JP2012162771A - Iron-based sintered sliding member, and method for manufacturing the same - Google Patents

Iron-based sintered sliding member, and method for manufacturing the same Download PDF

Info

Publication number
JP2012162771A
JP2012162771A JP2011024189A JP2011024189A JP2012162771A JP 2012162771 A JP2012162771 A JP 2012162771A JP 2011024189 A JP2011024189 A JP 2011024189A JP 2011024189 A JP2011024189 A JP 2011024189A JP 2012162771 A JP2012162771 A JP 2012162771A
Authority
JP
Japan
Prior art keywords
component
mass
sliding member
powder
based sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011024189A
Other languages
Japanese (ja)
Inventor
Yasuhiro Shirasaka
康広 白坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Corp
Oiles Industry Co Ltd
Original Assignee
Oiles Corp
Oiles Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oiles Corp, Oiles Industry Co Ltd filed Critical Oiles Corp
Priority to JP2011024189A priority Critical patent/JP2012162771A/en
Publication of JP2012162771A publication Critical patent/JP2012162771A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an Fe based sintered sliding member excellent in abrasion resistance and load bearing resistance.SOLUTION: The Fe based sintered sliding member is composed of an Fe powder, a Cu-Fe-Mn alloy powder, a Co-Mo-Cr-Si superalloy powder, and a C powder. The Fe based sintered sliding member coontains Cu component of 4.45-18.6 mass%, Mn component of 0.2-1.2 mass%, Co component of 3.1-9.3 mass%, Mo component of 1.4-4.2 mass%, Cr component of 0.4-1.2 mass%, Si component of 0.1-0.3 mass%, C component of 1.0-5.0 mass% and the balance of Fe component. The base structure has a pearlite structure or a structure where pearlite and partial ferrite are coexistence and C component, Cu-Fe-Mn alloy, Co-Mo-Cr-Si superalloy are dispersedly contained in the base structure.

Description

本発明は、摺動特性及び耐荷重性に優れた鉄系焼結摺動部材及びその製造方法に関する。   The present invention relates to an iron-based sintered sliding member having excellent sliding characteristics and load resistance and a method for producing the same.

従来から鉄系焼結摺動部材としては、潤滑油を含浸したFe−C(炭素)系あるいはFe−Cu−C系軸受材料が知られており、また、Fe−C系又はFe−Cu−C系焼結材料(例えば、非特許文献1参照)が知られている。上記従来の鉄系焼結摺動部材においては、Cの固体潤滑作用を得るには少なくとも3質量%以上の配合量が必要とされるが、Fe粉末とC粉末が焼結過程で反応して焼結組織中に高硬度の遊離セメンタイト(FeC)を析出するという現象が現れる。この高硬度の遊離セメンタイトの組織中への析出は、相手材、例えば軸との摺動においては当該軸(相手材)を損傷させるという欠点を惹起することになり、摺動用途においては極力避けなければならない重要な要素である。 Conventionally, as an iron-based sintered sliding member, a Fe-C (carbon) -based or Fe-Cu-C-based bearing material impregnated with a lubricating oil is known, and an Fe-C-based or Fe-Cu-- C-based sintered materials (for example, see Non-Patent Document 1) are known. In the conventional iron-based sintered sliding member, a blending amount of at least 3% by mass or more is required in order to obtain a solid lubricating action of C, but Fe powder and C powder react during the sintering process. A phenomenon that high hardness free cementite (Fe 3 C) precipitates in the sintered structure appears. This precipitation of hard cementite in the structure causes the disadvantage of damaging the shaft (partner material) when sliding against the other material, for example, the shaft, and should be avoided as much as possible in sliding applications. It is an important element that must be.

特開昭55−38930号公報JP 55-38930 A 特開昭58−19403号公報JP 58-19403 A 特開昭58−126959号公報JP 58-126959 A

日本工業規格JISZ550Japanese Industrial Standard JISZ550

この遊離セメンタイトの析出を防止する方法としては、(1)C(黒鉛)の配合量を少量、例えば0.82質量%以下とすること、(2)遊離セメンタイトの析出しない低い温度、例えば1000℃以下の温度で焼結すること、により一応の解決を図ることができるが
、上記(1)の方法では配合したCの固体潤滑作用を期待することはできず、また(2
)の方法では焼結合金化が不充分で、焼結材の機械的強度が低く摺動用途への適用は難しい、などいずれの方法によって得られた鉄系焼結材料も配合した炭素による固体潤滑作用を充分発揮できないという問題を残す。
As a method for preventing the precipitation of free cementite, (1) the amount of C (graphite) is small, for example, 0.82% by mass or less, and (2) a low temperature at which free cementite does not precipitate, for example, 1000 ° C. By sintering at the following temperatures, a temporary solution can be achieved, but the method of (1) above cannot be expected to provide a solid lubricating action of the blended C, and (2
) Is not enough to form a sintered alloy, the mechanical strength of the sintered material is low, and it is difficult to apply it to sliding applications. The problem that the lubricating action cannot be sufficiently exhibited remains.

別の方法として、Siのような黒鉛化安定元素を配合して遊離セメンタイトの析出を防ぐ方法(例えば、特許文献1参照)が考えられるが、SiをFe中に拡散固溶させる条件は、約1200℃の温度の加熱を必要とするので、通常のFe系焼結材料の焼結温度に比してはるかに高い温度が要求されることから、製造コストが高くなる上、焼結雰囲気を厳しく制御しないとSiを酸化させてしまう虞がある。その他、フェロシリコン(FeSi)粉末を配合して組織中に遊離セメンタイトの析出を防止したFe系焼結材料の製造方法(例えば、特許文献2及び特許文献3)がある。   As another method, a method of blending a graphitization stabilizing element such as Si to prevent the precipitation of free cementite (for example, see Patent Document 1) can be considered. The conditions for diffusing and dissolving Si in Fe are about Since heating at a temperature of 1200 ° C. is required, a temperature much higher than the sintering temperature of a normal Fe-based sintered material is required, which increases the manufacturing cost and severely restricts the sintering atmosphere. If not controlled, Si may be oxidized. In addition, there is a method for producing an Fe-based sintered material in which ferrosilicon (FeSi) powder is blended to prevent the precipitation of free cementite in the structure (for example, Patent Document 2 and Patent Document 3).

上記実情に鑑み、本発明者は先に、特願2009−190176号(以下、先行技術という)において、フェライト相(α相)組織の生成を促進する元素であるCu及びMnに着目し、Cu成分2.67〜18.60質量%、Mn成分0.12〜1.20質量%、C成分1.0〜5.0質量%、残部Fe成分からなり、素地がパーライト組織又はパーライトと一部フェライトが共存した組織を呈すると共に該素地の組織に遊離セメンタイトの析出がなく、Cu−Fe−Mn合金が分散含有されてなるFe系焼結摺動部材を提案した。   In view of the above situation, the present inventor first focused on Cu and Mn, which are elements that promote the formation of a ferrite phase (α-phase) structure in Japanese Patent Application No. 2009-190176 (hereinafter referred to as prior art), and Cu Consists of 2.67 to 18.60% by mass of component, 0.12 to 1.20% by mass of Mn component, 1.0 to 5.0% by mass of C component, and remaining Fe component. An Fe-based sintered sliding member was proposed in which a structure coexisting with ferrite was present, free cementite was not precipitated in the base structure, and a Cu—Fe—Mn alloy was dispersed and contained.

この先行技術からなるFe系焼結摺動部材は、組織中に遊離セメンタイトの析出がなく、例えば、速度1.3m/min、荷重800kgf/cm、試験時間8時間のスラスト試験条件下において、摩擦係数が0.1で、摩耗量が7μ以下という優れた摺動特性を発揮するものであったが、当該Fe系焼結摺動部材が使用される用途における機械装置の高性能化、大型化等によりFe系焼結摺動部材自体にも、例えば面圧800kgf/cmを超える耐荷重性、加えて耐摩耗性の向上が要求されている。 This prior art Fe-based sintered sliding member has no precipitation of free cementite in the structure. For example, under a thrust test condition with a speed of 1.3 m / min, a load of 800 kgf / cm 2 and a test time of 8 hours, The friction coefficient was 0.1, and the wear amount was 7 μm or less, and it exhibited excellent sliding characteristics. For example, the Fe-based sintered sliding member itself is required to have a load resistance exceeding, for example, a surface pressure of 800 kgf / cm 2 and an improvement in wear resistance.

本発明者は上記要求を満足させるべく鋭意検討した結果、先行技術のCu成分2.67〜18.60質量%、Mn成分0.12〜1.20質量%、C成分1.0〜5.0質量%、残部Fe成分からなる成分組成に、さらに一定割合の硬質合金を配合することにより上記要求を満足する性能を発揮するFe系焼結摺動部材が得られるとの知見を得た。   As a result of intensive studies to satisfy the above requirements, the present inventors have found that the prior art Cu component is 2.67 to 18.60 mass%, the Mn component is 0.12 to 1.20 mass%, and the C component is 1.0 to 5. The present inventors have found that an Fe-based sintered sliding member exhibiting performance satisfying the above requirements can be obtained by further blending a certain proportion of a hard alloy with a component composition composed of 0% by mass and the balance Fe component.

本発明は上記知見に基づきなされたもので、その目的とするところは、耐摩耗性及び耐荷重性に優れたFe系焼結摺動部材を提供することにある。   The present invention has been made on the basis of the above knowledge, and an object thereof is to provide an Fe-based sintered sliding member having excellent wear resistance and load resistance.

本発明のFe系焼結摺動部材は、Fe粉末とCu−Fe−Mn合金粉末とCo−Mo−Cr−Si超合金粉末とC粉末とからなるFe系焼結摺動部材であって、Cu成分4.45〜18.6質量%、Mn成分0.2〜1.2質量%、Co成分3.1〜9.3質量%、Mo成分1.4〜4.2質量%、Cr成分0.4〜1.2質量%、Si成分0.1〜0.3質量%、C成分1.0〜5.0質量%、残部Fe成分からなり、素地の組織がパーライト組織又はパーライトと一部フェライトの共存する組織を呈すると共に、該素地の組織中にC成分とCu−Fe−Mn合金とCo−Mo−Cr−Si超合金が分散含有されている。   The Fe-based sintered sliding member of the present invention is an Fe-based sintered sliding member composed of Fe powder, Cu-Fe-Mn alloy powder, Co-Mo-Cr-Si superalloy powder, and C powder, Cu component 4.45 to 18.6% by mass, Mn component 0.2 to 1.2% by mass, Co component 3.1 to 9.3% by mass, Mo component 1.4 to 4.2% by mass, Cr component It consists of 0.4 to 1.2% by mass, Si component 0.1 to 0.3% by mass, C component 1.0 to 5.0% by mass, and the remaining Fe component. In addition to presenting a structure in which part ferrite coexists, a C component, a Cu—Fe—Mn alloy, and a Co—Mo—Cr—Si superalloy are dispersed in the structure of the base.

本発明のFe系焼結摺動部材において、素地のパーライト組織又はパーライトと一部フェライトの共存した組織に分散含有されたCu−Fe−Mn合金は、素地の組織の粒界に網目状に分散して析出しているものであってもよい。   In the Fe-based sintered sliding member of the present invention, the Cu-Fe-Mn alloy dispersed and contained in the base pearlite structure or the structure in which pearlite and a part of ferrite coexist are dispersed in the form of a network at the grain boundaries of the base structure. And may be deposited.

本発明のFe系焼結摺動部材において、Co−Mo−Cr−Si超合金は硬質粒子として、素地のパーライト組織又はパーライトと一部フェライトの共存した組織に分散含有されてFe系焼結摺動部材の耐荷重性並びに耐摩耗性を向上させる。   In the Fe-based sintered sliding member of the present invention, the Co-Mo-Cr-Si superalloy is dispersed and contained as hard particles in the base pearlite structure or the structure in which pearlite and a part of ferrite coexist. Improves load resistance and wear resistance of the moving member.

また、上記Fe系焼結摺動部材において、素地のパーライト組織又はパーライトと一部フェライトの共存する組織のマイクロビッカース硬さ(HMV)は350〜450を示し、素地のパーライト組織又はパーライトと一部フェライトの共存した組織に分散含有されたCu−Fe−Mn合金のマイクロビッカース硬さは100〜120を示し、素地のパーライト組織又はパーライトと一部フェライトの共存した組織に分散含有されたCo−Mo−Cr−Si超合金のマイクロビッカース硬さは540〜770を示す。 In the Fe-based sintered sliding member, the pearlite structure of the substrate or the micro Vickers hardness (HMV) of the structure in which pearlite and a part of ferrite coexist are 350 to 450. The micro-Vickers hardness of the Cu—Fe—Mn alloy dispersed and contained in the ferrite coexisting structure is 100 to 120, and the Co—Mo dispersed and contained in the base pearlite structure or the pearlite and partially ferrite coexisting structure. The micro-Vickers hardness of the —Cr—Si superalloy is 540 to 770.

本発明のFe系焼結摺動部材によれば、素地のパーライト組織又はパーライトと一部フェライトの共存する組織に、当該組織の硬さよりも低い硬さのCu−Fe−Mn合金が分散含有されていると共に、当該組織中に当該組織の硬さよりも高い硬さのCo−Mo−Cr−Si超合金が分散含有されているので、摺動面における回転軸等の相手材とのなじみ性が良好で、耐荷重性及び耐摩耗性を向上させることができる。 According to the Fe-based sintered sliding member of the present invention, a Cu-Fe-Mn alloy having a hardness lower than the hardness of the structure is dispersed and contained in the base pearlite structure or a structure in which pearlite and a part of ferrite coexist. In addition, since the Co—Mo—Cr—Si superalloy having a hardness higher than the hardness of the structure is dispersed in the structure, the compatibility with the counterpart material such as the rotating shaft on the sliding surface is improved. The load resistance and wear resistance can be improved.

本発明のFe系焼結摺動部材において、C成分は天然黒鉛又は人造黒鉛が使用されて好適である。 In the Fe-based sintered sliding member of the present invention, natural graphite or artificial graphite is preferably used as the C component.

本発明のFe系焼結摺動部材において、潤滑油が10〜15容積%の割合で含油されている。 In the Fe-based sintered sliding member of the present invention, lubricating oil is contained at a rate of 10 to 15% by volume.

本発明のFe系焼結摺動部材の製造方法は、主成分をなすFe粉末に対し、Mn4〜6質量%とFe3〜5質量%と残部CuからなるCu−Fe−Mn合金粉末5〜20質量%と、Co62質量%、Mo28質量%、Cr8質量%、Si2質量%からなるCo−Mo−Cr−Si超合金粉末5〜15質量%と、C粉末1.0〜5.0質量%をそれぞれ配合し、混合して混合粉末を形成した後、該混合粉末を金型に装填して所望の形状の圧粉体を成形し、この圧粉体を中性もしくは還元性雰囲気に調整した加熱炉内で1000〜1150℃の温度で30〜90分間焼結することを特徴とする。 The manufacturing method of the Fe-type sintered sliding member of the present invention is a Cu—Fe—Mn alloy powder of 5 to 20 consisting of 4 to 6 mass% of Mn, 3 to 5 mass% of Fe and the balance Cu with respect to the Fe powder as a main component. Co-Mo-Cr-Si superalloy powder consisting of 5 mass%, Co62 mass%, Mo28 mass%, Cr8 mass%, Si2 mass%, and C powder 1.0-5.0 mass% After mixing and mixing to form a mixed powder, the mixed powder is loaded into a mold to form a green compact of a desired shape, and the green compact is heated to a neutral or reducing atmosphere. It is characterized by sintering in a furnace at a temperature of 1000 to 1150 ° C. for 30 to 90 minutes.

この製造方法によって得られたFe系焼結摺動部材は、Cu成分4.45〜18.6質量%、Mn成分0.2〜1.2質量%、Co成分3.1〜9.3質量%、Mo成分1.4〜4.2質量%、Cr成分0.4〜1.2質量%、Si成分0.1〜0.3質量%、C成分1.0〜5.0質量%、残部Fe成分からなり、素地の組織がパーライト組織又はパーライトと一部フェライトの共存する組織を呈すると共に、該素地の組織中にC成分とCu−Fe−Mn合金とCo−Mo−Cr−Si超合金が分散含有されている。 The Fe-based sintered sliding member obtained by this manufacturing method has a Cu component of 4.45 to 18.6% by mass, a Mn component of 0.2 to 1.2% by mass, and a Co component of 3.1 to 9.3% by mass. %, Mo component 1.4-4.2% by mass, Cr component 0.4-1.2% by mass, Si component 0.1-0.3% by mass, C component 1.0-5.0% by mass, It consists of the remaining Fe component, and the base structure exhibits a pearlite structure or a structure in which pearlite and a part of ferrite coexist, and in the base structure, a C component, a Cu-Fe-Mn alloy, and a Co-Mo-Cr-Si super An alloy is dispersedly contained.

上記Fe系焼結摺動部材の製造方法において、成分中のCu−Fe−Mn合金粉末は、Mn4〜6質量%とFe3〜5質量%と残部Cuからなる合金粉末が使用されて好適であり、このCu−Fe−Mn合金粉末は、1050℃の温度で液相を生じるため、1000℃以上1050℃未満の温度での焼結では固相焼結となり、一方1050℃以上1150℃以下の温度での焼結では液相焼結となる。固相焼結により得られるFe系焼結摺動部材は
、素地がパーライト組織又はパーライトと一部フェライトの共存する組織を呈すると共に該組織中に遊離セメンタイトの析出がなく、該素地の組織にCu−Fe−Mn合金が分散含有されている。
In the method for producing an Fe-based sintered sliding member, the Cu—Fe—Mn alloy powder in the component is preferably an alloy powder comprising 4 to 6% by mass of Mn, 3 to 5% by mass of Fe, and the balance Cu. Since this Cu—Fe—Mn alloy powder generates a liquid phase at a temperature of 1050 ° C., sintering at a temperature of 1000 ° C. or higher and lower than 1050 ° C. results in solid phase sintering, while a temperature of 1050 ° C. or higher and 1150 ° C. or lower. Sintering at this time is liquid phase sintering. In the Fe-based sintered sliding member obtained by solid phase sintering, the base exhibits a pearlite structure or a structure in which pearlite and a part of ferrite coexist, and there is no precipitation of free cementite in the structure, and there is no Cu in the base structure. -Fe-Mn alloy is dispersedly contained.

一方、液相焼結により得られるFe系焼結摺動部材は、素地がパーライト組織又はパーライトと一部フェライトの共存する組織を呈し、当該組織中に遊離セメンタイトの析出がなく焼結摺動部材を緻密化して機械的強度を向上させると共に、該素地の組織の粒界にCu−Fe−Mn合金が網目状に分散含有されている。 On the other hand, the Fe-based sintered sliding member obtained by liquid phase sintering exhibits a pearlite structure or a structure in which pearlite and a part of ferrite coexist, and there is no precipitation of free cementite in the structure. The Cu-Fe-Mn alloy is dispersed and contained in the form of a network at grain boundaries of the structure of the substrate.

固相焼結あるいは液相焼結により得られるFe系焼結摺動部材は、フェライト相(α相
)組織の生成を促進する元素であるCu及びMnが含有されていることにより、いずれの焼結においても素地がパーライト組織又はパーライトと一部フェライトが共存した組織を呈すると共に当該組織中に遊離セメンタイトの析出はない。
The Fe-based sintered sliding member obtained by solid phase sintering or liquid phase sintering contains any element of Cu and Mn, which are elements that promote the formation of a ferrite phase (α phase) structure. In the sintering, the substrate exhibits a pearlite structure or a structure in which pearlite and a part of ferrite coexist, and free cementite is not precipitated in the structure.

本発明によれば、Fe粉末とCu−Fe−Mn合金粉末とCo−Mo−Cr−Si超合金粉末とC粉末とからなるFe系焼結摺動部材であって、Cu成分4.45〜18.6質量%、Mn成分0.2〜1.2質量%、Co成分3.1〜9.3質量%、Mo成分1.4〜4.2質量%、Cr成分0.4〜1.2質量%、Si成分0.1〜0.3質量%、C成分1.0〜5.0質量%、残部Fe成分からなり、素地の組織がパーライト組織又はパーライトと一部フェライトの共存する組織を呈すると共に、該素地の組織中にC成分とCu−Fe−Mn合金とCo−Mo−Cr−Si超合金が分散含有され、なじみ性が良好で、耐荷重性並びに耐摩耗性などの摺動特性を向上させたFe系焼結摺動部材及びその製造方法を提供することができる。   According to the present invention, there is provided an Fe-based sintered sliding member comprising an Fe powder, a Cu—Fe—Mn alloy powder, a Co—Mo—Cr—Si superalloy powder, and a C powder, the Cu component being 4.45 to 18.6 mass%, Mn component 0.2-1.2 mass%, Co component 3.1-9.3 mass%, Mo component 1.4-4.2 mass%, Cr component 0.4-1. 2% by mass, Si component 0.1-0.3% by mass, C component 1.0-5.0% by mass, balance Fe component, and the base structure is a pearlite structure or a structure in which pearlite and a part of ferrite coexist In addition, a C component, a Cu-Fe-Mn alloy, and a Co-Mo-Cr-Si superalloy are dispersed and contained in the structure of the base material, and the conformability is good, and the load resistance and wear resistance are improved. An Fe-based sintered sliding member with improved dynamic characteristics and a method for manufacturing the same can be provided.

1100℃の温度で液相焼結して得たFe成分62質量%、Cu−Fe−Mn合金20質量%、Co−Mo−Cr−Si超合金成分15質量%、C成分3質量%からなるFe系焼結摺動部材の顕微鏡写真(倍率400倍)である。Fe component 62 mass% obtained by liquid phase sintering at a temperature of 1100 ° C, Cu-Fe-Mn alloy 20 mass%, Co-Mo-Cr-Si superalloy component 15 mass%, C component 3 mass% 2 is a micrograph (magnification 400 times) of an Fe-based sintered sliding member. スラスト試験方法を示す斜視説明図である。It is a perspective explanatory view showing a thrust test method. ジャーナル揺動試験方法を示す斜視説明図である。It is a perspective explanatory view showing a journal swing test method. ジャーナル回転試験方法を示す斜視説明図である。It is a perspective explanatory view showing a journal rotation test method.

次に本発明の実施の形態を詳細に説明する。なお、本発明はこれらの例に何等限定されない。   Next, embodiments of the present invention will be described in detail. Note that the present invention is not limited to these examples.

本発明のFe系焼結摺動部材は、Fe粉末とCu−Fe−Mn合金粉末とCo−Mo−Cr−Si超合金粉末とC粉末とからなるFe系焼結摺動部材であって、Cu成分4.45〜18.6質量%、Mn成分0.2〜1.2質量%、Co成分3.1〜9.3質量%、Mo成分1.4〜4.2質量%、Cr成分0.4〜1.2質量%、Si成分0.1〜0.3質量%、C成分1.0〜5.0質量%、残部Fe成分からなり、素地の組織がパーライト組織又はパーライトと一部フェライトの共存する組織を呈すると共に、該素地の組織中にC成分とCu−Fe−Mn合金とCo−Mo−Cr−Si超合金が分散していることを特徴とする。   The Fe-based sintered sliding member of the present invention is an Fe-based sintered sliding member composed of Fe powder, Cu-Fe-Mn alloy powder, Co-Mo-Cr-Si superalloy powder, and C powder, Cu component 4.45 to 18.6% by mass, Mn component 0.2 to 1.2% by mass, Co component 3.1 to 9.3% by mass, Mo component 1.4 to 4.2% by mass, Cr component It consists of 0.4 to 1.2% by mass, Si component 0.1 to 0.3% by mass, C component 1.0 to 5.0% by mass, and the remaining Fe component. It is characterized by exhibiting a structure in which part ferrite coexists, and a C component, a Cu—Fe—Mn alloy, and a Co—Mo—Cr—Si superalloy dispersed in the structure of the substrate.

本発明のFe系焼結摺動部材において、主成分をなすFe成分としては、80メッシュ篩を通過する粒度(177μm以下)で、見掛け密度が2.4〜3.0Mg/m程度の還元Fe粉末やアトマイズFe粉末(水アトマイズFe粉末)が好適に使用される。これらFe粉末における気体吸着法(BET−ISO9277)による比表面積は、アトマイズFe粉末では60〜80m/kg、還元Fe粉末では80〜100m/kgである。アトマイズFe粉末は、粉末内に気孔が少なく比表面積が小さいのに対し、還元Fe粉末は、気孔が比較的多く表面に凹凸が多く、アトマイズFe粉末と比べて比表面積が高い。 In the Fe-based sintered sliding member of the present invention, the Fe component as a main component is a reduction having a particle size passing through an 80 mesh sieve (177 μm or less) and an apparent density of about 2.4 to 3.0 Mg / m 3. Fe powder and atomized Fe powder (water atomized Fe powder) are preferably used. The specific surface area by gas adsorption method (BET-ISO 9277) in these Fe powder, the atomized Fe powder 60~80m 2 / kg, the reduction Fe powder is 80~100m 2 / kg. Atomized Fe powder has few pores in the powder and a small specific surface area, whereas reduced Fe powder has relatively many pores and many irregularities on the surface, and has a higher specific surface area than atomized Fe powder.

上記主成分をなすFe成分に対し、所定量の割合で配合されるCu成分及びMn成分は、Cu−Fe−Mn合金の形態で使用される。これら合金中のCu成分及びMn成分は、フェライト相(α相)組織の生成を促進する元素であり、焼結過程において主成分をなすFe成分と後述するC成分との反応を抑制し、これにより焼結体の素地の組織中に遊離セメンタイトの析出を防止する作用を果たすものである。このCu成分とMn成分の焼結過程におけるFe成分とC成分との反応を抑制する作用は詳らかではないが、これら元素が予め合金化されていることにより、Cu成分及びMn成分が主成分をなすFe成分中に優先的に固溶し、C成分のFe成分中への固溶を極力阻止するためであることが推察される
The Cu component and the Mn component blended in a predetermined ratio with respect to the Fe component constituting the main component are used in the form of a Cu-Fe-Mn alloy. The Cu component and Mn component in these alloys are elements that promote the formation of a ferrite phase (α phase) structure, and suppress the reaction between the Fe component, which is the main component, and the C component described later in the sintering process. This serves to prevent the precipitation of free cementite in the structure of the sintered body. Although the effect of suppressing the reaction between the Fe component and the C component in the sintering process of the Cu component and the Mn component is not clear, the Cu component and the Mn component are the main components because these elements are pre-alloyed. It is presumed that this is because it preferentially dissolves in the Fe component formed and prevents the C component from dissolving in the Fe component as much as possible.

このCu−Fe−Mn合金成分の成分組成は、Cu成分89〜93質量%、Fe成分3〜5質量%、Mn成分4〜6質量%からなり、このCu−Fe−Mn合金成分は、主成分をなすFe成分に対し5〜20質量%、すなわちFe成分に対し、Cu成分4.45〜18.6質量%、Fe成分0.15〜1.0質量%、Mn成分0.2〜1.2質量%の割合で配合される。   The component composition of this Cu—Fe—Mn alloy component is composed of 89 to 93% by mass of Cu component, 3 to 5% by mass of Fe component, and 4 to 6% by mass of Mn component. 5 to 20% by mass with respect to Fe component constituting the component, that is, Cu component 4.45 to 18.6% by mass, Fe component 0.15 to 1.0% by mass, Mn component 0.2 to 1 with respect to Fe component .2% by mass is blended.

上記主成分をなすFe成分及びCu−Fe−Mn合金成分に対し、所定量の割合で配合されるCo−Mo−Cr−Si超合金成分の成分組成は、Co成分62質量%、Mo成分28質量%、Cr成分8質量%、Si成分2質量%からなり、このCu−Fe−Mn合金成分は、主成分をなすFe成分及びCu−Fe−Mn合金成分に対し5〜15質量%、すなわちCo成分3.1〜9.3質量%、Mo成分1.4〜4.2質量%、Cr成分0.4〜1.2質量%、Si成分0.1〜0.3質量%の割合で配合される。   The component composition of the Co—Mo—Cr—Si superalloy component blended at a predetermined ratio with respect to the Fe component and the Cu—Fe—Mn alloy component constituting the main component is as follows: Co component 62 mass%, Mo component 28 The Cu-Fe-Mn alloy component is composed of 5 to 15 mass% with respect to the Fe component and the Cu-Fe-Mn alloy component, which are the main components. Co component 3.1 to 9.3 mass%, Mo component 1.4 to 4.2 mass%, Cr component 0.4 to 1.2 mass%, Si component 0.1 to 0.3 mass% Blended.

このCo−Mo−Cr−Si超合金成分は硬質であり、主成分をなすFe成分及びCu−Fe−Mn合金成分に配合されることにより、素地のパーライト組織又はパーライトと一部フェライトの共存する組織に分散含有され、焼結体の耐荷重性並びに耐摩耗性の向上に効果を発揮する。Co−Mo−Cr−Si超合金の配合割合は5〜15質量%であり、配合割合が5質量%未満では上記耐荷重性並びに耐摩耗性の向上に充分効果を発揮せず、また15質量%を超えて配合すると硬質のCo−Mo−Cr−Si超合金成分の分散含有する割合が多くなり、却って軸などの相手材を損傷させる虞がある。   This Co-Mo-Cr-Si superalloy component is hard, and is blended with the Fe component and Cu-Fe-Mn alloy component which are the main components, so that the base pearlite structure or pearlite and a part of ferrite coexist. It is dispersed and contained in the structure, and is effective in improving the load resistance and wear resistance of the sintered body. The blending ratio of the Co—Mo—Cr—Si superalloy is 5 to 15% by mass. If the blending ratio is less than 5% by mass, the effect of improving the load resistance and wear resistance is not sufficiently exhibited. If the blending ratio exceeds 50%, the proportion of the hard Co—Mo—Cr—Si superalloy component dispersed increases, and on the contrary, there is a risk of damaging the counterpart material such as the shaft.

C成分は、前記したとおり天然黒鉛又は人造黒鉛が使用されて好適である。このC成分は、素地のパーライト組織又はパーライトと一部フェライトの共存する組織に1.0〜5.0質量%の割合で分散含有されており、該C成分は、それ自身の固体潤滑作用と後述する潤滑油の保持体としての役割を果たす。とくにC成分の配合量が3質量%以上において固体潤滑作用による自己潤滑性が付与される。   As described above, natural graphite or artificial graphite is preferably used as component C. This C component is dispersed and contained at a ratio of 1.0 to 5.0% by mass in the base pearlite structure or the structure in which pearlite and a part of ferrite coexist, and the C component has its own solid lubricating action. It plays a role as a holding body for a lubricating oil to be described later. In particular, when the blending amount of the C component is 3% by mass or more, self-lubricating property due to the solid lubricating action is imparted.

潤滑油は、Fe系焼結摺動部材に液体潤滑作用を付与すると共に前記したC成分による固体潤滑作用と相俟って自己潤滑性を一層高める作用を発揮する。そして、この潤滑油はFe系焼結摺動部材に10〜15容積%の割合で含油されている。 Lubricating oil provides a liquid lubricating action to the Fe-based sintered sliding member and exhibits an action of further enhancing self-lubricating properties in combination with the solid lubricating action by the C component described above. This lubricating oil is contained in the Fe-based sintered sliding member at a rate of 10 to 15% by volume.

上記した成分組成からなるFe系焼結摺動部材の製造方法は、主成分をなるFe粉末に対し、Mn4〜6質量%とFe3〜5質量%と残部CuからなるCu−Fe−Mn合金粉末5〜20質量%と、Co62質量%、Mo28質量%、Cr8質量%、Si2質量%からなるCo−Mo−Cr−Si超合金粉末5〜15質量%と、C粉末1.0〜5.0質量%をそれぞれ配合し、混合して混合粉末を形成した後、該混合粉末を金型に装填して所望の形状の圧粉体を成形し、この圧粉体を中性もしくは還元性雰囲気に調整した加熱炉内で1000〜1150℃の温度で30〜90分間焼結することを特徴とする。 The manufacturing method of the Fe-based sintered sliding member having the above-described component composition is based on the Cu-Fe-Mn alloy powder consisting of Mn 4-6 mass%, Fe 3-5 mass% and the balance Cu with respect to the main component Fe powder. 5 to 20% by mass, Co-Mo-Cr-Si superalloy powder consisting of 62% by mass of Co, 28% by mass of Mo, 8% by mass of Cr, and 2% by mass of Si, and C powder 1.0 to 5.0 After mixing each mass% and mixing to form a mixed powder, the mixed powder is loaded into a mold to form a green compact of a desired shape, and the green compact is placed in a neutral or reducing atmosphere. Sintering is performed at a temperature of 1000 to 1150 ° C. for 30 to 90 minutes in an adjusted heating furnace.

主成分をなすFe粉末に配合されるCu−Fe−Mn合金粉末は、1050℃の温度に液相点を有しており、1050℃未満の温度での焼結では固相焼結であり、1050℃以上の温度での焼結では液相焼結となる。焼結温度が1050℃未満に固相焼結では、Cu−Fe−Mn合金成分は、素地のパーライト組織又はパーライトと一部フェライトが共存する組織に分散含有されており、また焼結温度が1050℃以上の液相焼結では、Cu−Fe−Mn合金成分は、素地のパーライト組織又はパーライトと一部フェライトが共存する組織の粒界に網目状に分散含有されている。 The Cu—Fe—Mn alloy powder blended with the Fe powder as the main component has a liquidus point at a temperature of 1050 ° C., and sintering at a temperature of less than 1050 ° C. is solid phase sintering, Sintering at a temperature of 1050 ° C. or higher results in liquid phase sintering. In solid phase sintering at a sintering temperature of less than 1050 ° C., the Cu—Fe—Mn alloy component is dispersed and contained in the base pearlite structure or a structure in which pearlite and a part of ferrite coexist, and the sintering temperature is 1050. In the liquid phase sintering at a temperature of 0 ° C. or higher, the Cu—Fe—Mn alloy component is dispersed and contained in the form of a network at the grain boundaries of the pearlite structure of the substrate or the structure in which pearlite and part of ferrite coexist.

図1は、1100℃の温度で液相焼結して得たFe成分62質量%、Cu−Fe−Mn合金20質量%、Co−Mo−Cr−Si超合金成分15質量%、C成分3質量%からなるFe系焼結摺動部材の顕微鏡写真(倍率400倍)である。 FIG. 1 shows an Fe component 62 mass% obtained by liquid phase sintering at a temperature of 1100 ° C., a Cu—Fe—Mn alloy 20 mass%, a Co—Mo—Cr—Si superalloy component 15 mass%, and a C component 3. It is a microscope picture (400-times multiplication factor) of the Fe-type sintered sliding member which consists of mass%.

図1において、矢印a(マトリックス)で表示した部位が素地のパーライトと一部フェライトが共存する組織で、矢印b(Cu液相部)で表示した部位が組織の粒界に分散含有されたCu−Fe−Mn合金成分で、矢印c(合金)で示した部位が組織に分散含有されたCo−Mo−Cr−Si超合金成分である。 In FIG. 1, the site indicated by the arrow a (matrix) is a structure in which pearlite and a part of ferrite of the base material coexist, and the site indicated by the arrow b (Cu liquid phase part) is dispersed and contained in the grain boundary of the structure. -Co-Mo-Cr-Si superalloy component in which the site indicated by arrow c (alloy) is dispersed and contained in the structure in the -Fe-Mn alloy component.

上記図1に示した顕微鏡写真において、素地のパーライトと一部フェライトが共存する組織の部位は、マイクロビッカース硬さ(HMV)で350〜450を示し、Cu−Fe−Mn合金の部位は、マイクロビッカース硬さで100〜120を示し、Co−Mo−Cr−Si超合金の部位は、マイクロビッカース硬さで540〜770を示す。 In the micrograph shown in FIG. 1 above, the site of the structure where the base pearlite and some ferrite coexist is 350 to 450 in micro Vickers hardness (HMV), and the site of the Cu-Fe-Mn alloy is micro The Vickers hardness indicates 100 to 120, and the Co—Mo—Cr—Si superalloy region indicates micro Vickers hardness of 540 to 770.

素地のパーライトと一部フェライトが共存した組織中に、該組織の部位の硬さよりも低い硬さのCu−Fe−Mn合金と該組織の部位の硬さよりも高い硬さのCo−Mo−Cr−Si超合金とが分散して含有されていることにより、相手材との摺動において、なじみ性が良好となり、耐荷重性並びに耐摩耗性などの摺動特性が向上する。   In the structure in which the base pearlite and some ferrite coexist, the Cu-Fe-Mn alloy having a hardness lower than the hardness of the site of the structure and the Co-Mo-Cr having a hardness higher than the hardness of the site of the structure When the -Si superalloy is dispersed and contained, the conformability is good in sliding with the counterpart material, and the sliding characteristics such as load resistance and wear resistance are improved.

次に、本発明を各実施例を参照して説明する。なお、本発明は以下の実施例に限定されないことは言うまでもない。   Next, the present invention will be described with reference to each embodiment. Needless to say, the present invention is not limited to the following examples.

平均粒径70μmのアトマイズFe粉末(神戸製鋼所社製「アトメル300M(商品名)」に対し、Cu成分90.5質量%、Fe成分4.1質量%、Mn成分5.4質量%からなる平均粒径75μmのCu−Fe−Mn合金粉末(福田金属箔粉工業社製)15質量%と、平均粒径63μmのCo62質量%、Mo28質量%、Cr8質量%、Si2質量%からなるCo−Mo−Cr−Si超合金粉末(大同特殊鋼社製「DAPKMC400(商品名)」)7質量%と、C成分として平均粒径40μmの天然黒鉛粉末(日本黒鉛社製「CB150(商品名)」)3質量%を配合し、V型ミキサーにて20分間混合して混合粉末(Cu成分13.58質量%、Mn成分0.81質量%、Co成分4.34質量%、Mo成分1.96質量%、Cr成分0.56質量%、Si成分0.14質量%、Fe成分75.61質量%、C成分3質量%)を得た。ついで、この混合粉末を金型中に装填し、成形圧力490Mpa(5トン/cm)で成形して方形状の圧粉体を得た。 Atomized Fe powder with an average particle size of 70 μm (composed of 90.5% by mass of Cu component, 4.1% by mass of Fe component, and 5.4% by mass of Mn component with respect to “Atomel 300M (trade name)” manufactured by Kobe Steel) Co-- consisting of 15% by mass of Cu-Fe-Mn alloy powder (produced by Fukuda Metal Foil Powder Co., Ltd.) with an average particle size of 75 μm, 62% by mass of Co with an average particle size of 63 μm, 28% by mass of Mo, 8% by mass of Cr, and 2% by mass of Si 7% by mass of Mo—Cr—Si superalloy powder (“DAPKMC400 (trade name)” manufactured by Daido Steel Co., Ltd.) and natural graphite powder having an average particle size of 40 μm as the C component (“CB150 (trade name)” manufactured by Nippon Graphite Co., Ltd.) ) 3% by mass, mixed for 20 minutes with a V-type mixer and mixed powder (Cu component 13.58% by mass, Mn component 0.81% by mass, Co component 4.34% by mass, Mo component 1.96) Mass%, Cr composition 0.56% by mass, Si component 0.14% by mass, Fe component 75.61% by mass, and C component 3% by mass) Next, this mixed powder was loaded into a mold, and a molding pressure of 490 Mpa (5 Ton / cm 2 ) to obtain a green compact.

この方形状の圧粉体を水素ガス雰囲気に調整した加熱炉内に置き、1100℃の温度で60分間液相焼結した後に加熱炉から取出し、方形状のFe系焼結材を得た。このFe系焼結材に機械加工を施して一辺30mm、厚さ5mmの寸法のFe系焼結摺動部材を得た。このFe系焼結摺動部材の密度は5.76Mg/mであった。このFe系焼結摺動部材の素地の組織は、パーライトと一部フェライトが共存した組織を呈すると共に組織中に遊離セメンタイトの生成はなく、該組織中にCu−Fe−Mn合金とCo−Mo−Cr−Si超合金が分散含有しているのを確認した。そして、パーライトと一部フェライトが共存した組織の部位は、マイクロビッカース硬さで400を示し、Cu−Fe−Mn合金の部位の硬さは、マイクロビッカース硬さで110を示し、Co−Mo−Cr−Si超合金の部位の硬さは、マイクロビッカース硬さで570を示した。ついで、このFe系焼結摺動部材に含油処理を施し、含油率12容積%のFe系含油焼結摺動部材を得た。 This square green compact was placed in a heating furnace adjusted to a hydrogen gas atmosphere, liquid phase sintered at a temperature of 1100 ° C. for 60 minutes, and then taken out from the heating furnace to obtain a square Fe-based sintered material. This Fe-based sintered material was machined to obtain an Fe-based sintered sliding member having a side of 30 mm and a thickness of 5 mm. The density of this Fe-based sintered sliding member was 5.76 Mg / m 3 . The base structure of this Fe-based sintered sliding member exhibits a structure in which pearlite and a part of ferrite coexist, and there is no generation of free cementite in the structure. In this structure, a Cu-Fe-Mn alloy and Co-Mo are formed. It was confirmed that the —Cr—Si superalloy was dispersed. And the site | part of the structure | tissue in which pearlite and a part ferrite coexisted showed 400 by micro Vickers hardness, the hardness of the site | part of a Cu-Fe-Mn alloy showed 110 by micro Vickers hardness, Co-Mo- The hardness of the Cr-Si superalloy portion was 570 in terms of micro Vickers hardness. Subsequently, this Fe-based sintered sliding member was subjected to oil impregnation treatment to obtain an Fe-based oil impregnated sintered sliding member having an oil content of 12% by volume.

前記実施例1と同様の平均粒径70μmのアトマイズFe粉末に対し、前記実施例1と同様の平均粒径75μmのCu−Fe−Mn合金粉末20質量%と、前記実施例1と同様の平均粒径63μmのCo−Mo−Cr−Si超合金粉末15質量%と、前記実施例1と同様の平均粒径40μmの天然黒鉛粉末3質量%を配合し、V型ミキサーにて20分間混合して混合粉末(Cu成分18.1質量%、Mn成分1.08質量%、Co成分9.30質量%、Mo成分4.20質量%、Cr成分1.20質量%、Si成分0.30質量%、Fe成分62.82質量%、C成分3質量%)を得た。以下、前記実施例1と同様の方法で方形状の圧粉体を得た。   With respect to the atomized Fe powder having an average particle diameter of 70 μm similar to that of Example 1, 20% by mass of Cu—Fe—Mn alloy powder having an average particle diameter of 75 μm similar to that of Example 1 and an average similar to that of Example 1 15% by mass of Co-Mo-Cr-Si superalloy powder having a particle size of 63 μm and 3% by mass of natural graphite powder having an average particle size of 40 μm as in Example 1 were mixed for 20 minutes with a V-type mixer. Mixed powder (Cu component 18.1% by mass, Mn component 1.08% by mass, Co component 9.30% by mass, Mo component 4.20% by mass, Cr component 1.20% by mass, Si component 0.30% by mass) %, Fe component 62.82 mass%, C component 3 mass%). Thereafter, a green compact was obtained in the same manner as in Example 1.

この方形状の圧粉体を水素ガス雰囲気に調整した加熱炉に置き、1150℃の温度で60分間液相焼結した後に加熱炉から取出し、方形状のFe系焼結材を得た。このFe系焼結材に機械加工を施して一辺が30mm、厚さ5mmの寸法のFe系焼結摺動部材を得た。このFe系焼結摺動部材の密度は5.92Mg/mであった。組織は、図1及び図2に示すようにパーライトと一部フェライトが共存する組織を呈すると共に組織中に遊離セメンタイトの生成はなく、該組織の粒界に網目状にCu−Fe−Mn合金が分散されており、またCo−Mo−Cr−Si超合金が組織中に分散含有されているのを確認した。そして、パーライトと一部フェライトが共存した組織の部位は、マイクロビッカース硬さで400を示し、Cu−Fe−Mn合金の部位の硬さは、マイクロビッカース硬さで110を示し、Co−Mo−Cr−Si超合金の部位の硬さは、マイクロビッカース硬さで640を示した。ついで、このFe系焼結摺動部材に含油処理を施し、含油率10容積%のFe系含油焼結摺動部材を得た。 This square green compact was placed in a heating furnace adjusted to a hydrogen gas atmosphere, liquid phase sintered at a temperature of 1150 ° C. for 60 minutes, and then taken out of the heating furnace to obtain a square Fe-based sintered material. The Fe-based sintered material was machined to obtain an Fe-based sintered sliding member having a side of 30 mm and a thickness of 5 mm. The density of this Fe-based sintered sliding member was 5.92 Mg / m 3 . As shown in FIGS. 1 and 2, the structure exhibits a structure in which pearlite and a part of ferrite coexist, and free cementite is not generated in the structure, and a Cu—Fe—Mn alloy is formed in a network at the grain boundary of the structure. It was confirmed that Co-Mo-Cr-Si superalloy was dispersed and contained in the structure. And the site | part of the structure | tissue in which pearlite and a part ferrite coexisted showed 400 by micro Vickers hardness, the hardness of the site | part of a Cu-Fe-Mn alloy showed 110 by micro Vickers hardness, Co-Mo- The hardness of the Cr-Si superalloy portion was 640 in terms of micro Vickers hardness. Subsequently, the Fe-based sintered sliding member was subjected to oil impregnation treatment to obtain an Fe-based oil-impregnated sintered sliding member having an oil content of 10% by volume.

前記実施例1と同様の混合粉末(Cu成分13.58質量%、Mn成分0.81質量%、Co成分4.34質量%、Mo成分1.96質量%、Cr成分0.56質量%、Si成分0.14質量%、Fe成分75.61質量%、C成分3質量%)を準備した。この混合粉末を金型中に装填し、成形圧力490Mpa(5トン/cm)で成形して円筒状の圧粉体を得た。 Mixed powder similar to Example 1 (Cu component 13.58 mass%, Mn component 0.81 mass%, Co component 4.34 mass%, Mo component 1.96 mass%, Cr component 0.56 mass%, Si component 0.14 mass%, Fe component 75.61 mass%, C component 3 mass%) were prepared. This mixed powder was loaded into a mold and molded at a molding pressure of 490 Mpa (5 tons / cm 2 ) to obtain a cylindrical green compact.

この円筒状の圧粉体を水素ガス雰囲気に調整した加熱炉内に置き、1100℃の温度で60分間液相焼結した後に加熱炉から取出し、円筒状のFe系焼結材を得た。このFe系焼結材に機械加工を施して内径20mm、外径28mm、長さ15mmの寸法のFe系焼結摺動部材を得た。このFe系焼結摺動部材の密度は5.84Mg/mであった。このFe系焼結摺動部材の素地の組織は、パーライトと一部フェライトが共存した組織を呈すると共に組織中に遊離セメンタイトの生成はなく、該組織中にCu−Fe−Mn合金とCo−Mo−Cr−Si超合金が分散含有しているのを確認した。そして、パーライトと一部フェライトが共存した組織の部位は、マイクロビッカース硬さで400を示し、Cu−Fe−Mn合金の部位の硬さは、マイクロビッカース硬さで110を示し、Co−Mo−Cr−Si超合金の部位の硬さは、マイクロビッカース硬さで572を示した。ついで、このFe系焼結摺動部材に含油処理を施し、含油率12容積%のFe系含油焼結摺動部材を得た。 This cylindrical green compact was placed in a heating furnace adjusted to a hydrogen gas atmosphere, liquid phase sintered at a temperature of 1100 ° C. for 60 minutes, and then taken out from the heating furnace to obtain a cylindrical Fe-based sintered material. This Fe-based sintered material was machined to obtain an Fe-based sintered sliding member having an inner diameter of 20 mm, an outer diameter of 28 mm, and a length of 15 mm. The density of this Fe-based sintered sliding member was 5.84 Mg / m 3 . The base structure of this Fe-based sintered sliding member exhibits a structure in which pearlite and a part of ferrite coexist, and there is no generation of free cementite in the structure. In this structure, a Cu-Fe-Mn alloy and Co-Mo are formed. It was confirmed that the —Cr—Si superalloy was dispersed. And the site | part of the structure | tissue in which pearlite and a part ferrite coexisted showed 400 by micro Vickers hardness, the hardness of the site | part of a Cu-Fe-Mn alloy showed 110 by micro Vickers hardness, Co-Mo- The hardness of the Cr-Si superalloy portion was 572 in terms of micro Vickers hardness. Subsequently, this Fe-based sintered sliding member was subjected to oil impregnation treatment to obtain an Fe-based oil impregnated sintered sliding member having an oil content of 12% by volume.

前記実施例2と同様の混合粉末(Cu成分18.1質量%、Mn成分1.08質量%、Co成分9.30質量%、Mo成分4.20質量%、Cr成分1.20質量%、Si成分0.30質量%、Fe成分62.82質量%、C成分3質量%)を準備した。以下、前記実施例3と同様の方法で円筒状の圧粉体を得た。   Mixed powder similar to Example 2 (Cu component 18.1% by mass, Mn component 1.08% by mass, Co component 9.30% by mass, Mo component 4.20% by mass, Cr component 1.20% by mass, Si component 0.30 mass%, Fe component 62.82 mass%, C component 3 mass%) were prepared. Thereafter, a green compact was obtained in the same manner as in Example 3.

この円筒状の圧粉体を水素ガス雰囲気に調整した加熱炉内に置き、1150℃の温度で60分間液相焼結した後に加熱炉から取出し、円筒状のFe系焼結材を得た。このFe系焼結材に機械加工を施して内径20mm、外径28mm、長さ15mmの寸法のFe系焼結摺動部材を得た。このFe系焼結摺動部材の密度は5.92Mg/mであった。このFe系焼結摺動部材の素地の組織は、パーライトと一部フェライトが共存した組織を呈すると共に組織中に遊離セメンタイトの生成はなく、該組織中にCu−Fe−Mn合金とCo−Mo−Cr−Si超合金が分散含有しているのを確認した。そして、パーライトと一部フェライトが共存した組織の部位は、マイクロビッカース硬さで400を示し、Cu−Fe−Mn合金の部位の硬さは、マイクロビッカース硬さで110を示し、Co−Mo−Cr−Si超合金の部位の硬さは、マイクロビッカース硬さで642を示した。ついで、このFe系焼結摺動部材に含油処理を施し、含油率10容積%のFe系含油焼結摺動部材を得た。 The cylindrical green compact was placed in a heating furnace adjusted to a hydrogen gas atmosphere, liquid phase sintered at a temperature of 1150 ° C. for 60 minutes, and then taken out from the heating furnace to obtain a cylindrical Fe-based sintered material. This Fe-based sintered material was machined to obtain an Fe-based sintered sliding member having an inner diameter of 20 mm, an outer diameter of 28 mm, and a length of 15 mm. The density of this Fe-based sintered sliding member was 5.92 Mg / m 3 . The base structure of this Fe-based sintered sliding member exhibits a structure in which pearlite and a part of ferrite coexist, and there is no generation of free cementite in the structure. In this structure, a Cu-Fe-Mn alloy and Co-Mo are formed. It was confirmed that the —Cr—Si superalloy was dispersed. And the site | part of the structure | tissue in which pearlite and a part ferrite coexisted showed 400 by micro Vickers hardness, the hardness of the site | part of a Cu-Fe-Mn alloy showed 110 by micro Vickers hardness, Co-Mo- The hardness of the Cr-Si superalloy portion was 642 in terms of micro Vickers hardness. Subsequently, the Fe-based sintered sliding member was subjected to oil impregnation treatment to obtain an Fe-based oil-impregnated sintered sliding member having an oil content of 10% by volume.

比較例1Comparative Example 1

前記実施例1と同様の平均粒径70μmのアトマイズFe粉末に対し、前記実施例1と同様のCu成分90.5質量%、Fe成分4.1質量%及びMn成分5.4質量%からなる平均粒径75μmのCu−Fe−Mn合金粉末12質量%と、C成分として前記実施例1と同様の平均粒径40μmの天然黒鉛3質量%を配合し、V型ミキサーにて20分間混合して混合粉末(Cu成分10.86質量%、Mn成分0.65質量%、Fe成分85.49質量%、C成分3質量%)を得た。ついで、この混合粉末を金型中に装填し、成形圧力490Mpa(5トン/cm)で成形して方形状の圧粉体を得た。 For the atomized Fe powder having the average particle size of 70 μm as in Example 1, it is composed of 90.5% by mass of Cu component, 4.1% by mass of Fe component, and 5.4% by mass of Mn component as in Example 1. 12% by mass of Cu—Fe—Mn alloy powder having an average particle size of 75 μm and 3% by mass of natural graphite having an average particle size of 40 μm as in Example 1 as a C component were mixed for 20 minutes using a V-type mixer. To obtain a mixed powder (Cu component 10.86% by mass, Mn component 0.65% by mass, Fe component 85.49% by mass, C component 3% by mass). Next, this mixed powder was loaded into a mold and molded at a molding pressure of 490 Mpa (5 tons / cm 2 ) to obtain a green compact.

この方形状の圧粉体を水素ガス雰囲気に調整した加熱炉内に置き、1100℃の温度で60分間液相焼結した後に加熱炉から取出し、方形状のFe系焼結材を得た。このFe系焼結材に機械加工を施して一辺が30mm、厚さ5mmの寸法のFe系焼結摺動部材を得た。このFe系焼結摺動部材の密度は6.7Mg/mであった。組織は、パーライトと一部フェライトが共存した組織を呈すると共に組織中に遊離セメンタイトの生成はなく、該組織中にCu−Fe−Mn合金が分散含有されているのを確認した。そして、パーライトと一部フェライトが共存した組織の部位は、マイクロビッカース硬さで400であり、該組織中に分散含有されたCu−Fe−Mn合金の部位は、マイクロビッカース硬さで110であった。ついで、このFe系焼結摺動部材に含油処理を施し、含油率10容積%のFe系焼結摺動部材を得た。 This square green compact was placed in a heating furnace adjusted to a hydrogen gas atmosphere, liquid phase sintered at a temperature of 1100 ° C. for 60 minutes, and then taken out from the heating furnace to obtain a square Fe-based sintered material. The Fe-based sintered material was machined to obtain an Fe-based sintered sliding member having a side of 30 mm and a thickness of 5 mm. The density of this Fe-based sintered sliding member was 6.7 Mg / m 3 . The structure exhibited a structure in which pearlite and a part of ferrite coexisted, and no free cementite was produced in the structure, and it was confirmed that a Cu—Fe—Mn alloy was dispersedly contained in the structure. And the part of the structure where pearlite and ferrite partially coexist is 400 in terms of micro Vickers hardness, and the part of the Cu-Fe-Mn alloy dispersed and contained in the structure is 110 in terms of micro Vickers hardness. It was. Subsequently, the Fe-based sintered sliding member was subjected to oil impregnation treatment to obtain an Fe-based sintered sliding member having an oil content of 10% by volume.

比較例2Comparative Example 2

前記実施例1と同様の平均粒径70μmのアトマイズFe粉末に対し、Cu成分90.5質量%とFe成分4.1質量%及びMn成分5.4質量%からなる平均粒径75μmのCu−Fe−Mn合金粉末10質量%と、C成分として前記実施例1と同様の平均粒径40μmの天然黒鉛3質量%を配合し、V型ミキサーにて20分間混合して混合粉末(Cu成分9.05質量%、Mn成分0.54質量%、Fe成分87.41質量%、C成分3質量%)を得た。ついで、この混合粉末を金型中に装填し、成形圧力490Mpa(5トン/cm)で成形して円筒状の圧粉体を得た。 For an atomized Fe powder having an average particle size of 70 μm as in Example 1, Cu— with an average particle size of 75 μm comprising 90.5% by mass of Cu component, 4.1% by mass of Fe component and 5.4% by mass of Mn component. 10% by mass of Fe—Mn alloy powder and 3% by mass of natural graphite having an average particle size of 40 μm as in Example 1 are mixed as the C component, mixed for 20 minutes with a V-type mixer, and mixed powder (Cu component 9 0.05% by mass, 0.54% by mass of Mn component, 87.41% by mass of Fe component, and 3% by mass of C component). Next, this mixed powder was loaded into a mold and molded at a molding pressure of 490 Mpa (5 tons / cm 2 ) to obtain a cylindrical green compact.

この円筒状の圧粉体を水素ガス雰囲気に調整した加熱炉内に置き、1100℃の温度で60分間液相焼結した後に加熱炉から取出し、円筒状のFe系焼結材を得た。このFe系焼結材に機械加工を施して内径20mm、外径28mm、長さ15mmの寸法のFe系焼結摺動部材を得た。このFe系焼結摺動部材の密度は6.6Mg/mを示し、組織はパーライトと一部フェライトが共存する組織を呈すると共に組織中に遊離セメンタイトの生成はなく、該組織の粒界に網目状にCu−Fe−Mn合金が分散含有されているのを確認した。パーライトと一部フェライトが共存する組織の部位は、マイクロビッカース硬さで400であり、該組織中に分散含有されたCu−Fe−Mn合金の部位は、マイクロビッカース硬さで110であった。ついで、このFe系焼結摺動部材に含油処理を施し、含油率10容積%のFe系含油焼結摺動部材を得た。 This cylindrical green compact was placed in a heating furnace adjusted to a hydrogen gas atmosphere, liquid phase sintered at a temperature of 1100 ° C. for 60 minutes, and then taken out from the heating furnace to obtain a cylindrical Fe-based sintered material. This Fe-based sintered material was machined to obtain an Fe-based sintered sliding member having an inner diameter of 20 mm, an outer diameter of 28 mm, and a length of 15 mm. The density of this Fe-based sintered sliding member is 6.6 Mg / m 3 , and the structure exhibits a structure in which pearlite and a part of ferrite coexist, and free cementite is not generated in the structure. It was confirmed that the Cu—Fe—Mn alloy was dispersed and contained in a network. The site | part of the structure | tissue in which a pearlite and a part ferrite coexist was 400 in micro Vickers hardness, and the site | part of the Cu-Fe-Mn alloy dispersedly contained in this structure | tissue was 110 in micro Vickers hardness. Subsequently, the Fe-based sintered sliding member was subjected to oil impregnation treatment to obtain an Fe-based oil-impregnated sintered sliding member having an oil content of 10% by volume.

次に上記した実施例及び比較例で得たFe系含油焼結摺動部材について、摺動特性を評価した結果を説明する。実施例1、実施例2及び比較例1で得たFe系含油焼結摺動部材については、下記に示すスラスト試験条件によってスラスト摺動特性を評価し、また実施例3、実施例4及び比較例2で得たFe系含油焼結摺動部材については、下記に示すジャーナル揺動試験条件及びジャーナル回転試験条件によってジャーナル揺動摺動特性及びジャーナル回転摺動特性を評価した。   Next, the results of evaluating the sliding characteristics of the Fe-based oil-impregnated sintered sliding members obtained in the above-described Examples and Comparative Examples will be described. For the Fe-based oil-impregnated sintered sliding member obtained in Example 1, Example 2 and Comparative Example 1, the thrust sliding characteristics were evaluated according to the thrust test conditions shown below, and Example 3, Example 4 and Comparative Example For the Fe-based oil-impregnated sintered sliding member obtained in Example 2, journal swing sliding characteristics and journal rotation sliding characteristics were evaluated according to the journal swing test conditions and journal rotation test conditions shown below.

<スラスト試験条件>
速度 1.3m/min
荷重(面圧) 78.4Mpa(800kgf/cm)、88.24Mpa(900k gf/cm)、98Mpa(1000kgf/cm
試験時間 20時間
相手材 機械構造用炭素鋼(S45C)焼入れ材
潤滑条件 試験開始時に摺動面にリチウム系グリースを塗布
<Thrust test conditions>
Speed 1.3m / min
Load (surface pressure) 78.4Mpa (800kgf / cm 2) , 88.24Mpa (900k gf / cm 2), 98Mpa (1000kgf / cm 2)
Test time 20 hours Counterpart material Carbon steel for machine structure (S45C) quenching material Lubrication conditions Lithium grease is applied to the sliding surface at the start of the test

<試験方法>
図2に示すように、板状軸受試験片(Fe系含油焼結摺動部材)1を固定し、相手材となる円筒体2を板状軸受試験片1の上から(矢印A方向)その表面3に所定の荷重を負荷しながら、該円筒体2を矢印B方向に回転させ、板状軸受試験片1と相手材2との間の摩擦係数及び所定の試験時間経過後の板状軸受試験片1の摩耗量を測定した。
<Test method>
As shown in FIG. 2, a plate-shaped bearing test piece (Fe-based oil-impregnated sintered sliding member) 1 is fixed, and a cylindrical body 2 serving as a mating member is placed from above the plate-shaped bearing test piece 1 (in the direction of arrow A) The cylindrical body 2 is rotated in the direction of arrow B while a predetermined load is applied to the surface 3, and the coefficient of friction between the plate-shaped bearing test piece 1 and the counterpart material 2 and the plate-shaped bearing after a predetermined test time has elapsed. The amount of wear of the test piece 1 was measured.

<ジャーナル揺動試験条件>
速度 3m/min
荷重(面圧) 24.5Mpa(250kgf/cm)、34.3Mpa(350kgf/cm)、44.1Mpa(450kgf/cm
揺動角度 ±45°
試験時間 100時間
相手材 軸受鋼(SUJ2焼入れ材)
潤滑条件 試験開始時に摺動面にリチウムグリースを塗布
<Journal rocking test conditions>
Speed 3m / min
Load (surface pressure) 24.5Mpa (250kgf / cm 2) , 34.3Mpa (350kgf / cm 2), 44.1Mpa (450kgf / cm 2)
Swing angle ± 45 °
Test time 100 hours Mating material Bearing steel (SUJ2 hardened material)
Lubrication conditions Apply lithium grease to the sliding surface at the start of the test

<試験方法>
図3に示すように、円筒状軸受試験片(Fe系含油焼結摺動部材)10に荷重を負荷して固定し、相手材となる回転軸20を一定のすべり速度で揺動回転させ、円筒状軸受試験片10と回転軸20との間の摩擦係数及び所定の試験時間経過後の円筒状軸受試験片10の摩耗量を測定した。
<Test method>
As shown in FIG. 3, a cylindrical bearing test piece (Fe-based oil-impregnated sintered sliding member) 10 is loaded and fixed, and the rotating shaft 20 as a counterpart material is oscillated and rotated at a constant sliding speed. The friction coefficient between the cylindrical bearing test piece 10 and the rotating shaft 20 and the wear amount of the cylindrical bearing test piece 10 after a predetermined test time were measured.

<ジャーナル回転試験条件>
速度 10m/min
荷重(面圧) 29.4Mpa(300kgf/cm)、39.2Mpa(400kgf/cm
試験時間 100時間
相手材 軸受鋼(SUJ2焼入れ材)
潤滑条件 試験開始時に摺動面にリチウムグリースを塗布
<Journal rotation test conditions>
Speed 10m / min
Load (surface pressure) 29.4 Mpa (300 kgf / cm 2 ), 39.2 Mpa (400 kgf / cm 2 )
Test time 100 hours Mating material Bearing steel (SUJ2 hardened material)
Lubrication conditions Apply lithium grease to the sliding surface at the start of the test

図4に示すように、円筒状軸受試験片(Fe系含油焼結摺動部材)10に荷重を負荷して固定し、相手材となる回転軸20を一定のすべり速度で回転させ、円筒状軸受試験片10と回転軸20との間の摩擦係数及び所定の試験時間経過後の円筒状軸受試験片10の摩耗量を測定した。   As shown in FIG. 4, a cylindrical bearing test piece (Fe-based oil-impregnated sintered sliding member) 10 is loaded and fixed, and the rotating shaft 20 as a counterpart material is rotated at a constant sliding speed to form a cylindrical shape. The friction coefficient between the bearing test piece 10 and the rotating shaft 20 and the wear amount of the cylindrical bearing test piece 10 after a predetermined test time were measured.

上記試験条件で行った摺動特性の評価結果は、表1乃至表3のとおりである。   The evaluation results of the sliding characteristics performed under the above test conditions are as shown in Tables 1 to 3.

上表中、比較例1のスラスト荷重88.24Mpaにおける摩擦係数*は、試験開始4時間で急激に摩擦係数が上昇したため、その時点で試験を中止した。 In the above table, the friction coefficient * of the thrust load of Comparative Example 1 at 88.24 Mpa suddenly increased at 4 hours from the start of the test, so the test was stopped at that time.


上表中、比較例2の揺動荷重34.3Mpaにおける摩擦係数**は、試験開始後6時間で摩擦係数が急激に上昇したため、その時点で試験を中止した。

In the above table, the friction coefficient ** at the swing load of 34.3 Mpa of Comparative Example 2 suddenly increased the friction coefficient 6 hours after the start of the test, so the test was stopped at that time.


上表中、比較例2の回転荷重29.434.3Mpaにおける摩擦係数***は、試験開始後8時間で摩擦係数が急激に上昇したため、その時点で試験を中止した。

In the above table, the friction coefficient *** at a rotational load of 29.434.3 Mpa of Comparative Example 2 suddenly increased the friction coefficient 8 hours after the start of the test, so the test was stopped at that time.

表1に示す試験結果から、実施例1及び実施例2のFe系焼結摺動部材は、荷重(面圧)78.4Mpa(800kgf/cm)を超える高荷重条件においても試験時間を通して安定した摩擦係数で推移し、試験後の摩耗量も極めて少ないものであった。また、表2及び表3に示す試験結果から、実施例3及び実施例4のFe系焼結摺動部材は、荷重34.3Mpa(350kgf/cm)あるいは荷重29.4Mpa(300kgf/cm)を超える高荷重条件下においても試験時間を通して安定した摩擦係数で推移し、試験後の摩耗量も極めて少ないものであった。 From the test results shown in Table 1, the Fe-based sintered sliding members of Example 1 and Example 2 are stable throughout the test time even under high load conditions exceeding a load (surface pressure) of 78.4 Mpa (800 kgf / cm 2 ). The amount of wear after the test was extremely small. Furthermore, from the test results shown in Table 2 and Table 3, Fe-based sintered sliding member of Example 3 and Example 4, the load 34.3Mpa (350kgf / cm 2) or Load 29.4 MPa (300 kgf / cm 2 The friction coefficient remained stable throughout the test time even under high load conditions exceeding), and the amount of wear after the test was extremely small.

産業上の利用分野Industrial application fields

以上説明したように、本発明は、Fe粉末とCu−Fe−Mn合金粉末とCo−Mo−Cr−Si超合金粉末及びC粉末とからなるFe系焼結摺動部材であって、Cu成分4.45〜18.6質量%、Mn成分0.2〜1.2質量%、Co成分3.1〜9.3質量%、Mo成分1.4〜4.2質量%、Cr成分0.4〜1.2質量%、Si成分0.1〜0.3質量%、C成分1.0〜5.0質量%、残部Fe成分からなり、素地の組織がパーライト組織又はパーライトと一部フェライトの共存する組織を呈すると共に、該素地の組織中にC成分とCu−Fe−Mn合金とCo−Mo−Cr−Si超合金が分散していることにより、相手材との摺動において、なじみ性が良好で、耐荷重性及び耐摩耗性に優れた摺動特性を発揮するものである。したがって、本発明のFe焼結摺動部材は、軸受、すべり板及びワッシャ等の摺動用途への適用が可能である。   As described above, the present invention is an Fe-based sintered sliding member comprising an Fe powder, a Cu—Fe—Mn alloy powder, a Co—Mo—Cr—Si superalloy powder, and a C powder, and includes a Cu component. 4.45 to 18.6% by mass, Mn component 0.2 to 1.2% by mass, Co component 3.1 to 9.3% by mass, Mo component 1.4 to 4.2% by mass, Cr component 0. 4 to 1.2% by mass, Si component 0.1 to 0.3% by mass, C component 1.0 to 5.0% by mass, and the balance Fe component. In addition, a C component, a Cu-Fe-Mn alloy, and a Co-Mo-Cr-Si superalloy are dispersed in the structure of the base material. It exhibits good sliding properties with excellent load resistance and wear resistance. Therefore, the Fe sintered sliding member of the present invention can be applied to sliding applications such as bearings, sliding plates, and washers.

1 板状軸受試験片(Fe系焼結摺動部材)
2 円筒体(相手材)
10 円筒状軸受試験片(Fe系焼結摺動部材)
20 回転軸(相手材)
1 Plate bearing test piece (Fe-based sintered sliding member)
2 Cylindrical body (partner material)
10 Cylindrical bearing test piece (Fe-based sintered sliding member)
20 Rotating shaft (partner material)

上記主成分をなすFe成分及びCu−Fe−Mn合金成分に対し、所定量の割合で配合されるCo−Mo−Cr−Si超合金成分の成分組成は、Co成分62質量%、Mo成分28質量%、Cr成分8質量%、Si成分2質量%からなり、このCo−Mo−Cr−Si超合金成分は、主成分をなすFe成分及びCu−Fe−Mn合金成分に対し5〜15質量%、すなわちCo成分3.1〜9.3質量%、Mo成分1.4〜4.2質量%、Cr成分0.4〜1.2質量%、Si成分0.1〜0.3質量%の割合で配合される。


The component composition of the Co—Mo—Cr—Si superalloy component blended at a predetermined ratio with respect to the Fe component and the Cu—Fe—Mn alloy component constituting the main component is as follows: Co component 62 mass%, Mo component 28 The Co-Mo-Cr-Si superalloy component is composed of 5 to 15% by mass with respect to the Fe component and Cu-Fe-Mn alloy component as main components. %, That is, Co component 3.1 to 9.3 mass%, Mo component 1.4 to 4.2 mass%, Cr component 0.4 to 1.2 mass%, Si component 0.1 to 0.3 mass% It is blended at a ratio of


Claims (7)

Fe粉末とCu−Fe−Mn合金粉末とCo−Mo−Cr−Si超合金粉末とC粉末とからなるFe系焼結摺動部材であって、Cu成分4.45〜18.6質量%、Mn成分0.2〜1.2質量%、Co成分3.1〜9.3質量%、Mo成分1.4〜4.2質量%、Cr成分0.4〜1.2質量%、Si成分0.1〜0.3質量%、C成分1.0〜5.0質量%、残部Fe成分からなり、素地の組織がパーライト組織又はパーライトと一部フェライトの共存する組織を呈すると共に、該素地の組織中にC成分とCu−Fe−Mn合金とCo−Mo−Cr−Si超合金が分散していることを特徴とするFe系焼結摺動部材。   A Fe-based sintered sliding member composed of Fe powder, Cu-Fe-Mn alloy powder, Co-Mo-Cr-Si superalloy powder, and C powder, and having a Cu component of 4.45 to 18.6% by mass, Mn component 0.2-1.2% by mass, Co component 3.1-9.3% by mass, Mo component 1.4-4.2% by mass, Cr component 0.4-1.2% by mass, Si component 0.1 to 0.3% by mass, C component 1.0 to 5.0% by mass, and the balance Fe component, and the substrate structure exhibits a pearlite structure or a structure in which pearlite and a part of ferrite coexist, A Fe-based sintered sliding member in which a C component, a Cu—Fe—Mn alloy, and a Co—Mo—Cr—Si superalloy are dispersed in the structure of Cu−Fe−Mn合金は、素地のパーライト組織又はパーライトと一部フェライトの共存する組織の粒界に網目状に分散して析出しているものであることを特徴とする請求項1に記載のFe系焼結摺動部材。   The Cu-Fe-Mn alloy is dispersed and precipitated in a network form at grain boundaries of the pearlite structure of the substrate or the structure in which pearlite and a part of ferrite coexist. Fe-based sintered sliding member. C成分は、天然黒鉛又は人造黒鉛からなるものであることを特徴とする請求項1又は2に記載のFe系焼結摺動部材。   The Fe-based sintered sliding member according to claim 1 or 2, wherein the C component is made of natural graphite or artificial graphite. 潤滑油が10〜15容量%の割合で含有されているものであることを特徴とする請求項1から3のいずれか一項に記載のFe系焼結摺動部材。   The Fe-based sintered sliding member according to any one of claims 1 to 3, wherein the lubricating oil is contained at a ratio of 10 to 15% by volume. 主成分をなすFe粉末に対し、Mn4〜6質量%とFe3〜5質量%と残部CuからなるCu−Fe−Mn合金粉末5〜20質量%と、Co62質量%、Mo28質量%、Cr8質量%、Si2質量%からなるCo−Mo−Cr−Si超合金粉末5〜15質量%と、C粉末1.0〜5.0質量%をそれぞれ配合し、混合して混合粉末を形成した後、該混合粉末を金型に装填して所望の形状の圧粉体を成形し、この圧粉体を中性もしくは還元性雰囲気に調整した加熱炉内で1000〜1150℃の温度で30〜90分間焼結することを特徴とするFe系焼結摺動部材の製造方法。   With respect to Fe powder as a main component, Cu—Fe—Mn alloy powder consisting of 4 to 6 mass% of Mn, 3 to 5 mass% of Fe and the balance Cu, 62 mass% of Co, 28 mass% of Mo, 8 mass% of Cr After blending 5-15% by mass of Co-Mo-Cr-Si superalloy powder consisting of 2% by mass of Si and 1.0-5.0% by mass of C powder, and mixing them to form a mixed powder, The mixed powder is loaded into a mold to form a green compact of a desired shape, and the green compact is baked at a temperature of 1000 to 1150 ° C. for 30 to 90 minutes in a heating furnace adjusted to a neutral or reducing atmosphere. A method for producing an Fe-based sintered sliding member, characterized by comprising: C粉末は、天然黒鉛又は人造黒鉛からなるものであることを特徴とする請求項5に記載のFe系焼結摺動部材の製造方法。   The method for producing an Fe-based sintered sliding member according to claim 5, wherein the C powder is made of natural graphite or artificial graphite. 圧粉体を焼結してFe系焼結摺動部材を得た後に、これに含油処理を施し、10〜15容量%の割合で潤滑油を含有することを特徴とする請求項5又は6に記載のFe系焼結摺動部材の製造方法。   7. After the green compact is sintered to obtain an Fe-based sintered sliding member, this is subjected to an oil impregnation treatment and contains lubricating oil at a ratio of 10 to 15% by volume. The manufacturing method of the Fe-type sintered sliding member as described in 2.
JP2011024189A 2011-02-07 2011-02-07 Iron-based sintered sliding member, and method for manufacturing the same Pending JP2012162771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011024189A JP2012162771A (en) 2011-02-07 2011-02-07 Iron-based sintered sliding member, and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011024189A JP2012162771A (en) 2011-02-07 2011-02-07 Iron-based sintered sliding member, and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2012162771A true JP2012162771A (en) 2012-08-30

Family

ID=46842438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011024189A Pending JP2012162771A (en) 2011-02-07 2011-02-07 Iron-based sintered sliding member, and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2012162771A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111051552A (en) * 2017-09-20 2020-04-21 大冶美有限公司 Sintered oil-retaining bearing
KR20200065570A (en) * 2018-11-30 2020-06-09 주식회사 포스코 Fe-cu alloy powder, method for manufacturing of the same, and sintered product using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5792171A (en) * 1980-10-31 1982-06-08 Oiles Ind Co Ltd Sliding material having sprayed coat
JP2001295004A (en) * 2000-02-09 2001-10-26 Mitsubishi Materials Corp Iron base sintered alloy
JP2003328011A (en) * 2002-03-05 2003-11-19 Mitsubishi Materials Corp Method for manufacturing iron-based sintered alloy member superior in dimensional accuracy, strength and sliding property
JP2004018940A (en) * 2002-06-17 2004-01-22 Oiles Ind Co Ltd Method for manufacturing ferrous sintered sliding member, and ferrous sintered sliding member
JP2006316302A (en) * 2005-05-11 2006-11-24 Daido Metal Co Ltd Sliding alloy for high temperature use, and sliding device
JP2007238987A (en) * 2006-03-07 2007-09-20 Hitachi Powdered Metals Co Ltd Wear resistant sintered alloy and its production method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5792171A (en) * 1980-10-31 1982-06-08 Oiles Ind Co Ltd Sliding material having sprayed coat
JP2001295004A (en) * 2000-02-09 2001-10-26 Mitsubishi Materials Corp Iron base sintered alloy
JP2003328011A (en) * 2002-03-05 2003-11-19 Mitsubishi Materials Corp Method for manufacturing iron-based sintered alloy member superior in dimensional accuracy, strength and sliding property
JP2004018940A (en) * 2002-06-17 2004-01-22 Oiles Ind Co Ltd Method for manufacturing ferrous sintered sliding member, and ferrous sintered sliding member
JP2006316302A (en) * 2005-05-11 2006-11-24 Daido Metal Co Ltd Sliding alloy for high temperature use, and sliding device
JP2007238987A (en) * 2006-03-07 2007-09-20 Hitachi Powdered Metals Co Ltd Wear resistant sintered alloy and its production method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111051552A (en) * 2017-09-20 2020-04-21 大冶美有限公司 Sintered oil-retaining bearing
EP3686307A4 (en) * 2017-09-20 2021-01-13 Diamet Corporation Sintered oil-retaining bearing
US11648611B2 (en) 2017-09-20 2023-05-16 Diamet Corporation Sintered oil-impregnated bearing
KR20200065570A (en) * 2018-11-30 2020-06-09 주식회사 포스코 Fe-cu alloy powder, method for manufacturing of the same, and sintered product using the same
KR102271296B1 (en) 2018-11-30 2021-06-29 주식회사 포스코 Fe-cu alloy powder, method for manufacturing of the same, and sintered product using the same

Similar Documents

Publication Publication Date Title
JP5367502B2 (en) Iron-based sintered sliding member and manufacturing method thereof
JP4215285B2 (en) Self-lubricating sintered sliding material and manufacturing method thereof
JP5378530B2 (en) Sliding bearing with improved wear resistance and method for manufacturing the same
JP5783303B2 (en) Copper-based sintered sliding member
WO2014065316A1 (en) Sintered bearing
JP2008202123A (en) Oil-impregnated sintered bearing and method for manufacturing the same
JP5096130B2 (en) Iron-based sintered alloy for sliding members
JP2011094167A (en) Iron-copper based sintered sliding member, and method for producing the same
JP6760807B2 (en) Copper-based sintered alloy oil-impregnated bearing
JP2008063663A (en) Copper sintered sliding material and sintered sliding member using the same
JP2010533756A (en) Lead-free sintered lubricating material and sintered powder for its production
JP2014196526A (en) Iron-based sintered alloy for sliding member and production method thereof
JP6302259B2 (en) Manufacturing method of sintered bearing
JP2009079136A (en) Copper-based, oil-impregnated and sintered sliding member
JP5496380B2 (en) Cu-Ni-Sn-based copper-based sintered alloy having excellent friction and wear resistance, method for producing the same, and bearing material comprising the alloy
JPS60197832A (en) Self oil supplying sintered bush and manufacture
WO2017199456A1 (en) Oil-impregnated iron-based sintered bearing
JP2012162771A (en) Iron-based sintered sliding member, and method for manufacturing the same
JP6431012B2 (en) Method for producing wear-resistant iron-based sintered alloy and wear-resistant iron-based sintered alloy
JP2008025018A (en) Sintering friction material
JP2009007433A (en) Copper-based oil-containing sintered sliding member and method for producing the same
JP6819696B2 (en) Iron-based sintered oil-impregnated bearing
WO2015050200A1 (en) Sintered bearing and manufacturing process therefor
JP4109023B2 (en) Manufacturing method of iron-based sintered sliding member and iron-based sintered sliding member
JP2019065323A (en) Iron-based sintered shaft bearing, and iron-based sintered oil-containing shaft bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141014

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150224