaft member 2 upward (the support force F1 of the first thrust bearing portion T2). Then, the lower end surface 2b1 of the flange portion 2b may come into contact with the upper end surface 8c of the bearing sleeve 8 while rotating at high speed.

本発明では、第2のスラスト軸受部T2の支持力F2を敢えて小さくすることで、軸部材2を下向きに押し付ける力を低減し、軸部材2のフランジ部2bと軸受スリーブ8の上側端面8cとの接触を防止している。具体的には、第2のスラスト軸受部T2の支持力F2(図2参照)を、第1のスラスト軸受部T1の支持力F1よりも小さく設定している(F1>F2)。本実施形態では、スラストブッシュ10に形成されたスラスト動圧発生部(動圧溝10a1、丘部10a2、及び環状部10a3、図4参照)の面積を、軸受スリーブ8に形成されたスラスト動圧発生部(動圧溝8c1、丘部0c2、及び環状部8c3、図5参照)の面積よりも小さくしている。さらに、本実施形態では、軸受スリーブ8の上側端面8c及びスラストブッシュ10の下側端面10aに形成されるスラスト動圧発生部が何れもポンプインタイプであり、且つ、内径端に環状部8c3,10a3が設けられるため、両スラスト軸受部T1,T2のスラスト軸受隙間に形成された油膜の圧力は環状部8c3,10a3で最大となる。従って、図示のように、第2スラスト軸受部T2の支持力F2が最大となる環状部10a3の径を、第1スラスト軸受部T1の支持力F1が最大となる環状部8c3の径よりも小さくすることで、上述のスラスト動圧発生部の面積の差と相俟って、第2のスラスト軸受部T2の支持力F2が第1のスラスト軸受部T1の支持力F1よりも小さくなる。   In the present invention, the support force F2 of the second thrust bearing portion T2 is deliberately reduced to reduce the force pressing the shaft member 2 downward, and the flange portion 2b of the shaft member 2 and the upper end surface 8c of the bearing sleeve 8 To prevent contact. Specifically, the support force F2 (see FIG. 2) of the second thrust bearing portion T2 is set smaller than the support force F1 of the first thrust bearing portion T1 (F1> F2). In this embodiment, the area of the thrust dynamic pressure generating portion (dynamic pressure groove 10a1, hill portion 10a2, and annular portion 10a3, see FIG. 4) formed in the thrust bush 10 is the thrust dynamic pressure formed in the bearing sleeve 8. It is made smaller than the area of the generating part (dynamic pressure groove 8c1, hill part 0c2, and annular part 8c3, see FIG. 5). Furthermore, in this embodiment, the thrust dynamic pressure generating portions formed on the upper end surface 8c of the bearing sleeve 8 and the lower end surface 10a of the thrust bush 10 are both pump-in types, and the annular portion 8c3 is formed at the inner diameter end. Since 10a3 is provided, the pressure of the oil film formed in the thrust bearing gap between the thrust bearing portions T1 and T2 becomes maximum at the annular portions 8c3 and 10a3. Therefore, as shown in the drawing, the diameter of the annular portion 10a3 that maximizes the support force F2 of the second thrust bearing portion T2 is smaller than the diameter of the annular portion 8c3 that maximizes the support force F1 of the first thrust bearing portion T1. By doing so, the supporting force F2 of the second thrust bearing portion T2 becomes smaller than the supporting force F1 of the first thrust bearing portion T1 in combination with the difference in the area of the thrust dynamic pressure generating portion.

図2に示すように、軸受スリーブ8は内孔を有する円筒状であるため、軸受スリーブ8の上側端面8cの面積は、内孔の分だけスラストブッシュ10の下側端面10aの面積よりも小さくなる。このため、スラストブッシュ10の下側端面10aの全面、及び、軸受スリーブ8の上側端面8cの全面にそれぞれスラスト動圧発生部を形成すると、前者の面積が後者の面積よりも大きくなる。本発明では、軸部材2の高速回転時に推力Fが加わったときのスラスト方向の支持力のバランスを考慮し、スラストブッシュ10の下側端面10aに形成されるスラスト動圧発生部の面積を敢えて小さくし、第2のスラスト軸受部T2による支持力F2が第1のスラスト軸受部T1の支持力F1よりも小さくなるようにした。   As shown in FIG. 2, since the bearing sleeve 8 has a cylindrical shape having an inner hole, the area of the upper end face 8c of the bearing sleeve 8 is smaller than the area of the lower end face 10a of the thrust bush 10 by the amount of the inner hole. Become. For this reason, when the thrust dynamic pressure generating portion is formed on the entire lower end surface 10a of the thrust bush 10 and the entire upper end surface 8c of the bearing sleeve 8, the former area becomes larger than the latter area. In the present invention, the thrust dynamic pressure generating area formed on the lower end face 10a of the thrust bush 10 is deliberately taken into consideration in consideration of the balance of the thrust support force when the thrust force F is applied when the shaft member 2 rotates at a high speed. The supporting force F2 by the second thrust bearing portion T2 is made smaller than the supporting force F1 of the first thrust bearing portion T1.

また、上記のように、ラジアル動圧発生部及びスラスト動圧発生部により軸受部材11の内部の潤滑油を流動させることにより、軸受部材11の内部に局部的な負圧が発生する恐れがある。本実施形態では、図2に示すように、軸受スリーブ8の外周面8dに軸方向溝8d1を形成することにより、フランジ部2bの外径側の空間Q1とシール空間Sとを連通して、この空間Q1を常に大気圧に維持している。そして、軸受スリーブ8の上側端面8cに形成されたポンプインタイプの動圧溝8c1により、フランジ部2bの外径側の空間Q1から潤滑油が内径側に押し込まれ、これにより軸受スリーブ8の上側端面8cの内周チャンファが面する空間Q2における負圧が防止される。また、スラストブッシュ10の下側端面10aに形成されたポンプインタイプの動圧溝10a1により、フランジ部2bの外径側の空間Q1から潤滑油が内径側に押し込まれ、これによりスラストブッシュ10の逃げ部10a4が面する空間Q3における負圧が防止される。さらに、図3に示すように、軸受スリーブ8の内周面8aに形成された下側のラジアル軸受面A1のラジアル動圧発生部(動圧溝8a1)が軸方向非対称な形状であるため、第1のラジアル軸受部R1のラジアル軸受隙間に満たされた潤滑油が上方に押し込まれ、軸部2aの逃げ部2a3が面する空間Q4における負圧の発生が防止される。   In addition, as described above, when the lubricating oil inside the bearing member 11 is caused to flow by the radial dynamic pressure generating portion and the thrust dynamic pressure generating portion, local negative pressure may be generated inside the bearing member 11. . In the present embodiment, as shown in FIG. 2, by forming an axial groove 8d1 on the outer peripheral surface 8d of the bearing sleeve 8, the space Q1 on the outer diameter side of the flange portion 2b and the seal space S are communicated, This space Q1 is always maintained at atmospheric pressure. Then, the pump-in type dynamic pressure groove 8c1 formed on the upper end face 8c of the bearing sleeve 8 pushes the lubricating oil into the inner diameter side from the space Q1 on the outer diameter side of the flange portion 2b. Negative pressure in the space Q2 facing the inner peripheral chamfer of the end face 8c is prevented. Also, the pump-in type dynamic pressure groove 10a1 formed on the lower end face 10a of the thrust bush 10 pushes the lubricating oil into the inner diameter side from the space Q1 on the outer diameter side of the flange portion 2b. Negative pressure in the space Q3 facing the escape portion 10a4 is prevented. Further, as shown in FIG. 3, the radial dynamic pressure generating portion (dynamic pressure groove 8a1) of the lower radial bearing surface A1 formed on the inner peripheral surface 8a of the bearing sleeve 8 has an axially asymmetric shape. Lubricating oil filled in the radial bearing gap of the first radial bearing portion R1 is pushed upward, and generation of negative pressure in the space Q4 facing the escape portion 2a3 of the shaft portion 2a is prevented.

このとき、下側のラジアル軸受面A1のラジアル動圧発生部によりラジアル軸受隙間の潤滑油が上側に押し込まれ、これにより軸部材2が上向きの支持力F3を受ける(図2参照)。軸部材2が高速で回転すると、この上向きの支持力F3が大きくなって下向きの推力Fに対抗し、軸部材2のフランジ部2bの下側端面2b1と軸受スリーブ8の上側端面8cとの接触をより確実に防止できる。   At this time, the lubricating oil in the radial bearing gap is pushed upward by the radial dynamic pressure generating portion of the lower radial bearing surface A1, whereby the shaft member 2 receives the upward support force F3 (see FIG. 2). When the shaft member 2 rotates at a high speed, the upward support force F3 increases to counter the downward thrust F, and the lower end surface 2b1 of the flange portion 2b of the shaft member 2 contacts the upper end surface 8c of the bearing sleeve 8. Can be prevented more reliably.

また、軸部材2の停止時には、フランジ部2bの下側端面2b1と軸受スリーブ8の上側端面8cとが当接し、第1スラスト軸受部T1のスラスト軸受隙間が0となる。この状態からモータを起動して軸部材2を回転させると、第1スラスト軸受部T1の支持力F1により軸部材2が浮上される。このとき、相対的に支持力の大きい第1スラスト軸受部T1によりモータ起動時の軸部材2の浮上を受け持つことにより、軸部材2を早期に浮上させてフランジ部2bと軸受スリーブ8との接触摺動を極力防止することができる。   Further, when the shaft member 2 is stopped, the lower end surface 2b1 of the flange portion 2b and the upper end surface 8c of the bearing sleeve 8 come into contact with each other, and the thrust bearing gap of the first thrust bearing portion T1 becomes zero. When the motor is started from this state and the shaft member 2 is rotated, the shaft member 2 is levitated by the supporting force F1 of the first thrust bearing portion T1. At this time, the shaft member 2 is levitated at an early stage by the first thrust bearing portion T1 having a relatively large supporting force, so that the shaft member 2 is levitated at an early stage to contact the flange portion 2b and the bearing sleeve 8. Sliding can be prevented as much as possible.

本発明は上記の実施形態に限られない。以下、本発明の他の実施形態を説明するが、上記実施形態と同様の機能を有する箇所には、同一の符号を付して重複説明を省略する。   The present invention is not limited to the above embodiment. Hereinafter, although other embodiment of this invention is described, the same code | symbol is attached | subjected to the location which has the function similar to the said embodiment, and duplication description is abbreviate | omitted.

上記の実施形態では、図1に示す軸流ファンモータを、軸受部材11の開口側を下側、閉塞側を上側として使用した場合を示したが、これに限らず、この軸流ファンモータを上下反転させて使用してもよい。この場合、ロータ3の重力により、軸部材2に下向きの力、すなわち、回転に伴って軸部材2に加わる上向きの推力Fと反対向きの力が加わるため、フランジ部2bを軸受スリーブ8に押し付ける向きの力が低減される。   In the above embodiment, the axial flow fan motor shown in FIG. 1 is used with the opening side of the bearing member 11 as the lower side and the closing side as the upper side. However, the present invention is not limited to this. You may use it upside down. In this case, due to the gravity of the rotor 3, a downward force is applied to the shaft member 2, that is, a force opposite to the upward thrust F applied to the shaft member 2 as it rotates, so that the flange portion 2 b is pressed against the bearing sleeve 8. The direction force is reduced.

また、上記の実施形態では、ハウジング7とシール部9が一体形成されているが、これに限らず、例えば図6に示すように、ハウジング7とシール部9とを別体に形成してもよい。また、上記の実施形態では、ハウジング7とスラストブッシュ10が別体に形成されているが、これに限らず、例えば図6に示すように、ハウジング7とスラストブッシュ10を一体形成してもよい。   In the above embodiment, the housing 7 and the seal portion 9 are integrally formed. However, the present invention is not limited to this. For example, as shown in FIG. 6, the housing 7 and the seal portion 9 may be formed separately. Good. In the above embodiment, the housing 7 and the thrust bush 10 are formed separately. However, the present invention is not limited to this. For example, as shown in FIG. 6, the housing 7 and the thrust bush 10 may be integrally formed. .

また、上記の実施形態では、軸部2aの外周面のテーパ面2a2とシール部9の円筒面状内周面9aとの間に断面楔形のシール空間Sを形成しているが、これに限らず、例えば図7に示すように、シール部9の内周面9aを下方に向けて漸次拡径したテーパ面とすると共に、これに対向する軸部2aの外周面を円筒面とし、これらの間に断面楔形のシール空間Sを形成してもよい。   Moreover, in said embodiment, although the wedge-shaped seal space S is formed between the taper surface 2a2 of the outer peripheral surface of the axial part 2a, and the cylindrical inner peripheral surface 9a of the seal part 9, it is not restricted to this. For example, as shown in FIG. 7, the inner peripheral surface 9a of the seal portion 9 is a tapered surface that gradually increases in diameter downward, and the outer peripheral surface of the shaft portion 2a facing this is a cylindrical surface. A seal space S having a wedge-shaped cross section may be formed therebetween.

また、上記の実施形態では、軸部2aのラジアル軸受面2a1に形成されるラジアル動圧発生部としてヘリングボーン形状の動圧溝8a1を示したが、これに限らず、例えばスパイラル形状の動圧溝や、軸方向溝、あるいは多円弧面で、ラジアル動圧発生部を構成してもよい。また、上記の実施形態では、軸受スリーブ8の内周面8aの軸方向に離隔した2箇所にラジアル動圧発生部を形成した場合を示したが、これに限らず、ラジアル動圧発生部を1箇所のみに形成したり、2箇所のラジアル動圧発生部を軸方向で連続させたりしてもよい。また、上記の実施形態では、上側のラジアル軸受面A1のラジアル動圧発生部を軸方向非対称な形状とし、ラジアル軸受隙間の潤滑油を上向きに押し込む場合を示したが、このような潤滑油の押し込みが必要なければ、上側のラジアル軸受面A1のラジアル動圧発生部を軸方向対称な形状としてもよい。   Further, in the above embodiment, the herringbone-shaped dynamic pressure groove 8a1 is shown as the radial dynamic pressure generating portion formed on the radial bearing surface 2a1 of the shaft portion 2a. The radial dynamic pressure generating portion may be constituted by a groove, an axial groove, or a multi-arc surface. Further, in the above-described embodiment, the case where the radial dynamic pressure generating portions are formed at two locations separated in the axial direction of the inner peripheral surface 8a of the bearing sleeve 8 is shown, but not limited thereto, the radial dynamic pressure generating portions are It may be formed only at one place, or two radial dynamic pressure generating portions may be continued in the axial direction. In the above embodiment, the radial dynamic pressure generating portion of the upper radial bearing surface A1 has an asymmetric shape in the axial direction, and the lubricating oil in the radial bearing gap is pushed upward. If pushing is not necessary, the radial dynamic pressure generating portion of the upper radial bearing surface A1 may have a shape that is symmetrical in the axial direction.

また、上記の実施形態では、フランジ部2bに形成されるスラスト動圧発生部としてスパイラル形状の動圧溝を示したが、これに限らず、例えばヘリングボーン形状の動圧溝を採用してもよい。   In the above embodiment, the spiral dynamic pressure groove is shown as the thrust dynamic pressure generating portion formed in the flange portion 2b. However, the present invention is not limited to this, and for example, a herringbone-shaped dynamic pressure groove may be adopted. Good.

また、上記の実施形態では、軸受スリーブ8の内周面8a、上側端面8c、及び、スラストブッシュ10の下側端面10aに動圧発生部が形成されているが、これらの面と軸受隙間を介して対向する軸部2aの外周面(ラジアル軸受面2a1)、フランジ部2bの下側端面2b1及び上側端面2b2に動圧発生部を形成してもよい。   Further, in the above embodiment, the dynamic pressure generating portion is formed on the inner peripheral surface 8a, the upper end surface 8c, and the lower end surface 10a of the thrust bush 10 of the bearing sleeve 8. A dynamic pressure generating portion may be formed on the outer peripheral surface (radial bearing surface 2a1) of the shaft portion 2a, the lower end surface 2b1 and the upper end surface 2b2 of the flange portion 2b.

また、上記の実施形態では、潤滑流体が潤滑油である場合を示しているが、これに限らず、例えば磁性流体や空気等の流体を使用することも可能である。   In the above embodiment, the lubricating fluid is a lubricating oil. However, the present invention is not limited to this. For example, a fluid such as a magnetic fluid or air can be used.

また、上記の実施形態では軸部材2を回転させているが、これに限らず、軸部材2を固定し、軸受部材11を回転させる軸固定タイプとしてもよい。この場合、軸受部材11にロータ3(ファン3a)が取り付けられる。   In the above embodiment, the shaft member 2 is rotated. However, the present invention is not limited to this, and the shaft member 2 may be fixed and the bearing member 11 may be rotated. In this case, the rotor 3 (fan 3a) is attached to the bearing member 11.

1 流体動圧軸受装置
2 軸部材
2a 軸部
2b フランジ部
3 ロータ
4 ステータコイル
5 マグネット
6 ケーシング
7 ハウジング
8 軸受スリーブ
9 シール部
10 スラストブッシュ
11 軸受部材
11a スリーブ部
11b 底部
A1,A2 ラジアル軸受面
R1,R2 ラジアル軸受部
T1,T2 スラスト軸受部
S シール空間
F 推力
F1 第1スラスト軸受部による支持力
F2 第2スラスト軸受部による支持力
DESCRIPTION OF SYMBOLS 1 Fluid dynamic pressure bearing apparatus 2 Shaft member 2a Shaft part 2b Flange part 3 Rotor 4 Stator coil 5 Magnet 6 Casing 7 Housing 8 Bearing sleeve 9 Sealing part 10 Thrust bush 11 Bearing member 11a Sleeve part 11b Bottom part A1, A2 Radial bearing surface R1 , R2 Radial bearing portion T1, T2 Thrust bearing portion S Seal space F Thrust F1 Support force F1 by the first thrust bearing portion Support force by the second thrust bearing portion

Claims (6)

軸部及びフランジ部を有する軸部材と、内周に前記軸部が挿入されたスリーブ部、及び、前記スリーブ部の一端開口部を閉塞する底部を有する軸受部材と、前記軸部の外周面と前記スリーブ部の内周面との間のラジアル軸受隙間に生じる潤滑流体の動圧作用で前記軸部材をラジアル方向に相対支持するラジアル軸受部と、前記スリーブ部の一端面と前記フランジ部の一端面との間のスラスト軸受隙間、及び、前記底部の端面と前記フランジ部の他端面との間のスラスト軸受隙間に生じる潤滑流体の動圧作用で前記軸部材をスラスト方向に相対支持する2つのスラスト軸受部とを備え、前記軸部材と前記軸受部材が10000r/min以上で相対回転する流体動圧軸受装置において、
前記軸部材が、相対回転に伴って軸方向一方に向けて相対的な推力を受けるものであって、前記2つのスラスト軸受部のうち、前記軸部材を軸方向一方に向けて相対的に押し込む一方のスラスト軸受部の支持力を、前記軸部材を軸方向他方に向けて相対的に押し込む他方のスラスト軸受部の支持力よりも小さくしたことを特徴とする流体動圧軸受装置。
A shaft member having a shaft portion and a flange portion; a sleeve portion in which the shaft portion is inserted into an inner periphery; a bearing member having a bottom portion that closes one end opening of the sleeve portion; and an outer peripheral surface of the shaft portion. A radial bearing portion that relatively supports the shaft member in a radial direction by a dynamic pressure action of a lubricating fluid generated in a radial bearing gap between the inner peripheral surface of the sleeve portion, one end surface of the sleeve portion, and one of the flange portions Two thrust bearing gaps are supported relative to each other in the thrust direction by the dynamic pressure action of the lubricating fluid generated in the thrust bearing gap between the end face and the thrust bearing gap between the end face of the bottom part and the other end face of the flange part. A fluid dynamic bearing device comprising a thrust bearing portion, wherein the shaft member and the bearing member relatively rotate at 10,000 r / min or more;
The shaft member receives a relative thrust toward one axial direction with relative rotation, and relatively pushes the shaft member toward one axial direction of the two thrust bearing portions. A fluid dynamic bearing device characterized in that the supporting force of one thrust bearing portion is smaller than the supporting force of the other thrust bearing portion that relatively pushes the shaft member toward the other axial direction.
前記2つのスラスト軸受部に、前記スラスト軸受隙間に満たされた潤滑流体に動圧作用を発生させるスラスト動圧発生部を設け、前記一方のスラスト軸受部のスラスト動圧発生部の面積を、前記他方のスラスト軸受部のスラスト動圧発生部の面積よりも小さくした請求項1記載の流体動圧軸受装置。   The two thrust bearing portions are provided with a thrust dynamic pressure generating portion for generating a dynamic pressure action on the lubricating fluid filled in the thrust bearing gap, and the area of the thrust dynamic pressure generating portion of the one thrust bearing portion is The fluid dynamic bearing device according to claim 1, wherein the thrust dynamic pressure bearing device is smaller than an area of the thrust dynamic pressure generating portion of the other thrust bearing portion. 前記推力が、前記スリーブ部の一端面と前記フランジ部の一端面とを接近させる方向に生じ、前記一方のスラスト軸受部のスラスト軸受隙間が、前記底部の端面と前記フランジ部の他端面との間に形成された請求項1又は2記載の流体動圧軸受装置。   The thrust is generated in a direction in which one end surface of the sleeve portion and one end surface of the flange portion are brought close to each other, and a thrust bearing gap of the one thrust bearing portion is formed between the end surface of the bottom portion and the other end surface of the flange portion. The fluid dynamic bearing device according to claim 1, wherein the fluid dynamic bearing device is formed therebetween. 前記ラジアル軸受部に、前記ラジアル軸受隙間に満たされた潤滑流体に動圧作用を発生させるラジアル動圧発生部を設け、該ラジアル動圧発生部が、潤滑流体を軸方向他方に向けて押し込むものである請求項1〜3の何れかに記載の流体動圧軸受装置。   A radial dynamic pressure generating portion that generates a dynamic pressure action on the lubricating fluid filled in the radial bearing gap is provided in the radial bearing portion, and the radial dynamic pressure generating portion pushes the lubricating fluid toward the other axial direction. The fluid dynamic bearing device according to claim 1. 軸部材の停止時に、前記他方のスラスト軸受部のスラスト軸受隙間が0となる請求項1〜4の何れかに記載の流体動圧軸受装置。   The fluid dynamic bearing device according to any one of claims 1 to 4, wherein a thrust bearing gap of the other thrust bearing portion becomes 0 when the shaft member is stopped. 請求項1〜5の何れかに記載の流体動圧軸受装置を有し、軸方向に気流を発生させる軸流ファンモータ。   An axial fan motor having the fluid dynamic pressure bearing device according to claim 1 and generating an air flow in an axial direction.
JP2011062311A 2011-03-22 2011-03-22 Axial fan motor Expired - Fee Related JP5687104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011062311A JP5687104B2 (en) 2011-03-22 2011-03-22 Axial fan motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011062311A JP5687104B2 (en) 2011-03-22 2011-03-22 Axial fan motor

Publications (2)

Publication Number Publication Date
JP2012197858A true JP2012197858A (en) 2012-10-18
JP5687104B2 JP5687104B2 (en) 2015-03-18

Family

ID=47180300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011062311A Expired - Fee Related JP5687104B2 (en) 2011-03-22 2011-03-22 Axial fan motor

Country Status (1)

Country Link
JP (1) JP5687104B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03163213A (en) * 1989-11-17 1991-07-15 Matsushita Electric Ind Co Ltd Dynamic pressure type air bearing device
JP2005257069A (en) * 2004-01-28 2005-09-22 Minebea Co Ltd Fluid dynamic pressure bearing system
JP2007205491A (en) * 2006-02-02 2007-08-16 Ntn Corp Bearing device for fan motor
JP2007255594A (en) * 2006-03-23 2007-10-04 Ntn Corp Dynamic pressure bearing device
JP2009264271A (en) * 2008-04-25 2009-11-12 Toyota Industries Corp Thrust bearing mechanism in turbocharger

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03163213A (en) * 1989-11-17 1991-07-15 Matsushita Electric Ind Co Ltd Dynamic pressure type air bearing device
JP2005257069A (en) * 2004-01-28 2005-09-22 Minebea Co Ltd Fluid dynamic pressure bearing system
JP2007205491A (en) * 2006-02-02 2007-08-16 Ntn Corp Bearing device for fan motor
JP2007255594A (en) * 2006-03-23 2007-10-04 Ntn Corp Dynamic pressure bearing device
JP2009264271A (en) * 2008-04-25 2009-11-12 Toyota Industries Corp Thrust bearing mechanism in turbocharger

Also Published As

Publication number Publication date
JP5687104B2 (en) 2015-03-18

Similar Documents

Publication Publication Date Title
US8128289B2 (en) Fluid dynamic bearing device
KR20100089073A (en) Fluid dynamic-pressure bearing device
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
WO2012144288A1 (en) Fluid dynamic pressure bearing device
JP2006112614A (en) Dynamic pressure bearing device
JP5687104B2 (en) Axial fan motor
JP5726687B2 (en) Fluid dynamic bearing device
JP2012247052A (en) Fluid dynamic pressure bearing device
JP5784777B2 (en) Fluid dynamic bearing device
JP5133156B2 (en) Fluid dynamic bearing device
JP4685675B2 (en) Hydrodynamic bearing device
JP5122205B2 (en) Method for assembling hydrodynamic bearing device
JP2004197889A (en) Dynamic-pressure bearing device
JP5231095B2 (en) Hydrodynamic bearing device
JP2007100834A (en) Hydrodynamic bearing device
JP2009103179A (en) Fluid bearing device
JP2004183867A (en) Dynamic pressure fluid bearing device, and motor provided with the same
JP2011112075A (en) Fluid dynamic pressure bearing device
JP5247987B2 (en) Hydrodynamic bearing device
JP5602535B2 (en) Fluid dynamic bearing device
JP2011247281A (en) Bearing member and fluid dynamic bearing device using the same
JP2006177563A (en) Dynamic pressure type bearing unit
JP2013044395A (en) Fluid dynamic-pressure bearing device
JP2009115132A (en) Dynamic pressure bearing device
WO2012172956A1 (en) Fluid dynamic bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150121

R150 Certificate of patent or registration of utility model

Ref document number: 5687104

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees