JP2007107068A - Sintered friction material - Google Patents

Sintered friction material Download PDF

Info

Publication number
JP2007107068A
JP2007107068A JP2005300817A JP2005300817A JP2007107068A JP 2007107068 A JP2007107068 A JP 2007107068A JP 2005300817 A JP2005300817 A JP 2005300817A JP 2005300817 A JP2005300817 A JP 2005300817A JP 2007107068 A JP2007107068 A JP 2007107068A
Authority
JP
Japan
Prior art keywords
aluminum
vol
iron
friction material
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005300817A
Other languages
Japanese (ja)
Inventor
Katsuo Arai
勝男 新井
Noriyuki Arai
敬之 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akebono Brake Industry Co Ltd
Original Assignee
Akebono Brake Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akebono Brake Industry Co Ltd filed Critical Akebono Brake Industry Co Ltd
Priority to JP2005300817A priority Critical patent/JP2007107068A/en
Publication of JP2007107068A publication Critical patent/JP2007107068A/en
Pending legal-status Critical Current

Links

Landscapes

  • Braking Arrangements (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sintered friction material which does not comprise chemical substances designated in the PRTR (Pollutant Release and Transfer Resister) Act, and is excellent in a friction coefficient, strength, wear resistance and performance upon breaking such as low attackability to the mating material. <P>SOLUTION: The sintered friction material uses a metallic material as a matrix and comprises a lubricant and abrasives. By the incorporation of either or both of an iron/aluminum composite material and an aluminum/alumina composite material as a component, aluminum is compounded into the surface of iron powder, and, by the composite material, the friction of the same kind between iron in the friction material and iron in the mating material (an iron based material, mainly, of common cast iron, low alloy steel and stainless steel) can be prevented. Then, by the compounding of fine alumina into aluminum, aluminum is thermally reinforced, so as to improve its thermal strength. Thus, the sintered friction material having improved wear resistance can be obtained. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、自動車、二輪車、鉄道車両、産業機械等の制動装置に用いられるブレーキ用摩擦材に関する。   The present invention relates to a brake friction material used in a braking device for automobiles, two-wheeled vehicles, railway vehicles, industrial machines and the like.

従来、ブレーキ用の焼結摩擦材としては、銅を主成分とし、錫や時により鉄、ニッケル、亜鉛、アンチモン、クロム、鉛等を添加した金属を基材とし、それにアルミナ、ムライト、ジルコニア等のセラミックス研削材や黒鉛、二硫化モリブデン等の潤滑材を添加した焼結摩擦材が用いられている。この種の焼結摩擦材は、レジン系摩擦材より重く、高価で、ブレーキノイズが発生し易い等の要改善点があるが、レジン系摩擦材に比較して摩擦材が高温になる制動条件下でもフェード現象(高温下で制動時の摩擦係数が大幅に低下する現象)を起こさず安定した性能が得られ、強度、耐摩耗性も優れているという長所があるため、過酷な制動条件下でも高い摩擦性能を要求されるブレーキにはこれまで多く採用されている。   Conventionally, as a sintered friction material for brakes, copper is the main component, and tin or sometimes a metal added with iron, nickel, zinc, antimony, chromium, lead, etc. is used as a base material, and alumina, mullite, zirconia, etc. Ceramic friction materials and sintered friction materials to which lubricants such as graphite and molybdenum disulfide are added are used. This kind of sintered friction material is heavier than resin-based friction material, is expensive, and has the points to be improved such as the possibility of generating brake noise. Even under low conditions, it does not cause fade phenomenon (a phenomenon in which the friction coefficient during braking is greatly reduced at high temperatures), provides stable performance, and has excellent strength and wear resistance. However, it has been widely used for brakes that require high friction performance.

しかし近年、環境保護の観点からPRTR法(特定化学物質の環境への排出量の把握及び管理の改善の促進に関する法律)が制定され、ブレーキ用摩擦材として使用する材料も環境保護を考慮して、同法で定められている指定化学物質を用いないことが要求されるようになってきた。ところが、これまで焼結摩擦材の原材料として用いられている前記材料のうちで、鉄、セラミックス、黒鉛以外の材料はPRTR法の指定化学物質に設定されており、今後はできるだけ使用しないことが望まれている。   However, in recent years, the PRTR Law (Act on the Promotion of Improvement in Management and Management of Specific Chemical Substances Emissions from the Environmental Protection Perspective) has been enacted, and materials used as brake friction materials are also considered for environmental protection. However, it has been demanded not to use designated chemical substances stipulated by the law. However, among the materials used as raw materials for sintered friction materials so far, materials other than iron, ceramics, and graphite are set as designated chemical substances of the PRTR method, and it is hoped that they will not be used in the future. It is rare.

このような背景から、これまでもPRTR法の指定化学物質をできるだけ使用しない配合の焼結摩擦材の研究・開発が行われてきた。しかしこれまで主成分としていた銅や錫を使用せず、鉄系材料を主成分とした焼結摩擦材の場合には、ブレーキ制動による摩擦材の摩耗量や相手材(例えば、ブレーキディスク。主として普通鋳鉄、低合金鋼、ステンレス等の鉄系材料から成る。)の摩耗量が大幅に増加するという問題点があり、しかも、要求される摩擦係数を確保することができない。また鉄系材料以外でPRTR法の指定化学物質でないアルミニウム、マグネシウム、チタン等の材料は焼結摩擦材の主成分としては問題が多く、環境保護に優れた焼結摩擦材の実用化はなかなか困難であった。本出願人は、鋳鉄粉又は還元鉄粉を基材とした鉄系焼結摩擦材について発明し、銅系焼結摩擦材と同等の性能を得ている。しかしながら、高負荷条件の評価で銅系焼結摩擦材と同等までには至っていないことが判った。   Against this background, research and development have been carried out on sintered friction materials having a formulation that uses as little PRTR-designated chemical substances as possible. However, in the case of a sintered friction material mainly composed of an iron-based material without using copper or tin as the main component until now, the wear amount of the friction material due to brake braking or the counterpart material (for example, brake disc, mainly. There is a problem that the amount of wear of iron-based materials such as ordinary cast iron, low alloy steel, and stainless steel) greatly increases, and the required coefficient of friction cannot be ensured. In addition, materials such as aluminum, magnesium, and titanium that are not designated PRTR chemicals other than ferrous materials have many problems as the main components of sintered friction materials, and it is difficult to put sintered friction materials with excellent environmental protection into practical use. Met. The present applicant has invented an iron-based sintered friction material based on cast iron powder or reduced iron powder, and has obtained performance equivalent to that of a copper-based sintered friction material. However, it was found that the evaluation under high load conditions did not reach the same level as the copper-based sintered friction material.

高い摩擦係数を安定的に得ることを図ったブロンズ系の乾式焼結摩擦材料の一例が提案されている(特許文献1)。この乾式焼結摩擦材料は、重量比で銅60〜80%、錫3〜20%、アルミナ及び/又はシリカを3〜20%、黒鉛3〜10%、二硫化モリブデン1〜5%及びマンガン15%以下を含むものであり、マトリックス成分として構成されることにより、制動時摩擦係数を安定させ、相手板との間の発熱によって表面に硬質の酸化銅皮膜を形成して、水フェード現象及び熱フェード現象に対して抵抗性を有し、安定した摩擦面をうることを図っている。アルミナ、シリカは、高負荷、高温摩擦摺動に耐える目的で添加され、黒鉛、二硫化モリブデンは潤滑性向上も目的で添加され、マンガンは焼結中他金属の酸化皮膜を還元し、焼結性の向上目的で添加されている。   An example of a bronze-type dry sintered friction material that aims to stably obtain a high friction coefficient has been proposed (Patent Document 1). This dry-sintered friction material is 60-80% copper, 3-20% tin, 3-20% alumina and / or silica, 3-10% graphite, 1-5% molybdenum disulfide and 15 manganese. %, Which is composed as a matrix component, stabilizes the friction coefficient during braking, forms a hard copper oxide film on the surface by heat generation with the mating plate, water fading phenomenon and heat It has resistance to fading phenomenon and aims to obtain a stable friction surface. Alumina and silica are added for the purpose of withstanding high loads and high-temperature frictional sliding. Graphite and molybdenum disulfide are added for the purpose of improving lubricity. Manganese reduces and oxidizes oxide films of other metals during sintering. It is added for the purpose of improving the properties.

また、焼結摩擦材の別の例として、鉄系焼結体からなる有孔の本体部と、この本体部の孔内に固定された水溶液がアルカリ性を示すアルカリ性物質とを有する鉄系焼結摩擦材が提案されている(特許文献2)。摩擦材の骨格となる金属基材は、鉄を主成分とする材料であり、ステンレス、鋳鉄等の一般的な鉄系金属、これらの混合物、その他金属との混合物でとすることができる。潤滑材としては黒鉛、二硫化モリブデン等が例示されている。   Further, as another example of the sintered friction material, an iron-based sintered material having a perforated main body portion made of an iron-based sintered body and an alkaline substance in which an aqueous solution fixed in the hole of the main body portion exhibits alkalinity. A friction material has been proposed (Patent Document 2). The metal base material used as the skeleton of the friction material is a material mainly composed of iron, and can be a general iron-based metal such as stainless steel or cast iron, a mixture thereof, or a mixture with other metals. Examples of the lubricant include graphite and molybdenum disulfide.

焼結摩擦材の更に別の例として、銅又は銅合金をマトリックスとする焼結摩擦材であって、安定化ジルコニアを2〜20重量%含有するものが提案されている(特許文献3)。この焼結摩擦材によれば、銅系又は鉄系焼結摩擦材において、安定化ジルコニアを採用することで、広範な制動条件に対して適応性がよく、安定した摩擦係数が得られ、耐摩性、耐熱性がよく、相手材への攻撃性が少ない焼結摩擦材を得ることを図っている。
特公昭63−15976号公報(第2欄、第2行〜第4欄第1行) 特開2002−181095号公報(段落[0022]〜[0026]) 特許第2958493号公報
As another example of the sintered friction material, a sintered friction material containing copper or a copper alloy as a matrix and containing 2 to 20% by weight of stabilized zirconia has been proposed (Patent Document 3). According to this sintered friction material, by adopting stabilized zirconia in copper-based or iron-based sintered friction material, adaptability to a wide range of braking conditions is good, a stable friction coefficient is obtained, and wear resistance is improved. We aim to obtain a sintered friction material that is good in heat resistance and heat resistance, and has little attack on the mating material.
Japanese Examined Patent Publication No. 63-15976 (second column, second line to fourth column, first line) JP 2002-181095 A (paragraphs [0022] to [0026]) Japanese Patent No. 2958493

そこで、焼結摩擦材の原材料として、PRTR法の特定第一種指定化学物質である六価クロム化合物やニッケル化合物は勿論のこと、第一種指定化学物質である亜鉛、アンチモン、銅、錫、鉛、モリブデン等の材料をまったく使用しないことで、環境保護に貢献するとともに、主成分を鉄系材料とし、鉄の同種摩擦を防ぐためにアルミニウムを複合材の形で含む点で解決すべき課題がある。   Therefore, as a raw material of the sintered friction material, not only hexavalent chromium compounds and nickel compounds which are specified first class designated chemical substances of PRTR method, but also first class designated chemical substances zinc, antimony, copper, tin, There is a problem to be solved in that it does not use any material such as lead, molybdenum, etc., and contributes to environmental protection, and the main component is iron-based material and aluminum is included in the form of a composite material to prevent the same kind of iron friction. is there.

この発明の目的は、PRTR法の指定化学物質をまったく含まないことで、環境保護の面で好ましいとともに、摩擦係数、強度、耐摩耗性、相手材への低攻撃性等のブレーキ制動時の性能にも優れた焼結摩擦材を提供することである。   The object of the present invention is that it does not contain any PRTR-designated chemical substances, which is preferable in terms of environmental protection, and performance during braking, such as friction coefficient, strength, wear resistance, and low aggressiveness against the mating material. It is also to provide an excellent sintered friction material.

この発明による焼結摩擦材は、金属材料をマトリックスとし、潤滑材と研削材とを含む焼結摩擦材であり、鉄/アルミニウム複合材、又はアルミニウム/アルミナ複合材の一方又は両方の複合材を含むことから成っている。   The sintered friction material according to the present invention is a sintered friction material that includes a metal material as a matrix and includes a lubricant and an abrasive, and is composed of one or both of an iron / aluminum composite material and an aluminum / alumina composite material. Consists of including.

この焼結摩擦材は、従来の銅粉末が主体である摩擦材に代えて、鉄、ここでは還元鉄から形成された粉末をベースに構成されている。鉄系の焼結摩擦材は、ブレーキディスクのような相手材と同様の材料となるので、ブレーキを掛けるときの鉄系同種の摩擦摺動に起因して摩耗量が多くなる傾向にある。このような場合、摩擦摺動面間に異種材料を介在させると、固体潤滑材としての機能が働き、摩耗量が軽減できることが判っている。そこで、摩擦材の成分として鉄/アルミニウム複合材、又はアルミニウム/アルミナ複合材の一方又は両方の複合材を含むことで、鉄粉表面にアルミニウムが複合化される。この複合材により摩擦材中の鉄と相手材(主として普通鋳鉄、低合金鋼、ステンレス等の鉄系材料)中の鉄同士の同種摩擦が防げる。   This sintered friction material is based on a powder made of iron, here reduced iron, instead of a friction material mainly composed of conventional copper powder. Since the iron-based sintered friction material is the same material as the counterpart material such as a brake disk, the amount of wear tends to increase due to the same type of friction friction sliding when the brake is applied. In such a case, it is known that if a different material is interposed between the friction sliding surfaces, the function as a solid lubricant works and the amount of wear can be reduced. Then, aluminum is compounded on the iron powder surface by including one or both of an iron / aluminum composite material and an aluminum / alumina composite material as a component of the friction material. This composite material can prevent the same kind of friction between iron in the friction material and iron in the counterpart material (mainly iron-based material such as ordinary cast iron, low alloy steel, stainless steel, etc.).

この焼結摩擦材において、前記鉄/アルミニウム複合材は、還元鉄21〜46vol%及びアルミニウム3〜20vol%を含み、しかもその合計含有量が26〜58vol%であるとすることができる。融点が高い還元鉄粉を主成分とするため、高温下での摩擦特性が優れている。   In this sintered friction material, the iron / aluminum composite material may contain 21 to 46 vol% reduced iron and 3 to 20 vol% aluminum, and the total content thereof may be 26 to 58 vol%. Since the main component is reduced iron powder having a high melting point, the friction characteristics at high temperatures are excellent.

上記焼結摩擦材において、前記鉄/アルミニウム複合材を使用する場合は、鉄/アルミニウム複合材中のアルミニウムを含めたアルミニウム含有量は5〜25vol%とすることができる。   In the sintered friction material, when the iron / aluminum composite material is used, the aluminum content including aluminum in the iron / aluminum composite material can be 5 to 25 vol%.

この焼結摩擦材において、前記研削材として平均粒径50〜250μmのマグネシア10vol%以下を含み、且つ平均粒径5〜20μmのアルミナとの合計が5〜15vol%であり、前記潤滑材として黒鉛30〜45vol%を含むことができる。マグネシアは、マグネシウムの酸化物であって高硬度ではないセラミックスであり、相手材をあまり損傷することなく摩擦係数を確保する目的で配合される。マグネシアを含有する上記の焼結摩擦材において、前記研削成分として粒径5〜20μmのアルミナを更に含むことができる。マグネシアは硬度の低い材料であるので、摩擦係数を更に確保する目的で、硬度のより高いアルミナを含有させることができる。この場合、アルミナの粒径をマグネシアの粒径よりも小さくしているので、相手材への攻撃性を低くすることができる。   In this sintered friction material, the abrasive material contains 10 vol% or less of magnesia having an average particle diameter of 50 to 250 μm, and the total with alumina having an average particle diameter of 5 to 20 μm is 5 to 15 vol%, and graphite as the lubricant 30-45 vol% can be included. Magnesia is a ceramic that is an oxide of magnesium and not high hardness, and is blended for the purpose of ensuring a coefficient of friction without damaging the counterpart material. In the sintered friction material containing magnesia, alumina having a particle diameter of 5 to 20 μm may further be included as the grinding component. Since magnesia is a material with low hardness, alumina having higher hardness can be contained for the purpose of further ensuring a friction coefficient. In this case, since the particle size of alumina is smaller than the particle size of magnesia, it is possible to reduce the aggressiveness to the counterpart material.

本焼結摩擦材において、前記アルミニウム/アルミナ複合材は、アルミニウム12〜20vol%及びアルミナ2〜8vol%を含み、しかもその合計含有量を18〜22vol%の範囲とすることができる。   In the present sintered friction material, the aluminum / alumina composite material contains aluminum in an amount of 12 to 20 vol% and alumina in an amount of 2 to 8 vol%, and the total content thereof can be in a range of 18 to 22 vol%.

この焼結摩擦材において、前記研削材として平均粒径50〜250μmのマグネシア10vol%以下を含み、且つ平均粒径5〜20μmのアルミナとの合計が5〜15vol%であり、前記潤滑材として黒鉛30〜45vol%を含むことができる。マグネシアは硬度の低い材料であるので、摩擦係数を更に確保する目的で、硬度がより高いがマグネシアの粒径よりも小さくいアルミナを含有させることができる。この場合、アルミナの粒径をマグネシアの粒径よりも小さくしているので、相手材への攻撃性を弱くすることができる。更に、潤滑材としての黒鉛は、通常よりも多量に含有することにより、相手材攻撃性を更に低下させることができる。   In this sintered friction material, the abrasive material contains 10 vol% or less of magnesia having an average particle diameter of 50 to 250 μm, and the total with alumina having an average particle diameter of 5 to 20 μm is 5 to 15 vol%, and graphite as the lubricant 30-45 vol% can be included. Since magnesia is a material with low hardness, for the purpose of further ensuring a friction coefficient, alumina having higher hardness but smaller than the particle size of magnesia can be contained. In this case, since the particle size of alumina is smaller than the particle size of magnesia, it is possible to weaken the aggressiveness to the counterpart material. Furthermore, the graphite as the lubricant can be further reduced in attacking the counterpart material by containing a larger amount than usual.

本焼結摩擦材において、前記鉄/アルミニウム複合材26〜58vol%と前記アルミニウム/アルミナ複合材18〜22vol%との合計含有量を40〜65vol%とすることができる。   In the present sintered friction material, the total content of the iron / aluminum composite material 26 to 58 vol% and the aluminum / alumina composite material 18 to 22 vol% can be 40 to 65 vol%.

上記焼結摩擦材において、前記研削材として平均粒径50〜250μmのマグネシア10vol%以下を含み、且つ平均粒径5〜20μmのアルミナとの合計が5〜15vol%であり、前記潤滑材として黒鉛30〜45vol%を含むことができる。   In the sintered friction material, the abrasive contains 10 vol% or less of magnesia having an average particle size of 50 to 250 μm, and the total with alumina having an average particle size of 5 to 20 μm is 5 to 15 vol%, and graphite as the lubricant 30-45 vol% can be included.

この発明による焼結摩擦材は、上記のように構成されているので、次のような効果を奏する。即ち、先ず、本発明品は主成分が鉄系材料で、他の配合材は鉄の同種摩擦を防ぐためのアルミニウム、潤滑材の黒鉛、研削材のマグネシアを使用しており、PRTR法の指定化学物質をまったく使用していないので、本焼結摩擦材は環境保護の点で優れた摩擦材を提供することができる。
また、鉄/アルミニウム複合材を使用することによって、摩擦界面にアルミの薄膜が形成され、摩擦材中の鉄と相手材(主として普通鋳鉄、低合金鋼、ステンレス等の鉄系材料)中の鉄同士の同種摩擦を防ぐことができる。特に、鉄系材料を還元鉄粉とし、熱処理で還元鉄粉表面にアルミニウムを複合化する場合には、この複合材により摩擦材中の鉄と相手材(主として普通鋳鉄、低合金鋼、ステンレス等の鉄系材料)中の鉄同士の同種摩擦を防ぐことができる。
また、複合材に含まれるアルミニウムの耐熱・耐摩耗性を向上させるため、アルミナ(Al2O3)複合材を焼結摩擦材に使用していることにより、耐摩耗性が向上する。即ち、鉄の同種摩擦を防ぐアルミニウムは融点が660℃と低い。高融点の微細アルミナをMA(メカニカルアロイング)で複合化することで、アルミニウムの耐熱性を向上することができる。この複合材はアルミニウム内部に高融点の微細アルミナを均一に分布させているため、アルミニウムの耐熱強度を効率良く向上させることができる。
また、鉄/アルミニウム複合材とアルミニウム/アルミナ複合材を併用することで、各々使用するより耐摩耗性を更に向上させることができる。
Since the sintered friction material by this invention is comprised as mentioned above, there exist the following effects. First of all, the product of the present invention is mainly composed of an iron-based material, and the other compounding materials use aluminum for preventing the same kind of friction of iron, graphite for lubricant, and magnesia for abrasive. Since no chemical substance is used, this sintered friction material can provide an excellent friction material in terms of environmental protection.
Moreover, by using an iron / aluminum composite material, an aluminum thin film is formed at the friction interface, and iron in the friction material and iron in the counterpart material (mainly iron-based materials such as ordinary cast iron, low alloy steel, stainless steel, etc.). The same kind of friction between each other can be prevented. In particular, when iron-based material is reduced iron powder and aluminum is combined on the surface of reduced iron powder by heat treatment, this composite material can be used for iron in the friction material and the counterpart material (mainly ordinary cast iron, low alloy steel, stainless steel, etc.) The same kind of friction between irons in the iron-based material) can be prevented.
Moreover, in order to improve the heat resistance and wear resistance of aluminum contained in the composite material, the wear resistance is improved by using an alumina (Al2O3) composite material for the sintered friction material. That is, aluminum that prevents the same kind of friction of iron has a low melting point of 660 ° C. By combining high melting point fine alumina with MA (mechanical alloying), the heat resistance of aluminum can be improved. Since this composite material uniformly distributes the high melting point fine alumina inside the aluminum, the heat resistance strength of the aluminum can be improved efficiently.
Further, by using the iron / aluminum composite material and the aluminum / alumina composite material in combination, the wear resistance can be further improved compared to the use of each.

以下に、実施例を挙げて、本発明による焼結摩擦材を更に、詳細に説明する。   Hereinafter, the sintered friction material according to the present invention will be described in more detail with reference to examples.

まず、原材料として平均粒径約190μmのマグネシア粉末と、平均粒径約12μmと平均粒径約1.2μmの微細なアルミナ粉末と、平均粒径約170μmの天然黒鉛粉末と、平均粒径約240μmの人造黒鉛粉末と、平均粒径約160μmの還元鉄粉と、平均粒径22μmのアルミニウム粉末とを用意し、複合材としては、還元鉄粉にアルミニウム粉末を熱処理した材質と、アルミニウム粉末に平均粒径約1.2μmと微細なアルミナ粉末をMAした材質を用意した。   First, magnesia powder having an average particle size of about 190 μm, fine alumina powder having an average particle size of about 12 μm and an average particle size of about 1.2 μm, natural graphite powder having an average particle size of about 170 μm, and an average particle size of about 240 μm. Of artificial graphite powder, reduced iron powder having an average particle size of about 160 μm, and aluminum powder having an average particle size of 22 μm. As a composite material, a material obtained by heat-treating aluminum powder to reduced iron powder and an average of aluminum powder A material made of MA made of fine alumina powder having a particle size of about 1.2 μm was prepared.

次に、上記の各原材料を表1に示す配合Cに各々秤量後、撹拌らい潰機((株)石川工場製)を用い、混合時の偏析を防ぐため混合物に4%のメタノールを添加して10分間混合することにより混合粉末を作製した。なお、比較材として現在量産されている銅系焼結材Aの混合粉末と、本出願人の考案によるところの還元鉄粉を基材に微細アルミナを添加した配合の代表例Bの混合粉末も用意した。   Next, after weighing each of the above raw materials into the blend C shown in Table 1, 4% methanol was added to the mixture to prevent segregation at the time of mixing using a stirring crusher (made by Ishikawa Factory). And mixed for 10 minutes to prepare a mixed powder. In addition, the mixed powder of the copper-based sintered material A currently mass-produced as a comparative material and the mixed powder of the representative example B in which fine alumina is added to the base of reduced iron powder as invented by the present applicant Prepared.

更に、各混合粉末を23mm×35mmのキャビティを有する黒鉛型に充填し、放電プラズマ焼結装置(住友石炭鉱業製、型式SPS−515S)を用い、圧力14MPa、昇温速度100℃/min、焼結温度800〜1150℃、保持時間5minの条件で焼結を行った。なお、A配合材は量産材と同条件で作製するため、バッチ式焼結炉(昇温速度10〜20℃/min、加圧0.7MPa)でも焼結を行い、放電プラズマ焼結装置で焼結したものと比較した。   Further, each mixed powder is filled into a graphite mold having a cavity of 23 mm × 35 mm, and a discharge plasma sintering apparatus (manufactured by Sumitomo Coal Mining Co., Ltd., model SPS-515S) is used. Sintering was performed under conditions of a sintering temperature of 800 to 1150 ° C. and a holding time of 5 minutes. In addition, since A compound material is produced on the same conditions as mass production material, it sinters also with a batch-type sintering furnace (temperature increase rate 10-20 degreeC / min, pressurization 0.7MPa), and it is a discharge plasma sintering apparatus. Compared to the sintered one.

焼結後、各焼結体の相対密度(焼結体の見掛け密度/焼結体の真密度の百分率)、硬さを測定した。またブレーキ性能試験を実施し、摩擦係数、摩擦材及び相手材摩耗量を求めた。焼結体の見掛け密度は大気及び水中の重量から算出し、真密度は原材料の真密度と配合割合から算出した。硬さはロックウェル硬さ試験機のSスケール(HR.S)で測定した。ブレーキ性能試験は当社所有の1/10スケールテスタ試験機を用いて実施した。   After sintering, the relative density (apparent density of sintered body / percentage of true density of sintered body) and hardness of each sintered body were measured. In addition, a brake performance test was conducted to determine the friction coefficient, the friction material, and the wear amount of the counterpart material. The apparent density of the sintered body was calculated from the weight in the air and water, and the true density was calculated from the true density of the raw materials and the blending ratio. Hardness was measured on the S scale (HR.S) of a Rockwell hardness tester. The brake performance test was conducted using a 1/10 scale tester tester owned by our company.

表1に焼結条件、相対密度、硬さとブレーキ性能試験における平均摩擦係数、摩擦材と相手材の摩耗量を示す。本実施例の試料は、試料記号C1〜C5で示されている。濃い方のハッチングを付した部分は鉄/アルミニウム複合材を示し、薄い方のハッチングを付した部分はアルミニウム/アルミナ複合材を示す。

Figure 2007107068
Table 1 shows the sintering conditions, relative density, hardness and average friction coefficient in the brake performance test, and the wear amount of the friction material and the counterpart material. Samples of this example are indicated by sample symbols C1 to C5. The darker hatched part represents an iron / aluminum composite, and the thinner hatched part represents an aluminum / alumina composite.
Figure 2007107068

配合の摩擦試験結果に与える影響から判断して、各成分の適正範囲は下記の通りであった。
鉄同士の同種摩擦を防ぐための鉄/アルミニウム複合材は、還元鉄粉:21〜46vol%、アルミニウム:3〜20vol%(但し、還元鉄粉+アルミニウム:26〜58vol%の範囲)の範囲である。
この場合の配合粉末は、
鉄/アルミニウム複合材:26〜58vol%
アルミニウム:5〜25vol%(Fe/Al複合材中のアルミニウムを含む)
微細アルミナ(平均粒径:0.3〜2μm):2〜7vol%
(但し、鉄/アルミニウム複合材+アルミニウム+微細アルミナ:28〜60vol%の範囲)
マグネシア(平均粒径50〜250μm):0〜10vol%
アルミナ(平均粒径5〜20μm):2〜10vol%
(但し、マグネシア+アルミナ:5〜15vol%の範囲)
黒鉛:30〜45vol%
この範囲で、摩擦材と相手材の摩耗量が少ない焼結摩擦材が得られる。
Judging from the effect of blending on the friction test results, the appropriate ranges for each component were as follows.
The iron / aluminum composite material for preventing the same kind of friction between irons is in the range of reduced iron powder: 21-46 vol%, aluminum: 3-20 vol% (however, reduced iron powder + aluminum: 26-58 vol%). is there.
In this case, the blended powder is
Iron / aluminum composite: 26-58 vol%
Aluminum: 5 to 25 vol% (including aluminum in Fe / Al composite)
Fine alumina (average particle size: 0.3-2 μm): 2-7 vol%
(However, iron / aluminum composite material + aluminum + fine alumina: range of 28-60 vol%)
Magnesia (average particle size 50-250 μm): 0-10 vol%
Alumina (average particle size 5-20 μm): 2-10 vol%
(However, magnesia + alumina: in the range of 5-15 vol%)
Graphite: 30-45 vol%
Within this range, a sintered friction material with a small amount of wear between the friction material and the counterpart material can be obtained.

また、アルミの耐熱・耐摩耗性を向上させるためのアルミニウム/アルミナ複合材は、アルミニウム:12〜20vol%、微細アルミナ:2〜8vol%(但し、アルミニウム+アルミナ:18〜22vol%の範囲)の範囲である。
この場合の配合粉末は、
アルミニウム/アルミナ複合材:18〜22vol%
還元鉄:26〜53vol%
マグネシア(平均粒径50〜250μm):0〜10vol%
アルミナ(平均粒径5〜20μm):2〜10vol%
(但し、マグネシア+アルミナ:5〜15vol%の範囲)
黒鉛:30〜45vol%
この範囲で、摩擦材と相手材の摩耗量が少ない焼結摩擦材が得られる。
Moreover, the aluminum / alumina composite material for improving the heat resistance and wear resistance of aluminum is aluminum: 12-20 vol%, fine alumina: 2-8 vol% (however, aluminum + alumina: range of 18-22 vol%). It is a range.
In this case, the blended powder is
Aluminum / alumina composite: 18-22 vol%
Reduced iron: 26-53 vol%
Magnesia (average particle size 50-250 μm): 0-10 vol%
Alumina (average particle size 5-20 μm): 2-10 vol%
(However, magnesia + alumina: in the range of 5-15 vol%)
Graphite: 30-45 vol%
Within this range, a sintered friction material with a small amount of wear between the friction material and the counterpart material can be obtained.

更に、上記両複合材を併用する場合の配合粉末は、
鉄/アルミニウム複合材:26〜58vol%
アルミニウム/アルミナ複合材:18〜22vol%
(但し、鉄/アルミニウム複合材+アルミニウム/アルミナ複合材:40〜65vol%の範囲)
マグネシア(平均粒径50〜250μm):0〜10vol%
アルミナ(平均粒径5〜20μm):2〜10vol%
(但し、マグネシア+アルミナ:5〜15vol%の範囲)
黒鉛:30〜45vol%
の範囲である。
Furthermore, when using both the above composite materials,
Iron / aluminum composite: 26-58 vol%
Aluminum / alumina composite: 18-22 vol%
(However, iron / aluminum composite material + aluminum / alumina composite material: range of 40 to 65 vol%)
Magnesia (average particle size 50-250 μm): 0-10 vol%
Alumina (average particle size 5-20 μm): 2-10 vol%
(However, magnesia + alumina: in the range of 5-15 vol%)
Graphite: 30-45 vol%
Range.

Claims (8)

金属材料をマトリックスとし、潤滑材と研削材とを含む焼結摩擦材において、鉄/アルミニウム複合材、又はアルミニウム/アルミナ複合材の一方又は両方の複合材を含むことから成る焼結摩擦材。   A sintered friction material comprising a metal material as a matrix and containing one or both of an iron / aluminum composite material and an aluminum / alumina composite material in a sintered friction material comprising a lubricant and an abrasive. 前記鉄/アルミニウム複合材は、還元鉄21〜46vol%及びアルミニウム3〜20vol%を含み、しかもその合計含有量が26〜58vol%であることから成る請求項1に記載の焼結摩擦材。   2. The sintered friction material according to claim 1, wherein the iron / aluminum composite material includes 21 to 46 vol% reduced iron and 3 to 20 vol% aluminum, and the total content thereof is 26 to 58 vol%. 前記鉄/アルミニウム複合材を使用する場合、前記鉄/アルミニウム複合材中のアルミニウムを含めたアルミニウムの含有量は5〜25vol%であることから成る請求項2に記載の焼結摩擦材。   The sintered friction material according to claim 2, wherein when the iron / aluminum composite material is used, the content of aluminum including aluminum in the iron / aluminum composite material is 5 to 25 vol%. 前記研削材として平均粒径50〜250μmのマグネシア10vol%以下を含み、且つ平均粒径5〜20μmのアルミナとの合計が5〜15vol%であり、前記潤滑材として黒鉛30〜45vol%を含むことから成る請求項3に記載の焼結摩擦材。   The abrasive contains 10 vol% or less of magnesia having an average particle size of 50 to 250 μm, and the total with alumina having an average particle size of 5 to 20 μm is 5 to 15 vol%, and contains 30 to 45 vol% of graphite as the lubricant. The sintered friction material according to claim 3, comprising: 前記アルミニウム/アルミナ複合材は、アルミニウム12〜20vol%及び平均粒径0.3〜2μmの微細アルミナ2〜8vol%を含み、しかもその合計含有量が18〜22vol%であることから成る請求項1に記載の焼結摩擦材。   The aluminum / alumina composite material comprises 12 to 20 vol% of aluminum and 2 to 8 vol% of fine alumina having an average particle diameter of 0.3 to 2 µm, and the total content thereof is 18 to 22 vol%. The sintered friction material described in 1. 前記研削材として平均粒径50〜250μmのマグネシア10vol%以下を含み、且つ平均粒径5〜20μmのアルミナとの合計が5〜15vol%であり、前記潤滑材として黒鉛30〜45vol%を含むことから成る請求項5に記載の焼結摩擦材。   The abrasive contains 10 vol% or less of magnesia having an average particle size of 50 to 250 μm, and the total with alumina having an average particle size of 5 to 20 μm is 5 to 15 vol%, and contains 30 to 45 vol% of graphite as the lubricant. The sintered friction material according to claim 5, comprising: 前記鉄/アルミニウム複合材26〜58vol%と前記アルミニウム/アルミナ複合材18〜22vol%との合計含有量が40〜65vol%であることから成る請求項1に記載の焼結摩擦材。   The sintered friction material according to claim 1, wherein the total content of the iron / aluminum composite material 26 to 58 vol% and the aluminum / alumina composite material 18 to 22 vol% is 40 to 65 vol%. 前記研削材として平均粒径50〜250μmのマグネシア10vol%以下を含み、且つ平均粒径5〜20μmのアルミナとの合計が5〜15vol%であり、前記潤滑材として黒鉛30〜45vol%を含むことから成る請求項7に記載の焼結摩擦材。   The abrasive contains 10 vol% or less of magnesia having an average particle size of 50 to 250 μm, and the total with alumina having an average particle size of 5 to 20 μm is 5 to 15 vol%, and contains 30 to 45 vol% of graphite as the lubricant. The sintered friction material according to claim 7, comprising:
JP2005300817A 2005-10-14 2005-10-14 Sintered friction material Pending JP2007107068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005300817A JP2007107068A (en) 2005-10-14 2005-10-14 Sintered friction material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005300817A JP2007107068A (en) 2005-10-14 2005-10-14 Sintered friction material

Publications (1)

Publication Number Publication Date
JP2007107068A true JP2007107068A (en) 2007-04-26

Family

ID=38033161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005300817A Pending JP2007107068A (en) 2005-10-14 2005-10-14 Sintered friction material

Country Status (1)

Country Link
JP (1) JP2007107068A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103484061A (en) * 2013-07-24 2014-01-01 盐城工学院 Phase-change alloy powder-doped resin-based friction material
CN103627932A (en) * 2013-12-16 2014-03-12 江苏大学 Novel particle-reinforced aluminum-base composite material and preparation method thereof
CN106756403A (en) * 2016-12-09 2017-05-31 大连圣洁真空技术开发有限公司开发区分公司 A kind of accurate combination broach processing technology
JP2022093578A (en) * 2019-03-27 2022-06-23 テーエムデー フリクション サービシス ゲーエムベーハー Friction lining

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103484061A (en) * 2013-07-24 2014-01-01 盐城工学院 Phase-change alloy powder-doped resin-based friction material
CN103484061B (en) * 2013-07-24 2015-04-22 盐城工学院 Phase-change alloy powder-doped resin-based friction material
CN103627932A (en) * 2013-12-16 2014-03-12 江苏大学 Novel particle-reinforced aluminum-base composite material and preparation method thereof
CN106756403A (en) * 2016-12-09 2017-05-31 大连圣洁真空技术开发有限公司开发区分公司 A kind of accurate combination broach processing technology
JP2022093578A (en) * 2019-03-27 2022-06-23 テーエムデー フリクション サービシス ゲーエムベーハー Friction lining
JP7462697B2 (en) 2019-03-27 2024-04-05 テーエムデー フリクション サービシス ゲーエムベーハー Friction Lining

Similar Documents

Publication Publication Date Title
Gultekin et al. The effects of applied load on the coefficient of friction in Cu-MMC brake pad/Al-SiCp MMC brake disc system
KR101596658B1 (en) Plain Bearing Material
EP3305927B1 (en) Sintered friction material for high speed railway vehicles and method for manufacturing same
CN108026800B (en) Sintered valve seat
JP6360270B1 (en) Sintered friction material for brake
JP2007107068A (en) Sintered friction material
JP2006348379A (en) Sintered metal friction material, and friction member
JP2008025018A (en) Sintering friction material
JP4589215B2 (en) Sintered friction material
SI21465A (en) Friction material and procedure for manufacturing such a material as well as break pads, particularly break pads and procedure for their manufacture
EP3875561A1 (en) Sintered friction material and method for producing sintered friction material
JPS5941380A (en) Castable metal complex friction material
JP2007126738A (en) Sintered frictional material
JP2007107662A (en) Sintered friction material
JP5214158B2 (en) Sintered friction material
JP5405725B2 (en) Sintered friction material
JPH05179232A (en) Sintered metallic friction material for brake
JP2007107067A (en) Copper based sintered friction material
Wu et al. Wear behavior of metal bond diamond composite with hollow spherical silica particles as pore former
JP2019163540A (en) Sinter friction material for high speed railway vehicle
JP2008138036A (en) Sintered friction material
JP2007107066A (en) Sintered friction material
US9783875B2 (en) Cast iron material and motor vehicle part made of the cast iron material
Asif et al. Wear characteristic of Al-based metal matrix composites used for heavy duty brake pad applications
Liu et al. A Novel Ti–6Al–4V–xSi Coating with Superior Wear and Oxidation Behavior