JP2014129887A - Fluid dynamic pressure bearing device - Google Patents

Fluid dynamic pressure bearing device Download PDF

Info

Publication number
JP2014129887A
JP2014129887A JP2014062085A JP2014062085A JP2014129887A JP 2014129887 A JP2014129887 A JP 2014129887A JP 2014062085 A JP2014062085 A JP 2014062085A JP 2014062085 A JP2014062085 A JP 2014062085A JP 2014129887 A JP2014129887 A JP 2014129887A
Authority
JP
Japan
Prior art keywords
bearing
hub
peripheral surface
shaft
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014062085A
Other languages
Japanese (ja)
Other versions
JP5784777B2 (en
Inventor
Fuyuki Ito
冬木 伊藤
Kazunori Harada
和慶 原田
Nobuyoshi Yamashita
信好 山下
Akiyuki Minami
章行 皆見
Toshihisa Sawatsubashi
寿久 沢津橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2014062085A priority Critical patent/JP5784777B2/en
Publication of JP2014129887A publication Critical patent/JP2014129887A/en
Application granted granted Critical
Publication of JP5784777B2 publication Critical patent/JP5784777B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To allow easy formation of a hub, and to prevent oil leakage by setting the capacity of a seal space with high accuracy while preventing the deformation of a seal surface when pressing and fixing the hub into the outer peripheral face of a shaft member.SOLUTION: A fluid dynamic pressure bearing device includes a hub 3 protruded from the outer peripheral face of a shaft member 2 to the outer diameter and mounted with a rotating body D, a seal member 9 formed separately from the hub 3, and having a disc part 9a fixed to the outer peripheral face of a shaft part 2a and covering the upper end opening of a housing 7, and a cylindrical part 9b protruded downward from the outer diameter end of the disc part 9a, and the seal space formed between the outer peripheral face of the lateral part of the housing 7 and the inner peripheral face of the cylindrical part 9b of the seal member 9. An axial clearance between the disc part 9a of the seal member 9 and an upper side end face 7a3 of the lateral part 7a of the housing 7 and an axial clearance between the disc part 9a of the seal member 9 and an upper side end face 8c of a bearing sleeve 8 are each set to be a greater value than a total amount δ of thrust bearing clearances from a first thrust bearing part T1 and a second thrust bearing part T2.

Description

本発明は、軸部材と軸受部材との間の軸受隙間に生じる油膜で、軸部材を回転自在に支持する流体動圧軸受装置に関する。   The present invention relates to a fluid dynamic pressure bearing device that rotatably supports a shaft member with an oil film generated in a bearing gap between the shaft member and the bearing member.

流体動圧軸受装置は、その高回転精度および静粛性から、各種ディスク駆動装置(例えばHDD等の磁気ディスク駆動装置、CD,DVD,ブルーレイディスク等の光ディスク駆動装置、あるいはMD,MO等の光磁気ディスク駆動装置等)のスピンドルモータや、レーザビームプリンタのポリゴンスキャナモータ、プロジェクタのカラーホイールモータ、あるいは電子機器の冷却ファンモータ等に好適に使用される。   Due to its high rotational accuracy and quietness, the fluid dynamic pressure bearing device has various disk drive devices (for example, magnetic disk drive devices such as HDDs, optical disk drive devices such as CDs, DVDs, and Blu-ray discs, or magneto-optical devices such as MD and MO). It is preferably used for a spindle motor of a disk drive device, a polygon scanner motor of a laser beam printer, a color wheel motor of a projector, a cooling fan motor of an electronic device, or the like.

このような流体動圧軸受として、例えば特許文献1には、軸受部材(軸受スリーブ及びハウジングと)、軸受部材の内周に挿入された軸部材と、軸部材の端部から外径に突出して設けられたディスクハブとを備えた構成が示されている。ディスクハブの内周面と軸受部材の外周面との間にはシール空間が形成され、このシール空間により、軸受部材の内部に満たされた潤滑油の外部への漏れ出しを防止している。このように、シール空間を軸受部材の外周に形成することで、例えばシール空間を軸受部材の内周に形成する場合と比べて、シール空間が大径化されて容積が大きくなる。従って、シール空間の容積を維持しながら、シール空間の軸方向寸法を小さくすることができ、軸受装置の軸方向寸法を縮小することができる。   As such a fluid dynamic pressure bearing, for example, Patent Document 1 discloses a bearing member (a bearing sleeve and a housing), a shaft member inserted into the inner periphery of the bearing member, and an outer diameter projecting from an end of the shaft member. A configuration with a provided disk hub is shown. A seal space is formed between the inner peripheral surface of the disk hub and the outer peripheral surface of the bearing member, and this seal space prevents leakage of the lubricating oil filled in the bearing member to the outside. Thus, by forming the seal space on the outer periphery of the bearing member, for example, the seal space is increased in diameter and the volume is increased as compared with the case where the seal space is formed on the inner periphery of the bearing member. Accordingly, the axial dimension of the seal space can be reduced while maintaining the volume of the seal space, and the axial dimension of the bearing device can be reduced.

特開2006−207787号公報JP 2006-207787 A

上記特許文献1の流体動圧軸受装置に設けられるディスクハブは、軸部材の外周面から外径に突出した円盤部と、円盤部から軸方向に突出した筒状部と、筒状部から外径に突出した鍔部とを一体に有する。鍔部の上面には、磁気ディスク等が搭載されるディスク搭載面が設けられ、円筒部の内周面には、軸受部材の外周面との間にシール空間を形成するシール面が形成される。このように、ディスクハブにディスク搭載面及びシール面の双方を形成することで、ディスクハブは、鍔部及び円筒部からなる二股部分を有する複雑な形状となる。このため、ディスクハブの形成が困難となり、ディスク搭載面及びシール面の加工精度が低下する恐れがある。特に、金属のプレス加工により上記のような二股部分を有するディスクハブを形成することは極めて困難である。   The disk hub provided in the fluid dynamic pressure bearing device of Patent Document 1 includes a disk portion protruding from the outer peripheral surface of the shaft member to the outer diameter, a cylindrical portion protruding in the axial direction from the disk portion, and an outer portion from the cylindrical portion. It integrally has a flange projecting in diameter. A disk mounting surface on which a magnetic disk or the like is mounted is provided on the upper surface of the flange portion, and a seal surface that forms a seal space between the outer peripheral surface of the bearing member is formed on the inner peripheral surface of the cylindrical portion. . Thus, by forming both the disk mounting surface and the seal surface on the disk hub, the disk hub has a complicated shape having a bifurcated portion including a flange portion and a cylindrical portion. For this reason, it becomes difficult to form a disk hub, and there is a possibility that the processing accuracy of the disk mounting surface and the seal surface may be lowered. In particular, it is extremely difficult to form a disk hub having the above-mentioned bifurcated portion by metal pressing.

また、ディスクハブを軸部材の外周面に圧入固定する場合、圧入時の抵抗によりディスクハブが変形する恐れがある。この場合、ディスクハブに形成されたシール面が変形し、シール空間の容積の精度が低下して油漏れが生じる恐れがある。   Further, when the disk hub is press-fitted and fixed to the outer peripheral surface of the shaft member, the disk hub may be deformed due to resistance during press-fitting. In this case, the seal surface formed on the disk hub may be deformed, the accuracy of the volume of the seal space may be reduced, and oil leakage may occur.

上記のような課題は、ディスクハブに限らず、回転体が搭載されるハブにシール面を形成する場合に同様に生じる。例えば、ポリゴンミラーが搭載されるポリゴンスキャナモータのハブや、カラーホイールが搭載されるカラーホイールモータのハブに、シール面を形成する場合にも、上記と同様の課題が生じる。   The problems as described above occur not only when the disk hub is used, but also when the sealing surface is formed on the hub on which the rotating body is mounted. For example, when the seal surface is formed on a hub of a polygon scanner motor on which a polygon mirror is mounted or on a hub of a color wheel motor on which a color wheel is mounted, the same problem as described above occurs.

本発明の解決すべき課題は、軸受部材の外周にシール空間が形成される流体動圧軸受装置において、ハブの形状を単純化して形成を容易化することにより、回転体の搭載面及び潤滑油のシール面の加工精度を高めることにある。   The problem to be solved by the present invention is that, in a fluid dynamic pressure bearing device in which a seal space is formed on the outer periphery of a bearing member, by simplifying the shape of the hub and facilitating the formation, the mounting surface of the rotating body and the lubricating oil This is to improve the processing accuracy of the sealing surface.

また、本発明の解決すべき他の課題は、ハブを軸部材の外周面に圧入固定する場合でも、シール面の変形を防止してシール空間の容積を高精度に設定し、油漏れを防止することにある。   Another problem to be solved by the present invention is that even when the hub is press-fitted and fixed to the outer peripheral surface of the shaft member, deformation of the seal surface is prevented, the volume of the seal space is set with high accuracy, and oil leakage is prevented. There is to do.

前記課題を解決するために、本発明は、軸部及びフランジ部を有する軸部材と、内周に前記軸部が挿入された軸受スリーブと、内周面に前記軸受スリーブが固定された円筒状の側部、及び、側部の軸方向一方の開口部を閉塞する底部を有するハウジングと、前記軸部材の外周面から外径に突出して設けられ、回転体が搭載されるハブと、前記軸部の外周面に固定され、前記ハウジングの側部の軸方向他方の開口部を覆う円盤部、及び、前記円盤部の外径端から軸方向他方に突出した円筒部を有し、前記ハブと別体に形成されたシール部材と、前記ハウジングの側部の外周面と前記シール部材の円筒部の内周面との間に形成され、前記ハウジングの内部に満たされた潤滑油の漏れ出しを防止するシール空間と、前記軸部の外周面と前記軸受スリーブの内周面との間のラジアル軸受隙間の油膜に生じる動圧作用で前記軸部材をラジアル方向に支持するラジアル軸受部と、前記軸受スリーブの軸方向一方の端面とこれに対向する前記フランジ部の端面との間のスラスト軸受隙間の油膜に生じる動圧作用で前記軸部材をスラスト方向一方に支持する第1スラスト軸受部と、前記ハウジングの底部の端面とこれに対向する前記フランジ部の端面との間のスラスト軸受隙間の油膜に生じる動圧作用で前記軸部材をスラスト方向他方に支持する第2スラスト軸受部とを備えた流体動圧軸受装置であって、前記シール部材の円盤部と前記ハウジングの側部の軸方向他方の端面との間の軸方向隙間、及び、前記シール部材の円盤部と前記軸受スリーブの軸方向他方の端面との間の軸方向隙間が、何れも、前記第1スラスト軸受部及び前記第2スラスト軸受部のスラスト軸受隙間の合計量よりも大きい値に設定された流体動圧軸受装置を提供する。   In order to solve the above problems, the present invention provides a shaft member having a shaft portion and a flange portion, a bearing sleeve in which the shaft portion is inserted in an inner periphery, and a cylindrical shape in which the bearing sleeve is fixed on an inner peripheral surface. A housing having a bottom portion that closes one side axial opening, a hub that protrudes from the outer peripheral surface of the shaft member to an outer diameter, and on which the rotating body is mounted, the shaft A disk part fixed to the outer peripheral surface of the part and covering the other axial opening of the side part of the housing, and a cylindrical part protruding from the outer diameter end of the disk part to the other axial direction, Leakage of the lubricating oil formed between the seal member formed separately, and the outer peripheral surface of the side portion of the housing and the inner peripheral surface of the cylindrical portion of the seal member, is filled in the housing. A seal space to be prevented, an outer peripheral surface of the shaft portion, and the bearing sleeve. A radial bearing portion that supports the shaft member in the radial direction by a dynamic pressure action generated in an oil film in a radial bearing gap between the inner peripheral surface of the hub, one end surface in the axial direction of the bearing sleeve, and the flange that opposes the radial bearing portion A first thrust bearing portion that supports the shaft member in one thrust direction by a dynamic pressure action generated in an oil film in a thrust bearing gap between the end surface of the housing portion, an end surface of the bottom portion of the housing, and a flange portion that faces the first thrust bearing portion. A fluid dynamic pressure bearing device including a second thrust bearing portion that supports the shaft member in the other thrust direction by a dynamic pressure action generated in an oil film in a thrust bearing gap between the end surface and the disk portion of the seal member And the axial clearance between the other axial end surface of the side portion of the housing and the axial clearance between the disc portion of the seal member and the other axial end surface of the bearing sleeve. To provide a fluid dynamic pressure bearing device which is set to a value greater than the total amount of the thrust bearing gap of the first thrust bearing portion and the second thrust bearing portion.

このように、本発明の流体動圧軸受装置では、回転体が搭載されるハブと別体にシール部材を形成し、このシール部材の内周面と軸受部材の外周面との間にシール空間が形成される。すなわち、回転体を搭載する搭載面をハブに形成し、シール空間を形成するシール面をシール部材に形成する。このように、搭載面及びシール面がそれぞれ別部材に形成されることにより、ハブに二股部分を形成する必要がなくなり、ハブの形状を単純化することができる。従って、ハブの形成が容易化され、製造コストを低減できると共に、ハブの加工精度が高められる。また、シール面が、二股部分を有する複雑な形状の部材ではなく、単純な形状のシール部材に形成されるため、シール面の加工精度が高められる。   Thus, in the fluid dynamic pressure bearing device of the present invention, the seal member is formed separately from the hub on which the rotating body is mounted, and the seal space is formed between the inner peripheral surface of the seal member and the outer peripheral surface of the bearing member. Is formed. That is, a mounting surface on which the rotating body is mounted is formed on the hub, and a sealing surface that forms a seal space is formed on the seal member. Thus, by forming the mounting surface and the seal surface as separate members, it is not necessary to form a bifurcated portion in the hub, and the shape of the hub can be simplified. Therefore, formation of the hub is facilitated, the manufacturing cost can be reduced, and the processing accuracy of the hub is increased. Further, since the sealing surface is not a complicated shape member having a bifurcated portion but a simple shape sealing member, the processing accuracy of the sealing surface is improved.

上記のようにハブの形状が単純化されることで、ハブを、例えば金属のプレス成形により形成することが可能となる。   By simplifying the shape of the hub as described above, the hub can be formed by, for example, metal press molding.

また、上記のようにハブとシール部材とを別体に形成することで、例えばハブを軸部材の外周面に圧入固定する場合であっても、ハブの圧入による影響がシール部材に及ぶことはないため、シール部材に形成されたシール面の変形を防止できる。   In addition, by forming the hub and the seal member separately as described above, for example, even when the hub is press-fitted and fixed to the outer peripheral surface of the shaft member, the influence of the hub press-fitting may affect the seal member. Therefore, the deformation of the seal surface formed on the seal member can be prevented.

シール部材の内周面と軸部材の外周面とを隙間を介して嵌合させれば、シール部材を軸部材に固定する際にシール面が変形することを確実に防止できる。この場合、シール部材を薄肉化することができ、低コスト化及び軽量化を図ることができる。   If the inner peripheral surface of the seal member and the outer peripheral surface of the shaft member are fitted via a gap, the seal surface can be reliably prevented from being deformed when the seal member is fixed to the shaft member. In this case, the seal member can be thinned, and cost and weight can be reduced.

軸部材に、シール部材の端面に当接する係止部を設ければ、シール部材を軸部材に対して容易に位置決めすることができる。この場合、シール部材を、軸部材の係止部とハブとで軸方向両側から挟持固定することができる。   If the shaft member is provided with a locking portion that comes into contact with the end face of the seal member, the seal member can be easily positioned with respect to the shaft member. In this case, the seal member can be clamped and fixed from both sides in the axial direction by the locking portion of the shaft member and the hub.

ハブには、例えば回転体としてHDDの記憶媒体である磁気ディスクを搭載することができる。   For example, a magnetic disk, which is a storage medium of an HDD, can be mounted on the hub as a rotating body.

以上のように、回転体の搭載面がハブに形成されると共に、シール面がシール部材に形成されることで、ハブの形状が単純化されて形成を容易化することができる。これにより、搭載面の加工精度が高められて回転体の回転精度が向上すると共に、シール面の加工精度が高められてシール性能が向上する。   As described above, the mounting surface of the rotating body is formed on the hub and the seal surface is formed on the seal member, so that the shape of the hub can be simplified and the formation can be facilitated. Thereby, the processing accuracy of the mounting surface is increased and the rotation accuracy of the rotating body is improved, and the processing accuracy of the seal surface is increased and the sealing performance is improved.

また、シール部材を軸部材に隙間を介して嵌合することで、シール部材の変形を防止し、シール性能の低下を防止することができる。   Further, by fitting the seal member to the shaft member via a gap, it is possible to prevent the seal member from being deformed and to prevent the seal performance from being lowered.

本発明の一実施形態に係る流体動圧軸受装置を組み込んだスピンドルモータの断面図である。It is sectional drawing of the spindle motor incorporating the fluid dynamic pressure bearing apparatus which concerns on one Embodiment of this invention. 流体動圧軸受装置の断面図である。It is sectional drawing of a fluid dynamic pressure bearing apparatus. 軸受スリーブの断面図である。It is sectional drawing of a bearing sleeve. 軸受スリーブの下面図である。It is a bottom view of a bearing sleeve. ハウジングの上面図である。It is a top view of a housing. (a)〜(d)は、流体動圧軸受装置の組立工程を示す断面図である。(A)-(d) is sectional drawing which shows the assembly process of a fluid dynamic pressure bearing apparatus. シール部材と軸部材との固定部周辺を拡大して示す断面図である。It is sectional drawing which expands and shows the fixed part periphery of a sealing member and a shaft member. 他の実施形態に係るハウジングの断面図である。It is sectional drawing of the housing which concerns on other embodiment. 図8のハウジングと軸受スリーブとの固定部を拡大して示す断面図である。It is sectional drawing which expands and shows the fixing | fixed part of the housing and bearing sleeve of FIG.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態に係る流体動圧軸受装置1が組み込まれたモータを示す。このモータは、例えば2.5インチHDDのディスク駆動装置に用いられるスピンドルモータであり、軸部材2を回転自在に支持する流体動圧軸受装置1と、軸部材2に固定されたハブ3(ディスクハブ)と、流体動圧軸受装置1が取り付けられたブラケット6と、半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5とを備えている。ステータコイル4はブラケット6に取り付けられ、ロータマグネット5はハブ3に取り付けられる。ハブ3には回転体が搭載され、本実施形態では、HDDの記憶媒体としての磁気ディスクDが所定の枚数(図示例では2枚)搭載される。ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間の電磁力でロータマグネット5が回転し、これによりハブ3、ディスクD、および軸部材2が一体となって回転する。   FIG. 1 shows a motor in which a fluid dynamic bearing device 1 according to an embodiment of the present invention is incorporated. This motor is a spindle motor used in, for example, a 2.5-inch HDD disk drive device, and includes a fluid dynamic bearing device 1 that rotatably supports the shaft member 2 and a hub 3 (disk that is fixed to the shaft member 2. Hub), a bracket 6 to which the fluid dynamic bearing device 1 is attached, and a stator coil 4 and a rotor magnet 5 that are opposed to each other through a gap in the radial direction. The stator coil 4 is attached to the bracket 6, and the rotor magnet 5 is attached to the hub 3. A rotating body is mounted on the hub 3, and in the present embodiment, a predetermined number (two in the illustrated example) of magnetic disks D as HDD storage media are mounted. When the stator coil 4 is energized, the rotor magnet 5 is rotated by the electromagnetic force between the stator coil 4 and the rotor magnet 5, whereby the hub 3, the disk D, and the shaft member 2 are rotated together.

流体動圧軸受装置1は、図2に示すように、軸部材2と、内周に軸部材2を挿入した軸受部材Aと、軸部材2の端部に固定されたハブ3と、軸受部材Aの開口部をシールするシール部材9とを備える。本実施形態では、軸受部材Aが有底筒状のハウジング7と、ハウジング7の内周面7a1に固定された軸受スリーブ8とで構成される。尚、以下では、軸方向でハウジング7の開口側(シール部材9側)を上側、閉塞側(底部7b側)を下側として説明を進める。   As shown in FIG. 2, the fluid dynamic bearing device 1 includes a shaft member 2, a bearing member A in which the shaft member 2 is inserted on the inner periphery, a hub 3 fixed to an end of the shaft member 2, and a bearing member. And a seal member 9 for sealing the opening of A. In the present embodiment, the bearing member A includes a bottomed cylindrical housing 7 and a bearing sleeve 8 fixed to the inner peripheral surface 7 a 1 of the housing 7. In the following description, in the axial direction, the opening side (sealing member 9 side) of the housing 7 is the upper side, and the closing side (bottom 7b side) is the lower side.

軸部材2は、軸部2aと、軸部2aの下端に設けられたフランジ部2bとからなる。軸部2aは、大径部2a1と、大径部2a1から上方に延びた小径部2a2と、大径部2a1と小径部2a2との間に形成された肩面2a3とを有する。肩面2a3は、シール部材9に下方から当接する係止部として機能する。大径部2a1の外周面2a11は平滑な円筒面状に形成され、その軸方向中間部に、他の領域よりも僅かに小径な逃げ部2a12が形成される。フランジ部2bは、軸部2aの下端部から外径に突出した円盤形状をなす。フランジ部2bの両端面2b1,2b2は、平坦に形成され、それぞれ軸受スリーブ8の下側端面8b及びハウジング7の底部7bの上側端面7b1と軸方向で対向する。フランジ部2bは、軸受スリーブ8の下側端面8bと軸方向で係合することにより、軸部材2の軸受部材A(ハウジング7及び軸受スリーブ8)からの抜け止めとして機能する。軸部材2は、例えばステンレス鋼等の金属で形成され、軸部2a及びフランジ部2bが切削加工により一体に形成される。この他、軸部2aとフランジ部2bとを金属で別体に形成した後、両者を溶接等により接合して一体化したり、軸部2aを金属、フランジ部2bを樹脂で形成したりすることもできる。   The shaft member 2 includes a shaft portion 2a and a flange portion 2b provided at the lower end of the shaft portion 2a. The shaft portion 2a includes a large diameter portion 2a1, a small diameter portion 2a2 extending upward from the large diameter portion 2a1, and a shoulder surface 2a3 formed between the large diameter portion 2a1 and the small diameter portion 2a2. The shoulder surface 2a3 functions as a locking portion that comes into contact with the seal member 9 from below. The outer peripheral surface 2a11 of the large-diameter portion 2a1 is formed in a smooth cylindrical surface shape, and a relief portion 2a12 having a slightly smaller diameter than the other regions is formed in the intermediate portion in the axial direction. The flange portion 2b has a disk shape protruding from the lower end portion of the shaft portion 2a to the outer diameter. Both end surfaces 2b1 and 2b2 of the flange portion 2b are formed flat and face the lower end surface 8b of the bearing sleeve 8 and the upper end surface 7b1 of the bottom portion 7b of the housing 7 in the axial direction. The flange portion 2b functions as a retaining member for the shaft member 2 from the bearing member A (the housing 7 and the bearing sleeve 8) by engaging with the lower end surface 8b of the bearing sleeve 8 in the axial direction. The shaft member 2 is formed of a metal such as stainless steel, for example, and the shaft portion 2a and the flange portion 2b are integrally formed by cutting. In addition, after the shaft portion 2a and the flange portion 2b are formed separately from each other by metal, they are joined together by welding or the like, or the shaft portion 2a is formed by metal and the flange portion 2b is formed by resin. You can also.

軸受スリーブ8は、例えば銅を主成分とする焼結金属で円筒状に形成される。この他、黄銅等の軟質金属で軸受スリーブ8を形成することも可能である。   The bearing sleeve 8 is formed in a cylindrical shape with a sintered metal mainly composed of copper, for example. In addition, the bearing sleeve 8 can be formed of a soft metal such as brass.

軸受スリーブ8の内周面8aには、ラジアル軸受隙間の潤滑油に動圧作用を発生させるラジアル動圧発生部が形成される。本実施形態では、軸受スリーブ8の内周面8aの軸方向に離隔した2つの領域にラジアル動圧発生部が形成される(図2に点線で示す)。ラジアル動圧発生部は、例えば図3に示すように、ヘリングボーン形状の動圧溝8a1,8a2で構成される。上側の動圧溝8a1は軸方向非対称に形成されており、具体的には、丘部(図3にクロスハッチングで示す)の軸方向中央部の円筒部分より上側領域の軸方向寸法X1が、下側領域の軸方向寸法X2よりも大きくなっている(X1>X2)。下側の動圧溝8a2は軸方向対称に形成されている。   On the inner peripheral surface 8a of the bearing sleeve 8, there is formed a radial dynamic pressure generating portion that generates a dynamic pressure action on the lubricating oil in the radial bearing gap. In the present embodiment, radial dynamic pressure generating portions are formed in two regions separated in the axial direction of the inner peripheral surface 8a of the bearing sleeve 8 (shown by dotted lines in FIG. 2). For example, as shown in FIG. 3, the radial dynamic pressure generating portion includes herringbone-shaped dynamic pressure grooves 8 a 1 and 8 a 2. The upper dynamic pressure groove 8a1 is formed to be axially asymmetric. Specifically, the axial dimension X1 of the upper region from the cylindrical portion of the central portion in the axial direction of the hill (shown by cross-hatching in FIG. 3) It is larger than the axial dimension X2 of the lower region (X1> X2). The lower dynamic pressure groove 8a2 is formed symmetrically in the axial direction.

軸受スリーブ8の下側端面8bには、スラスト軸受隙間の潤滑油に動圧作用を発生させるスラスト動圧発生部が形成される(図2に点線で示す)。本実施形態では、スラスト動圧発生部として、例えば図4に示すようなポンプインタイプのスパイラル形状の動圧溝8b1が形成される。軸受スリーブ8の外周面8dには、軸方向溝8d1が軸方向全長にわたって形成され、本実施形態では、例えば3本の軸方向溝8d1が円周方向に等配される。   A thrust dynamic pressure generating portion that generates a dynamic pressure action on the lubricating oil in the thrust bearing gap is formed on the lower end surface 8b of the bearing sleeve 8 (indicated by a dotted line in FIG. 2). In the present embodiment, a pump-in type spiral-shaped dynamic pressure groove 8b1 as shown in FIG. 4 is formed as the thrust dynamic pressure generating portion. An axial groove 8d1 is formed over the entire length in the axial direction on the outer peripheral surface 8d of the bearing sleeve 8. In this embodiment, for example, three axial grooves 8d1 are equally arranged in the circumferential direction.

ハウジング7は、例えば樹脂の射出成形で有底筒状に形成される。本実施形態では、ハウジング7が、図2に示すように、円筒状の側部7aと、側部7aの下端開口部を閉塞する底部7bとで構成される。ハウジング7の内周面7a1は、円筒面状に形成され、軸受スリーブ8の外周面8dが隙間接着、圧入、接着剤介在下の圧入等により固定される。ハウジング7の外周面7a2の上端部には、下方へ向けて縮径したテーパ面7a21が設けられ、テーパ面7a21の下方に円筒面7a22が設けられる。テーパ面7a21は、シール部材9の内周面との間にシール空間Sを形成する。円筒面7a22には、ブラケット6(図1参照)の内周面が、圧入や接着等の適宜の手段で固定される。   The housing 7 is formed into a bottomed cylindrical shape by, for example, resin injection molding. In this embodiment, the housing 7 is comprised by the cylindrical side part 7a and the bottom part 7b which obstruct | occludes the lower end opening part of the side part 7a, as shown in FIG. The inner peripheral surface 7a1 of the housing 7 is formed in a cylindrical surface shape, and the outer peripheral surface 8d of the bearing sleeve 8 is fixed by gap bonding, press-fitting, press-fitting with an adhesive interposed therebetween, or the like. At the upper end of the outer peripheral surface 7a2 of the housing 7, a tapered surface 7a21 having a diameter reduced downward is provided, and a cylindrical surface 7a22 is provided below the tapered surface 7a21. The taper surface 7 a 21 forms a seal space S between the inner peripheral surface of the seal member 9. The inner peripheral surface of the bracket 6 (see FIG. 1) is fixed to the cylindrical surface 7a22 by appropriate means such as press-fitting or adhesion.

ハウジング7の底部7bの上側端面7b1には、スラスト軸受隙間の潤滑油に動圧作用を発生させるスラスト動圧発生部が形成される(図2に点線で示す)。本実施形態では、スラスト動圧発生部として、例えば図5に示すようなポンプインタイプのスパイラル形状の動圧溝7b10が形成される。   On the upper end surface 7b1 of the bottom portion 7b of the housing 7, a thrust dynamic pressure generating portion that generates a dynamic pressure action on the lubricating oil in the thrust bearing gap is formed (indicated by a dotted line in FIG. 2). In this embodiment, a pump-in type spiral-shaped dynamic pressure groove 7b10 as shown in FIG. 5, for example, is formed as the thrust dynamic pressure generating portion.

シール部材9は、ハブ3と別体に形成され、軸部材2に固定される。本実施形態では、図2に示すように、シール部材9が、ハウジング7の上端開口部を覆う円盤部9aと、円盤部9aの外径端から下方に突出した円筒部9bとからなる。円盤部9a及び円筒部9bは、例えば金属のプレス成形や樹脂の射出成形により一体に形成される。   The seal member 9 is formed separately from the hub 3 and is fixed to the shaft member 2. In the present embodiment, as shown in FIG. 2, the seal member 9 includes a disk portion 9 a that covers the upper end opening of the housing 7 and a cylindrical portion 9 b that protrudes downward from the outer diameter end of the disk portion 9 a. The disk portion 9a and the cylindrical portion 9b are integrally formed by, for example, metal press molding or resin injection molding.

円盤部9aは、軸部材2の軸部2aに固定される。詳しくは、円盤部9aの内周面9a1と軸部2aの小径部2a2の外周面2a21とが隙間を介して嵌合し、この状態で、円盤部9aが、軸部2aの肩面2a3(係止部)とハブ3の下側端面3a2とで上下から挟持固定される。円盤部9aの下側端面9a2は、ハウジング7の側部7aの上端面7a3及び軸受スリーブ8の上側端面8cと軸方向隙間δを介して対向する。この軸方向隙間δは、潤滑油で満たされ、後述する第1スラスト軸受部T1及び第2スラスト軸受部T2のスラスト軸受隙間の合計量よりも大きい値とされる。すなわち、軸部材2がハウジング7の底部7bに当接した場合でも、円盤部9aがハウジング7や軸受スリーブ8に当接しないように軸方向隙間δの大きさが設定される。   The disk portion 9 a is fixed to the shaft portion 2 a of the shaft member 2. Specifically, the inner peripheral surface 9a1 of the disk portion 9a and the outer peripheral surface 2a21 of the small diameter portion 2a2 of the shaft portion 2a are fitted via a gap, and in this state, the disk portion 9a is connected to the shoulder surface 2a3 ( The locking part) and the lower end surface 3a2 of the hub 3 are clamped and fixed from above and below. The lower end surface 9a2 of the disk portion 9a faces the upper end surface 7a3 of the side portion 7a of the housing 7 and the upper end surface 8c of the bearing sleeve 8 with an axial gap δ therebetween. This axial gap δ is filled with lubricating oil and has a value larger than the total amount of thrust bearing gaps of a first thrust bearing portion T1 and a second thrust bearing portion T2, which will be described later. That is, the size of the axial gap δ is set so that the disk portion 9 a does not contact the housing 7 or the bearing sleeve 8 even when the shaft member 2 contacts the bottom portion 7 b of the housing 7.

円筒部9bは、ハウジング7の外周を囲むように設けられる。円筒部9bの内周面9b1は、ハウジング7の外周面7a2と径方向に対向し、これらの間にシール空間Sが形成される。具体的には、円筒部9bの円筒面状内周面9b1と、ハウジング7の外周面7a2のテーパ面7a21との間に、上方へ向けて径方向寸法を漸次縮小した楔形状を成したシール空間Sが形成される。このシール空間Sにより、ハウジング7の内部に満たされた潤滑油の外部への漏れ出しを防止する。具体的には、シール空間Sの毛細管力により、シール空間Sの内部に保持された潤滑油が上方(軸受部材Aの内部側)に引き込まれる。また、ハウジング7の外周面7a2のテーパ面7a21でシール空間Sを形成することで、軸部材2の回転時にシール空間S内の潤滑油に遠心力が加わわり、シール空間Sに保持された潤滑油が上方に引き込まれる。シール空間Sの容積は、軸受部材Aの内部に満たされた潤滑油の熱膨張を吸収できる大きさに設定される。   The cylindrical portion 9 b is provided so as to surround the outer periphery of the housing 7. The inner peripheral surface 9b1 of the cylindrical portion 9b is opposed to the outer peripheral surface 7a2 of the housing 7 in the radial direction, and a seal space S is formed therebetween. Specifically, a wedge-shaped seal having a radial dimension gradually reduced upward between the cylindrical inner peripheral surface 9b1 of the cylindrical portion 9b and the tapered surface 7a21 of the outer peripheral surface 7a2 of the housing 7. A space S is formed. The seal space S prevents leakage of the lubricating oil filled in the housing 7 to the outside. Specifically, the lubricating oil held inside the seal space S is drawn upward (inside the bearing member A) by the capillary force of the seal space S. Further, by forming the seal space S with the tapered surface 7a21 of the outer peripheral surface 7a2 of the housing 7, a centrifugal force is applied to the lubricating oil in the seal space S when the shaft member 2 rotates, and the lubrication retained in the seal space S is achieved. Oil is drawn upwards. The volume of the seal space S is set to a size that can absorb the thermal expansion of the lubricating oil filled in the bearing member A.

ハブ3は、図1に示すように、軸部材2の外周面から外径に突出して設けられる。具体的には、軸部材2に固定された円盤部3aと、円盤部3aの外径端から下方に延びた円筒部3bと、円筒部3bの下端から外径に突出した突出部3cとを有する。突出部3cの上面3c1には、ディスクDが搭載される平坦なディスク搭載面が設けられ、円筒部3bの内周面3b1には、ロータマグネット5の固定面が設けられる。円盤部3aの内周面3a1は、軸部2aの小径部2a2の外周面2a21に圧入固定される(図2参照)。円盤部3aの下側端面3a2は、シール部材9の円盤部9aの上側端面9a3に当接している。   As shown in FIG. 1, the hub 3 is provided so as to protrude from the outer peripheral surface of the shaft member 2 to the outer diameter. Specifically, a disc portion 3a fixed to the shaft member 2, a cylindrical portion 3b extending downward from the outer diameter end of the disc portion 3a, and a protruding portion 3c protruding from the lower end of the cylindrical portion 3b to the outer diameter. Have. A flat disk mounting surface on which the disk D is mounted is provided on the upper surface 3c1 of the protruding part 3c, and a fixed surface of the rotor magnet 5 is provided on the inner peripheral surface 3b1 of the cylindrical part 3b. The inner peripheral surface 3a1 of the disk portion 3a is press-fitted and fixed to the outer peripheral surface 2a21 of the small diameter portion 2a2 of the shaft portion 2a (see FIG. 2). The lower end surface 3a2 of the disk portion 3a is in contact with the upper end surface 9a3 of the disk portion 9a of the seal member 9.

上述のように、シール空間Sを形成するシール面をシール部材9に形成すると共に、ディスクDを搭載するディスク搭載面をハブ3に形成することにより、ハブ3に二股部分を設ける必要がなくなり、ハブ3の形状が単純化される。これにより、ハブ3の形成が容易化され、例えば金属のプレス成形でハブ3を形成することが可能となり、ハブ3の製造コストが低減されると共に、ディスク搭載面の加工精度が高められ、ディスクDの回転精度が高められる。尚、ハブ3は、金属のプレス成形に限らず、例えば金属の機械加工(切削加工等)や樹脂の射出成形で形成することもできる。また、シール部材9の形状も単純化できるため、シール面の加工精度が高められ、シール空間Sの容積を高精度に設定してシール性能を高めることができる。   As described above, the seal surface that forms the seal space S is formed on the seal member 9, and the disk mounting surface on which the disk D is mounted is formed on the hub 3. The shape of the hub 3 is simplified. Thereby, formation of the hub 3 is facilitated, and the hub 3 can be formed by, for example, metal press molding, the manufacturing cost of the hub 3 is reduced, and the processing accuracy of the disk mounting surface is increased. The rotational accuracy of D is increased. The hub 3 is not limited to metal press molding, and can be formed by, for example, metal machining (cutting or the like) or resin injection molding. Further, since the shape of the seal member 9 can be simplified, the processing accuracy of the seal surface can be increased, and the volume of the seal space S can be set with high accuracy to improve the seal performance.

上記の流体動圧軸受装置1は、例えば以下のようにして組み立てられる。まず、図6(a)に示すように、ハウジング7の内周に軸部材2及び軸受スリーブ8を挿入する。このとき、軸部材2のフランジ部2bの両端面2b1,2b2に、軸受スリーブ8の下側端面8b及びハウジング7の底部7bの上側端面7b1をそれぞれ当接させ、スラスト軸受隙間を0の状態とする。この状態から、図6(b)に示すように、ハウジング7に対して軸部材2を上方(ハウジング開口側)に引き上げ、第1スラスト軸受部T1及び第2スラスト軸受部T2のスラスト軸受隙間のねらい値の合計量だけ軸受スリーブ8をハウジング7に対して軸方向移動させる。この位置で軸受スリーブ8を固定することで、スラスト軸受隙間(図6では誇張して示す)が設定される。   The fluid dynamic bearing device 1 is assembled as follows, for example. First, as shown in FIG. 6A, the shaft member 2 and the bearing sleeve 8 are inserted into the inner periphery of the housing 7. At this time, the lower end surface 8b of the bearing sleeve 8 and the upper end surface 7b1 of the bottom portion 7b of the housing 7 are brought into contact with both end surfaces 2b1, 2b2 of the flange portion 2b of the shaft member 2, respectively, and the thrust bearing gap is set to 0. To do. From this state, as shown in FIG. 6B, the shaft member 2 is lifted upward (housing opening side) with respect to the housing 7, and the thrust bearing gaps of the first thrust bearing portion T1 and the second thrust bearing portion T2 are increased. The bearing sleeve 8 is moved in the axial direction relative to the housing 7 by the total amount of the target value. By fixing the bearing sleeve 8 at this position, a thrust bearing gap (exaggerated in FIG. 6) is set.

次に、図6(c)に示すように、軸部2aにシール部材9を装着する。このとき、シール部材9の円盤部9aの内周面9a1と軸部2aの小径部2a2の外周面2a21とは隙間(図6では誇張して示す)を介して嵌合させる。これにより、シール部材9の軸部2aへの装着時に、円盤部9aに大きな負荷が加わることがなく、シール部材9の変形を防止できる。また、軸部2aの肩面2a3に円盤部9aの下側端面9a2を当接させることで、シール部材9の軸部材2に対する軸方向位置が決定される。   Next, as shown in FIG. 6C, the seal member 9 is attached to the shaft portion 2a. At this time, the inner peripheral surface 9a1 of the disk portion 9a of the seal member 9 and the outer peripheral surface 2a21 of the small diameter portion 2a2 of the shaft portion 2a are fitted through a gap (exaggerated in FIG. 6). Thereby, when the seal member 9 is mounted on the shaft portion 2a, a large load is not applied to the disk portion 9a, and deformation of the seal member 9 can be prevented. The axial position of the seal member 9 relative to the shaft member 2 is determined by bringing the lower end surface 9a2 of the disk portion 9a into contact with the shoulder surface 2a3 of the shaft portion 2a.

その後、図6(d)に示すように、軸部2aにハブ3を装着する。ハブ3の円盤部3aの内周面3a1は、軸部2aの小径部2a2の外周面2a21よりも僅かに小径とされ、これによりハブ3が軸部2aの小径部2a2に圧入固定される。このとき、ハブ3には大きな負荷が加わるが、この負荷がシール部材9に影響することはなく、シール空間Sの精度が維持される。こうして軸部2aの小径部2a2に圧入されたハブ3の円盤部3aの下側端面3a2を、シール部材9の円盤部9aの上側端面9a3に当接させる。これにより、図7に拡大して示すように、シール部材9の円盤部9aが、ハブ3の円盤部3aの下側端面3a2と、軸部材2の軸部2aの肩面2a3とで、軸方向両側から挟持固定される。   Thereafter, as shown in FIG. 6D, the hub 3 is mounted on the shaft portion 2a. The inner peripheral surface 3a1 of the disk portion 3a of the hub 3 has a slightly smaller diameter than the outer peripheral surface 2a21 of the small diameter portion 2a2 of the shaft portion 2a, whereby the hub 3 is press-fitted and fixed to the small diameter portion 2a2 of the shaft portion 2a. At this time, a large load is applied to the hub 3, but this load does not affect the seal member 9, and the accuracy of the seal space S is maintained. Thus, the lower end surface 3a2 of the disc portion 3a of the hub 3 press-fitted into the small diameter portion 2a2 of the shaft portion 2a is brought into contact with the upper end surface 9a3 of the disc portion 9a of the seal member 9. As a result, as shown in an enlarged view in FIG. 7, the disc portion 9 a of the seal member 9 is formed by the lower end surface 3 a 2 of the disc portion 3 a of the hub 3 and the shoulder surface 2 a 3 of the shaft portion 2 a of the shaft member 2. It is clamped from both directions.

ところで、軸部2aをハブ3に圧入する際、軸部2aの小径部2a2の外周面2a21とハブ3の円盤部3aの内周面3a1とが圧入代を介して摺動する。これにより、軸部2aやハブ3の表面が削れて削り屑が生じ、この削り屑が軸受部材Aの内部に満たされた潤滑油にコンタミとして混入する恐れがある。このとき、図7に示すように、シール部材9の円盤部9aの内周面9a1と軸部2aの小径部2a2の外周面2a21とを隙間Cを介して嵌合させることで、ハブ3と小径部2a2との圧入により生じた削り屑Gを、シール部材9と軸部2aとの間の嵌合隙間C内に捕捉することができる。また、シール部材9の円盤部9aの下側端面9a2と軸部2aの肩面2a3とを全周にわたって密着させることにより、嵌合隙間Cと軸受部材Aの内部に満たされた潤滑油(散点で示す)とが遮断され、嵌合隙間Cに捕捉した削り屑Gが潤滑油に混入する事態を確実に防止できる。   By the way, when the shaft portion 2a is press-fitted into the hub 3, the outer peripheral surface 2a21 of the small diameter portion 2a2 of the shaft portion 2a and the inner peripheral surface 3a1 of the disk portion 3a of the hub 3 slide through the press-fitting allowance. As a result, the surfaces of the shaft portion 2a and the hub 3 are scraped to generate shavings, which may be mixed into the lubricating oil filled in the bearing member A as contamination. At this time, as shown in FIG. 7, by fitting the inner peripheral surface 9a1 of the disk portion 9a of the seal member 9 and the outer peripheral surface 2a21 of the small diameter portion 2a2 of the shaft portion 2a through the gap C, The shavings G generated by press fitting with the small diameter portion 2a2 can be captured in the fitting gap C between the seal member 9 and the shaft portion 2a. In addition, the lower end surface 9a2 of the disk portion 9a of the seal member 9 and the shoulder surface 2a3 of the shaft portion 2a are brought into close contact with each other, so that the lubricating oil (scattering) filled in the fitting gap C and the bearing member A is filled. And the situation in which the shavings G captured in the fitting gap C are mixed into the lubricating oil can be reliably prevented.

以上のようにして組み立てた後、軸受スリーブ8の内部気孔を含めたハウジング7の内部の空間に潤滑油を充満させることにより、図2に示す流体動圧軸受装置1が完成する。このとき、潤滑油の油面はシール空間Sの内部に保持される。   After assembling as described above, the fluid dynamic bearing device 1 shown in FIG. 2 is completed by filling the space inside the housing 7 including the internal pores of the bearing sleeve 8 with the lubricating oil. At this time, the oil level of the lubricating oil is held inside the seal space S.

軸部材2が回転すると、軸受スリーブ8の内周面8aと軸部2aの大径部2a1の外周面2a11との間にラジアル軸受隙間が形成される。そして、動圧溝8a1,8a2によりラジアル軸受隙間の油膜の圧力が高められ、この圧力(動圧作用)により軸部材2をラジアル方向に回転自在に非接触支持するラジアル軸受部R1,R2が構成される。   When the shaft member 2 rotates, a radial bearing gap is formed between the inner peripheral surface 8a of the bearing sleeve 8 and the outer peripheral surface 2a11 of the large diameter portion 2a1 of the shaft portion 2a. Then, the pressure of the oil film in the radial bearing gap is increased by the dynamic pressure grooves 8a1 and 8a2, and the radial bearing portions R1 and R2 that support the shaft member 2 in a non-contact manner in the radial direction are configured by this pressure (dynamic pressure action). Is done.

これと同時に、軸受スリーブ8の下側端面8bとフランジ部2bの上側端面2b1との間、及び、ハウジング7の底部7bの上側端面7b1とフランジ部2bの下側端面2b2との間に、それぞれスラスト軸受隙間が形成される。そして、動圧溝8b1,7b10によりスラスト軸受隙間の油膜の圧力が高められ、この圧力(動圧作用)により軸部材2を両スラスト方向に回転自在に非接触支持するスラスト軸受部T1,T2が構成される。   At the same time, between the lower end surface 8b of the bearing sleeve 8 and the upper end surface 2b1 of the flange portion 2b, and between the upper end surface 7b1 of the bottom portion 7b of the housing 7 and the lower end surface 2b2 of the flange portion 2b, respectively. A thrust bearing gap is formed. Then, the pressure of the oil film in the thrust bearing gap is increased by the dynamic pressure grooves 8b1 and 7b10, and the thrust bearing portions T1 and T2 for supporting the shaft member 2 in a non-contact manner so as to be rotatable in both thrust directions by this pressure (dynamic pressure action). Composed.

このとき、軸受スリーブ8の外周面8dに形成された軸方向溝8d1により、潤滑油が流通可能な連通路が形成される。この連通路で、ハウジング7の閉塞側の空間(底部7bに面する空間)と開口側の空間(シール部材9に面する空間)とが連通され、軸受部材Aの内部に満たされた潤滑油に局部的な負圧が発生する事態を防止できる。特に本実施形態では、図3に示すように、上側の動圧溝8a1が軸方向非対称な形状に形成されているため、軸部材2の回転に伴ってラジアル軸受隙間の潤滑油が下方に押し込まれ、上記の連通路を介して潤滑油が強制的に循環され、これにより局部的な負圧の発生を確実に防止できる。   At this time, the axial groove 8d1 formed in the outer peripheral surface 8d of the bearing sleeve 8 forms a communication path through which lubricating oil can flow. In this communication path, the closed side space (the space facing the bottom portion 7b) of the housing 7 and the open side space (the space facing the seal member 9) communicate with each other, and the lubricating oil filled in the bearing member A It is possible to prevent the occurrence of local negative pressure. In particular, in this embodiment, as shown in FIG. 3, the upper dynamic pressure groove 8a1 is formed in an axially asymmetric shape, so that the lubricating oil in the radial bearing gap is pushed downward as the shaft member 2 rotates. As a result, the lubricating oil is forcibly circulated through the communication path, and local negative pressure can be reliably prevented.

本発明は、上記の実施形態に限られない。以下、本発明の他の実施形態を説明するが、上記の実施形態と同様の機能を有する箇所には同一の符号を付して説明を省略する。   The present invention is not limited to the above embodiment. Hereinafter, although other embodiment of this invention is described, the same code | symbol is attached | subjected to the location which has the function similar to said embodiment, and description is abbreviate | omitted.

上記の実施形態では、シール部材9が、軸部材2の軸部2aの肩面2a3とハブ3の円盤部3aの下側端面3a2とで挟持固定されているが、これに限られない。例えば、軸部2aの小径部2a2の外周面2a21とシール部材9の円盤部9aの内周面9a1との嵌合隙間に接着剤を介在させて固定してもよい。あるいは、軸部2aとシール部材9とを溶接や超音波溶着等の手段で固定してもよい。これらの場合、ハブ3が、シール部材9と軸部2aとの固定に関与しないため、ハブ3を軸部2aに取り付ける前にシール部材9を軸部2aに固定し、シール空間Sを形成することができる。従って、ハブ3を軸部2aに装着していない状態で、軸受部材Aの内部に潤滑油を注入することが可能となる。   In the above embodiment, the seal member 9 is sandwiched and fixed between the shoulder surface 2a3 of the shaft portion 2a of the shaft member 2 and the lower end surface 3a2 of the disk portion 3a of the hub 3, but this is not restrictive. For example, an adhesive may be interposed between the outer peripheral surface 2a21 of the small diameter portion 2a2 of the shaft portion 2a and the inner peripheral surface 9a1 of the disk portion 9a of the seal member 9 to fix the shaft portion 2a. Or you may fix the axial part 2a and the sealing member 9 by means, such as welding and ultrasonic welding. In these cases, since the hub 3 is not involved in fixing the seal member 9 and the shaft portion 2a, the seal member 9 is fixed to the shaft portion 2a and the seal space S is formed before the hub 3 is attached to the shaft portion 2a. be able to. Therefore, it is possible to inject the lubricating oil into the bearing member A in a state where the hub 3 is not attached to the shaft portion 2a.

また、上記の実施形態では、ハブ3に、回転体としてHDD用の磁気ディスクDが搭載される場合を示しているが、これに限られない。例えば、ポリゴンスキャナモータのポリゴンミラーや、カラーホイールモータのカラーホイールを搭載するハブ3に、本発明を適用することもできる。   In the above-described embodiment, the case where the HDD 3 is mounted with the HDD magnetic disk D as the rotating body is shown in the hub 3, but the present invention is not limited thereto. For example, the present invention can be applied to a hub 3 on which a polygon mirror of a polygon scanner motor or a color wheel of a color wheel motor is mounted.

また、上記の実施形態では、ハウジング7の内周面7a1が円筒面形状(断面真円形状)である場合を示しているが、これに限らず、例えば図8に示すように、ハウジング7の内周面7a1を非真円形状(図示例では正20角形)とすることもできる。このハウジング7の内周面7a1に軸受スリーブ8を軽圧入する場合、ハウジング7の内周面7a1を軸受スリーブ8の円筒面状外周面8dに倣って弾性変形させた状態で両者を接触させることができる。これにより、ハウジング7の内周面7a1の加工精度が緩和され、製造コストを低減できる。また、この場合、図9に示すように、ハウジング7の内周面7a1と軸受スリーブ8の外周面8dとの間に、軸方向に延びる隙間Pが形成される。この隙間Pを、潤滑油の連通路とすれば、図4に示すような軸受スリーブ8の外周面8dの軸方向溝8d1を省略することができ、軸受スリーブ8の製造コストが低減される。尚、ハウジング7の外周面7a2の円筒面7a22はブラケット6の内周面に固定されるため、少なくともブラケット6が固定される領域は、図8に示すように円筒面形状とすることが好ましい。   In the above embodiment, the case where the inner peripheral surface 7a1 of the housing 7 has a cylindrical surface shape (circular cross section) is shown. However, the present invention is not limited to this. For example, as shown in FIG. The inner peripheral surface 7a1 may be a non-circular shape (a regular decagon in the illustrated example). When the bearing sleeve 8 is lightly press-fitted into the inner peripheral surface 7 a 1 of the housing 7, the inner peripheral surface 7 a 1 of the housing 7 is brought into contact with the cylindrical sleeve outer peripheral surface 8 d of the bearing sleeve 8 in an elastically deformed state. Can do. Thereby, the processing accuracy of the inner peripheral surface 7a1 of the housing 7 is relaxed, and the manufacturing cost can be reduced. In this case, a gap P extending in the axial direction is formed between the inner peripheral surface 7a1 of the housing 7 and the outer peripheral surface 8d of the bearing sleeve 8 as shown in FIG. If this gap P is used as a communication path for lubricating oil, the axial groove 8d1 on the outer peripheral surface 8d of the bearing sleeve 8 as shown in FIG. 4 can be omitted, and the manufacturing cost of the bearing sleeve 8 is reduced. Since the cylindrical surface 7a22 of the outer peripheral surface 7a2 of the housing 7 is fixed to the inner peripheral surface of the bracket 6, it is preferable that at least the region where the bracket 6 is fixed has a cylindrical surface shape as shown in FIG.

また、上記の実施形態では、軸受部材Aが複数の部材(ハウジング7及び軸受スリーブ8)で構成されているが、これに限らず、例えば軸受部材Aを一体に成形してもよい。   In the above embodiment, the bearing member A is constituted by a plurality of members (the housing 7 and the bearing sleeve 8). However, the present invention is not limited to this, and the bearing member A may be integrally formed, for example.

また、上記の実施形態では、ラジアル動圧発生部として、図3に示すようなヘリングボーン形状の動圧溝8a1,8a2が形成されているが、これに限られない。例えば、軸受スリーブ8の内周面8aに他の形状の動圧溝(軸方向に延びる動圧溝など)を形成したり、内周面8aを複数の円筒面を組み合わせた多円弧形状とすることで、ラジアル動圧発生部を構成してもよい。あるいは、ラジアル軸受隙間を介して対向する軸受スリーブ8の内周面8a及び軸部材2の外周面2a11の双方を平滑な円筒面状とすることで、いわゆる真円軸受を構成してもよい。この場合、ラジアル軸受隙間の油膜に積極的に動圧作用を発生させるラジアル動圧発生部は設けられないが、軸部材2の回転に伴う潤滑油の流動によりラジアル軸受隙間の油膜の圧力が高められる。   Further, in the above embodiment, herringbone-shaped dynamic pressure grooves 8a1 and 8a2 as shown in FIG. 3 are formed as the radial dynamic pressure generating portion, but the present invention is not limited to this. For example, another shape of dynamic pressure grooves (such as a dynamic pressure groove extending in the axial direction) is formed on the inner peripheral surface 8a of the bearing sleeve 8, or the inner peripheral surface 8a is formed into a multi-arc shape by combining a plurality of cylindrical surfaces. Thus, a radial dynamic pressure generating unit may be configured. Or you may comprise what is called a perfect-circle bearing by making both the inner peripheral surface 8a of the bearing sleeve 8 and the outer peripheral surface 2a11 of the shaft member 2 which oppose through a radial bearing clearance into a smooth cylindrical surface shape. In this case, there is no radial dynamic pressure generating section that actively generates a dynamic pressure action on the oil film in the radial bearing gap, but the oil film pressure in the radial bearing gap increases due to the flow of the lubricating oil accompanying the rotation of the shaft member 2. It is done.

また、上記の実施形態では、スラスト軸受隙間の潤滑油に動圧作用を発生させるスラスト動圧発生部として、図4及び図5に示すようなスパイラル形状の動圧溝8b1,7b10が形成されているが、これに限らず、例えば他の形状の動圧溝(ヘリングボーン形状の動圧溝など)を形成してもよい。   In the above embodiment, spiral dynamic pressure grooves 8b1 and 7b10 as shown in FIGS. 4 and 5 are formed as thrust dynamic pressure generating portions that generate a dynamic pressure action on the lubricating oil in the thrust bearing gap. However, the present invention is not limited to this. For example, another shape of the dynamic pressure groove (such as a herringbone-shaped dynamic pressure groove) may be formed.

また、上記の実施形態では、ラジアル動圧発生部を軸受スリーブ8の内周面に形成しているが、この面とラジアル軸受隙間を介して対向する軸部材2の外周面2a11にラジアル動圧発生部を形成してもよい。同様に、スラスト動圧発生部を、軸部材2のフランジ部2bの両端面2b1,2b2に形成してもよい。   Further, in the above embodiment, the radial dynamic pressure generating portion is formed on the inner peripheral surface of the bearing sleeve 8, but the radial dynamic pressure is applied to the outer peripheral surface 2a11 of the shaft member 2 facing this surface through the radial bearing gap. You may form a generation | occurrence | production part. Similarly, the thrust dynamic pressure generating portion may be formed on both end faces 2b1, 2b2 of the flange portion 2b of the shaft member 2.

1 流体動圧軸受装置
2 軸部材
2a 軸部
2a1 大径部
2a2 小径部
2a3 肩面
2b フランジ部
3 ハブ
3a 円盤部
3b 円筒部
3b1 内周面
3c 突出部
3c1 上面(ディスク搭載面)
4 ステータコイル
5 ロータマグネット
6 ブラケット
7 ハウジング
7a 側部
7b 底部
7b10 動圧溝
8 軸受スリーブ
8a1,8a2 動圧溝
8b1 動圧溝
8d1 軸方向溝
9 シール部材
9a 円盤部
9b 円筒部
9b1 内周面(シール面)
A 軸受部材
C 嵌合隙間
D ディスク
G 削り屑
R1,R2 ラジアル軸受部
T1,T2 スラスト軸受部
S シール空間
δ 軸方向隙間
DESCRIPTION OF SYMBOLS 1 Fluid dynamic pressure bearing apparatus 2 Shaft member 2a Shaft part 2a1 Large diameter part 2a2 Small diameter part 2a3 Shoulder surface 2b Flange part 3 Hub 3a Disk part 3b Cylindrical part 3b1 Inner peripheral surface 3c Protrusion part 3c1 Upper surface (disk mounting surface)
4 Stator coil 5 Rotor magnet 6 Bracket 7 Housing 7a Side 7b Bottom 7b10 Dynamic pressure groove 8 Bearing sleeve 8a1, 8a2 Dynamic pressure groove 8b1 Dynamic pressure groove 8d1 Axial groove 9 Seal member 9a Disk part 9b Cylindrical part 9b1 Inner circumferential surface ( Seal surface)
A Bearing member C Fitting gap D Disc G Shavings R1, R2 Radial bearing portion T1, T2 Thrust bearing portion S Seal space δ Axial clearance

Claims (2)

軸部及びフランジ部を有する軸部材と、内周に前記軸部が挿入された軸受スリーブと、内周面に前記軸受スリーブが固定された円筒状の側部、及び、側部の軸方向一方の開口部を閉塞する底部を有するハウジングと、前記軸部材の外周面から外径に突出して設けられ、回転体が搭載されるハブと、前記軸部の外周面に固定され、前記ハウジングの側部の軸方向他方の開口部を覆う円盤部、及び、前記円盤部の外径端から軸方向他方に突出した円筒部を有し、前記ハブと別体に形成されたシール部材と、前記ハウジングの側部の外周面と前記シール部材の円筒部の内周面との間に形成され、前記ハウジングの内部に満たされた潤滑油の漏れ出しを防止するシール空間と、前記軸部の外周面と前記軸受スリーブの内周面との間のラジアル軸受隙間の油膜に生じる動圧作用で前記軸部材をラジアル方向に支持するラジアル軸受部と、前記軸受スリーブの軸方向一方の端面とこれに対向する前記フランジ部の端面との間のスラスト軸受隙間の油膜に生じる動圧作用で前記軸部材をスラスト方向一方に支持する第1スラスト軸受部と、前記ハウジングの底部の端面とこれに対向する前記フランジ部の端面との間のスラスト軸受隙間の油膜に生じる動圧作用で前記軸部材をスラスト方向他方に支持する第2スラスト軸受部とを備えた流体動圧軸受装置であって、
前記シール部材の円盤部と前記ハウジングの側部の軸方向他方の端面との間の軸方向隙間、及び、前記シール部材の円盤部と前記軸受スリーブの軸方向他方の端面との間の軸方向隙間が、何れも、前記第1スラスト軸受部及び前記第2スラスト軸受部のスラスト軸受隙間の合計量よりも大きい値に設定された流体動圧軸受装置。
A shaft member having a shaft portion and a flange portion; a bearing sleeve having the shaft portion inserted into an inner periphery; a cylindrical side portion having the bearing sleeve fixed to an inner peripheral surface; and one axial direction of the side portion A housing having a bottom portion that closes the opening of the shaft, a hub that protrudes from the outer peripheral surface of the shaft member to an outer diameter, is mounted with a rotating body, and is fixed to the outer peripheral surface of the shaft portion. A sealing member formed separately from the hub, and having a disc portion covering the other axial opening of the disc portion, a cylindrical portion projecting from the outer diameter end of the disc portion to the other axial direction, and the housing A seal space that is formed between the outer peripheral surface of the side portion and the inner peripheral surface of the cylindrical portion of the seal member, and prevents leakage of lubricating oil filled in the housing; and the outer peripheral surface of the shaft portion Radial bearing gap between the bearing sleeve and the inner peripheral surface of the bearing sleeve An oil film in a thrust bearing gap between a radial bearing portion that supports the shaft member in a radial direction by a dynamic pressure action generated in the oil film, and one end surface in the axial direction of the bearing sleeve and an end surface of the flange portion that opposes the bearing sleeve. Movement generated in an oil film in a thrust bearing gap between the first thrust bearing portion that supports the shaft member in one thrust direction by the generated dynamic pressure action, and the end surface of the bottom portion of the housing and the end surface of the flange portion facing the first thrust bearing portion. A fluid dynamic pressure bearing device comprising a second thrust bearing portion that supports the shaft member in the other thrust direction by pressure action,
An axial gap between the disc portion of the seal member and the other axial end surface of the side portion of the housing, and an axial direction between the disc portion of the seal member and the other axial end surface of the bearing sleeve The fluid dynamic pressure bearing device in which the gap is set to a value larger than the total amount of thrust bearing gaps of the first thrust bearing portion and the second thrust bearing portion.
前記円盤部の軸方向他方の端面の全面が、前記ハブの端面に当接した請求項1記載の流体動圧軸受装置。
The fluid dynamic bearing device according to claim 1, wherein the entire surface of the other end surface in the axial direction of the disk portion is in contact with the end surface of the hub.
JP2014062085A 2014-03-25 2014-03-25 Fluid dynamic bearing device Active JP5784777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014062085A JP5784777B2 (en) 2014-03-25 2014-03-25 Fluid dynamic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014062085A JP5784777B2 (en) 2014-03-25 2014-03-25 Fluid dynamic bearing device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010180426A Division JP5602535B2 (en) 2010-08-11 2010-08-11 Fluid dynamic bearing device

Publications (2)

Publication Number Publication Date
JP2014129887A true JP2014129887A (en) 2014-07-10
JP5784777B2 JP5784777B2 (en) 2015-09-24

Family

ID=51408419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014062085A Active JP5784777B2 (en) 2014-03-25 2014-03-25 Fluid dynamic bearing device

Country Status (1)

Country Link
JP (1) JP5784777B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017038813A1 (en) * 2015-09-03 2017-03-09 Ntn株式会社 Bearing with seal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007225062A (en) * 2006-02-24 2007-09-06 Ntn Corp Fluid bearing device
JP2007252168A (en) * 2006-03-20 2007-09-27 Matsushita Electric Ind Co Ltd Fluid-bearing type rotary device
JP2008069835A (en) * 2006-09-13 2008-03-27 Ntn Corp Dynamic pressure bearing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007225062A (en) * 2006-02-24 2007-09-06 Ntn Corp Fluid bearing device
JP2007252168A (en) * 2006-03-20 2007-09-27 Matsushita Electric Ind Co Ltd Fluid-bearing type rotary device
JP2008069835A (en) * 2006-09-13 2008-03-27 Ntn Corp Dynamic pressure bearing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017038813A1 (en) * 2015-09-03 2017-03-09 Ntn株式会社 Bearing with seal

Also Published As

Publication number Publication date
JP5784777B2 (en) 2015-09-24

Similar Documents

Publication Publication Date Title
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
JP2007024267A (en) Fluid bearing device and motor equipped with the same
JP2008130208A (en) Hydrodynamic bearing device and its manufacturing method
WO2016080137A1 (en) Manufacturing method for fluid dynamic bearing devices
JP5784777B2 (en) Fluid dynamic bearing device
JP2005337490A (en) Dynamic pressure bearing device
WO2012144288A1 (en) Fluid dynamic pressure bearing device
JP4754418B2 (en) Hydrodynamic bearing device
JP2006112614A (en) Dynamic pressure bearing device
JP5602535B2 (en) Fluid dynamic bearing device
JP5726687B2 (en) Fluid dynamic bearing device
JP2012247052A (en) Fluid dynamic pressure bearing device
JP2008075687A (en) Fluid bearing device
JP4588561B2 (en) Hydrodynamic bearing device
JP4739114B2 (en) Hydrodynamic bearing device
JP4615328B2 (en) Hydrodynamic bearing device
JP5687104B2 (en) Axial fan motor
JP5188942B2 (en) Fluid dynamic bearing device
JP2011247279A (en) Fluid dynamic pressure bearing device and method of manufacturing the same
JP4675880B2 (en) Method for manufacturing fluid dynamic bearing device
JP5064083B2 (en) Method for manufacturing hydrodynamic bearing device
JP5247987B2 (en) Hydrodynamic bearing device
JP2011112075A (en) Fluid dynamic pressure bearing device
JP2007255646A (en) Fluid bearing device
JP2011247280A (en) Fluid dynamic pressure bearing device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150722

R150 Certificate of patent or registration of utility model

Ref document number: 5784777

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250