JP2007107066A - Sintered friction material - Google Patents

Sintered friction material Download PDF

Info

Publication number
JP2007107066A
JP2007107066A JP2005300813A JP2005300813A JP2007107066A JP 2007107066 A JP2007107066 A JP 2007107066A JP 2005300813 A JP2005300813 A JP 2005300813A JP 2005300813 A JP2005300813 A JP 2005300813A JP 2007107066 A JP2007107066 A JP 2007107066A
Authority
JP
Japan
Prior art keywords
friction material
sintered
friction
sintered friction
vol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005300813A
Other languages
Japanese (ja)
Inventor
Katsuo Arai
勝男 新井
Noriyuki Arai
敬之 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akebono Brake Industry Co Ltd
Original Assignee
Akebono Brake Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akebono Brake Industry Co Ltd filed Critical Akebono Brake Industry Co Ltd
Priority to JP2005300813A priority Critical patent/JP2007107066A/en
Publication of JP2007107066A publication Critical patent/JP2007107066A/en
Pending legal-status Critical Current

Links

Landscapes

  • Braking Arrangements (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sintered friction material which does not comprise chemical substances designated in the PRTR (Pollutant Release and transfer Resister) Act, and more excellent in a friction coefficient, strength, wear resistance and brake performance such as low attackability to the mating material using an iron based material as the main component. <P>SOLUTION: In the sintered friction material using a metallic material as a matrix and comprising a lubricant and abrasives, as the metallic material, reduced iron powder is used. The main component is iron based reduced iron powder, and the other blending materials are the lubricant and abrasives, thus a sintered friction material can be obtained without using chemical substances designated in the PRTR Act at all. Since the reduced iron powder which is soft because of its low carbon content is used as the metal main component composing the matrix to form into the skeleton of the sintered friction material, the sintered friction material excellent in the points of friction properties at high temperature and low attackability to the mating material can be obtained. Further, by interposing aluminum as a different kind of material between sliding faces, the reduction of the friction amount is achieved. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、自動車、二輪車、鉄道車両、産業機械等の制動装置に用いられるブレーキ用摩擦材に関する。   The present invention relates to a brake friction material used in a braking device for automobiles, two-wheeled vehicles, railway vehicles, industrial machines and the like.

従来、ブレーキ用の焼結摩擦材としては、銅を主成分とし、錫や時により鉄、ニッケル、亜鉛、アンチモン、クロム、鉛等を添加した金属を基材とし、それにアルミナ、ムライト、ジルコニア等のセラミックス研削材や黒鉛、二硫化モリブデン等の潤滑材を添加した焼結摩擦材が用いられている。この種の焼結摩擦材は、レジン系摩擦材より重く、高価で、ブレーキノイズが発生し易い等の要改善点があるが、レジン系摩擦材に比較して摩擦材が高温になる過酷な制動条件下でもフェード(高温下で制動時の摩擦係数が大幅に低下する)現象を起こさず安定した性能が得られ、強度、耐摩耗性も優れているという長所があるため、過酷な制動条件下でも高い摩擦性能を要求されるブレーキにはこれまで多く採用されている。   Conventionally, as a sintered friction material for brakes, copper is the main component, and tin or sometimes a metal added with iron, nickel, zinc, antimony, chromium, lead, etc. is used as a base material, and alumina, mullite, zirconia, etc. Ceramic friction materials and sintered friction materials to which lubricants such as graphite and molybdenum disulfide are added are used. This type of sintered friction material is heavier and more expensive than resin-based friction materials, and there are important improvements such as the possibility of brake noise. However, the friction material is more severe than resin-based friction materials. Even under braking conditions, there is an advantage that stable performance is obtained without causing a fade phenomenon (the friction coefficient during braking at a high temperature is greatly reduced), and the strength and wear resistance are excellent. Many brakes are required to have high friction performance even below.

しかし近年、環境保護の観点からPRTR法(特定化学物質の環境への排出量の把握及び管理の改善の促進に関する法律)が制定され、ブレーキ用摩擦材として使用する材料も環境保護を考慮して、同法で定められている指定化学物質を用いないことが要求されるようになってきた。ところが、これまで焼結摩擦材の原材料として用いられている前記材料のうちで、鉄、セラミックス、黒鉛以外の材料はPRTR法の指定化学物質に設定されており、今後はできるだけ使用しないことが望まれている。   However, in recent years, the PRTR Law (Act on the Promotion of Improvement in Management and Management of Specific Chemical Substances Emissions from the Environmental Protection Perspective) has been enacted, and materials used as brake friction materials are also considered for environmental protection. However, it has been demanded not to use designated chemical substances stipulated by the law. However, among the materials used as raw materials for sintered friction materials so far, materials other than iron, ceramics, and graphite are set as designated chemical substances of the PRTR method, and it is hoped that they will not be used in the future. It is rare.

このような背景から、これまでもPRTR法の指定化学物質をできるだけ使用しない配合の焼結摩擦材の研究・開発が行われてきた。しかしこれまで主成分としていた銅や錫を使用せず、鉄系材料を主成分とした焼結摩擦材の場合には、ブレーキ制動による摩擦材の摩耗量や相手材(例えば、ブレーキディスク。主として普通鋳鉄、低合金鋼、ステンレス等の鉄系材料から成る。)の摩耗量が大幅に増加するという問題点があり、しかも、要求される摩擦係数を確保することができない。また鉄系材料以外でPRTR法の指定化学物質でないアルミニウム、マグネシウム、チタン等の材料は焼結摩擦材の主成分としては問題が多く、環境保護に優れた焼結摩擦材の実用化はなかなか困難であった。   Against this background, research and development have been carried out on sintered friction materials having a formulation that uses as little PRTR-designated chemical substances as possible. However, in the case of a sintered friction material mainly composed of an iron-based material without using copper or tin as the main component until now, the wear amount of the friction material due to brake braking or the counterpart material (for example, brake disc, mainly. There is a problem that the amount of wear of iron-based materials such as ordinary cast iron, low alloy steel, and stainless steel) greatly increases, and the required coefficient of friction cannot be ensured. In addition, materials such as aluminum, magnesium, and titanium that are not designated PRTR chemicals other than ferrous materials have many problems as the main components of sintered friction materials, and it is difficult to put sintered friction materials with excellent environmental protection into practical use. Met.

高い摩擦係数を安定的に得ることを図った銅系の乾式焼結摩擦材料の一例が提案されている(特許文献1)。この乾式焼結摩擦材料は、重量比で銅60〜80%、錫3〜20%、アルミナ及び/又はシリカを3〜20%、黒鉛3〜10%、二硫化モリブデン1〜5%及びマンガン15%以下を含むものであり、マトリックス成分として構成されることにより、制動時摩擦係数を安定させ、相手材との間の発熱によって表面に硬質の酸化銅皮膜を形成して、水フェード現象及び熱フェード現象に対して抵抗性を有し、安定した摩擦面を得ることを図っている。アルミナ、シリカは、高負荷、高温摩擦摺動に耐える目的で添加され、黒鉛、二硫化モリブデンは潤滑性向上も目的で添加され、マンガンは焼結中他金属の酸化皮膜を還元し、焼結性の向上目的で添加されている。   An example of a copper-based dry sintered friction material that aims to stably obtain a high friction coefficient has been proposed (Patent Document 1). This dry-sintered friction material is 60-80% copper, 3-20% tin, 3-20% alumina and / or silica, 3-10% graphite, 1-5% molybdenum disulfide and 15 manganese. %, Which is configured as a matrix component, stabilizes the coefficient of friction during braking, forms a hard copper oxide film on the surface due to heat generation with the mating material, water fade phenomenon and heat It is resistant to the fade phenomenon and aims to obtain a stable friction surface. Alumina and silica are added for the purpose of withstanding high loads and high-temperature frictional sliding. Graphite and molybdenum disulfide are added for the purpose of improving lubricity. Manganese reduces and oxidizes oxide films of other metals during sintering. It is added for the purpose of improving the properties.

また、焼結摩擦材の別の例として、鉄系焼結体からなる有孔の本体部と、この本体部の孔内に固定された水溶液がアルカリ性を示すアルカリ性物質とを有する鉄系焼結摩擦材が提案されている(特許文献2)。アルカリ性物質の非存在下で焼結を行い、有孔の摩擦材の本体部を形成することによって、摩擦材の絶対的強度をアルカリ性物質に阻害されることなく確保でき、その後に、防錆効果の高いアルカリ性物質を孔内に固定することで防錆性の向上を図っている。   Further, as another example of the sintered friction material, an iron-based sintered material having a perforated main body portion made of an iron-based sintered body and an alkaline substance in which an aqueous solution fixed in the hole of the main body portion exhibits alkalinity. A friction material has been proposed (Patent Document 2). By sintering in the absence of alkaline substances and forming the body of the perforated friction material, the absolute strength of the friction material can be secured without being hindered by alkaline substances, and then the rust prevention effect Rust prevention is improved by fixing a highly alkaline substance in the hole.

焼結摩擦材の更に別の例として、銅又は銅合金をマトリックスとする焼結摩擦材であって、安定化ジルコニアを2〜20重量%含有するものが提案されている(特許文献3)。この焼結摩擦材によれば、銅系又は鉄系焼結摩擦材において、安定化ジルコニアを採用することで、広範な制動条件に対して適応性がよく、安定した摩擦係数が得られ、耐摩性、耐熱性がよく、相手材への攻撃性が少ない焼結摩擦材を得ることを図っている。
特公昭63−15976号公報(第2欄、第2行〜第4欄第1行) 特開2002−181095号公報(段落[0022]〜[0026]) 特許第2958493号公報
As another example of the sintered friction material, a sintered friction material containing copper or a copper alloy as a matrix and containing 2 to 20% by weight of stabilized zirconia has been proposed (Patent Document 3). According to this sintered friction material, by adopting stabilized zirconia in copper-based or iron-based sintered friction material, adaptability to a wide range of braking conditions is good, a stable friction coefficient is obtained, and wear resistance is improved. We aim to obtain a sintered friction material that is good in heat resistance and heat resistance, and has little attack on the mating material.
Japanese Examined Patent Publication No. 63-15976 (second column, second line to fourth column, first line) JP 2002-181095 A (paragraphs [0022] to [0026]) Japanese Patent No. 2958493

そこで、焼結摩擦材の原材料として、PRTR法の特定第一種指定化学物質である六価クロム化合物やニッケル化合物は勿論のこと、第一種指定化学物質である亜鉛、アンチモン、銅、錫、鉛、モリブデン等の材料をまったく使用しないことで、環境保護にも貢献することが求められている。本出願人は、鋳鉄粉を基材とした鉄系焼結摩擦材を発明し、銅系焼結摩擦材と同等の性能を得ている。しかし、更なる特性向上への強い要求があり、この要求に応える点で解決すべき課題がある。   Therefore, as a raw material of the sintered friction material, not only hexavalent chromium compounds and nickel compounds which are specified first class designated chemical substances of PRTR method, but also first class designated chemical substances zinc, antimony, copper, tin, There is a demand to contribute to environmental protection by not using materials such as lead and molybdenum at all. The present applicant has invented an iron-based sintered friction material based on cast iron powder, and has obtained performance equivalent to that of a copper-based sintered friction material. However, there is a strong demand for further improvement in characteristics, and there is a problem to be solved in terms of meeting this demand.

この発明の目的は、従来の銅粉末が主体であった摩擦材に代えて、PRTR法の指定化学物質をまったく含まないことで、環境保護の面で好ましいとともに、主成分として鋳鉄粉に比較してより融点が高く且つ柔らかい鉄系材料を求めることで、摩擦係数、強度、耐摩耗性、相手材への低攻撃性等のブレーキ制動時の性能にも一層優れた焼結摩擦材を提供することである。   The object of the present invention is that it is preferable in terms of environmental protection because it does not contain any PRTR-designated chemical substance instead of the friction material mainly composed of conventional copper powder, and compared with cast iron powder as a main component. By providing a soft iron-based material with a higher melting point, it is possible to provide a sintered friction material that is superior in brake braking performance, such as coefficient of friction, strength, wear resistance, and low aggressiveness to the mating material. That is.

この発明による焼結摩擦材は、金属材料をマトリックスとし潤滑材と研削材とを含む焼結摩擦材において、金属材料として還元鉄粉を使用したことから成っている。   The sintered friction material according to the present invention is formed by using reduced iron powder as a metal material in a sintered friction material including a metal material as a matrix and a lubricant and an abrasive.

主成分が鉄系の還元鉄粉であり、他の配合材は潤滑材と研削材であり、PRTR法で指定されている指定化学物質をまったく使用することなく焼結摩擦材を得ることができる。焼結摩擦材の骨格となるマトリックスを構成する金属主成分を鋳鉄粉から、鋳鉄粉よりも融点が約300℃高く且つ低炭素であるため軟らかい還元鉄粉に変更したので、高温下での摩擦特性や相手材への低攻撃性の点で優れた焼結摩擦材が得られる。   The main component is iron-based reduced iron powder, the other compounding materials are lubricants and abrasives, and a sintered friction material can be obtained without using any specified chemical substances specified by the PRTR method. . The main component of the metal that constitutes the matrix that forms the framework of the sintered friction material is changed from cast iron powder to soft reduced iron powder because the melting point is about 300 ° C higher than cast iron powder and low carbon, so friction at high temperatures An excellent sintered friction material can be obtained in terms of characteristics and low attack on the mating material.

この焼結摩擦材において、マトリックスの金属材料として、更にアルミニウム粉を含むことができる。この焼結摩擦材は、還元鉄粉から形成された粉末をベースに構成されているが、鉄系の焼結摩擦材はブレーキディスクのような相手材と同様の材料となるので、制動時の鉄系同種の摩擦摺動に起因して摩耗量が多くなる傾向にある。摩擦摺動面間に異種材料を介在させると、固体潤滑材としての機能が働き、摩耗量が軽減できることが判っている。そこで、アルミニウム粉末を配合することで、焼結摩擦材の表面には常に薄いアルミニウムの膜が形成され、摩擦材中の鉄と相手材中の鉄同士の同種摩擦が回避される。   In this sintered friction material, an aluminum powder can be further included as a matrix metal material. This sintered friction material is based on powder formed from reduced iron powder, but the iron-based sintered friction material is the same material as the counterpart material such as a brake disk, The amount of wear tends to increase due to the frictional sliding of the same type of iron. It has been found that if different materials are interposed between the frictional sliding surfaces, the function as a solid lubricant works and the amount of wear can be reduced. Therefore, by blending aluminum powder, a thin aluminum film is always formed on the surface of the sintered friction material, and the same kind of friction between iron in the friction material and iron in the counterpart material is avoided.

この焼結摩擦材において、還元鉄粉の含有量が26〜53vol%であり、アルミニウム粉の含有量が5〜20vol%であり、還元鉄粉とアルミニウム粉との合計含有量を46〜58vol%とすることが好ましい。還元鉄粉とアルミニウムとの合計含有量が46%未満であると、金属粉末同士の結合力が落ちて、焼結摩擦材としての強度が低下するおそれがある。また、この合計含有量が58%を超えると、他の配合成分を有効量確保するのが困難になる。   In this sintered friction material, the content of reduced iron powder is 26 to 53 vol%, the content of aluminum powder is 5 to 20 vol%, and the total content of reduced iron powder and aluminum powder is 46 to 58 vol%. It is preferable that If the total content of the reduced iron powder and aluminum is less than 46%, the bonding force between the metal powders may be reduced, and the strength as a sintered friction material may be reduced. On the other hand, when the total content exceeds 58%, it becomes difficult to secure an effective amount of other blending components.

上記のアルミニウムを含有する焼結摩擦材において、アルミニウムの強化材として、平均粒径0.3〜2μmの微細アルミナを2〜10vol%含むことができる。還元鉄粉を主成分として含む焼結摩擦材は、銅系の焼結摩擦材と同等の性能を得ることができるが、高負荷条件の評価では銅系焼結摩擦材に及ばないことが判明した。これは、低融点のアルミニウムを含有させているので耐熱強度が低下しているのが原因と考えられる。そこで、平均粒径0.3〜2μmの高融点で微細アルミナを添加することにより、アルミニウムを熱的に強化して耐熱強度向上に寄与し、これによって高負荷条件での耐摩耗性を向上させることができる。   In the sintered friction material containing aluminum described above, 2 to 10 vol% of fine alumina having an average particle diameter of 0.3 to 2 μm can be included as an aluminum reinforcing material. Sintered friction material containing reduced iron powder as the main component can achieve the same performance as copper-based sintered friction material, but it was found that it was not as good as copper-based sintered friction material in the evaluation of high load conditions. did. This is thought to be due to the fact that the heat-resistant strength is reduced because low melting point aluminum is contained. Therefore, by adding fine alumina with a high melting point with an average particle size of 0.3-2 μm, the aluminum is thermally strengthened to contribute to the improvement of the heat resistance strength, thereby improving the wear resistance under high load conditions. be able to.

この焼結摩擦材において、平均粒径50〜250μmのマグネシア10vol%以下を含むことができる。マグネシアは、マグネシウムの酸化物であって高硬度ではないセラミックスであり、耐摩耗性向上と摩擦係数の確保の目的で配合される。研削材としてのマグネシアは、モース硬度を6以下の比較的柔らかいものを配合することで、相手材をあまり損傷することなく摩擦係数を確保することができる。   This sintered friction material may contain 10 vol% or less of magnesia having an average particle size of 50 to 250 μm. Magnesia is a ceramic that is an oxide of magnesium and not high hardness, and is blended for the purpose of improving wear resistance and ensuring a friction coefficient. Magnesia as an abrasive can ensure a coefficient of friction without damaging the mating material by blending a relatively soft material having a Mohs hardness of 6 or less.

マグネシアを含有する上記の焼結摩擦材において、研削材として、更に、平均粒径5〜20μmのアルミナを2〜10vol%含むことができる。マグネシアは硬度の低い材料であるので、摩擦係数を確保する目的で、硬度のより高いアルミナを含有させることができる。この場合、アルミナの粒径をマグネシアの粒径よりも小さくしているので、相手材への攻撃性を低くすることができる。この際、マグネシアとアルミナとの合計含有量が5〜15vol%にすることが好ましい。   In the sintered friction material containing magnesia, 2 to 10% by volume of alumina having an average particle diameter of 5 to 20 μm can be further included as an abrasive. Since magnesia is a material with low hardness, alumina with higher hardness can be contained for the purpose of securing a friction coefficient. In this case, since the particle size of alumina is smaller than the particle size of magnesia, it is possible to reduce the aggressiveness to the counterpart material. At this time, the total content of magnesia and alumina is preferably 5 to 15 vol%.

潤滑材としての黒鉛を通常よりも多量である25〜40vol%を含有することにより、相手材攻撃性を更に低下させることができる。更に、配合粉末を加圧焼結することにより、粉末は緻密に形成され、焼結したときの製品の強度を確保することができる。焼結摩擦材の相対密度については、80%以上であるとすることができる。相対密度は、理論密度を100としたとき、実際の焼結体の密度を相対割合(百分率)で示したものである。放電プラズマ焼結やホットプレス等の加圧焼結法を用い、温度、圧力を調整することにより、焼結体の相対密度を80%以上とすることで、遜色のない強度の焼結摩擦材を得ることができる。   By containing 25 to 40 vol% of the graphite as a lubricant in a larger amount than usual, the aggressiveness of the counterpart material can be further reduced. Furthermore, by pressure-sintering the blended powder, the powder is densely formed and the strength of the product when sintered can be ensured. The relative density of the sintered friction material can be 80% or more. The relative density indicates the actual density of the sintered body as a relative ratio (percentage) when the theoretical density is 100. By using a pressure sintering method such as spark plasma sintering or hot pressing, and adjusting the temperature and pressure, the sintered friction material has a comparable strength by setting the relative density of the sintered body to 80% or more. Can be obtained.

この発明による焼結摩擦材は、上記のように構成されているので、次のような効果を奏する。即ち、本発明品は主成分が還元鉄粉で、他の配合材は潤滑材や研削材を使用しており、PRTR法の指定化学物質をまったく使用していないので、本焼結摩擦材は環境保護の点で優れた摩擦材を提供することができる。
主成分として鋳鉄粉より融点が約300℃高く且つ低炭素であり軟らかい還元鉄粉を用いているので、高温下での摩擦特性や相手材への低攻撃性に優れた焼結摩擦材を得ることができる。
また、アルミニウムを添加することによって、摩擦界面にアルミの薄膜が形成され、摩擦材中の鉄と相手材(主として普通鋳鉄、低合金鋼、ステンレス等の鉄系材料)中の鉄同士の同種摩擦を防ぐことができる。以上の相乗効果によって、必要な摩擦係数が確保でき、摩擦材や相手材の摩耗畳を少なくすることができる。アルミニウムを添加する場合、更に平均粒径0.3〜2μmの高融点で微細アルミナを添加することにより、低融点のアルミニウムの耐熱強度向上に寄与し、高負荷状態での耐摩耗性を向上することができる。
また、他の配合材としての研削材には、平均粒径が約50〜250μmでセラミックスとしてはあまり硬くない(モース硬さ6)マグネシアを用いることによって、ブレーキ制動時の摩擦材及び相手材(鉄系材料)を損傷させることなく摩耗量を少なくするとともに、高い摩擦係数を確保することができる。更に平均粒径がマグネシアよりかなり小さい約5〜20μmで硬質(モース硬さ9)なアルミナを用いると、アルミナの粒径が小さいため、アルミナ(5〜15vol%の範囲)だけでも攻撃性を抑制しブレーキ制動時の摩擦材及び相手材(鉄系材料)摩耗量を少なくすることができる。マグネシアとアルミナとの2種類を組み合わせて併用することで、高い摩擦係数を確保し、制動時の摩擦材及び相手材攻撃性を抑制して摩耗量を少なくすることの両立が容易になる。
更に、潤滑材の黒鉛を多量に含有することにより主成分が鉄系材料であるのにもかかわらず相手材攻撃性を小さくすることができる。潤滑材の黒鉛を多量に含むため、結合材の働きをする金属成分が少なくなるが、放電プラズマ焼結やホットプレス等の加圧焼結法を用い、温度や圧力を調整して焼結条件を適正に設定することによって、焼結後の相対密度(焼結体密度/真密度の百分率)80%以上を確保することが可能になるため、鉄系材料間の結合力が強く、強度、耐摩耗性に優れている焼結摩擦材を得ることができる。
Since the sintered friction material by this invention is comprised as mentioned above, there exist the following effects. That is, the main component of the present invention is reduced iron powder, the other compounding materials use lubricants and abrasives, and no PRTR-designated chemical substances are used. A friction material excellent in terms of environmental protection can be provided.
As the main component, the reduced melting point is approximately 300 ° C higher than cast iron powder and low carbon and soft reduced iron powder is used, so that a sintered friction material with excellent friction characteristics at high temperatures and low attack on the mating material is obtained. be able to.
Moreover, by adding aluminum, a thin film of aluminum is formed at the friction interface, and the same kind of friction between iron in the friction material and iron in the counterpart material (mainly iron-based materials such as ordinary cast iron, low alloy steel, stainless steel, etc.). Can be prevented. With the above synergistic effect, a necessary friction coefficient can be secured, and wear mats of the friction material and the counterpart material can be reduced. When adding aluminum, by adding fine alumina with a high melting point with an average particle size of 0.3-2 μm, it contributes to the improvement of the heat resistance strength of the low melting point aluminum and improves the wear resistance under high load conditions. be able to.
In addition, as an abrasive material as another compounding material, an average particle diameter of about 50 to 250 μm and a magnesia that is not so hard as ceramics (Morse hardness 6) are used, so that a friction material and a counterpart material ( The amount of wear can be reduced without damaging the iron-based material, and a high coefficient of friction can be secured. Furthermore, when using hard alumina with a mean particle size of about 5 to 20 μm, which is considerably smaller than magnesia (Mohs hardness 9), the alumina particle size is small, so that only the alumina (range of 5 to 15 vol%) suppresses aggressiveness. The friction material and the counterpart material (iron-based material) wear during braking can be reduced. By combining and using two types of magnesia and alumina, it is easy to ensure a high coefficient of friction and to reduce the amount of wear by suppressing the friction material and the counterpart material aggression during braking.
Furthermore, by containing a large amount of the graphite of the lubricant, it is possible to reduce the attack of the counterpart material despite the fact that the main component is an iron-based material. Since the lubricant contains a large amount of graphite, the metal component that acts as a binder is reduced, but the sintering conditions can be adjusted by adjusting the temperature and pressure using a pressure sintering method such as spark plasma sintering or hot pressing. By appropriately setting, it becomes possible to ensure a relative density after sintering (percentage of sintered body density / true density) of 80% or more, so that the bonding force between iron-based materials is strong, A sintered friction material having excellent wear resistance can be obtained.

以下に、実施例を挙げて、本発明による焼結摩擦材を更に、詳細に説明する。   Hereinafter, the sintered friction material according to the present invention will be described in more detail with reference to examples.

まず、原材料として平均粒径約160μmの還元鉄粉と、平均粒径約190μmのマグネシア粉末と、平均粒径約12μmのアルミナ粉末と、平均粒径約170μmの天然黒鉛粉末と、平均粒径約240μmの人造黒鉛粉末と、平均粒径約22μmのアルミニウム粉末を用意した。   First, reduced iron powder having an average particle size of about 160 μm, magnesia powder having an average particle size of about 190 μm, alumina powder having an average particle size of about 12 μm, natural graphite powder having an average particle size of about 170 μm, and an average particle size of about An artificial graphite powder of 240 μm and an aluminum powder having an average particle size of about 22 μm were prepared.

次に、上記の各原材料を表1に試料記号C1〜C3で示す配合(鋳鉄粉を還元鉄粉に変えたので、鋳鉄粉中に含有していた黒鉛相当量分を増量)に各々秤量後、撹拌らい潰機((株)石川工場製)を用い、混合時の偏析を防ぐため混合物に4%のメタノールを添加して10分間混合することにより混合粉末を作製した。なお、比較材として現在量産されている銅系焼結材Aの混合粉末と、鋳鉄粉を基材とした配合の代表例Bの混合粉末も用意した。   Next, after weighing each of the above-mentioned raw materials into the composition indicated by sample symbols C1 to C3 in Table 1 (the cast iron powder was changed to reduced iron powder, the equivalent amount of graphite contained in the cast iron powder was increased). In order to prevent segregation during mixing, a mixed powder was prepared by adding 4% methanol to the mixture and mixing for 10 minutes using a stirring grinder (produced by Ishikawa Factory). In addition, the mixed powder of the copper-type sintered material A currently mass-produced as a comparison material and the mixed powder of the representative example B of the mixing | blending which used cast iron powder as a base material were also prepared.

更に、各混合粉末を23mm×35mmのキャビティを有する黒鉛型に充填し、放電プラズマ焼結装置(住友石炭鉱業製、型式SPS−515S)を用い、圧力14MPa、昇温速度100℃/min、焼結温度800〜1150℃、保持時間5minの条件で焼結を行った。なお、銅系焼結材Aの配合材は量産材と同条件で作製するため、バッチ式焼結炉(昇温速度10〜20℃/min、加圧0.7MPa)でも焼結を行い、放電プラズマ焼結装置で焼結したものと比較した。   Further, each mixed powder is filled into a graphite mold having a cavity of 23 mm × 35 mm, and a discharge plasma sintering apparatus (manufactured by Sumitomo Coal Mining Co., Ltd., model SPS-515S) is used. Sintering was performed under conditions of a sintering temperature of 800 to 1150 ° C. and a holding time of 5 minutes. In addition, since the compounding material of the copper-based sintered material A is produced under the same conditions as the mass-produced material, it is also sintered in a batch-type sintering furnace (temperature increase rate: 10-20 ° C./min, pressure: 0.7 MPa), It was compared with that sintered by a discharge plasma sintering apparatus.

焼結後、各焼結体の相対密度(焼結体の見掛け密度/焼結体の真密度の百分率)、硬さを測定し、その中から代表的な試料を選別し、ブレーキ性能試験を行い、摩擦係数、摩擦材及び相手材摩耗量を求めた。焼結体の見掛け密度は大気及び水中の重量から算出し、真密度は原材料の真密度と配合割合から算出した。硬さはロックウェル硬さ試験機のSスケール(HRS)で測定した。ブレーキ性能試験は当社所有の1/10スケールテスタ試験機を用いて実施した。   After sintering, measure the relative density of each sintered body (apparent density of sintered body / percentage of true density of sintered body) and hardness, select a representative sample from them, and perform a brake performance test. The friction coefficient, the friction material and the wear amount of the counterpart material were determined. The apparent density of the sintered body was calculated from the weight in the air and water, and the true density was calculated from the true density of the raw materials and the blending ratio. Hardness was measured with the S scale (HRS) of a Rockwell hardness tester. The brake performance test was conducted using a 1/10 scale tester tester owned by our company.

表1に代表的な試料の配合、焼結条件、相対密度、硬さとブレーキ性能試験における平均摩擦係数、摩擦材と相手材の摩耗量を示す。

Figure 2007107066
Table 1 shows the composition of typical samples, sintering conditions, relative density, hardness and average friction coefficient in the brake performance test, and the wear amount of the friction material and the counterpart material.
Figure 2007107066

還元鉄粉を主成分とした本発明品C1〜C3の摩擦係数は、鋳鉄粉を主成分とした比較材Bよりは低いが、現行の銅系焼結材Aと同等であり、摩擦材及び相手材摩耗量はBよりも少なかつた。
配合の摩擦試験結果に与える影響から判断して、配合粉末の各成分の適正範囲は下記の通りである。
還元鉄粉:26〜53vol%、
アルミニウム:5〜20vol%
(但し、還元鉄+アルミニウム:46〜58vol%の範囲)、
マグネシア(平均粒径50〜250μm):0〜10vol%、
アルミナ(平均粒径5〜20μm):2〜10vol%
(但し、マグネシア+アルミナ:5〜15vol%の範囲)、
黒鉛:30〜45vol%
ここで各成分の範囲設定の理由は、還元鉄が26vol%未満では摩擦材中の結合力不足により摩擦材摩耗量が急激に増加し、53vol%を越えると他の成分が不足し問題点が生じる。
The friction coefficient of the present invention products C1 to C3 mainly composed of reduced iron powder is lower than that of the comparative material B mainly composed of cast iron powder, but is equivalent to the current copper-based sintered material A. The amount of wear of the counterpart material was less than B.
Judging from the effects of blending on the friction test results, the appropriate ranges for each component of the blended powder are as follows.
Reduced iron powder: 26-53 vol%,
Aluminum: 5-20 vol%
(However, reduced iron + aluminum: range of 46-58 vol%),
Magnesia (average particle size 50-250 μm): 0-10 vol%,
Alumina (average particle size 5-20 μm): 2-10 vol%
(However, magnesia + alumina: in the range of 5-15 vol%),
Graphite: 30-45 vol%
Here, the reason for setting the range of each component is that if the reduced iron is less than 26 vol%, the friction material wear amount rapidly increases due to insufficient binding force in the friction material, and if it exceeds 53 vol%, other components are insufficient and there is a problem. Arise.

マグネシア粉末が10vol%を超えると相手材摩耗量が増加する。黒鉛粉末が30vol%未満の場合、潤滑効果が低下するため摩擦材及び相手材摩耗量ともに増加し、45vol%を越えた場合は摩擦係数の低下が大きくなる。またアルミニウムが5vol%未満では同種摩擦回避が不十分で摩擦材及び相手材摩耗量が多くなり、20vol%を越えると摩擦係数の低下が顕著になる。   When the magnesia powder exceeds 10 vol%, the wear amount of the counterpart material increases. When the graphite powder is less than 30 vol%, the lubrication effect decreases, so both the friction material and the counterpart material wear amount increase, and when it exceeds 45 vol%, the friction coefficient decreases greatly. If the aluminum content is less than 5 vol%, the same kind of friction avoidance is insufficient, and the wear amount of the friction material and the mating material increases. If the aluminum content exceeds 20 vol%, the friction coefficient significantly decreases.

実施例1を基本として、アルミニウムの強化材として微細アルミナを添加した例を実施例2として、以下に説明する。まず、原材料として、実施例1の場合に用意した原料に加えて、平均粒径約1.2μmの微細アルミナ粉末を用意した。   An example in which fine alumina is added as a reinforcing material for aluminum on the basis of Example 1 will be described below as Example 2. First, in addition to the raw material prepared in the case of Example 1, fine alumina powder having an average particle size of about 1.2 μm was prepared as a raw material.

各原料の秤量と混合による混合粉末の作製については、実施例1の場合と同様である。作製した混合粉末の焼結についても、焼結条件を含めて実施例1の場合と同様である。焼結して得られた摩擦材の相対密度や硬さの測定、摩擦係数、摩擦材及び相手材の摩耗量、並びにブレーキ試験の条件についても実施例1の場合と同様である。   The weighing of each raw material and the production of the mixed powder by mixing are the same as in Example 1. The sintering of the produced mixed powder is the same as that in Example 1 including the sintering conditions. The measurement of the relative density and hardness of the friction material obtained by sintering, the friction coefficient, the wear amount of the friction material and the counterpart material, and the conditions of the brake test are the same as in the case of Example 1.

実施例2による焼結摩擦材は、試料番号C4〜C8についてのものであり、その原材料の配合、焼結条件、特性値が示されている。微細アルミナを添加した本実施例品C4〜C8の摩擦係数については、銅系現行焼結材A、及び還元鉄粉基材C1〜C3よりも高く、摩擦材摩耗量については銅系現行焼結材Aと同等で鋳鉄を基材とした焼結材B及び還元鉄粉基材C1〜C3よりも少なく、相手材摩耗量については銅系現行焼結材A、鋳鉄を基材とした焼結材B、及び還元鉄粉基材C1〜C3よりも少なかった。   The sintered friction material according to Example 2 is for sample numbers C4 to C8, and the blending of raw materials, sintering conditions, and characteristic values are shown. The friction coefficient of the present example products C4 to C8 to which fine alumina is added is higher than that of the copper-based current sintered material A and the reduced iron powder base materials C1 to C3, and the friction material wear amount is the copper-based current sintered material. Sintered material B equivalent to material A and less than sintered material B based on cast iron and reduced iron powder base materials C1 to C3. It was less than the material B and the reduced iron powder bases C1 to C3.

配合の摩擦試験結果に与える影響から判断して、配合粉末の各成分の適正範囲は下記の通りである。
還元鉄粉 :26〜53vol%、
アルミニウム:5〜20vol%、
微細アルミナ(平均粒径0.3〜2μm):2〜7vol%
(但し、還元鉄+アルミニウム+微細アルミナ:46〜60vol%の範囲)、
マグネシア(平均粒径50〜250μm):0〜10vol%、
アルミナ(平均粒径5〜20μm):2〜10vol%
(但し、マグネシア十アルミナ:5〜15vol%の範囲)、
黒鉛:30〜45vol%
この配合粉末を焼結して得られる焼結摩擦材は、摩擦係数が高く、ブレーキ制動時の摩擦材及び相手材(鉄系材料)摩耗量を少なくすることができる。また、平均粒径が約0.3〜2μmの微細アルミナ(2〜7vol%)を添加しているので、ブレーキ制動時の摩擦材及び相手材(鉄系材料)摩耗量を少なくすることができる。
Judging from the effects of blending on the friction test results, the appropriate ranges for each component of the blended powder are as follows.
Reduced iron powder: 26-53 vol%,
Aluminum: 5-20 vol%,
Fine alumina (average particle size 0.3-2 μm): 2-7 vol%
(However, reduced iron + aluminum + fine alumina: range of 46-60 vol%),
Magnesia (average particle size 50-250 μm): 0-10 vol%,
Alumina (average particle size 5-20 μm): 2-10 vol%
(However, magnesia plus 10 alumina: a range of 5 to 15 vol%),
Graphite: 30-45 vol%
The sintered friction material obtained by sintering this blended powder has a high friction coefficient, and can reduce the wear amount of the friction material and the counterpart material (iron-based material) during braking. Moreover, since fine alumina (2-7 vol%) having an average particle size of about 0.3-2 μm is added, the friction material and the counterpart material (iron-based material) wear during braking can be reduced. .

Claims (8)

金属材料をマトリックスとし潤滑材と研削材とを含む焼結摩擦材において、前記金属材料として還元鉄粉を使用したことから成る焼結摩擦材。   A sintered friction material comprising a metal material as a matrix, a sintered friction material comprising a lubricant and an abrasive, wherein reduced iron powder is used as the metal material. 前記金属材料として、更にアルミニウム粉を含むことから成る請求項1に記載の焼結摩擦材。   The sintered friction material according to claim 1, further comprising aluminum powder as the metal material. 前記還元鉄粉の含有量が26〜53vol%であり、前記アルミニウム粉の含有量が5〜20vol%であり、前記還元鉄粉と前記アルミニウム粉との合計含有量が46〜60vol%であることから成る請求項2に記載の焼結摩擦材。   The content of the reduced iron powder is 26 to 53 vol%, the content of the aluminum powder is 5 to 20 vol%, and the total content of the reduced iron powder and the aluminum powder is 46 to 60 vol%. The sintered friction material according to claim 2, comprising: 前記アルミニウムの強化材として、平均粒径0.3〜2μmの微細アルミナを2〜10vol%含むことから成る請求項2又は3に記載の焼結摩擦材。   The sintered friction material according to claim 2 or 3, comprising 2 to 10 vol% of fine alumina having an average particle diameter of 0.3 to 2 µm as the aluminum reinforcing material. 前記研削材として、平均粒径50〜250μmのマグネシア10vol%以下を含むことから成る請求項1に記載の焼結摩擦材。   The sintered friction material according to claim 1, comprising 10 vol% or less of magnesia having an average particle diameter of 50 to 250 μm as the abrasive. 前記研削材として、更に、平均粒径5〜20μmのアルミナを2〜10vol%含み、前記マグネシアとの合計含有量が5〜15vol%であることから成る請求項5に記載の焼結摩擦材。   The sintered friction material according to claim 5, further comprising 2 to 10 vol% of alumina having an average particle diameter of 5 to 20 μm as the abrasive, and a total content with the magnesia of 5 to 15 vol%. 前記還元鉄粉、前記潤滑材及び前記研削材から成る配合粉末を加圧焼結して成る請求項1に記載の焼結摩擦材。   The sintered friction material according to claim 1, wherein the powder mixture comprising the reduced iron powder, the lubricant and the abrasive is subjected to pressure sintering. 前記焼結摩擦材の相対密度が80%以上であることから成る請求項7に記載の焼結摩擦材。   The sintered friction material according to claim 7, wherein a relative density of the sintered friction material is 80% or more.
JP2005300813A 2005-10-14 2005-10-14 Sintered friction material Pending JP2007107066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005300813A JP2007107066A (en) 2005-10-14 2005-10-14 Sintered friction material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005300813A JP2007107066A (en) 2005-10-14 2005-10-14 Sintered friction material

Publications (1)

Publication Number Publication Date
JP2007107066A true JP2007107066A (en) 2007-04-26

Family

ID=38033159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005300813A Pending JP2007107066A (en) 2005-10-14 2005-10-14 Sintered friction material

Country Status (1)

Country Link
JP (1) JP2007107066A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2048405A3 (en) * 2007-10-10 2010-03-17 Miba Frictec GmbH Sinter brake lining

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2048405A3 (en) * 2007-10-10 2010-03-17 Miba Frictec GmbH Sinter brake lining
US8196719B2 (en) 2007-10-10 2012-06-12 Miba Frictec Gmbh Sintered brake lining

Similar Documents

Publication Publication Date Title
JP6032389B1 (en) Friction material
KR101596658B1 (en) Plain Bearing Material
CN107523716B (en) Sintered friction material for friction linings
WO2012133513A1 (en) Sintered friction material for high-speed rail
WO2016190403A1 (en) Sintered friction material for high speed railway vehicles and method for manufacturing same
JP2006016680A (en) Copper-based sintered friction material
JP6360270B1 (en) Sintered friction material for brake
JP2006348379A (en) Sintered metal friction material, and friction member
JP2008025018A (en) Sintering friction material
JP4589215B2 (en) Sintered friction material
SI21465A (en) Friction material and procedure for manufacturing such a material as well as break pads, particularly break pads and procedure for their manufacture
JP2007126738A (en) Sintered frictional material
JPS5941380A (en) Castable metal complex friction material
JPH05179232A (en) Sintered metallic friction material for brake
JP2007107662A (en) Sintered friction material
Akıncıoğlu Evaluation of the effect of the novolac resin ratio on the high temperature performance of the brake pads
JP2007107068A (en) Sintered friction material
JP5214158B2 (en) Sintered friction material
JP5405725B2 (en) Sintered friction material
JP2007107066A (en) Sintered friction material
JP2007107067A (en) Copper based sintered friction material
JP2019163540A (en) Sinter friction material for high speed railway vehicle
JP2008138036A (en) Sintered friction material
JP2905731B2 (en) Brake lining material for tilting motor
JP2745699B2 (en) Copper-based sintered alloy with excellent wear resistance at high temperatures