JP2007225062A - Fluid bearing device - Google Patents

Fluid bearing device Download PDF

Info

Publication number
JP2007225062A
JP2007225062A JP2006048894A JP2006048894A JP2007225062A JP 2007225062 A JP2007225062 A JP 2007225062A JP 2006048894 A JP2006048894 A JP 2006048894A JP 2006048894 A JP2006048894 A JP 2006048894A JP 2007225062 A JP2007225062 A JP 2007225062A
Authority
JP
Japan
Prior art keywords
bearing
seal
peripheral surface
radial
bearing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006048894A
Other languages
Japanese (ja)
Other versions
JP4762757B2 (en
Inventor
Isao Komori
功 古森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2006048894A priority Critical patent/JP4762757B2/en
Publication of JP2007225062A publication Critical patent/JP2007225062A/en
Application granted granted Critical
Publication of JP4762757B2 publication Critical patent/JP4762757B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluid bearing device capable of being reduced in size and thickness, and further having lubricating oil surely prevented from leaking. <P>SOLUTION: A sealing space is formed in the outer diameter region of a radial bearing face, and the sealing space and the radial bearing face are superposed in the radial direction. Thereby, the space in the radial direction required by the bearing device is prevented from increasing in volume by providing the sealing space, the fluid bearing device can reduced in size and thickness with keeping the required volume of the sealing space. In addition, because the sealing space is formed only in one site, leakage of the lubricating oil filled in the interior of the bearing is surely avoided as compared with the case of forming the sealing space in a plurality of sites. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、軸受隙間に形成される潤滑膜で軸部材を回転可能に支持する流体軸受装置に関するものである。   The present invention relates to a hydrodynamic bearing device in which a shaft member is rotatably supported by a lubricating film formed in a bearing gap.

流体軸受装置は、その優れた回転精度、高速回転性、静粛性等を活かして、例えば、HDD等の磁気ディスク駆動装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク駆動装置、MD、MO等の光磁気ディスク駆動装置等のスピンドルモータ、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、プロジェクタのカラーホイールモータ、あるいは情報機器等の冷却ファンに用いられるファンモータなどの小型モータ用として使用されている。   The hydrodynamic bearing device takes advantage of its excellent rotational accuracy, high-speed rotational performance, quietness, etc., for example, magnetic disk drive devices such as HDD, optical disks such as CD-ROM, CD-R / RW, DVD-ROM / RAM, etc. Compact motors such as drive motors, spindle motors for magneto-optical disk drive devices such as MD and MO, polygon scanner motors for laser beam printers (LBP), color wheel motors for projectors, and fan motors used for cooling fans for information equipment, etc. Used for motors.

例えば特許文献1に示されている流体軸受装置は、軸部材と、内周に軸部材が挿入された軸受部材(軸受スリーブ)と、内周に軸受部材が固定され、一端が開口したハウジングと、ハウジングの開口部に設けられたシール部材とを備える。軸部材が回転すると、軸受部材の内周面に形成されたラジアル軸受面と、軸部材の外周面との間のラジアル軸受隙間に潤滑膜が形成され、これにより軸部材が回転自在に支持される。これと同時に、シール部材の内周面と軸部材の外周面との間にシール空間が形成され、軸受内部に充填された潤滑油の漏れ出しを防止している。このとき、ラジアル軸受面とシール空間とは軸方向に並べて配置される。なお、この流体軸受装置の軸受部材のラジアル軸受面には、動圧発生部として動圧溝が形成されているが、「軸受面」とは軸受隙間と面する部分のことを言い、この面に動圧発生部が形成されるか否かを問わないこととする(以下同様)。
特開2003−172336号公報 特開2005−155912号公報
For example, a hydrodynamic bearing device disclosed in Patent Document 1 includes a shaft member, a bearing member (bearing sleeve) in which the shaft member is inserted on the inner periphery, a housing in which the bearing member is fixed on the inner periphery, and one end is open. And a seal member provided at the opening of the housing. When the shaft member rotates, a lubricating film is formed in the radial bearing gap between the radial bearing surface formed on the inner peripheral surface of the bearing member and the outer peripheral surface of the shaft member, and thereby the shaft member is rotatably supported. The At the same time, a seal space is formed between the inner peripheral surface of the seal member and the outer peripheral surface of the shaft member to prevent leakage of the lubricating oil filled in the bearing. At this time, the radial bearing surface and the seal space are arranged side by side in the axial direction. A dynamic pressure groove is formed as a dynamic pressure generating portion on the radial bearing surface of the bearing member of this fluid dynamic bearing device. The “bearing surface” means a portion facing the bearing gap, and this surface It does not matter whether or not the dynamic pressure generating portion is formed (the same applies hereinafter).
JP 2003-172336 A JP 2005-155912 A

ところで、近年では小型の情報機器に対する需要が高まっており、それに応じて、HDDの駆動装置等、ひいてはこれらに使用される軸受装置に対しても、小型化、薄型化が求められている。しかし、上記のような軸受装置では、シール空間は、潤滑油の温度変化に伴う体積変化を許容する容積を要するため、一定の軸方向寸法を必要とする。また、ラジアル軸受面は、軸受剛性を高めるため、軸方向でできるだけスパンを大きくして設けることが望ましい。このようなシール空間およびラジアル軸受面を軸方向に並べて配置することにより、軸受装置の軸方向の所要スペースが嵩む。   Incidentally, in recent years, the demand for small information devices has increased, and accordingly, the drive devices for HDDs and the like, as well as the bearing devices used therefor, have been required to be small and thin. However, in the bearing device as described above, the seal space requires a volume that allows a volume change accompanying a change in the temperature of the lubricating oil, and therefore requires a certain axial dimension. Further, it is desirable that the radial bearing surface be provided with a span as large as possible in the axial direction in order to increase bearing rigidity. By arranging the seal space and the radial bearing surface side by side in the axial direction, the required space in the axial direction of the bearing device is increased.

これに対し、例えば特許文献2には、スリーブのハウジング開口側端部に、ラジアル軸受隙間と軸方向に並べて設けられた第一のテーパシール部と、スリーブ側面に設けられた第二のテーパシール部を備えた軸受装置が示されている。この軸受装置では、熱膨張等による潤滑液の体積変化は、スリーブ側面に設けられた第二のテーパシール部で吸収するため、ラジアル軸受隙間と軸方向に並べて設けられた第一のテーパシール部は従来のシール部材のような軸方向寸法を必要とせず、軸受装置の軸方向寸法を縮小することができる。   On the other hand, for example, Patent Document 2 discloses that a first taper seal portion provided in the axial direction of the radial bearing gap and a second taper seal provided on the sleeve side surface are provided at the housing opening side end portion of the sleeve. A bearing device with a section is shown. In this bearing device, since the volume change of the lubricating liquid due to thermal expansion or the like is absorbed by the second taper seal portion provided on the side surface of the sleeve, the first taper seal portion provided side by side with the radial bearing gap in the axial direction. Does not require an axial dimension like a conventional seal member, and the axial dimension of the bearing device can be reduced.

しかし、特許文献2の軸受装置では、2箇所のテーパシール部で軸受内部の潤滑油が大気に開口するため、テーパシール部が一箇所にのみ設けられている特許文献1の軸受装置に比べ、衝撃荷重等により潤滑油が軸受装置の外部へ漏れ出す危険性が高い。潤滑油の漏れ出しは、周辺環境の汚染や、潤滑油不足による潤滑不良を招く恐れがある。   However, in the bearing device of Patent Document 2, since the lubricating oil inside the bearing is opened to the atmosphere at the two taper seal portions, compared to the bearing device of Patent Document 1 in which the taper seal portion is provided only at one location, There is a high risk of the lubricant leaking out of the bearing device due to impact load or the like. Leakage of lubricating oil may cause contamination of the surrounding environment and poor lubrication due to lack of lubricating oil.

本発明の課題は、小型化、薄型化が可能であるとともに、潤滑油等の潤滑流体の漏れ出しを確実に防止できる流体軸受装置を提供することである。   An object of the present invention is to provide a hydrodynamic bearing device that can be reduced in size and thickness, and can reliably prevent leakage of lubricating fluid such as lubricating oil.

前記課題を解決するため、本発明は、内周面にラジアル軸受面を有する軸受部材と、軸受部材の内周に挿入された軸部材と、軸部材に固定されたシール部材と、シール部材の外周面で形成されたシール空間と、軸部材の外周面と軸受部材のラジアル軸受面との間のラジアル軸受隙間に形成される潤滑膜で軸部材を回転自在に支持する流体軸受装置において、シール空間の少なくとも一部を、ラジアル軸受面の外径領域に配したことを特徴とする。   In order to solve the above problems, the present invention provides a bearing member having a radial bearing surface on an inner peripheral surface, a shaft member inserted in the inner periphery of the bearing member, a seal member fixed to the shaft member, and a seal member. In a hydrodynamic bearing device that rotatably supports a shaft member with a lubricating film formed in a seal space formed on the outer peripheral surface and a radial bearing gap between the outer peripheral surface of the shaft member and the radial bearing surface of the bearing member. At least a part of the space is arranged in the outer diameter region of the radial bearing surface.

このように本発明の流体軸受装置では、一定の軸方向寸法が必要とされるシール空間の少なくとも一部を、ラジアル軸受面の外径領域に配した。これにより、シール空間の少なくとも一部をラジアル軸受隙間と径方向に重ねて配置することができるため、シール空間を設けることで軸受装置の軸方向の所要スペースが嵩むことを抑え、必要なシール空間容積を保ったまま、軸受装置の小型化、薄型化を図ることができる。   Thus, in the hydrodynamic bearing device of the present invention, at least a part of the seal space that requires a certain axial dimension is arranged in the outer diameter region of the radial bearing surface. As a result, at least a part of the seal space can be arranged so as to overlap with the radial bearing gap in the radial direction, so that the required space in the axial direction of the bearing device is suppressed by providing the seal space, and the necessary seal space While maintaining the volume, the bearing device can be reduced in size and thickness.

また、シール空間が一箇所のみに形成されるため、シール空間が複数箇所設けられるものと比べ、軸受内部に充填された潤滑油の漏れ出しをより確実に回避できる。   Further, since the seal space is formed only at one place, it is possible to more reliably avoid the leakage of the lubricating oil filled in the bearing as compared with the case where a plurality of seal spaces are provided.

このような軸受装置では、例えば、軸受部材の一端面と、それと対向するシール部材の端面との間に、第1のスラスト軸受隙間を形成することができる。さらに、軸受部材の他端面と、それに対向する軸部材のフランジ部の端面との間に、第2のスラスト軸受隙間を形成することもできる。このように、軸受部材の両端面側にスラスト軸受隙間を設けることにより、二つのスラスト軸受隙間の軸方向スパンを大きくとることが可能であるため、軸受装置のモーメント剛性を向上させることができる。なお、第1のスラスト軸受隙間の形成箇所は上記に限らず、例えば、軸部材にフランジ部を設け、軸受部材に対向しない側の端面とこれに対向する部材の端面との間に形成しても良い。   In such a bearing device, for example, a first thrust bearing gap can be formed between one end surface of the bearing member and the end surface of the seal member facing the bearing member. Furthermore, a 2nd thrust bearing clearance can also be formed between the other end surface of a bearing member, and the end surface of the flange part of the shaft member which opposes it. As described above, by providing the thrust bearing gap on both end surfaces of the bearing member, it is possible to increase the axial span of the two thrust bearing gaps, so that the moment rigidity of the bearing device can be improved. The location where the first thrust bearing gap is formed is not limited to the above. For example, a flange portion is provided on the shaft member, and the first thrust bearing gap is formed between the end surface on the side not facing the bearing member and the end surface of the member facing this. Also good.

上記のようなシール空間は、例えば、内周に軸受部材が固定されたハウジングの内周面と、シール部材の外周面との間に形成することができる。   The seal space as described above can be formed, for example, between the inner peripheral surface of the housing in which the bearing member is fixed on the inner periphery and the outer peripheral surface of the seal member.

以上のように、本発明によると、小型化、薄型化が可能であるとともに、潤滑流体の漏れ出しを確実に防止できる流体軸受装置を得ることができる。   As described above, according to the present invention, it is possible to obtain a hydrodynamic bearing device that can be reduced in size and thickness and can reliably prevent leakage of the lubricating fluid.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明に係る流体軸受装置の一例として動圧軸受装置1を組み込んだ情報機器用スピンドルモータの一構成例を概念的に示している。このスピンドルモータは、HDD等のディスク駆動装置に用いられるもので、軸部材2を回転自在に非接触支持する動圧軸受装置1と、軸部材2に装着されたロータ(ディスクハブ)3と、例えば半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5を備えている。ステータコイル4はブラケット6の外周に取付けられ、ロータマグネット5はディスクハブ3の内周に取付けられる。動圧軸受装置1のハウジング7は、ブラケット6の内周に装着される。ディスクハブ3には、磁気ディスク等のディスクDが一枚または複数枚保持される。ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間の電磁力でロータマグネット5が回転し、それによって、ディスクハブ3および軸部材2が一体となって回転する。   FIG. 1 conceptually shows a configuration example of a spindle motor for information equipment incorporating a fluid dynamic bearing device 1 as an example of a hydrodynamic bearing device according to the present invention. This spindle motor is used in a disk drive device such as an HDD, and includes a hydrodynamic bearing device 1 that rotatably supports the shaft member 2 in a non-contact manner, a rotor (disk hub) 3 mounted on the shaft member 2, For example, a stator coil 4 and a rotor magnet 5 that are opposed to each other via a radial gap are provided. The stator coil 4 is attached to the outer periphery of the bracket 6, and the rotor magnet 5 is attached to the inner periphery of the disk hub 3. The housing 7 of the hydrodynamic bearing device 1 is attached to the inner periphery of the bracket 6. The disk hub 3 holds one or more disks D such as a magnetic disk. When the stator coil 4 is energized, the rotor magnet 5 is rotated by the electromagnetic force between the stator coil 4 and the rotor magnet 5, whereby the disk hub 3 and the shaft member 2 are rotated together.

図2は、上記スピンドルモータで使用される動圧軸受装置1の一実施形態を示すものである。この動圧軸受装置1は、有底筒状のハウジング7と、ハウジング7の内周に固定される軸受部材8と、軸受部材8の内周に挿入された軸部材2と、ハウジング7の開口部をシールするシール部材9とを主要な構成部品として備える。なお、以下説明の便宜上、ハウジング7の開口側を上側、その軸方向反対側を下側として説明を進める。   FIG. 2 shows an embodiment of the hydrodynamic bearing device 1 used in the spindle motor. The hydrodynamic bearing device 1 includes a bottomed cylindrical housing 7, a bearing member 8 fixed to the inner periphery of the housing 7, a shaft member 2 inserted into the inner periphery of the bearing member 8, and an opening of the housing 7. A seal member 9 for sealing the portion is provided as a main component. For convenience of explanation, the description will proceed with the opening side of the housing 7 as the upper side and the opposite side in the axial direction as the lower side.

軸部材2は、軸部2aと、軸部2aの下端で外径側に張り出したフランジ部2bとを一体または別体に有する。軸部2aの外周面は概ね円筒面状に形成され、シール部材9が固定される領域には環状溝2a1が形成され、ラジアル軸受部R1およびR2に対応する領域の中間部には、他の部分より僅かに小径な逃げ部2a2が形成される。この軸部材2は、全体をステンレス鋼等の金属材で形成する他、例えば軸部2aを金属製、フランジ部2bを樹脂製とした金属と樹脂のハイブリッド構造とすることもできる。   The shaft member 2 has a shaft portion 2a and a flange portion 2b projecting to the outer diameter side at the lower end of the shaft portion 2a, either integrally or separately. The outer peripheral surface of the shaft portion 2a is formed in a substantially cylindrical shape, an annular groove 2a1 is formed in a region where the seal member 9 is fixed, and other regions in the regions corresponding to the radial bearing portions R1 and R2 An escape portion 2a2 having a slightly smaller diameter than the portion is formed. The shaft member 2 may be entirely formed of a metal material such as stainless steel, or may have a metal-resin hybrid structure in which the shaft portion 2a is made of metal and the flange portion 2b is made of resin, for example.

軸受部材8は、例えば銅を主成分とする焼結金属で円筒状に形成される。焼結金属には潤滑油が含浸されている。この他、中実の金属材料、例えば黄銅等の軟質金属で軸受部材8を形成することもできる。   The bearing member 8 is formed in a cylindrical shape with a sintered metal mainly composed of copper, for example. The sintered metal is impregnated with lubricating oil. In addition, the bearing member 8 can be formed of a solid metal material, for example, a soft metal such as brass.

軸受部材8の内周面8aには、ラジアル軸受面となる上下2つの領域が軸方向に離隔して設けられる(図2にクロスハッチングで示す)。これら2つの領域には、図3に示すように、動圧発生部として、例えばヘリングボーン形状に配列した複数の動圧溝Gがそれぞれ形成される。上側の領域の動圧溝Gは軸方向で非対称に形成されており、該領域内では上側の動圧溝の軸方向長さX1が下側の動圧溝の軸方向長さX2よりも若干大きくなっている(X1>X2)。一方、下側の領域の動圧溝Gは軸方向対象に形成され、該領域内では上下の動圧溝Gの軸方向長さがそれぞれ等しい。   On the inner peripheral surface 8a of the bearing member 8, two upper and lower regions serving as radial bearing surfaces are provided apart in the axial direction (shown by cross-hatching in FIG. 2). In these two regions, as shown in FIG. 3, a plurality of dynamic pressure grooves G arranged in a herringbone shape, for example, are formed as dynamic pressure generating portions. The dynamic pressure groove G in the upper region is formed asymmetrically in the axial direction. In this region, the axial length X1 of the upper dynamic pressure groove is slightly longer than the axial length X2 of the lower dynamic pressure groove. It is larger (X1> X2). On the other hand, the dynamic pressure grooves G in the lower region are formed in the axial direction, and the axial lengths of the upper and lower dynamic pressure grooves G are equal in the region.

軸受部材8の上側端面8bおよび下側端面8cには、スラスト軸受面となる領域が形成され(図2にクロスハッチングで示す)、該領域には、動圧発生部として、例えば図4、図5に示すようなスパイラル状に配列した複数の動圧溝8b1、8c1が形成される。   The upper end surface 8b and the lower end surface 8c of the bearing member 8 are formed with regions to be thrust bearing surfaces (shown by cross-hatching in FIG. 2), and in these regions, for example, FIG. 5, a plurality of dynamic pressure grooves 8b1 and 8c1 arranged in a spiral shape are formed.

軸受部材8の外周面の一箇所もしくは円周方向に等配した複数箇所には、潤滑油を循環させるための循環溝8dが軸方向に形成される。循環溝8dの両端は軸受部材8の両端面8b、8cに開口している。   A circulation groove 8d for circulating the lubricating oil is formed in the axial direction at one place on the outer peripheral surface of the bearing member 8 or at a plurality of places equally arranged in the circumferential direction. Both ends of the circulation groove 8d are open to both end faces 8b, 8c of the bearing member 8.

ハウジング7は、円筒部7aと、円筒部7aの下端開口部を封口する底部7bとで構成される。円筒部7aの内周面は、小径内周面7a1と、大径内周面7a2と、両内周面7a1、7a2の境界面7a3とからなり、境界面7a3は軸方向と直交する方向の平坦面状に形成される。円筒部7aの外周面は、図1に示すブラケット6の内周面に圧入、接着、圧入接着等適宜の手段で固定される。   The housing 7 includes a cylindrical portion 7a and a bottom portion 7b that seals the lower end opening of the cylindrical portion 7a. The inner peripheral surface of the cylindrical portion 7a includes a small-diameter inner peripheral surface 7a1, a large-diameter inner peripheral surface 7a2, and a boundary surface 7a3 between the inner peripheral surfaces 7a1 and 7a2, and the boundary surface 7a3 is in a direction orthogonal to the axial direction. A flat surface is formed. The outer peripheral surface of the cylindrical portion 7a is fixed to the inner peripheral surface of the bracket 6 shown in FIG. 1 by appropriate means such as press-fitting, bonding, and press-fitting adhesion.

ハウジング7は、黄銅やアルミニウム合金等の軟質金属材料、あるいはその他の金属材料で形成される。加工方法は、適宜の機械加工が採用できるが、加工性やコストの観点から、鍛造で行うことが好ましい。   The housing 7 is made of a soft metal material such as brass or an aluminum alloy, or other metal material. As the processing method, appropriate machining can be adopted, but forging is preferably performed from the viewpoint of workability and cost.

ハウジング7と軸受部材8との固定は、圧入や接着、あるいは圧入接着(接着剤の介在の下で圧入する)で行うことができる。ハウジング7と軸受部材8との固定面積は、ハウジング7の内周面に大径内周面7a2が形成されている分、内周面が円筒状に形成されるものと比べ狭くなるため、これらはなるべく強い固定力で固定されることが望ましい。上記のように、ハウジング7を金属製とすると、接着剤による接着性に優れているため、接着で固定される場合、金属製のハウジング7は軸受部材8との強固な固定が可能となる。   The housing 7 and the bearing member 8 can be fixed by press-fitting, bonding, or press-fitting (press-fitting with an adhesive interposed). The fixed area between the housing 7 and the bearing member 8 is narrower than the inner peripheral surface 7a2 formed on the inner peripheral surface of the housing 7, compared with the case where the inner peripheral surface is formed in a cylindrical shape. It is desirable to fix with as strong a fixing force as possible. As described above, when the housing 7 is made of metal, the adhesiveness by the adhesive is excellent. Therefore, when the housing 7 is fixed by adhesion, the metal housing 7 can be firmly fixed to the bearing member 8.

シール部材9は、円盤部9aと、円盤部9aの外径端から軸方向下向きに延在したシール部9bとで断面逆L字形に形成される。本実施形態では、円盤部9aの内周面9a2、シール部9bの内周面9b1および外周面9b2は、何れも円筒面状に形成される。   The seal member 9 is formed in an inverted L-shaped cross section by a disc portion 9a and a seal portion 9b extending downward in the axial direction from the outer diameter end of the disc portion 9a. In the present embodiment, the inner peripheral surface 9a2 of the disk portion 9a, the inner peripheral surface 9b1 and the outer peripheral surface 9b2 of the seal portion 9b are all formed in a cylindrical surface shape.

シール部材9は、各種金属材料、あるいは樹脂材料で形成される。金属材料としては、例えば黄銅やアルミニウム合金等の軟質金属材料が使用できる。また、樹脂材料としては、例えば射出成形でシール部材9が形成される場合、射出成形可能な樹脂材料であれば非晶性樹脂・結晶性樹脂を問わず使用可能で、例えば、非晶性樹脂として、ポリサルフォン(PSU)、ポリエーテルサルフォン(PES)、ポリフェニルサルフォン(PPSU)、ポリエーテルイミド(PEI)等、結晶性樹脂として、液晶ポリマー(LCP)、ポリエーテルエーテルケトン(PEEK)、ポリブチレンテレフタレート(PBT)、ポリフェニレンサルファイド(PPS)等を用いることができる。もちろんこれらは一例にすぎず、軸受の用途や使用環境に適したその他の樹脂材料を使用することもできる。また、射出成形以外の加工方法で形成する場合は、その加工方法に適した樹脂材料を使用すればよい。上記の樹脂材料には、必要に応じて強化材(繊維状、粉末上等の形態は問わない)や潤滑剤、導電材等の各種充填材が一種または二種以上配合される。   The seal member 9 is formed of various metal materials or resin materials. As the metal material, for example, a soft metal material such as brass or an aluminum alloy can be used. As the resin material, for example, when the seal member 9 is formed by injection molding, any resin material that can be injection molded can be used regardless of whether it is an amorphous resin or a crystalline resin. For example, an amorphous resin As a crystalline resin such as polysulfone (PSU), polyethersulfone (PES), polyphenylsulfone (PPSU), polyetherimide (PEI), liquid crystal polymer (LCP), polyetheretherketone (PEEK), Polybutylene terephthalate (PBT), polyphenylene sulfide (PPS), or the like can be used. Of course, these are only examples, and other resin materials suitable for the application and use environment of the bearing can also be used. Moreover, what is necessary is just to use the resin material suitable for the processing method, when forming by processing methods other than injection molding. One or more kinds of various fillers such as a reinforcing material (fibrous, powdery form, etc.), a lubricant, and a conductive material are blended in the resin material as necessary.

シール部材9は、例えば、圧入や接着、あるいは圧入接着により、軸部材2の軸部2aの外周面に固定される。シール部材9が接着剤を介して固定される場合、軸部2aに形成された環状溝2a1が接着剤溜りとして作用することにより、より強い固定力が得られる。なお、シール部材9が接着剤を用いずに固定される場合、軸部2aの環状溝2a1は設けなくてもよい。   The seal member 9 is fixed to the outer peripheral surface of the shaft portion 2a of the shaft member 2 by, for example, press-fitting, bonding, or press-fitting adhesion. When the seal member 9 is fixed via an adhesive, the annular groove 2a1 formed in the shaft portion 2a acts as an adhesive reservoir, thereby obtaining a stronger fixing force. When the seal member 9 is fixed without using an adhesive, the annular groove 2a1 of the shaft portion 2a may not be provided.

動圧軸受装置1の組立は、ハウジング7内に軸部材2を収容した後、ハウジング7の内周面に軸受部材8を固定し、さらに軸部材2の軸部2aの所定位置にシール部材9を固定することで行われる。その後、ハウジング7の内部空間に潤滑油を充満させれば、図2に示す動圧軸受装置1が得られる。組立後は、シール部材9の円盤部9aの下側端面9a1が軸受部材8の上側端面8bと当接し、シール部材9のシール部9bの下側端面がハウジング7の内周の境界面7a3と軸方向隙間11を介して対向している。   In assembling the hydrodynamic bearing device 1, the shaft member 2 is accommodated in the housing 7, the bearing member 8 is fixed to the inner peripheral surface of the housing 7, and the seal member 9 is placed at a predetermined position of the shaft portion 2 a of the shaft member 2. It is done by fixing. Thereafter, when the internal space of the housing 7 is filled with lubricating oil, the fluid dynamic bearing device 1 shown in FIG. 2 is obtained. After assembly, the lower end surface 9a1 of the disk portion 9a of the seal member 9 abuts on the upper end surface 8b of the bearing member 8, and the lower end surface of the seal portion 9b of the seal member 9 contacts the boundary surface 7a3 on the inner periphery of the housing 7. It is opposed via an axial gap 11.

軸部材2の回転時には、軸受部材8の内周面8aのラジアル軸受面に形成された上下2箇所の動圧溝領域は、それぞれ軸部2aの外周面とラジアル軸受隙間を介して対向する。また、軸受部材8の上側端面8bのスラスト軸受面に形成された動圧溝領域がシール部材9の円盤部9aの下側端面9a1と第1のスラスト軸受隙間を介して対向し、軸受部材8の下側端面8cのスラスト軸受面に形成された動圧溝領域がフランジ部2bの上側端面と第2のスラスト軸受隙間を介して対向する。そして、軸部材2の回転に伴い、上記ラジアル軸受隙間に潤滑油の動圧が発生し、軸部材2がラジアル軸受隙間内に形成される潤滑油の油膜によってラジアル方向に回転自在に非接触支持される。これにより、軸部材2をラジアル方向に回転自在に非接触支持する第1ラジアル軸受部R1と第2ラジアル軸受部R2とが構成される。同時に、上記スラスト軸受隙間に潤滑油の動圧が発生し、軸部材2が第1および第2のスラスト軸受隙間内に形成される潤滑油の油膜によってスラスト方向に回転自在に非接触支持される。これにより、軸部材2をスラスト方向に回転自在に非接触支持する第1スラスト軸受部T1と第2スラスト軸受部T2とが構成される。   When the shaft member 2 rotates, the two upper and lower dynamic pressure groove regions formed on the radial bearing surface of the inner peripheral surface 8a of the bearing member 8 face the outer peripheral surface of the shaft portion 2a via the radial bearing gap. Further, the dynamic pressure groove region formed on the thrust bearing surface of the upper end surface 8b of the bearing member 8 faces the lower end surface 9a1 of the disk portion 9a of the seal member 9 via the first thrust bearing gap, and the bearing member 8 The dynamic pressure groove region formed on the thrust bearing surface of the lower end surface 8c faces the upper end surface of the flange portion 2b via the second thrust bearing gap. As the shaft member 2 rotates, dynamic pressure of the lubricating oil is generated in the radial bearing gap, and the shaft member 2 is supported in a non-contact manner so as to be rotatable in the radial direction by the oil film of the lubricating oil formed in the radial bearing gap. Is done. Thus, the first radial bearing portion R1 and the second radial bearing portion R2 that support the shaft member 2 in a non-contact manner so as to be rotatable in the radial direction are configured. At the same time, the dynamic pressure of the lubricating oil is generated in the thrust bearing gap, and the shaft member 2 is supported in a non-contact manner so as to be rotatable in the thrust direction by the oil film of the lubricating oil formed in the first and second thrust bearing gaps. . Thereby, the 1st thrust bearing part T1 and the 2nd thrust bearing part T2 which non-contact-support the shaft member 2 rotatably in a thrust direction are comprised.

シール部材9のシール部9bの外周面9b2は、ハウジング7の大径内周面7a2との間に所定の容積を持ったシール空間Sを形成する。このとき、シール空間Sの少なくとも一部は、第1ラジアル軸受部R1のラジアル軸受面の外径領域に位置する。この実施形態において、ハウジング7の大径内周面7a2は、上方に向かって漸次拡径したテーパ面状に形成され、そのためシール空間Sは下方に向かって漸次縮小したテーパ形状を呈する。従って、シール空間S内の潤滑油は毛細管力による引き込み作用により、シール空間Sが狭くなる方向に向けて引き込まれ、これによりハウジング7の開口部がシールされる。シール空間Sは、ハウジング7の内部空間に充満された潤滑油の温度変化に伴う容積変化量を吸収するバッファ機能をも有し、油面は常時シール空間S内にある。   The outer peripheral surface 9b2 of the seal portion 9b of the seal member 9 forms a seal space S having a predetermined volume with the large-diameter inner peripheral surface 7a2 of the housing 7. At this time, at least a part of the seal space S is located in the outer diameter region of the radial bearing surface of the first radial bearing portion R1. In this embodiment, the large-diameter inner peripheral surface 7a2 of the housing 7 is formed in a tapered surface shape that gradually increases in diameter upward, so that the seal space S exhibits a tapered shape that gradually decreases in the downward direction. Accordingly, the lubricating oil in the seal space S is drawn in the direction in which the seal space S becomes narrow due to the drawing action by the capillary force, and the opening of the housing 7 is thereby sealed. The seal space S also has a buffer function for absorbing a volume change amount associated with a temperature change of the lubricating oil filled in the internal space of the housing 7, and the oil level is always in the seal space S.

このように、シール空間Sの少なくとも一部をラジアル軸受面の外径領域に配することにより、シール空間Sの少なくとも一部とラジアル軸受面の形成領域とを径方向で重ねることができる。よって、シール空間Sを設けることにより、第1のラジアル軸受部R1の軸方向寸法や、2つのラジアル軸受部R1、R2の軸方向間隔が縮小することを抑えることができるため、軸受剛性を低下させることなく、軸受装置の薄型化を図ることができる。これにより、HDD装置の小型化・薄型化に対応することができる。   As described above, by disposing at least a part of the seal space S in the outer diameter region of the radial bearing surface, at least a part of the seal space S and the formation region of the radial bearing surface can be overlapped in the radial direction. Therefore, by providing the seal space S, the axial dimension of the first radial bearing part R1 and the axial distance between the two radial bearing parts R1 and R2 can be suppressed, so that the bearing rigidity is reduced. Therefore, the bearing device can be made thinner. Thereby, it is possible to cope with the downsizing and thinning of the HDD device.

あるいは、上記の構成によると、軸受装置の軸方向寸法を増大させずに、軸受部材8の軸方向寸法を増すことができるため、2つのラジアル軸受部R1、R2間の間隔を長くすることにより、軸受剛性(特にモーメント剛性)を向上させることができる。これにより、HDD装置でのディスクの複数枚化に対応することが可能となる。   Or according to said structure, since the axial direction dimension of the bearing member 8 can be increased, without increasing the axial direction dimension of a bearing apparatus, by increasing the space | interval between two radial bearing part R1, R2. The bearing rigidity (especially moment rigidity) can be improved. As a result, it is possible to cope with a plurality of disks in the HDD device.

また、軸受内部の潤滑油が大気と接触するシール部が一箇所にのみ形成されるため、例えばシール部が複数形成されるものと比べ、潤滑油の漏れ出しの恐れが少ない。これにより、周辺環境の汚染や、潤滑油不良などを回避できる。   Further, since the seal portion in which the lubricating oil inside the bearing comes into contact with the atmosphere is formed only at one place, there is less risk of leakage of the lubricating oil, for example, compared to a case where a plurality of seal portions are formed. As a result, contamination of the surrounding environment and poor lubricating oil can be avoided.

また、第1および第2のスラスト軸受隙間が軸受部材8の両端面側に設けられていることにより、各スラスト軸受隙間の軸方向スパンを大きくとることができるため、軸受装置のモーメント剛性を向上させることができる。   Further, since the first and second thrust bearing gaps are provided on both end surfaces of the bearing member 8, the axial span of each thrust bearing gap can be increased, thereby improving the moment rigidity of the bearing device. Can be made.

なお、ハウジング7の大径内周面7a2を円筒面とする一方、これに対向するシール部材9のシール部9bの外周面9b2をテーパ面状に形成してもよく、この場合、さらにシール空間Sに遠心力シールとしての機能も付与することができるのでシール効果がより一層高まる。   In addition, while the large-diameter inner peripheral surface 7a2 of the housing 7 is a cylindrical surface, the outer peripheral surface 9b2 of the seal portion 9b of the seal member 9 opposed to the cylindrical surface may be formed into a tapered surface. Since the function as a centrifugal force seal can be given to S, the sealing effect is further enhanced.

上述のように、第1ラジアル軸受部R1の動圧溝Gは軸方向非対称に形成されており、上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっている。そのため、軸部材2の回転時、動圧溝Gによる潤滑油の引き込み力(ポンピング力)は上側領域が下側領域に比べて相対的に大きくなる。そして、この引き込み力の差圧によって、軸受部材8の内周面8aと軸部2aの外周面との間のラジアル軸受隙間に満たされた潤滑油が下方に流動し、第2のスラスト軸受隙間(第2スラスト軸受部T2)→軸方向の循環溝8d→第1のスラスト軸受隙間(第1スラスト軸受部T1)という経路を循環して、ラジアル軸受隙間に再び引き込まれる。   As described above, the dynamic pressure groove G of the first radial bearing portion R1 is formed asymmetrically in the axial direction, and the axial dimension X1 of the upper region is larger than the axial dimension X2 of the lower region. Therefore, when the shaft member 2 rotates, the pulling force (pumping force) of the lubricating oil by the dynamic pressure groove G is relatively larger in the upper region than in the lower region. Then, due to the differential pressure of the pulling force, the lubricating oil filled in the radial bearing gap between the inner circumferential surface 8a of the bearing member 8 and the outer circumferential surface of the shaft portion 2a flows downward, and the second thrust bearing gap It circulates through the path of (second thrust bearing portion T2) → circulation groove 8d in the axial direction → first thrust bearing gap (first thrust bearing portion T1), and is drawn into the radial bearing gap again.

このように、潤滑油がハウジング7の内部を流動循環するように構成することで、ハウジング7の内部に満たされた潤滑油の圧力が局所的に負圧になる減少を防止して、負圧発生に伴う気泡の生成、気泡の生成に起因する潤滑油の漏れや振動の発生等の問題を解消することができる。この潤滑油の循環経路には、軸方向隙間11を介してシール空間Sが連通しているので、何らかの理由で潤滑油中に気泡が混入した場合でも、気泡が潤滑油に伴って循環する際にこれらシール空間Sの潤滑油の油面(気液界面)から外気に排出され、気泡に悪影響はより一層効果的に防止される。なお、軸方向の循環溝8dはハウジング7の内周面に形成することもできる。   In this way, the configuration in which the lubricating oil flows and circulates in the housing 7 prevents the pressure of the lubricating oil filled in the housing 7 from being locally reduced to a negative pressure. Problems such as generation of bubbles accompanying the generation, leakage of lubricating oil and generation of vibration due to the generation of bubbles can be solved. Since the seal space S communicates with the lubricating oil circulation path via the axial gap 11, even when bubbles are mixed in the lubricating oil for some reason, the bubbles are circulated along with the lubricating oil. In addition, the lubricating oil in these seal spaces S is discharged from the oil surface (gas-liquid interface) to the outside air, and adverse effects on the bubbles are more effectively prevented. The axial circulation groove 8 d can also be formed on the inner peripheral surface of the housing 7.

このような潤滑油の流動循環は、ラジアル軸受部R1、R2の動圧溝の長さを調整することで、上記と逆向きの循環とすることもできる。あるいは、特に動圧溝Gによる引き込み力の差圧が必要のない場合は、ラジアル軸受部R1、R2の何れの動圧溝も、それぞれの軸方向中心に関して対称な形状としてもよい。   Such a flow circulation of the lubricating oil can be reversed in the reverse direction by adjusting the lengths of the dynamic pressure grooves of the radial bearing portions R1 and R2. Alternatively, when the differential pressure of the pulling force due to the dynamic pressure groove G is not particularly required, any of the dynamic pressure grooves of the radial bearing portions R1 and R2 may have a symmetrical shape with respect to the respective axial centers.

以上の説明では、第1および第2ラジアル軸受部R1、R2の動圧発生部を軸受部材8の内周面に形成し、第1および第2スラスト軸受部T1、T2の動圧発生部を軸受部材8の上側端面8bおよび下側端面8cに形成した場合を例示している。このように軸受部材8に動圧発生部を形成するには、例えば、軸受部材8の圧縮成形に用いられる金型に動圧発生部の動圧溝等に対応する形状を成形しておき、この形状を圧縮成形と同時に軸受部材8に転写することにより行われる。この加工法によると、他の機械加工に比べ、比較的容易に、かつ高い精度で動圧発生部を形成することができるため、コストの低減および生産性の向上を図ることができる。   In the above description, the dynamic pressure generating portions of the first and second radial bearing portions R1, R2 are formed on the inner peripheral surface of the bearing member 8, and the dynamic pressure generating portions of the first and second thrust bearing portions T1, T2 are formed. The case where it forms in the upper end surface 8b and the lower end surface 8c of the bearing member 8 is illustrated. In order to form the dynamic pressure generating portion in the bearing member 8 in this manner, for example, a shape corresponding to the dynamic pressure groove or the like of the dynamic pressure generating portion is formed in a mold used for compression molding of the bearing member 8. This is done by transferring this shape to the bearing member 8 simultaneously with compression molding. According to this processing method, the dynamic pressure generating portion can be formed relatively easily and with high accuracy as compared with other machining processes, so that costs can be reduced and productivity can be improved.

本発明は、上記に限られない。例えば、図6に示すように、シール部材9の円盤部9aの内径端に、軸方向に延在した固定部9cを設けると、シール部材9と軸部材2の軸部2aとの固定面積が拡大し、これらの固定力を向上させることができる。このとき、軸部2aの環状溝2a1の軸方向寸法を拡大すると、より多くの接着剤を保持することができ、さらなる固定力の向上を図ることができる。   The present invention is not limited to the above. For example, as shown in FIG. 6, when a fixed portion 9 c extending in the axial direction is provided at the inner diameter end of the disk portion 9 a of the seal member 9, the fixed area between the seal member 9 and the shaft portion 2 a of the shaft member 2 is increased. It is possible to expand and improve these fixing forces. At this time, if the axial dimension of the annular groove 2a1 of the shaft portion 2a is enlarged, more adhesive can be retained, and further improvement in fixing force can be achieved.

また、第1のスラスト軸受部T1の位置は上記に限られず、例えばフランジ部2bの下端面2b2とハウジング7の内底面7b1とで第1のスラスト軸受部T1を構成してもよい(図示省略)。このとき、フランジ部2bの下端面2b2とハウジング7の内底面7b1との間に形成されたスラスト軸受隙間の油膜の動圧作用で、軸部材2がスラスト方向に支持される。この場合、軸受部材8の上端面8bとこれに対向するシール部材9の端面9a1との間の隙間は、上述の潤滑油の循環経路を構成する。この隙間の幅が潤滑油の循環を妨げるほど過小である場合は、循環を促すために、軸受部材8の上端面8b、あるいはシール部材9の端面9a1に径方向溝を設けてもよい。   Further, the position of the first thrust bearing portion T1 is not limited to the above. For example, the first thrust bearing portion T1 may be configured by the lower end surface 2b2 of the flange portion 2b and the inner bottom surface 7b1 of the housing 7 (not shown). ). At this time, the shaft member 2 is supported in the thrust direction by the dynamic pressure action of the oil film in the thrust bearing gap formed between the lower end surface 2b2 of the flange portion 2b and the inner bottom surface 7b1 of the housing 7. In this case, the gap between the upper end surface 8b of the bearing member 8 and the end surface 9a1 of the seal member 9 facing the upper end surface 8b constitutes the above-described lubricating oil circulation path. When the width of the gap is too small to prevent the circulation of the lubricating oil, a radial groove may be provided in the upper end surface 8b of the bearing member 8 or the end surface 9a1 of the seal member 9 in order to promote the circulation.

以上の実施形態で示した動圧発生部は、それぞれと対向する面、すなわち軸部材2の軸部2aの外周面やシール部材9の円盤部9aの下側端面9a1、あるいは軸部材2のフランジ部2bの上側端面2b1に形成してもよい。   The dynamic pressure generating portions shown in the above embodiments are surfaces facing each other, that is, the outer peripheral surface of the shaft portion 2a of the shaft member 2, the lower end surface 9a1 of the disk portion 9a of the seal member 9, or the flange of the shaft member 2. You may form in the upper end surface 2b1 of the part 2b.

また、ラジアル軸受部R1、R2およびスラスト軸受部T1、T2の動圧発生部として、ヘリングボーン形状やスパイラル形状の動圧溝を例示しているが、これに限られない。例えば、ラジアル軸受部R1、R2として、いわゆるステップ軸受や、波型軸受、あるいは多円弧軸受を採用することができ、スラスト軸受部T1、T2として、ステップ軸受や波型軸受を採用することができる。さらには、ラジアル軸受部R1、R2として、動圧発生部を有しない、いわゆる真円軸受を採用することもできる。このとき、軸受部材8の円筒状内周面8aがラジアル軸受面となり、対向する軸部材2の外周面2aとの間にラジアル軸受隙間を形成する。また、フランジ部を有さず、球面状の下端部を有する軸部材を用いて、スラスト軸受部をいわゆるピボット軸受で構成することもできる。また、スラスト軸受部T1、T2の何れかのみを形成、あるいは双方を省略してもよい。   Further, although the herringbone shape and spiral shape dynamic pressure grooves are illustrated as the dynamic pressure generating portions of the radial bearing portions R1 and R2 and the thrust bearing portions T1 and T2, the present invention is not limited thereto. For example, so-called step bearings, corrugated bearings, or multi-arc bearings can be employed as the radial bearing portions R1, R2, and step bearings or corrugated bearings can be employed as the thrust bearing portions T1, T2. . Furthermore, what is called a perfect circle bearing which does not have a dynamic-pressure generation | occurrence | production part can also be employ | adopted as radial bearing part R1, R2. At this time, the cylindrical inner peripheral surface 8a of the bearing member 8 becomes a radial bearing surface, and a radial bearing gap is formed between the outer peripheral surface 2a of the opposing shaft member 2. In addition, the thrust bearing portion can be formed of a so-called pivot bearing by using a shaft member that does not have a flange portion but has a spherical lower end portion. Further, only one of the thrust bearing portions T1 and T2 may be formed or both may be omitted.

また、以上の説明では、ハウジング7は軸受部材8との固定力を考慮して金属材料で形成されているが、固定力に問題がなければ、ハウジング7を樹脂材料で形成することができる。この場合、金属材料に比べ、低コスト化や軽量化が図られるという利点が得られる。ハウジング7に使用可能な樹脂材料は、上記のシール部材9の樹脂材料として例示したものと重複するため、説明を省略する。   In the above description, the housing 7 is formed of a metal material in consideration of the fixing force with the bearing member 8. However, if there is no problem with the fixing force, the housing 7 can be formed of a resin material. In this case, there is an advantage that the cost and weight can be reduced as compared with the metal material. Since the resin material that can be used for the housing 7 is the same as that exemplified as the resin material of the sealing member 9 described above, the description thereof is omitted.

また、以上の説明では、動圧軸受装置1の内部に充満する流体として、潤滑油を例示したが、それ以外にも各軸受隙間に動圧を発生させることができる流体、例えば空気等の気体や、磁性流体等を使用することもできる。   In the above description, the lubricating oil is exemplified as the fluid that fills the inside of the hydrodynamic bearing device 1. However, other fluids that can generate dynamic pressure in the bearing gaps, for example, gas such as air Alternatively, a magnetic fluid or the like can be used.

本発明に係る流体軸受装置(動圧軸受装置1)を組み込んだ情報機器用スピンドルモータの断面図である。It is sectional drawing of the spindle motor for information devices incorporating the hydrodynamic bearing apparatus (dynamic pressure bearing apparatus 1) which concerns on this invention. 動圧軸受装置1の実施形態を示す断面図である。1 is a cross-sectional view showing an embodiment of a hydrodynamic bearing device 1. 軸受部材8の断面図である。3 is a cross-sectional view of a bearing member 8. FIG. シール部材9のA−A線(図5参照)での断面図である。It is sectional drawing in the AA line (refer FIG. 5) of the sealing member 9. FIG. シール部材9のB方向(図4参照)から見た平面図である。FIG. 6 is a plan view of the seal member 9 as viewed from the B direction (see FIG. 4). 動圧軸受装置1の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of the fluid dynamic bearing apparatus.

符号の説明Explanation of symbols

1 動圧軸受装置
2 軸部材
2a 軸部
2b フランジ部
7 ハウジング
8 軸受部材
9 シール部材
9a 円盤部
9b シール部
9c 固定部
G 動圧溝
R1、R2 ラジアル軸受部
T1、T2 スラスト軸受部
S シール空間
DESCRIPTION OF SYMBOLS 1 Dynamic pressure bearing apparatus 2 Shaft member 2a Shaft part 2b Flange part 7 Housing 8 Bearing member 9 Seal member 9a Disc part 9b Seal part 9c Fixed part G Dynamic pressure groove R1, R2 Radial bearing part T1, T2 Thrust bearing part S Seal space

Claims (5)

内周面にラジアル軸受面を有する軸受部材と、軸受部材の内周に挿入された軸部材と、軸部材に固定されたシール部材と、シール部材の外周面で形成されたシール空間と、軸部材の外周面と軸受部材のラジアル軸受面との間のラジアル軸受隙間に形成される潤滑膜で軸部材を回転自在に支持する流体軸受装置において、
シール空間の少なくとも一部を、ラジアル軸受面の外径領域に配したことを特徴とする流体軸受装置。
A bearing member having a radial bearing surface on the inner peripheral surface, a shaft member inserted into the inner periphery of the bearing member, a seal member fixed to the shaft member, a seal space formed by the outer peripheral surface of the seal member, and a shaft In the hydrodynamic bearing device that rotatably supports the shaft member with a lubricating film formed in a radial bearing gap between the outer peripheral surface of the member and the radial bearing surface of the bearing member,
A hydrodynamic bearing device, wherein at least a part of the seal space is arranged in an outer diameter region of a radial bearing surface.
軸受部材の一端面と、それと対向するシール部材の端面との間に、第1のスラスト軸受隙間を形成した請求項1記載の流体軸受装置。   The hydrodynamic bearing device according to claim 1, wherein a first thrust bearing gap is formed between one end surface of the bearing member and an end surface of the seal member facing the one end surface. 軸部材にフランジ部を設け、軸受部材に対向しない側の端面と、これに対向する部材の端面との間に第1のスラスト軸受隙間を形成した請求項1記載の流体軸受装置。   2. The hydrodynamic bearing device according to claim 1, wherein a flange portion is provided on the shaft member, and a first thrust bearing gap is formed between an end surface on the side not facing the bearing member and an end surface of the member facing the shaft member. 軸部材にフランジ部を設け、軸受部材の他端面と、それに対向する軸部材のフランジ部の端面との間に、第2のスラスト軸受隙間を形成した請求項2又は3記載の流体軸受装置。   4. The hydrodynamic bearing device according to claim 2, wherein a flange portion is provided on the shaft member, and a second thrust bearing gap is formed between the other end surface of the bearing member and an end surface of the flange portion of the shaft member facing the shaft member. 軸受部材をハウジングの内周面に固定し、シール部材の外周面とハウジングの内周面との間に前記シール空間を形成した請求項1記載の流体軸受装置。   The hydrodynamic bearing device according to claim 1, wherein the bearing member is fixed to the inner peripheral surface of the housing, and the seal space is formed between the outer peripheral surface of the seal member and the inner peripheral surface of the housing.
JP2006048894A 2006-02-24 2006-02-24 Hydrodynamic bearing device Expired - Fee Related JP4762757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006048894A JP4762757B2 (en) 2006-02-24 2006-02-24 Hydrodynamic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006048894A JP4762757B2 (en) 2006-02-24 2006-02-24 Hydrodynamic bearing device

Publications (2)

Publication Number Publication Date
JP2007225062A true JP2007225062A (en) 2007-09-06
JP4762757B2 JP4762757B2 (en) 2011-08-31

Family

ID=38547059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006048894A Expired - Fee Related JP4762757B2 (en) 2006-02-24 2006-02-24 Hydrodynamic bearing device

Country Status (1)

Country Link
JP (1) JP4762757B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008140075A1 (en) * 2007-05-10 2008-11-20 Nidec Corporation Fluid dynamic pressure bearing and motor
JP2010286071A (en) * 2009-06-12 2010-12-24 Nippon Densan Corp Bearing device, spindle motor and disc drive device
JP2012037026A (en) * 2010-08-11 2012-02-23 Ntn Corp Hydrodynamic bearing unit
JP2012184800A (en) * 2011-03-04 2012-09-27 Alphana Technology Co Ltd Rotational device and method for manufacturing the same
JP2013210096A (en) * 2013-03-22 2013-10-10 Nippon Densan Corp Bearing device, spindle motor, and start of disk driving device form
JP2014129887A (en) * 2014-03-25 2014-07-10 Ntn Corp Fluid dynamic pressure bearing device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005155912A (en) * 2003-11-07 2005-06-16 Nippon Densan Corp Fluid dynamic bearing and spindle motor
JP2005304290A (en) * 2004-04-08 2005-10-27 Minebea Co Ltd Spindle motor equipped with fluid dynamic pressure bearing
JP2005321089A (en) * 2004-04-09 2005-11-17 Ntn Corp Dynamic pressure bearing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005155912A (en) * 2003-11-07 2005-06-16 Nippon Densan Corp Fluid dynamic bearing and spindle motor
JP2005304290A (en) * 2004-04-08 2005-10-27 Minebea Co Ltd Spindle motor equipped with fluid dynamic pressure bearing
JP2005321089A (en) * 2004-04-09 2005-11-17 Ntn Corp Dynamic pressure bearing device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008140075A1 (en) * 2007-05-10 2008-11-20 Nidec Corporation Fluid dynamic pressure bearing and motor
JP2010286071A (en) * 2009-06-12 2010-12-24 Nippon Densan Corp Bearing device, spindle motor and disc drive device
US8967865B2 (en) 2009-06-12 2015-03-03 Nidec Corporation Bearing apparatus, spindle motor, and disk drive apparatus
JP2012037026A (en) * 2010-08-11 2012-02-23 Ntn Corp Hydrodynamic bearing unit
JP2012184800A (en) * 2011-03-04 2012-09-27 Alphana Technology Co Ltd Rotational device and method for manufacturing the same
JP2013210096A (en) * 2013-03-22 2013-10-10 Nippon Densan Corp Bearing device, spindle motor, and start of disk driving device form
JP2014129887A (en) * 2014-03-25 2014-07-10 Ntn Corp Fluid dynamic pressure bearing device

Also Published As

Publication number Publication date
JP4762757B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
JP5274820B2 (en) Hydrodynamic bearing device
JP2008190620A (en) Fluid bearing device
JP2007024146A (en) Dynamic pressure bearing device
US8016488B2 (en) Fluid dynamic bearing device
JP4762757B2 (en) Hydrodynamic bearing device
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
US7625124B2 (en) Fluid bearing device
JP4916673B2 (en) Hydrodynamic bearing device
JP2007024089A (en) Dynamic pressure bearing device and motor
JP2007051717A (en) Manufacturing method of dynamic pressure bearing device
JP5133131B2 (en) Hydrodynamic bearing device
JP5220339B2 (en) Hydrodynamic bearing device
US8197141B2 (en) Fluid dynamic bearing device
JP4754418B2 (en) Hydrodynamic bearing device
JP2006112614A (en) Dynamic pressure bearing device
JP4579013B2 (en) Hydrodynamic bearing device
JP2011007336A (en) Dynamic pressure bearing device and motor
JP4949216B2 (en) Hydrodynamic bearing device
JP2007100834A (en) Hydrodynamic bearing device
JP2006200584A (en) Dynamic pressure bearing device
JP4647585B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP5214401B2 (en) Hydrodynamic bearing device
JP5020652B2 (en) Hydrodynamic bearing device
JP2007327546A (en) Fluid bearing device manufacturing method
JP4685641B2 (en) Hydrodynamic bearing device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090107

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110523

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110608

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4762757

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees