JP2008025018A - Sintering friction material - Google Patents

Sintering friction material Download PDF

Info

Publication number
JP2008025018A
JP2008025018A JP2006228358A JP2006228358A JP2008025018A JP 2008025018 A JP2008025018 A JP 2008025018A JP 2006228358 A JP2006228358 A JP 2006228358A JP 2006228358 A JP2006228358 A JP 2006228358A JP 2008025018 A JP2008025018 A JP 2008025018A
Authority
JP
Japan
Prior art keywords
vol
friction material
sintering
sintered
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006228358A
Other languages
Japanese (ja)
Inventor
Noriyuki Arai
敬之 新井
Katsuo Arai
勝男 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akebono Brake Industry Co Ltd
Original Assignee
Akebono Brake Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akebono Brake Industry Co Ltd filed Critical Akebono Brake Industry Co Ltd
Priority to JP2006228358A priority Critical patent/JP2008025018A/en
Publication of JP2008025018A publication Critical patent/JP2008025018A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Braking Arrangements (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sintering friction material which is preferable in the face of environmental protection since it comprises no chemical substances designated by a PRTR (Pollution Release and Transfer Register) law at all, and further, by retaining the matrix structure thereof to ferrite, has excellent high temperature properties and corrosion resistance, and also, has performance upon braking, e.g., of reducing the wear amount of the mating material. <P>SOLUTION: The sintering friction material is, as a base, composed of powder formed from a reduced iron having a high melting point instead of the conventional friction material essentially consisting of copper powder. The material is obtained by adding an element(s) having a high graphitization tendency to the reduced iron powder, and sintering the same, and the matrix structure is retained to ferrite. By adding the element(s) having a high tendency of increasing the ratio at which carbon in iron is made to independently exist as graphite (i.e., a graphitization tendency) upon the sintering, the matrix structure is held to ferrite, and the sintering friction material having excellent high temperature properties and corrosion resistance can be obtained. Further, it is possible that its attackability against the mating material such as a brake disk is reduced, and the wear amount of the mating material can be reduced. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、自動車、二輪車、鉄道車両、産業機械等の制動装置に用いられるブレーキ用の摩擦材としての焼結摩擦材に関する。   The present invention relates to a sintered friction material as a friction material for a brake used in a braking device for an automobile, a motorcycle, a railway vehicle, an industrial machine or the like.

従来、ブレーキ用の焼結摩擦材としては、銅を主成分とし、錫や時により鉄、ニッケル、亜鉛、アンチモン、クロム、鉛等を添加した金属を基材とし、それにアルミナ、ムライト、ジルコニア等のセラミックス研削材や黒鉛、二硫化モリブデン等の潤滑材を添加した焼結摩擦材が用いられている。この種の焼結摩擦材は、レジン系摩擦材より重く、高価で、ブレーキノイズが発生し易い等の要改善点があるが、レジン系摩擦材に比較して摩擦材が高温になる制動条件下でもフェード現象(高温下で制動時の摩擦係数が大幅に低下する現象)を起こさず安定した性能が得られ、強度、耐摩耗性も優れているという長所があるため、過酷な制動条件下でも高い摩擦性能を要求されるブレーキにはこれまで多く採用されている。   Conventionally, as a sintered friction material for brakes, copper is the main component, and tin or sometimes a metal added with iron, nickel, zinc, antimony, chromium, lead, etc. is used as a base material, and alumina, mullite, zirconia, etc. Ceramic friction materials and sintered friction materials to which lubricants such as graphite and molybdenum disulfide are added are used. This kind of sintered friction material is heavier than resin-based friction material, is expensive, and has the points to be improved such as the possibility of generating brake noise. Even under low conditions, it does not cause fade phenomenon (a phenomenon in which the friction coefficient during braking is greatly reduced at high temperatures), provides stable performance, and has excellent strength and wear resistance. However, it has been widely used for brakes that require high friction performance.

高い摩擦係数を安定的に得ることを図ったブロンズ系の乾式焼結摩擦材料の一例が提案されている(特許文献1)。この乾式焼結摩擦材料は、重量比で銅60〜80%、錫3〜20%、アルミナ及び/又はシリカを3〜20%、黒鉛3〜10%、二硫化モリブデン1〜5%及びマンガン15%以下を含むものであり、マトリックス成分として構成されることにより、制動時摩擦係数を安定させ、相手板との間の発熱によって表面に硬質の酸化銅皮膜を形成して、水フェード現象及び熱フェード現象に対して抵抗性を有し、安定した摩擦面をうることを図っている。アルミナ、シリカは、高負荷、高温摩擦摺動に耐える目的で添加され、黒鉛、二硫化モリブデンは潤滑性向上も目的で添加され、マンガンは焼結中他金属の酸化皮膜を還元し、焼結性の向上目的で添加されている。   An example of a bronze-type dry sintered friction material that aims to stably obtain a high friction coefficient has been proposed (Patent Document 1). This dry-sintered friction material is 60-80% copper, 3-20% tin, 3-20% alumina and / or silica, 3-10% graphite, 1-5% molybdenum disulfide and 15 manganese. %, Which is composed as a matrix component, stabilizes the friction coefficient during braking, forms a hard copper oxide film on the surface by heat generation with the mating plate, water fading phenomenon and heat It has resistance to fading phenomenon and aims to obtain a stable friction surface. Alumina and silica are added for the purpose of withstanding high loads and high-temperature frictional sliding. Graphite and molybdenum disulfide are added for the purpose of improving lubricity. Manganese reduces and oxidizes oxide films of other metals during sintering. It is added for the purpose of improving the properties.

焼結摩擦材の別の例として、鉄系焼結体からなる有孔の本体部と、この本体部の孔内に固定された水溶液がアルカリ性を示すアルカリ性物質とを有する鉄系焼結摩擦材が提案されている(特許文献2)。摩擦材の骨格となる金属基材は、鉄を主成分とする材料であり、ステンレス、鋳鉄等の一般的な鉄系金属、これらの混合物、その他金属との混合物でとすることができる。潤滑材としては黒鉛、二硫化モリブデン等が例示されている。   As another example of the sintered friction material, an iron-based sintered friction material having a perforated main body portion made of an iron-based sintered body and an alkaline substance in which an aqueous solution fixed in the hole of the main body portion exhibits alkalinity. Has been proposed (Patent Document 2). The metal base material used as the skeleton of the friction material is a material mainly composed of iron, and can be a general iron-based metal such as stainless steel or cast iron, a mixture thereof, or a mixture with other metals. Examples of the lubricant include graphite and molybdenum disulfide.

焼結摩擦材の更に別の例として、銅又は銅合金をマトリックスとする焼結摩擦材であって、安定化ジルコニアを2〜20重量%含有するものが提案されている(特許文献3)。この焼結摩擦材によれば、銅系又は鉄系焼結摩擦材において、安定化ジルコニアを採用することで、広範な制動条件に対して適応性がよく、安定した摩擦係数が得られ、耐摩性、耐熱性がよく、相手材への攻撃性が少ない焼結摩擦材を得ることを図っている。   As another example of the sintered friction material, a sintered friction material containing copper or a copper alloy as a matrix and containing 2 to 20% by weight of stabilized zirconia has been proposed (Patent Document 3). According to this sintered friction material, by adopting stabilized zirconia in copper-based or iron-based sintered friction material, adaptability to a wide range of braking conditions is good, a stable friction coefficient is obtained, and wear resistance is improved. We aim to obtain a sintered friction material that is good in heat resistance and heat resistance, and has little attack on the mating material.

しかし近年、環境保護の観点からPRTR法(特定化学物質の環境への排出量の把握及び管理の改善の促進に関する法律)が制定され、ブレーキ用摩擦材として使用する材料も環境保護を考慮して、同法で定められている指定化学物質を用いないことが要求されるようになってきた。ところが、これまで焼結摩擦材の原材料として用いられている上記の銅から鉛までの金属基材やセラミックス、潤滑材等の添加材のうち、鉄、セラミックス、黒鉛以外の材料はPRTR法の指定化学物質に設定されており、今後はできるだけ使用しないことが望まれている。   However, in recent years, the PRTR Law (Act on the Promotion of Improvement in Management and Management of Specific Chemical Substances Emissions from the Environmental Protection Perspective) has been enacted, and materials used as brake friction materials are also considered for environmental protection. However, it has been demanded not to use designated chemical substances stipulated by the law. However, among the above-mentioned additive materials such as copper, lead, ceramics, and lubricants that have been used as raw materials for sintered friction materials, materials other than iron, ceramics, and graphite are designated by the PRTR method. It is set as a chemical substance and it is hoped that it will not be used as much as possible.

このような背景から、これまでもPRTR法の指定化学物質をできるだけ使用しない配合の焼結摩擦材の研究・開発が行われてきた。しかしながら、これまで主成分としていた銅や錫を使用しない鉄系材料を主成分とした焼結摩擦材の場合には、制動時に摩擦材の摩耗量や相手材(例えば、ブレーキディスク。主として普通鋳鉄、低合金鋼、ステンレス等の鉄系材料から成る。)の摩耗量が大幅に増加するという現象が生じ、しかも、要求される摩擦係数を確保することができない。また、鉄系材料以外でPRTR法の指定化学物質でないアルミニウム、マグネシウム、チタン等の材料は焼結摩擦材の主成分としては問題が多く、環境保護に優れた焼結摩擦材の実用化はなかなか困難であった。本出願人は、鋳鉄粉又は還元鉄粉を基材とした鉄系焼結摩擦材について発明し、銅系焼結摩擦材と同等の性能を得ている(例えば、特願2005−300817号)。しかしながら、高負荷条件の評価では、銅系焼結摩擦材と同等までには至っていないことが判った。
特公昭63−15976号公報(第2欄、第2行〜第4欄第1行) 特開2002−181095号公報(段落[0022]〜[0026]) 特許第2958493号公報
Against this background, research and development have been carried out on sintered friction materials having a formulation that uses as little PRTR-designated chemical substances as possible. However, in the case of a sintered friction material mainly composed of an iron-based material that does not use copper or tin as the main component until now, the wear amount of the friction material or the counterpart material (for example, brake disc. In other words, the amount of wear of a low-alloy steel, stainless steel, or other iron-based material is greatly increased, and the required coefficient of friction cannot be ensured. In addition, materials such as aluminum, magnesium, and titanium that are not specified chemical substances in the PRTR method other than ferrous materials have many problems as the main component of sintered friction materials, and practical application of sintered friction materials excellent in environmental protection is quite easy. It was difficult. The present applicant has invented an iron-based sintered friction material based on cast iron powder or reduced iron powder, and has obtained performance equivalent to that of a copper-based sintered friction material (for example, Japanese Patent Application No. 2005-300817). . However, in the evaluation under high load conditions, it has been found that it has not reached the same level as the copper-based sintered friction material.
Japanese Examined Patent Publication No. 63-15976 (second column, second line to fourth column, first line) JP 2002-181095 A (paragraphs [0022] to [0026]) Japanese Patent No. 2958493

そこで、焼結摩擦材の原材料として、PRTR法の特定第一種指定化学物質である六価クロム化合物やニッケル化合物は勿論のこと、第一種指定化学物質である亜鉛、アンチモン、銅、錫、鉛、モリブデン等の材料をまったく使用しないことで、環境保護に貢献するとともに、焼結摩擦材の基地組織を高温特性と耐食性に優れたフェライトに保ち、且つ鉄の同種摩擦を防ぐことで相手材摩耗量を少なくする点で解決すべき課題がある。   Therefore, as a raw material of the sintered friction material, not only hexavalent chromium compounds and nickel compounds which are specified first class designated chemical substances of the PRTR method, but also first class designated chemical substances zinc, antimony, copper, tin, By not using any material such as lead or molybdenum, it contributes to environmental protection, keeps the base structure of the sintered friction material in ferrite with high temperature characteristics and corrosion resistance, and prevents similar friction of iron There is a problem to be solved in terms of reducing the amount of wear.

この発明の目的は、PRTR法の指定化学物質をまったく含まないことで、環境保護の面で好ましいとともに、焼結摩擦材の基地組織をフェライトに保つことで、高温特性と耐食性に優れ、且つブレーキディスク等の相手材への攻撃性を低めて相手材摩耗量を少なくする等、ブレーキ制動時の性能に優れた焼結摩擦材を提供することである。   The object of the present invention is that it is preferable from the viewpoint of environmental protection because it does not contain any PRTR-designated chemical substances, and it is excellent in high-temperature characteristics and corrosion resistance by maintaining the base structure of the sintered friction material in ferrite, and also has a brake. An object of the present invention is to provide a sintered friction material having excellent performance at the time of brake braking, such as reducing the amount of wear of the counterpart material by reducing the aggression to the counterpart material such as a disk.

この発明による焼結摩擦材は、主成分としての高融点の還元鉄粉に黒鉛化傾向の大きい元素を添加して焼結されており、基地組織がフェライトに保たれている。   The sintered friction material according to the present invention is sintered by adding an element having a high graphitization tendency to high melting point reduced iron powder as a main component, and the base structure is kept in ferrite.

この焼結摩擦材は、従来の銅粉末が主体である摩擦材に代えて、融点が高い還元鉄から形成された粉末をベースに構成されている。焼結の際に、融点が高い還元鉄粉に潤滑材の黒鉛が固溶して(Fe−C)となる。(Fe−C)は硬さが増すが、融点が下がり耐熱性を低下させていた。そこで、固溶を抑制し、鉄中の炭素を黒鉛(グラファイト)として独立して存在させる割合を増加させる傾向(即ち、黒鉛化傾向)の大きい元素を添加することにより、基地組織はフェライト(体心立方格子のα鉄に最大0.02%の炭素(C)が固溶した固溶体)に保たれる。   This sintered friction material is configured based on a powder formed from reduced iron having a high melting point, instead of a friction material mainly composed of conventional copper powder. At the time of sintering, the graphite of the lubricant is dissolved in reduced iron powder having a high melting point to become (Fe-C). Although (Fe-C) increased in hardness, the melting point decreased and the heat resistance decreased. Therefore, by suppressing the solid solution and adding an element having a large tendency to increase the proportion of carbon in iron as graphite (graphite) independently (ie, graphitization tendency), the base structure becomes ferrite (body). A solid solution of up to 0.02% carbon (C) in α-iron with a center cubic lattice.

この焼結摩擦材において、前記黒鉛化促進元素は、アルミニウム、珪素、チタンの元素群から選ばれる1又は2以上の元素とすることができる。黒鉛化傾向の大きい元素として、アルミニウム(Al)、珪素(Si)、チタン(Ti)が挙げられる。黒鉛化傾向は、大きい順からAl>Si>Ti>Cである。   In this sintered friction material, the graphitization accelerating element may be one or more elements selected from the element group of aluminum, silicon, and titanium. Examples of elements having a large tendency to graphitize include aluminum (Al), silicon (Si), and titanium (Ti). The graphitization tendency is Al> Si> Ti> C in descending order.

前記焼結摩擦材において、前記アルミニウム1〜9vol%、前記珪素1〜8vol%、又は前記チタン0.5〜8vol%が、合計0.5〜20vol%の範囲で添加することができる。黒鉛化促進元素であるアルミニウム、珪素又はチタンのそれぞれ及び合計の割合をこのように定めることにより、焼結時の還元鉄粉に対して潤滑材である黒鉛の固溶が抑制され、基地組織を、融点の低下を防ぎ高温特性に優れ且つ比較的軟らかいために相手材攻撃性が低いフェライトに保つことができる。各黒鉛化促進元素は、各下限添加量以下では基地組織をフェライトに保つことができず、各上限添加量以上では添加金属を含む炭化物を生成してしまうことが判明している。珪素を添加する場合は、炭化物の生成を防ぐため、金属シリコンではなくフェロシリコンを添加することが好ましい。焼結により一部固溶によるパーライトがあるが、添加金属により基地組織の大部分をフェライトに保つことができる。   In the sintered friction material, the aluminum 1 to 9 vol%, the silicon 1 to 8 vol%, or the titanium 0.5 to 8 vol% can be added in a total range of 0.5 to 20 vol%. By determining the ratio of each of the graphitization promoting elements aluminum, silicon or titanium and the total amount in this way, solid solution of the graphite, which is a lubricant, with respect to the reduced iron powder during sintering is suppressed, and the base structure is reduced. In addition, since the melting point is prevented from being lowered and the high temperature characteristics are excellent and the material is relatively soft, it is possible to keep the ferrite having a low attacking property on the counterpart material. It has been found that each graphitization accelerating element cannot keep the base structure in ferrite below each lower limit addition amount, and generates carbide containing the added metal above each upper limit addition amount. When silicon is added, it is preferable to add ferrosilicon instead of metal silicon in order to prevent the formation of carbides. Although some pearlite is partly dissolved by sintering, the added metal can keep most of the matrix structure in ferrite.

前記焼結摩擦材において、前記フェライトは、前記基地組織中に30%以上存在させることが好ましい。フェライトの基地組織中での存在率(フェライト/基地組織の百分率)を30%以上とすることにより、耐熱性の低下が少なく、好ましい。   In the sintered friction material, it is preferable that 30% or more of the ferrite is present in the matrix structure. It is preferable that the abundance ratio of ferrite in the matrix structure (percentage of ferrite / matrix structure) is 30% or more, since there is little decrease in heat resistance.

前記焼結摩擦材において、前記還元鉄20〜45vol%を含み、更に、平均粒径0.3〜2μmの微細アルミナ0〜15vol%、平均粒径50〜250μmのマグネシア0〜10vol%、平均粒径5〜20μmのアルミナ2〜10vol%、及び黒鉛30〜45vol%を添加することができる。ただし、前記マグネシアと前記アルミナとの合計を5〜15vol%の範囲とすることが好ましい。ここで各成分の範囲設定の理由は、還元鉄が20vol%未満では摩擦材中の結合力不足により摩擦材摩耗量が急激に増加し、45vol%を超えると他の成分が不足し問題点が生じる。マグネシア+アルミナが5vol%未満の場合は摩擦係数が低下し、また15vol%を超えると相手材摩耗量の増加が顕著になる。アルミナの粒径が小さいためアルミナ(5〜15vol%の範囲)だけでも攻撃性を抑制し、制動時の摩擦材及び相手材(鉄系材料)摩耗量を少なくするが、マグネシアと併用することで摩擦係数の確保と相手材攻撃性の抑制を両立させることが容易になる。黒鉛粉末が30vol%未満の場合、潤滑効果が低下するため摩擦材及び相手材摩耗量ともに増加し、45vol%を超えた場合は摩擦係数の低下が大きくなる。基地組織をフェライトに保つための各黒鉛化促進元素は各下限添加量以下では基地組織をフェライトに保つことができず、各上限添加量以上では添加金属を含む炭化物を生成してしまう。   The sintered friction material contains 20 to 45 vol% of the reduced iron, and further contains 0 to 15 vol% of fine alumina having an average particle size of 0.3 to 2 μm, 0 to 10 vol% of magnesia having an average particle size of 50 to 250 μm, and an average particle 2-10 vol% of alumina having a diameter of 5-20 μm and 30-45 vol% of graphite can be added. However, the total of the magnesia and the alumina is preferably in the range of 5 to 15 vol%. Here, the reason for setting the range of each component is that when the reduced iron is less than 20 vol%, the friction material wear amount rapidly increases due to insufficient binding force in the friction material, and when it exceeds 45 vol%, other components are insufficient and there is a problem. Arise. When magnesia + alumina is less than 5 vol%, the friction coefficient decreases, and when it exceeds 15 vol%, the increase in the wear amount of the mating material becomes significant. Since the particle size of alumina is small, even with alumina (range of 5 to 15 vol%) alone, the aggressiveness is suppressed, and the friction material and the counterpart material (iron-based material) wear during braking are reduced, but in combination with magnesia, It becomes easy to achieve both the securing of the friction coefficient and the suppression of the partner material aggression. When the graphite powder is less than 30 vol%, the lubrication effect decreases, so both the friction material and the counterpart material wear amount increase, and when it exceeds 45 vol%, the friction coefficient decreases greatly. Each graphitization accelerating element for keeping the matrix structure in ferrite cannot keep the matrix structure in ferrite below each lower limit addition amount, and if it exceeds each upper limit addition amount, carbide containing the added metal is generated.

前記焼結摩擦材において、放電プラズマ焼結、ホットプレス等の加圧焼結法による焼結後の焼結体密度の百分率としての相対密度を80%以上とすることができる。   In the sintered friction material, the relative density as a percentage of the sintered body density after sintering by a pressure sintering method such as discharge plasma sintering or hot pressing can be 80% or more.

上記した耐熱性の高いフェライト基地組織を有する鉄系焼結摩擦材により銅系焼結摩擦材を上回る性能が得られたが、還元鉄粉は融点が高いために焼結温度が高く、摩擦係数や耐摩耗性等の、目的とする物性値が得にくい。その中で、たとえ高い物性値が得られたとしても、高負荷制動中に火花が発生して問題となる。そこで、主成分である還元鉄粉に微細鉄粉を添加して、鉄粉を還元鉄粉と微細鉄粉との組合せとした。微細鉄粉は、平均粒径として、還元鉄粉の1/10以下の粒径を持つ鉄粉である。このような主成分である鉄粉を融点が高く比較的軟らかい還元鉄粉に微細鉄粉を混ぜることにより、相対密度を低下させることなく硬度(HRS)を軟らかいものとすることができ、その結果、ブレーキディスクのような相手材との接触性を改善することができる。   The iron-based sintered friction material having a ferrite base structure with high heat resistance described above achieved performance superior to that of the copper-based sintered friction material, but because the reduced iron powder has a high melting point, the sintering temperature is high, and the friction coefficient It is difficult to obtain desired physical properties such as wear resistance and wear resistance. Among them, even if a high physical property value is obtained, a spark is generated during high load braking, which causes a problem. Therefore, fine iron powder was added to the reduced iron powder, which is the main component, to make the iron powder a combination of reduced iron powder and fine iron powder. The fine iron powder is an iron powder having an average particle diameter of 1/10 or less of the reduced iron powder. By mixing the iron powder as the main component with reduced iron powder having a high melting point and relatively soft iron powder, the hardness (HRS) can be softened without lowering the relative density. In addition, the contact property with a mating material such as a brake disk can be improved.

上記の還元鉄粉に微細鉄粉を混合させた焼結摩擦材において、還元鉄粉に対する微細鉄粉の混合割合を、10〜30vol%の範囲とすることが好ましい。微細鉄粉の添加割合をこのような割合に選定することによって、微細鉄粉の焼結への関与が大きくなって焼結性を高めることができる。そのため、空孔が多い還元鉄粉自体の当該空孔を焼結によって無くすことなく焼結摩擦材を緻密化でき、硬度を低下させることができる。微細鉄粉は還元鉄粉より1/10以下の平均粒径を持つ粉末を選定しているため、同じ体積で還元鉄粉と比較すると表面積が非常に大きくなって活性化するため焼結性が向上する。   In the sintered friction material in which fine iron powder is mixed with the reduced iron powder, the mixing ratio of the fine iron powder to the reduced iron powder is preferably in the range of 10 to 30 vol%. By selecting the addition ratio of the fine iron powder to such a ratio, the participation in the sintering of the fine iron powder is increased and the sinterability can be improved. Therefore, the sintered friction material can be densified without reducing the pores of the reduced iron powder itself with many voids by sintering, and the hardness can be reduced. The fine iron powder is selected from powders with an average particle size of 1/10 or less than the reduced iron powder. improves.

上記の還元鉄粉に微細鉄粉を混合させた焼結摩擦材において、前記黒鉛化促進元素は、アルミニウム、珪素、チタンの元素群から選ばれる1又は2以上の元素であり、前記アルミニウム1〜9vol%、前記珪素1〜8vol%、及び前記チタン0.5〜8vol%を、合計0.5〜20vol%の範囲で添加することができる。黒鉛化促進元素であるアルミニウム、珪素又はチタンのそれぞれ及び合計の割合をこのように定めることにより、焼結時の還元鉄粉に対して潤滑材の黒鉛の固溶を防ぎ、基地組織をフェライト(還元鉄粉の基地組織)に保つことができる。各黒鉛化促進元素は、各下限添加量以下では基地組織をフェライトに保つことができず、各上限添加量以上では添加金属を含む炭化物を生成してしまうことが判明している。その他、珪素を添加する場合は、炭化物の生成を防ぐため、金属シリコンではなくフェロシリコンを添加することが好ましい。   In the sintered friction material in which fine iron powder is mixed with the reduced iron powder, the graphitization promoting element is one or more elements selected from the element group of aluminum, silicon, and titanium, 9 vol%, the silicon 1-8 vol%, and the titanium 0.5-8 vol% can be added in a total range of 0.5-20 vol%. By determining the proportion of each of the graphitization accelerating elements aluminum, silicon or titanium and the total amount in this way, solid solution of the graphite of the lubricant to the reduced iron powder during sintering is prevented, and the base structure is made of ferrite ( Reduced iron powder base organization). It has been found that each graphitization accelerating element cannot keep the base structure in ferrite below each lower limit addition amount, and generates carbide containing the added metal above each upper limit addition amount. In addition, when adding silicon, it is preferable to add ferrosilicon instead of metal silicon in order to prevent the formation of carbides.

上記の還元鉄粉に微細鉄粉を混合させた焼結摩擦材において、前記還元鉄20〜45vol%と、前記還元鉄に対して30vol%以下である前記微細鉄粉2〜14vol%とを含み、更に、前記黒鉛化促進元素は、アルミニウム、珪素、チタンの元素群から選ばれる1又は2以上の元素であり、前記アルミニウム1〜9vol%、前記珪素1〜8vol%、及び前記チタン0.5〜8vol%を、それらの合計を0.5〜20vol%の範囲として添加し、更にまた、平均粒径0.3〜2μmの微細アルミナ0〜15vol%、平均粒径50〜250μmのマグネシア0〜10vol%、平均粒径5〜20μmのアルミナ2〜10vol%、及び黒鉛30〜45vol%を、前記マグネシアと前記アルミナとの合計を5〜15vol%の範囲として、添加することができる。ここで各成分の範囲設定の理由は、還元鉄が20vol%未満では摩擦材中の結合力不足により摩擦材摩耗量が急激に増加し、45vol%を超えると他の成分が不足し問題点が生じる。微細鉄が還元鉄に対して30%を超えると摩耗材の硬度が増し、硬く脆くなるため、摩擦材摩耗量と相手材摩耗量ともに増加する。マグネシア+アルミナが5vol%未満の場合は摩擦係数が低下し、また15vol%を超えると相手材摩耗量の増加が顕著になる。アルミナの粒径が小さいためアルミナ(5〜15vol%の範囲)だけでも攻撃性を抑制し、制動時の摩擦材及び相手材(鉄系材料)摩耗量を少なくするが、マグネシアと併用することで摩擦係数の確保と相手材攻撃性の抑制を両立させることが容易になる。黒鉛粉末が30vol%未満の場合、潤滑効果が低下するため摩擦材及び相手材摩耗量ともに増加し、45vol%を超えた場合は磨擦係数の低下が大きくなる。基地組織をフェライトに保つための各黒鉛化促進元素は各下限添加量以下では基地組織をフェライトに保つことができず、各上限添加量以上では添加金属を含む炭化物を生成してしまう。その他、珪素を添加する場合は、炭化物の生成を防ぐため、金属シリコンではなくフェロシリコンを添加することが好ましい。   In the sintered friction material in which fine iron powder is mixed with the reduced iron powder, the reduced iron contains 20 to 45 vol% and the fine iron powder is 2 to 14 vol% which is 30 vol% or less with respect to the reduced iron. Further, the graphitization accelerating element is one or more elements selected from the group consisting of aluminum, silicon and titanium, the aluminum being 1 to 9 vol%, the silicon being 1 to 8 vol%, and the titanium being 0.5 -8 vol%, and the total of them is added in the range of 0.5 to 20 vol%. Furthermore, 0-15 vol% of fine alumina having an average particle size of 0.3-2 µm, and magnesia 0, having an average particle size of 50-250 µm, are added. 10 vol%, 2-10 vol% of alumina having an average particle diameter of 5-20 μm, and 30-45 vol% of graphite, and a total of 5-15 vol% of the magnesia and the alumina. To, can be added. Here, the reason for setting the range of each component is that when the reduced iron is less than 20 vol%, the friction material wear amount rapidly increases due to insufficient binding force in the friction material, and when it exceeds 45 vol%, other components are insufficient and there is a problem. Arise. When fine iron exceeds 30% with respect to reduced iron, the wear material hardness increases and becomes hard and brittle, so both the friction material wear amount and the counterpart material wear amount increase. When magnesia + alumina is less than 5 vol%, the friction coefficient decreases, and when it exceeds 15 vol%, the increase in the wear amount of the mating material becomes significant. Since the particle size of alumina is small, even with alumina (range of 5 to 15 vol%) alone, the aggressiveness is suppressed, and the friction material and the counterpart material (iron-based material) wear during braking are reduced, but in combination with magnesia, It becomes easy to achieve both the securing of the friction coefficient and the suppression of the partner material aggression. When the graphite powder is less than 30 vol%, the lubrication effect decreases, so both the friction material and the counterpart material wear amount increase, and when it exceeds 45 vol%, the friction coefficient decreases greatly. Each graphitization accelerating element for keeping the matrix structure in ferrite cannot keep the matrix structure in ferrite below each lower limit addition amount, and if it exceeds each upper limit addition amount, carbide containing the added metal is generated. In addition, when adding silicon, it is preferable to add ferrosilicon instead of metal silicon in order to prevent the formation of carbides.

更に、還元鉄粉に微細鉄粉を混合させた焼結摩擦材においても、放電プラズマ焼結、ホットプレス等の加圧焼結法による焼結後の相対密度(焼結耐密度/真密度の百分率)を80%以上とすることができる。   Furthermore, even in sintered friction materials in which fine iron powder is mixed with reduced iron powder, the relative density after sintering by pressure sintering methods such as spark plasma sintering and hot pressing (sintering resistance density / true density (Percentage) can be 80% or more.

本発明による焼結摩擦材は、主成分が鉄系材料で、他の配合材は研削材のセラミックス、潤滑材の黒鉛、金属粉を使用している。そのため、焼結の際に、融点が高い還元鉄粉に潤滑材の黒鉛が固溶して炭化鉄(Fe−C)となる。(Fe−C)は硬さが増すが、融点が下がり耐熱性を低下させていた。そこで、黒鉛化傾向(Al>Si>Ti>C)の大きい元素を添加することにより、基地組織をフェライトに保つことができる。その結果、主成分の融点の低下が少なく、高温特性・耐食性に優れた焼結摩擦材が得られる。フェライトは、黒鉛が固溶した(Fe−C)より軟らかいため、相手材摩耗量も少なくすることができる。   The sintered friction material according to the present invention is mainly composed of an iron-based material, and the other compounding materials are ceramics as an abrasive, graphite as a lubricant, and metal powder. Therefore, at the time of sintering, the graphite of the lubricant is dissolved in reduced iron powder having a high melting point to form iron carbide (Fe—C). Although (Fe-C) increased in hardness, the melting point decreased and the heat resistance decreased. Therefore, by adding an element having a large graphitization tendency (Al> Si> Ti> C), the matrix structure can be kept in ferrite. As a result, it is possible to obtain a sintered friction material having a small decrease in the melting point of the main component and excellent in high temperature characteristics and corrosion resistance. Since ferrite is softer than (Fe—C) in which graphite is dissolved, the amount of wear of the counterpart material can be reduced.

この焼結摩擦材において、基地組織をフェライト(還元鉄粉の基地組織)に保つため、黒鉛化促進元素であるアルミニウム、珪素、又はチタンの添加量の上下限を定めることで、潤滑材の黒鉛の固溶を抑制し基地組織をフェライトに保つことができる。各黒鉛化促進元素は各下限添加量以下では基地組織をフェライトに保つことができず、各上限添加量以上では添加金属を含む炭化物が生成される。   In this sintered friction material, in order to keep the base structure in ferrite (base structure of reduced iron powder), the upper and lower limits of the addition amount of the graphitization promoting element aluminum, silicon, or titanium are determined. The solid solution can be suppressed and the base structure can be kept in ferrite. Each graphitization accelerating element cannot keep the base structure in ferrite below the respective lower limit addition amount, and carbide including the added metal is generated above each upper limit addition amount.

この焼結摩擦材において、フェライトの存在率(フェライト/基地組織の百分率)は30%以上で耐熱性の低下が少なく、更に、高温特性に優れ、相手材摩耗量も少ない焼結摩擦材とすることができる。   In this sintered friction material, the abundance of ferrite (percentage of ferrite / matrix structure) is 30% or more, and there is little deterioration in heat resistance. be able to.

この焼結摩擦材において、還元鉄、マグネシア、アルミナ、マグネシア+アルミナ、及び黒鉛ついての各成分の範囲設定を定めることにより、摩擦係数の確保と、摩擦材摩耗量及び相手材の摩耗量の抑制との両立を果たすことができる。黒鉛粉末についても、下限未満では潤滑効果が低下するため摩擦材及び相手材摩耗量ともに増加し、上限を超えた場合には摩擦係数の低下が大きくなる。基地組織をフェライトに保つための各黒鉛化促進元素は各下限添加量以下では基地組織をフェライトに保つことができず、各上限添加量以上では添加金属を含む炭化物を生成する。   In this sintered friction material, by setting the range of each component for reduced iron, magnesia, alumina, magnesia + alumina, and graphite, ensuring the friction coefficient and suppressing the friction material wear amount and the wear amount of the counterpart material Can be achieved. Also for graphite powder, if the amount is less than the lower limit, the lubrication effect decreases, so both the friction material and the mating material wear amount increase, and if the upper limit is exceeded, the friction coefficient decreases greatly. Each graphitization accelerating element for keeping the matrix structure in ferrite cannot keep the matrix structure in ferrite below each lower limit addition amount, and generates carbide containing the added metal above each upper limit addition amount.

この焼結摩擦材において、加圧焼結法を用いるときには、焼結後の相対密度(焼結体密度/真密度の百分率)が80%以上とすることにより、鉄系材料間の結合力が強いため、強度、耐摩耗性に優れた焼結摩擦材を得ることができる。   In this sintered friction material, when the pressure sintering method is used, the relative density after sintering (percentage of sintered body density / true density) is set to 80% or more so that the bonding force between the iron-based materials is increased. Since it is strong, a sintered friction material having excellent strength and wear resistance can be obtained.

更に、還元鉄粉を主成分とする焼結摩擦材によれば、還元鉄粉に微細鉄粉を混合させることにより相対密度を低下させることなく硬度を低下させることができ、相手材との接触性が改善され、ブレーキディスクのような相手材との間で局部当たりに起因した温度上昇や偏摩耗を抑制することができ、摩擦係数・耐摩耗性を向上させることができる。微細鉄粉の添加量を還元鉄粉に対して10〜30vol%の範囲とすることにより、主成分が還元鉄粉のみの場合よりも低い焼結温度で焼結が可能となり、且つ微細鉄粉が焼結に大きく関与して焼結性を高めることが可能となる。更に、還元鉄粉に微細鉄粉を混合させることで、放電プラズマ焼結、ホットプレス等の加圧焼結法による焼結させた後の焼結摩擦材の相対密度(焼結体密度/真密度の百分率)を80%以上とし、鉄系材料間の結合力を強めることができ、強度・耐摩耗性に優れている焼結摩擦材を得ることができる。   Furthermore, according to the sintered friction material mainly containing reduced iron powder, the hardness can be reduced without reducing the relative density by mixing fine iron powder with the reduced iron powder, and contact with the counterpart material. As a result, the temperature rise and uneven wear due to local contact with the counterpart material such as a brake disk can be suppressed, and the friction coefficient and wear resistance can be improved. By making the amount of fine iron powder added in the range of 10 to 30 vol% with respect to the reduced iron powder, sintering is possible at a lower sintering temperature than when the main component is only reduced iron powder, and the fine iron powder However, it is possible to enhance the sinterability by greatly participating in the sintering. Further, by mixing fine iron powder with reduced iron powder, the relative density (sintered body density / true density) of the sintered friction material after being sintered by a pressure sintering method such as discharge plasma sintering or hot pressing. (Percentage of density) is 80% or more, the bonding strength between the iron-based materials can be increased, and a sintered friction material excellent in strength and wear resistance can be obtained.

以下に、実施例を挙げて、本発明による焼結摩擦材を更に、詳細に説明する。
まず、原材料として平均粒径約160μmの還元鉄粉と、基地組織をフェライトに保つための黒鉛化促進元素である平均粒径約20μmのアルミニウム粉末及び/又は平均粒径約24μmの珪素(フェロシリコン)及び/又は平均粒径約10μmのチタン粉末と平均粒径約1.2μmの微細なアルミナ粉末と、平均粒径約190μmのマグネシア粉末と、平均粒径約170μmの天然黒鉛粉末と、平均粒径約240μmの人造黒鉛粉末を用意した。
Hereinafter, the sintered friction material according to the present invention will be described in more detail with reference to examples.
First, reduced iron powder having an average particle size of about 160 μm as raw materials, aluminum powder having an average particle size of about 20 μm and / or silicon having an average particle size of about 24 μm (ferrosilicon), which is an element for promoting graphitization to keep the base structure in ferrite. And / or titanium powder having an average particle size of about 10 μm, fine alumina powder having an average particle size of about 1.2 μm, magnesia powder having an average particle size of about 190 μm, natural graphite powder having an average particle size of about 170 μm, and average particles An artificial graphite powder having a diameter of about 240 μm was prepared.

次に、上記の各原材料を表1に示す配合Cに各々秤量後、攪拌らい潰機(石川工場製)を用い、混合時の偏析を防ぐため混合物に4%のメタノールを添加して10分間混合することにより混合粉末を作製した。C1〜C6は黒鉛化傾向の大きい元素を添加して基地組織が耐熱性の高いフェライトに保たれている。C7〜C9は黒鉛化傾向の大きい元素を2又は3元素添加することで更に基地組織をフェライトに保つ。なお比較材として現在量産されている銅系焼結材Aの混合粉末と、黒鉛化傾向の大きい元素を添加していない配合の代表例Bの混合粉末も用意した。

Figure 2008025018
Next, after weighing each of the above raw materials into each of the blends C shown in Table 1, a 4% methanol was added to the mixture for 10 minutes in order to prevent segregation during mixing using a stirring mill crusher (manufactured by Ishikawa Factory). A mixed powder was prepared by mixing. In C1 to C6, an element having a large tendency to graphitize is added, and the base structure is kept in ferrite having high heat resistance. C7 to C9 keep the base structure in ferrite by adding two or three elements having a large tendency to graphitize. In addition, a mixed powder of copper-based sintered material A currently mass-produced as a comparative material and a mixed powder of representative example B having a composition not containing an element having a large tendency to graphitize were also prepared.
Figure 2008025018

更に、各混合粉末を23mm×35mmのキャビティを有する黒鉛型に充填し、放電プラズマ焼結装置(住友石炭鉱業製、型式SPS−515S)を用い、圧力14MPa、昇温速度100℃/min、焼結温度1150℃、保持時間5minの条件で焼結を行った。なお、A配合材は量産材と同条件で作製するため、バッチ式焼結炉(昇温速度10〜20℃/min、加圧0.7MPa)でも焼結を行い、放電プラズマ焼結装置で焼結したものと比較した。   Further, each mixed powder is filled into a graphite mold having a cavity of 23 mm × 35 mm, and a discharge plasma sintering apparatus (manufactured by Sumitomo Coal Mining Co., Ltd., model SPS-515S) is used. Sintering was performed under the conditions of a sintering temperature of 1150 ° C. and a holding time of 5 minutes. In addition, since A compound material is produced on the same conditions as mass production material, it sinters also with a batch-type sintering furnace (temperature increase rate 10-20 degreeC / min, pressurization 0.7MPa), and it is a discharge plasma sintering apparatus Compared to the sintered one.

焼結後、各焼結体の相対密度(焼結体の見掛け密度/焼結体の真密度の百分率)、硬さを測定した。また、500℃、600℃の高温ブレーキ性能試験を実施し、摩擦係数及び相手材摩耗量を求めた。焼結体の見掛け密度は大気及び水中の重量から算出し、真密度は原材料の真密度と配合割合から算出した。硬さはロックウェル硬さ試験機のSスケール(HRS)で測定した。ブレーキ性能試験は当社所有の1/10スケールテスタ試験機を用いて実施した。表1には、焼結条件、相対密度、硬さとブレーキ性能試験における平均摩擦係数と相手材の摩耗量が示されている。   After sintering, the relative density (apparent density of sintered body / percentage of true density of sintered body) and hardness of each sintered body were measured. Moreover, the high temperature brake performance test of 500 degreeC and 600 degreeC was implemented, and the friction coefficient and the other party material abrasion amount were calculated | required. The apparent density of the sintered body was calculated from the weight in the air and water, and the true density was calculated from the true density of the raw materials and the blending ratio. Hardness was measured with the S scale (HRS) of a Rockwell hardness tester. The brake performance test was conducted using a 1/10 scale tester tester owned by our company. Table 1 shows the sintering conditions, the relative density, the hardness, the average friction coefficient in the brake performance test, and the wear amount of the counterpart material.

表1から理解されるように、本発明品はいずれも高温時の摩擦係数が安定して高く、また比較材Bに比較して相手材摩耗量が少ないことが解る。C1〜C6は黒鉛化傾向の大きい元素を添加していて、比較材A,Bは600℃の平均摩擦係数が0.22〜0.23であるのに対して、0.25〜0.28と高く、C7〜C9は黒鉛化傾向の大きい元素を2つ以上組み合わせると、600℃の平均摩擦係数が0.27〜0.29と更に高く好ましい。   As understood from Table 1, it can be seen that all of the products of the present invention have a stable and high coefficient of friction at high temperatures, and the amount of wear of the counterpart material is smaller than that of the comparative material B. C1 to C6 contain elements having a large tendency to graphitize, and Comparative Materials A and B have an average coefficient of friction of 0.22 to 0.23 at 600 ° C., whereas 0.25 to 0.28. C7 to C9 are preferably combined with two or more elements having a large tendency to graphitize, and the average coefficient of friction at 600 ° C. is as high as 0.27 to 0.29.

図1はこの発明による焼結摩擦材C1の基地組織の一例を示す顕微鏡写真であり、図2は比較材Bの基地組織の一例を示す顕微鏡写真である。基地組織を5%ナイタールで10秒エッチング処理した。図2から、比較材Bの基地組織はパーライトの生成が多いことが判る。また、珪素を添加する場合は炭化物の生成を防ぐため、金属シリコンではなくフェロシリコンを添加した。フェライトの存在率は、比較材Bが約20%であるのに対して、発明材Clは約45%であった。   FIG. 1 is a photomicrograph showing an example of a base structure of the sintered friction material C1 according to the present invention, and FIG. The base tissue was etched with 5% nital for 10 seconds. From FIG. 2, it can be seen that the base structure of the comparative material B generates a lot of pearlite. When silicon is added, ferrosilicon is added instead of metal silicon to prevent the formation of carbides. The abundance of ferrite was about 20% for comparative material B, while about 45% for inventive material Cl.

次に、本発明による焼結摩擦材の別の実施例を説明する。
まず、原材料として平均粒径約160μmの還元鉄粉と、当該還元鉄粉の一種であるが還元鉄粉とはサイズ(平均粒径)が1/10以下であるような、平均粒径約5μmの微細鉄粉と、基地組織をフェライトに保つための黒鉛化促進元素である平均粒径約20μmのアルミニウム粉末及び/又は平均粒径約24μmの珪素(フェロシリコン)及び/又は平均粒径約10μmのチタン粉末と平均粒径約1.2μmの微細なアルミナ粉末と、平均粒径約190μmのマグネシア粉末と、平均粒径約170μmの天然黒鉛粉末と、平均粒径約240μmの人造黒鉛粉末を用意した。
Next, another embodiment of the sintered friction material according to the present invention will be described.
First, a reduced iron powder having an average particle size of about 160 μm as a raw material and an average particle size of about 5 μm whose size (average particle size) is 1/10 or less, which is a kind of the reduced iron powder. Fine iron powder, an aluminum powder having an average particle size of about 20 μm and / or silicon (ferrosilicon) having an average particle size of about 24 μm and / or an average particle size of about 10 μm, which is an element for promoting graphitization to keep the base structure in ferrite Titanium powder, fine alumina powder with an average particle size of about 1.2 μm, magnesia powder with an average particle size of about 190 μm, natural graphite powder with an average particle size of about 170 μm, and artificial graphite powder with an average particle size of about 240 μm did.

次に、上記の各原材料を表2に示す配合Dに各々秤量後、攪拌らい潰機(石川工場製)を用い、混合時の偏析を防ぐため混合物に4%のメタノールを添加して10分間混合することにより混合粉末を作製した。なお、表2においては、比較材として、表1に銅系焼結材Aの混合粉末として既に示した現在量産されている試料A1及びA2と、表1に示した本発明である耐熱性の高いフェライト基地組織を有する鉄系焼結材の代表例C8及びC9を再掲している。

Figure 2008025018
Next, after weighing each of the above raw materials into the blend D shown in Table 2, 4% methanol was added to the mixture for 10 minutes in order to prevent segregation at the time of mixing using a stirring mortar (produced by Ishikawa Factory). A mixed powder was prepared by mixing. In Table 2, as a comparative material, samples A1 and A2 that are already mass-produced as a mixed powder of the copper-based sintered material A in Table 1 and the heat resistance of the present invention shown in Table 1 are shown. Representative examples C8 and C9 of iron-based sintered materials having a high ferrite matrix structure are shown again.
Figure 2008025018

焼結型及び放電プラズマ焼結装置、並びに温度・圧力・時間等の焼結条件、或いはA配合材についての焼結については、先の実施例の場合と同じでよく、これらについての再度の説明を省略する。また、焼結後の各焼結体の相対密度(見掛け密度と真密度)、硬さの測定、高温ブレーキ性能試験における摩擦係数及び相手材摩耗量の測定についても、先の実施例の場合と同じ条件でよく、再度の説明を省略する。   The sintering type and the discharge plasma sintering apparatus, and the sintering conditions such as temperature, pressure, and time, or the sintering of the compound A may be the same as in the previous embodiment, and these will be described again. Is omitted. In addition, the relative density (apparent density and true density) of each sintered body after sintering, the measurement of hardness, the friction coefficient in the high-temperature brake performance test, and the measurement of the wear amount of the counterpart material are also the same as in the previous example The same conditions may be used, and repeated description is omitted.

表2には、焼結条件、相対密度、硬さとブレーキ性能試験における平均摩擦係数と相手材の摩耗量が示されている。表2から理解されるように、D1〜D5は微細鉄を表中の数値のvol%で含有(D1からD5に至るほど含有率が大きい)しており、また、黒鉛化傾向の大きい元素が添加されている。本発明品(D1〜D5)はいずれも高温時の摩擦係数が安定して高く、また比較材に比較して相手材摩耗量が少ないことが解る。即ち、相対密度と硬度については、本発明材Cと比較して、相対密度を大きく低下させることなく、硬度を量産タイプの試料Aの場合の焼結摩擦材に近づける改善(数値としては低い値で軟らかい)が得られている。摩擦係数については、比較材Aは600℃の平均摩擦係数が0.22〜0.23であるのに対して、本発明材Cの平均摩擦係数0.27、0.29と同等又はそれを上回る係数を示している。更に、相手材摩耗量についても、本発明材Cの相手材摩耗量を改善し、量産タイプの試料Aの場合の焼結摩擦材に近づける改善(数値としては小さい値で相手材摩耗量が少ない)が得られている。   Table 2 shows the sintering conditions, the relative density, the hardness, the average friction coefficient in the brake performance test, and the wear amount of the counterpart material. As is understood from Table 2, D1 to D5 contain fine iron in vol% of the numerical values in the table (the content rate increases from D1 to D5), and elements having a large tendency to graphitize are contained. It has been added. It can be seen that all of the products (D1 to D5) of the present invention have a stable and high coefficient of friction at high temperatures, and the amount of wear of the counterpart material is less than that of the comparative material. That is, with respect to the relative density and the hardness, compared with the material C of the present invention, the hardness is brought close to the sintered friction material in the case of the mass production type sample A without lowering the relative density (the numerical value is low). And soft). Regarding the coefficient of friction, the comparative material A has an average friction coefficient of 600 ° C. of 0.22 to 0.23, whereas the average friction coefficient of the material C of the present invention is equal to or equal to 0.27 and 0.29. The coefficient is higher. Furthermore, the wear amount of the counterpart material is also improved by improving the wear amount of the counterpart material C of the present invention C and approaching the sintered friction material in the case of the mass production type sample A (the numerical value is small and the counterpart material wear amount is small) ) Is obtained.

この発明による焼結摩擦材C1の基地組織の一例を示す顕微鏡写真である。It is a microscope picture which shows an example of the base structure | tissue of the sintered friction material C1 by this invention. 比較材Bの基地組織の一例を示す顕微鏡写真である。It is a microscope picture which shows an example of the base structure of the comparative material B.

Claims (11)

主成分として高融点の還元鉄粉に黒鉛化傾向の大きい元素を添加して焼結されており、基地組織がフェライトに保たれていることから成る焼結摩擦材。   Sintered friction material consisting of high-melting point reduced iron powder as a main component, which is sintered by adding an element that has a high tendency to graphitize, and the base structure is kept in ferrite. 前記黒鉛化促進元素は、アルミニウム、珪素、チタンの元素群から選ばれる1又は2以上の元素であることから成る請求項1に記載の焼結摩擦材。   The sintered friction material according to claim 1, wherein the graphitization promoting element is one or more elements selected from the group consisting of aluminum, silicon, and titanium. 前記アルミニウム1〜9vol%、前記珪素1〜8vol%、又は前記チタン0.5〜8vol%が、合計0.5〜20vol%の範囲で添加されていることから成る請求項2に記載の焼結摩擦材。   The sintering according to claim 2, wherein the aluminum is added in an amount of 1 to 9 vol%, the silicon is 1 to 8 vol%, or the titanium is 0.5 to 8 vol% in a total range of 0.5 to 20 vol%. Friction material. 前記フェライトは、前記基地組織中に30%以上存在することから成る請求項3に記載の焼結摩擦材。   The sintered friction material according to claim 3, wherein the ferrite is present in the matrix structure at 30% or more. 前記還元鉄20〜45vol%を含み、更に、平均粒径0.3〜2μmの微細アルミナ0〜15vol%、平均粒径50〜250μmのマグネシア0〜10vol%、平均粒径5〜20μmのアルミナ2〜10vol%、及び黒鉛30〜45vol%が、前記マグネシアと前記アルミナとの合計を5〜15vol%の範囲として、添加されていることから成る請求項3に記載の焼結摩擦材。   Alumina 2 containing 20 to 45 vol% of the reduced iron, 0 to 15 vol% of fine alumina having an average particle diameter of 0.3 to 2 μm, 0 to 10 vol% of magnesia having an average particle diameter of 50 to 250 μm, and 5 to 20 μm of average particle diameter. The sintered friction material according to claim 3, wherein 10 to 10% by volume and 30 to 45% by volume of graphite are added so that the total of the magnesia and the alumina is in the range of 5 to 15% by volume. 放電プラズマ焼結、ホットプレス等の加圧焼結法による焼結後の焼結体密度の百分率としての相対密度が80%以上であることから成る請求項1〜5のいずれか1項に記載の焼結摩擦材。   6. The relative density as a percentage of the sintered body density after sintering by a pressure sintering method such as spark plasma sintering or hot pressing is 80% or more. 6. Sintered friction material. 前記還元鉄粉に、平均粒径が1/10以下の微細鉄粉が添加されて焼結されていることから成る請求項1に記載の焼結摩擦材。   The sintered friction material according to claim 1, wherein fine iron powder having an average particle size of 1/10 or less is added to the reduced iron powder and sintered. 前記微細鉄粉の前記還元鉄粉に対する混合割合は、10〜30vol%の範囲であることから成る請求項7に記載の焼結摩擦材。   The sintered friction material according to claim 7, wherein a mixing ratio of the fine iron powder to the reduced iron powder is in a range of 10 to 30 vol%. 前記黒鉛化促進元素は、アルミニウム、珪素、チタンの元素群から選ばれる1又は2以上の元素であり、前記アルミニウム1〜9vol%、前記珪素1〜8vol%、及び前記チタン0.5〜8vol%が、合計0.5〜20vol%の範囲で添加されていることから成る請求項7又は8に記載の焼結摩擦材。   The graphitization accelerating element is one or more elements selected from the group consisting of aluminum, silicon and titanium, and the aluminum is 1 to 9 vol%, the silicon is 1 to 8 vol%, and the titanium is 0.5 to 8 vol%. The sintered friction material according to claim 7 or 8, wherein is added in a range of 0.5 to 20 vol% in total. 前記還元鉄20〜45vol%と、前記還元鉄に対して30vol%以下である前記微細鉄2〜14vol%とを含み、更に、前記黒鉛化促進元素は、アルミニウム、珪素、チタンの元素群から選ばれる1又は2以上の元素であり、前記アルミニウム1〜9vol%、前記珪素1〜8vol%、及び前記チタン0.5〜8vol%がそれらの合計を0.5〜20vol%の範囲として添加され、更にまた、平均粒径0.3〜2μmの微細アルミナ0〜15vol%、平均粒径50〜250μmのマグネシア0〜10vol%、平均粒径5〜20μmのアルミナ2〜10vol%、及び黒鉛30〜45vol%が、前記マグネシアと前記アルミナとの合計を5〜15vol%の範囲として、添加されていることから成る請求項7に記載の焼結摩擦材。   20% to 45% by volume of the reduced iron and 2% to 14% by volume of the fine iron that is 30% by volume or less with respect to the reduced iron, and the graphitization promoting element is selected from an element group of aluminum, silicon, and titanium. 1 to 9 vol% of the aluminum, 1 to 8 vol% of the silicon, and 0.5 to 8 vol% of the titanium are added in a total range of 0.5 to 20 vol%, Furthermore, 0 to 15 vol% of fine alumina having an average particle size of 0.3 to 2 μm, 0 to 10 vol% of magnesia having an average particle size of 50 to 250 μm, 2 to 10 vol% of alumina having an average particle size of 5 to 20 μm, and 30 to 45 vol of graphite. The sintered friction according to claim 7, wherein% is added so that the total of the magnesia and the alumina ranges from 5 to 15 vol%. . 放電プラズマ焼結、ホットプレス等の加圧焼結法による焼結後の焼結体密度の百分率としての相対密度が80%以上であることから成る請求項7〜10のいずれか1項に記載の焼結摩擦材。   The relative density as a percentage of the sintered body density after sintering by a pressure sintering method such as electric discharge plasma sintering or hot pressing is 80% or more. Sintered friction material.
JP2006228358A 2006-06-22 2006-08-24 Sintering friction material Pending JP2008025018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006228358A JP2008025018A (en) 2006-06-22 2006-08-24 Sintering friction material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006172300 2006-06-22
JP2006228358A JP2008025018A (en) 2006-06-22 2006-08-24 Sintering friction material

Publications (1)

Publication Number Publication Date
JP2008025018A true JP2008025018A (en) 2008-02-07

Family

ID=39115967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006228358A Pending JP2008025018A (en) 2006-06-22 2006-08-24 Sintering friction material

Country Status (1)

Country Link
JP (1) JP2008025018A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102350498A (en) * 2011-09-22 2012-02-15 山东金麒麟集团有限公司 C/C composite material brake pad and manufacturing method thereof
WO2013125717A1 (en) * 2012-02-24 2013-08-29 株式会社タンガロイ Friction material and method for producing same
CN103602849A (en) * 2013-10-10 2014-02-26 铜陵新创流体科技有限公司 Copper-based alloy sliding-bearing material and preparation method thereof
CN112538588A (en) * 2020-12-08 2021-03-23 沈阳鑫作粉末冶金制品有限公司 Iron oxide environment-friendly material and preparation method and application thereof
JP7043406B2 (en) 2015-09-29 2022-03-29 ホガナス アクチボラグ (パブル) New iron-based composite powder

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102350498A (en) * 2011-09-22 2012-02-15 山东金麒麟集团有限公司 C/C composite material brake pad and manufacturing method thereof
WO2013125717A1 (en) * 2012-02-24 2013-08-29 株式会社タンガロイ Friction material and method for producing same
JPWO2013125717A1 (en) * 2012-02-24 2015-07-30 株式会社タンガロイ Friction material and manufacturing method thereof
CN103602849A (en) * 2013-10-10 2014-02-26 铜陵新创流体科技有限公司 Copper-based alloy sliding-bearing material and preparation method thereof
JP7043406B2 (en) 2015-09-29 2022-03-29 ホガナス アクチボラグ (パブル) New iron-based composite powder
CN112538588A (en) * 2020-12-08 2021-03-23 沈阳鑫作粉末冶金制品有限公司 Iron oxide environment-friendly material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP6032389B1 (en) Friction material
KR101596658B1 (en) Plain Bearing Material
CN107523716B (en) Sintered friction material for friction linings
JP6386676B2 (en) Sintered valve seat
JP2008025018A (en) Sintering friction material
JP6360270B1 (en) Sintered friction material for brake
JP2010533756A (en) Lead-free sintered lubricating material and sintered powder for its production
EP2511388B1 (en) Sintered sliding member
CN110242691A (en) A kind of environmentally-friendly friction material and brake block and preparation method based on it
JP2006348379A (en) Sintered metal friction material, and friction member
JP4589215B2 (en) Sintered friction material
JP5214158B2 (en) Sintered friction material
JP5405725B2 (en) Sintered friction material
JP2007107662A (en) Sintered friction material
JP2007107068A (en) Sintered friction material
JP2007126738A (en) Sintered frictional material
Zhan et al. Effect of surface metallization of graphite on the tribological properties of copper hybrid composites
JPH05179232A (en) Sintered metallic friction material for brake
JP2007107067A (en) Copper based sintered friction material
JP6077499B2 (en) Sintered alloy molded body, wear-resistant iron-based sintered alloy, and method for producing the same
JP2008138036A (en) Sintered friction material
Fabrizi et al. In Situ Reinforcement of Ti6Al4V Matrix Composites by Polymer‐Derived‐Ceramics Phases
JP2006265081A (en) Selflubricating composite material and its producing method
JP2007107066A (en) Sintered friction material
JP2012162771A (en) Iron-based sintered sliding member, and method for manufacturing the same