JP2001295004A - Iron base sintered alloy - Google Patents
Iron base sintered alloyInfo
- Publication number
- JP2001295004A JP2001295004A JP2000044082A JP2000044082A JP2001295004A JP 2001295004 A JP2001295004 A JP 2001295004A JP 2000044082 A JP2000044082 A JP 2000044082A JP 2000044082 A JP2000044082 A JP 2000044082A JP 2001295004 A JP2001295004 A JP 2001295004A
- Authority
- JP
- Japan
- Prior art keywords
- phase
- alloy
- iron
- mass
- hard alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、耐摩耗性に優れ
かつ相手攻撃性の少ない鉄基燒結合金に関するものであ
り、特に高温における耐摩耗性に優れかつ相手攻撃性の
少ない鉄基燒結合金に関するものであり、この発明の鉄
基燒結合金はバルブシート、バルブガイド、シンクロナ
イザーリング、ピストン耐摩環など高温に曝される各種
摺動機械部品を製造するために使用される。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an iron-base sintered metal having excellent abrasion resistance and low aggressiveness to a counterpart, and more particularly to an iron-based sintered metal having excellent abrasion resistance at a high temperature and low aggressiveness to a counterpart. The iron-base sintered metal of the present invention is used for manufacturing various sliding machine parts exposed to high temperatures, such as valve seats, valve guides, synchronizer rings, and piston rings.
【0002】[0002]
【従来の技術】Cuを含みFeを主成分とするFe−C
u系鉄基焼結合金は、各種摺動機械部品の製造に使用さ
れていることは知られている。例えば、Cu:8.0〜
15.0質量%、C:1.2〜2.0質量%を含有し、
残部がFeおよび不可避不純物からなる組成を有し、か
つFe基合金相およびCu基合金相からなる組織を有す
るFe−Cu系鉄基燒結合金は、シンクロナイザーリン
グの素材として使用されることが知られている(特開平
8−177879号公報参照)。このFe−Cu系鉄基
燒結合金は微細パーライト組織を有するFe基合金相お
よび遊離のCu基合金相からなる組織を有し、硬いFe
基合金相と軟らかいCu基合金相が混在しているところ
から、優れた強度および耐摩耗性を備えると共に安定し
た摩擦特性を有しているといわれている。2. Description of the Related Art Fe--C containing Cu and containing Fe as a main component
It is known that u-based iron-based sintered alloys are used for manufacturing various sliding machine parts. For example, Cu: 8.0-
15.0% by mass, C: 1.2 to 2.0% by mass,
It is known that Fe-Cu-based iron-based sintered binder having a balance of Fe and unavoidable impurities and a structure of an Fe-based alloy phase and a Cu-based alloy phase is used as a material for a synchronizer ring. (See JP-A-8-177879). The Fe-Cu-based iron-based sintered gold has a structure composed of an Fe-based alloy phase having a fine pearlite structure and a free Cu-based alloy phase, and has a hard Fe-based alloy phase.
Since the base alloy phase and the soft Cu-based alloy phase are mixed, it is said to have excellent strength and wear resistance and to have stable friction characteristics.
【0003】[0003]
【発明が解決しようとする課題】しかし、前記従来のF
e−Cu系鉄基焼結合金は、高温における耐摩耗性が十
分でなく、高温における耐摩耗性が一層優れると共に相
手攻撃性の小さいFe−Cu系鉄基焼結合金が求められ
ている。However, the conventional F
e-Cu-based iron-based sintered alloys do not have sufficient wear resistance at high temperatures, and there is a need for Fe-Cu-based iron-based sintered alloys that are more excellent in wear resistance at high temperatures and have low aggressiveness to the other party.
【0004】[0004]
【課題を解決するための手段】本発明者らは、高温にお
ける耐摩耗性に優れかつ相手材に対する相手攻撃性の少
ない鉄基燒結合金を得るべく研究を行っていたところ、
(a)Feを主成分とするFe基合金相をCuを主成分
とするCu基合金相で結合してなる素地中に硬質合金粒
子相が前記Fe基合金相により断面花びら状に包囲され
た状態で分散した組織を有する鉄基焼結合金は、高温下
において耐摩耗性に優れかつ相手攻撃性が小さくなる、
(b)前記組織を有する鉄基焼結合金は、Cu:10〜
40質量%、Co、Cr、Mo、W、Mn、V、Nb、
Siの内の1種または2種以上を合計で3〜35質量%
を必須成分として含有し、さらに必要に応じてNi:
0.1〜15質量%および/またはC:0.05〜3.
5質量%を含有し、残部:Feからなる組成であること
が好ましい、などの知見を得たのである。Means for Solving the Problems The inventors of the present invention have studied to obtain an iron-based sintered metal having excellent wear resistance at high temperatures and low aggressiveness to a mating material.
(A) A hard alloy particle phase is surrounded by the Fe-based alloy phase in a petal cross-section in a body formed by combining an Fe-based alloy phase mainly containing Fe with a Cu-based alloy phase mainly containing Cu. An iron-based sintered alloy having a structure dispersed in a state has excellent wear resistance and a low partner attack at high temperatures,
(B) The iron-based sintered alloy having the above structure is Cu: 10 to 10
40% by mass, Co, Cr, Mo, W, Mn, V, Nb,
3 to 35% by mass in total of one or more of Si
As an essential component, and optionally Ni:
0.1-15% by mass and / or C: 0.05-3.
It was found that the composition preferably contained 5% by mass and the balance: Fe.
【0005】この発明は、かかる知見にもとづいて成さ
れたものであって、(1)Feを主成分とするFe基合
金相をCuを主成分とするCu基合金相で結合してなる
素地中に硬質合金粒子相が分散した組織を有する鉄基焼
結合金であって、前記硬質合金粒子相は、前記素地中
に、断面花びら状のFe基合金相によりに包囲された状
態で分散している鉄基燒結合金、(2)Cu:10〜4
0質量%を含有し、さらにCo、Cr、Mo、W、M
n、V、Nb、Siの内の1種または2種以上を合計で
3〜35質量%を含有し、残りがFeおよび不可避不純
物からなる組成、並びにFeを主成分とするFe基合金
相をCuを主成分とするCu基合金相で結合してなる素
地中に硬質合金粒子相が分散した組織を有する鉄基焼結
合金であって、前記硬質合金粒子相は、前記素地中に、
断面花びら状のFe基合金相によりに包囲された状態で
分散している鉄基燒結合金、(3)Cu:10〜40質
量%、C:0.05〜3.5質量%を含有し、さらにC
o、Cr、Mo、W、Mn、V、Nb、Siの内の1種
または2種以上を合計で3〜35質量%を含有し、残り
がFeおよび不可避不純物からなる組成、並びにFeを
主成分とするFe基合金相をCuを主成分とするCu基
合金相で結合してなる素地中に硬質合金粒子相が分散し
た組織を有する鉄基焼結合金であって、前記硬質合金粒
子相は、前記素地中に、断面花びら状のFe基合金相に
よりに包囲された状態で分散している鉄基燒結合金、
(4)Cu:10〜40質量%、Ni:0.1〜15質
量%を含有し、さらにCo、Cr、Mo、W、Mn、
V、Nb、Siの内の1種または2種以上を合計で3〜
35質量%を含有し、残りがFeおよび不可避不純物か
らなる組成、並びにFeを主成分とするFe基合金相を
Cuを主成分とするCu基合金相で結合してなる素地中
に硬質合金粒子相が分散した組織を有する鉄基焼結合金
であって、前記硬質合金粒子相は、前記素地中に、断面
花びら状のFe基合金相によりに包囲された状態で分散
している鉄基燒結合金、(5)Cu:10〜40質量
%、Ni:0.1〜15質量%、C:0.05〜3.5
質量%を含有し、さらにCo、Cr、Mo、W、Mn、
V、Nb、Siの内の1種または2種以上を合計で3〜
35質量%を含有し、残りがFeおよび不可避不純物か
らなる組成、並びにFeを主成分とするFe基合金相を
Cuを主成分とするCu基合金相で結合してなる素地中
に硬質合金粒子相が分散した組織を有する鉄基焼結合金
であって、前記硬質合金粒子相は、前記素地中に、断面
花びら状のFe基合金相によりに包囲された状態で分散
している鉄基燒結合金、に特徴を有するものである。The present invention has been made on the basis of such findings, and (1) a substrate formed by combining an Fe-based alloy phase containing Fe as a main component with a Cu-based alloy phase containing Cu as a main component. An iron-based sintered alloy having a structure in which a hard alloy particle phase is dispersed therein, wherein the hard alloy particle phase is dispersed in the matrix while being surrounded by an Fe-based alloy phase having a petal cross section. (2) Cu: 10-4
0% by mass, and Co, Cr, Mo, W, M
One or more of n, V, Nb, and Si are contained in a total of 3 to 35% by mass, and the remainder is composed of Fe and unavoidable impurities, and a Fe-based alloy phase containing Fe as a main component. An iron-based sintered alloy having a structure in which a hard alloy particle phase is dispersed in a base formed by bonding a Cu-based alloy phase containing Cu as a main component, wherein the hard alloy particle phase is
(3) Cu: 10 to 40% by mass, C: 0.05 to 3.5% by mass, which is dispersed in a state surrounded by an Fe-based alloy phase having a petal cross section. Further C
One or more of o, Cr, Mo, W, Mn, V, Nb, and Si are contained in a total amount of 3 to 35% by mass, and the remainder is mainly composed of Fe and unavoidable impurities. An iron-based sintered alloy having a structure in which a hard alloy particle phase is dispersed in a body formed by combining an Fe-based alloy phase as a component with a Cu-based alloy phase containing Cu as a main component, wherein the hard alloy particle phase Is an iron-based sintered bond dispersed in the base material in a state surrounded by a Fe-based alloy phase having a petal cross section,
(4) Cu: 10 to 40% by mass, Ni: 0.1 to 15% by mass, and Co, Cr, Mo, W, Mn,
One, two or more of V, Nb, and Si are used in a total of 3 to
35% by mass, the balance being Fe and unavoidable impurities, and hard alloy particles in a matrix formed by combining an Fe-based alloy phase mainly composed of Fe with a Cu-based alloy phase mainly composed of Cu. An iron-based sintered alloy having a phase-dispersed structure, wherein the hard alloy particle phase is dispersed in the matrix in a state surrounded by an Fe-based alloy phase having a petal cross section. Alloy, (5) Cu: 10 to 40% by mass, Ni: 0.1 to 15% by mass, C: 0.05 to 3.5
% Of Co, Cr, Mo, W, Mn,
One, two or more of V, Nb, and Si are used in a total of 3 to
35% by mass, the balance being Fe and unavoidable impurities, and hard alloy particles in a matrix formed by combining an Fe-based alloy phase mainly composed of Fe with a Cu-based alloy phase mainly composed of Cu. An iron-based sintered alloy having a phase-dispersed structure, wherein the hard alloy particle phase is dispersed in the matrix in a state surrounded by an Fe-based alloy phase having a petal cross section. Alloys.
【0006】前記硬質合金粒子相は、マイクロビッカー
ス硬さ(以下、MHVという):500〜1700を有
することが好ましい。したがって、この発明は、(6)
Feを主成分とするFe基合金相をCuを主成分とする
Cu基合金相で結合してなる素地中に、MHV:500
〜1700の硬質合金粒子相が分散した組織を有する鉄
基焼結合金であって、前記硬質合金粒子相は、前記素地
中に、断面花びら状のFe基合金相によりに包囲された
状態で分散している鉄基燒結合金、(7)Cu:10〜
40質量%を含有し、さらにCo、Cr、Mo、W、M
n、V、Nb、Siの内の1種または2種以上を合計で
3〜35質量%を含有し、残りがFeおよび不可避不純
物からなる組成、並びにFeを主成分とするFe基合金
相をCuを主成分とするCu基合金相で結合してなる素
地中にMHV:500〜1700の硬質合金粒子相が分
散した組織を有する鉄基焼結合金であって、前記硬質合
金粒子相は、前記素地中に、断面花びら状のFe基合金
相によりに包囲された状態で分散している鉄基燒結合
金、(8)Cu:10〜40質量%、C:0.05〜
3.5質量%を含有し、さらにCo、Cr、Mo、W、
Mn、V、Nb、Siの内の1種または2種以上を合計
で3〜35質量%を含有し、残りがFeおよび不可避不
純物からなる組成、並びにFeを主成分とするFe基合
金相をCuを主成分とするCu基合金相で結合してなる
素地中にMHV:500〜1700の硬質合金粒子相が
分散した組織を有する鉄基焼結合金であって、前記硬質
合金粒子相は、前記素地中に、断面花びら状のFe基合
金相によりに包囲された状態で分散している鉄基燒結合
金、(9)Cu:10〜40質量%、Ni:0.1〜1
5質量%を含有し、さらにCo、Cr、Mo、W、M
n、V、Nb、Siの内の1種または2種以上を合計で
3〜35質量%を含有し、残りがFeおよび不可避不純
物からなる組成、並びにFeを主成分とするFe基合金
相をCuを主成分とするCu基合金相で結合してなる素
地中にMHV:500〜1700の硬質合金粒子相が分
散した組織を有する鉄基焼結合金であって、前記硬質合
金粒子相は、前記素地中に、断面花びら状のFe基合金
相によりに包囲された状態で分散している鉄基燒結合
金、(10)Cu:10〜40質量%、Ni:0.1〜1
5質量%、C:0.05〜3.5質量%を含有し、さら
にCo、Cr、Mo、W、Mn、V、Nb、Siの内の
1種または2種以上を合計で3〜35質量%を含有し、
残りがFeおよび不可避不純物からなる組成、並びにF
eを主成分とするFe基合金相をCuを主成分とするC
u基合金相で結合してなる素地中にMHV:500〜1
700の硬質合金粒子相が分散した組織を有する鉄基焼
結合金であって、前記硬質合金粒子相は、前記素地中
に、断面花びら状のFe基合金相によりに包囲された状
態で分散している鉄基燒結合金、に特徴を有するもので
ある。The hard alloy particle phase preferably has a micro Vickers hardness (hereinafter, referred to as MHV): 500 to 1700. Therefore, the present invention provides (6)
MHV: 500 in a substrate formed by combining an Fe-based alloy phase containing Fe as a main component with a Cu-based alloy phase containing Cu as a main component.
~ 1700 is an iron-based sintered alloy having a structure in which a hard alloy particle phase is dispersed, wherein the hard alloy particle phase is dispersed in the base material while being surrounded by a Fe-based alloy phase having a petal cross section. (7) Cu: 10
Co, Cr, Mo, W, M
One or more of n, V, Nb, and Si are contained in a total of 3 to 35% by mass, and the remainder is composed of Fe and unavoidable impurities, and a Fe-based alloy phase containing Fe as a main component. An iron-based sintered alloy having a structure in which a hard alloy particle phase having an MHV of 500 to 1700 is dispersed in a base material combined with a Cu-based alloy phase containing Cu as a main component, wherein the hard alloy particle phase is Iron-base sintered bonding metal dispersed in the base material while being surrounded by an Fe-based alloy phase having a petal cross section, (8) Cu: 10 to 40 mass%, C: 0.05 to
3.5% by mass, and further Co, Cr, Mo, W,
One or more of Mn, V, Nb, and Si are contained in a total of 3 to 35% by mass, and the remainder is composed of Fe and unavoidable impurities, and a Fe-based alloy phase containing Fe as a main component. An iron-based sintered alloy having a structure in which a hard alloy particle phase having an MHV of 500 to 1700 is dispersed in a base material combined with a Cu-based alloy phase containing Cu as a main component, wherein the hard alloy particle phase is Iron-based sintered bonding metal dispersed in a state surrounded by an Fe-based alloy phase having a petal cross section, (9) Cu: 10 to 40% by mass, Ni: 0.1 to 1
5% by mass, and Co, Cr, Mo, W, M
One or more of n, V, Nb, and Si are contained in a total of 3 to 35% by mass, and the remainder is composed of Fe and unavoidable impurities, and a Fe-based alloy phase containing Fe as a main component. An iron-based sintered alloy having a structure in which a hard alloy particle phase having an MHV of 500 to 1700 is dispersed in a base material combined with a Cu-based alloy phase containing Cu as a main component, wherein the hard alloy particle phase is Iron-based sintered bonding metal dispersed in a state surrounded by an Fe-based alloy phase having a petal cross section, (10) Cu: 10 to 40% by mass, Ni: 0.1 to 1
5% by mass, C: 0.05 to 3.5% by mass, and one or more of Co, Cr, Mo, W, Mn, V, Nb, and Si in a total amount of 3 to 35. % By mass,
The balance consisting of Fe and unavoidable impurities, and F
e-based Fe-based alloy phase to Cu-based
MHV: 500 to 1 in the base material combined with the u-base alloy phase
700 is an iron-based sintered alloy having a structure in which a hard alloy particle phase of 700 is dispersed, wherein the hard alloy particle phase is dispersed in the base material while being surrounded by an Fe-based alloy phase having a petal cross section. Iron-based sintered metal.
【0007】前記硬質合金粒子相は、Feを主成分とす
るFe基合金相をCuを主成分とするCu基合金相で結
合してなる素地中に5〜30容量%含まれていることが
一層好ましい、したがって、この発明は、(11)Feを
主成分とするFe基合金相をCuを主成分とするCu基
合金相で結合してなる素地中に、硬質合金粒子相が5〜
30容量%の割合で分散した組織を有する鉄基焼結合金
であって、前記硬質合金粒子相は、前記素地中に、断面
花びら状のFe基合金相によりに包囲された状態で分散
している鉄基燒結合金、(12)Cu:10〜40質量%
を含有し、さらにCo、Cr、Mo、W、Mn、V、N
b、Siの内の1種または2種以上を合計で3〜35質
量%を含有し、残りがFeおよび不可避不純物からなる
組成、並びにFeを主成分とするFe基合金相をCuを
主成分とするCu基合金相で結合してなる素地中に硬質
合金粒子相が5〜30容量%の割合で分散した組織を有
する鉄基焼結合金であって、前記硬質合金粒子相は、前
記素地中に、断面花びら状のFe基合金相によりに包囲
された状態で分散している鉄基燒結合金、(13)Cu:
10〜40質量%、C:0.05〜3.5質量%を含有
し、さらにCo、Cr、Mo、W、Mn、V、Nb、S
iの内の1種または2種以上を合計で3〜35質量%を
含有し、残りがFeおよび不可避不純物からなる組成、
並びにFeを主成分とするFe基合金相をCuを主成分
とするCu基合金相で結合してなる素地中に硬質合金粒
子相が5〜30容量%の割合で分散した組織を有する鉄
基焼結合金であって、前記硬質合金粒子相は、前記素地
中に、断面花びら状のFe基合金相によりに包囲された
状態で分散している鉄基燒結合金、(14)Cu:10〜
40質量%、Ni:0.1〜15質量%を含有し、さら
にCo、Cr、Mo、W、Mn、V、Nb、Siの内の
1種または2種以上を合計で3〜35質量%を含有し、
残りがFeおよび不可避不純物からなる組成、並びにF
eを主成分とするFe基合金相をCuを主成分とするC
u基合金相で結合してなる素地中に硬質合金粒子相が5
〜30容量%の割合で分散した組織を有する鉄基焼結合
金であって、前記硬質合金粒子相は、前記素地中に、断
面花びら状のFe基合金相によりに包囲された状態で分
散している鉄基燒結合金、(15)Cu:10〜40質量
%、Ni:0.1〜15質量%、C:0.05〜3.5
質量%を含有し、さらにCo、Cr、Mo、W、Mn、
V、Nb、Siの内の1種または2種以上を合計で3〜
35質量%を含有し、残りがFeおよび不可避不純物か
らなる組成、並びにFeを主成分とするFe基合金相を
Cuを主成分とするCu基合金相で結合してなる素地中
に硬質合金粒子相が5〜30容量%の割合で分散した組
織を有する鉄基焼結合金であって、前記硬質合金粒子相
は、前記素地中に、断面花びら状のFe基合金相により
に包囲された状態で分散している鉄基燒結合金、に特徴
を有するものである。[0007] The hard alloy particle phase may be contained in an amount of 5 to 30% by volume in a matrix formed by combining an Fe-based alloy phase containing Fe as a main component with a Cu-based alloy phase containing Cu as a main component. More preferably, therefore, the present invention provides (11) a hard alloy particle phase having a hardness of 5 to 5 in a base material obtained by combining an Fe-based alloy phase mainly containing Fe with a Cu-based alloy phase mainly containing Cu.
An iron-based sintered alloy having a structure dispersed at a rate of 30% by volume, wherein the hard alloy particle phase is dispersed in the base material while being surrounded by an Fe-based alloy phase having a petal cross section. (12) Cu: 10 to 40% by mass
And Co, Cr, Mo, W, Mn, V, N
b, a composition containing a total of 3 to 35% by mass of one or more of Si, the balance being Fe and unavoidable impurities, and a Fe-based alloy phase containing Fe as a main component containing Cu as a main component. An iron-based sintered alloy having a structure in which a hard alloy particle phase is dispersed at a ratio of 5 to 30% by volume in a base formed by bonding with a Cu-based alloy phase, wherein the hard alloy particle phase is (13) Cu: iron-based sintered bonding metal dispersed in a state surrounded by an Fe-based alloy phase having a petal cross section.
10 to 40% by mass, C: 0.05 to 3.5% by mass, and Co, Cr, Mo, W, Mn, V, Nb, S
a composition comprising a total of 3 to 35% by mass of one or more of i, and a balance of Fe and unavoidable impurities;
An iron-based alloy having a structure in which a hard alloy particle phase is dispersed at a ratio of 5 to 30% by volume in a base material obtained by combining an Fe-based alloy phase mainly containing Fe with a Cu-based alloy phase mainly containing Cu; A sintered alloy, wherein the hard alloy particle phase is dispersed in the matrix in a state surrounded by an Fe-based alloy phase having a petal cross section, and (14) Cu: 10
40% by mass, Ni: 0.1 to 15% by mass, and one or more of Co, Cr, Mo, W, Mn, V, Nb, and Si in a total amount of 3 to 35% by mass. Containing
The balance consisting of Fe and unavoidable impurities, and F
e-based Fe-based alloy phase to Cu-based
The hard alloy particle phase is 5
An iron-based sintered alloy having a structure dispersed at a rate of about 30% by volume, wherein the hard alloy particle phase is dispersed in the matrix while being surrounded by a Fe-based alloy phase having a petal cross section. (15) Cu: 10 to 40% by mass, Ni: 0.1 to 15% by mass, C: 0.05 to 3.5%
% Of Co, Cr, Mo, W, Mn,
One, two or more of V, Nb, and Si are used in a total of 3 to
35% by mass, the balance being Fe and unavoidable impurities, and hard alloy particles in a matrix formed by combining an Fe-based alloy phase mainly composed of Fe with a Cu-based alloy phase mainly composed of Cu. An iron-based sintered alloy having a structure in which phases are dispersed at a ratio of 5 to 30% by volume, wherein the hard alloy particle phase is surrounded by an Fe-based alloy phase having a petal cross section in the base material. , Which is characterized by being dispersed in the iron-based sintered bond.
【0008】前記MHV:500〜1700を有する硬
質合金粒子相は、Feを主成分とするFe基合金相をC
uを主成分とするCu基合金相で結合してなる素地中に
5〜30容量%含まれていることがさらに一層好まし
い、したがって、この発明は、(16)Feを主成分とす
るFe基合金相をCuを主成分とするCu基合金相で結
合してなる素地中に、MHV:500〜1700を有す
る硬質合金粒子相が5〜30容量%の割合で分散した組
織を有する鉄基焼結合金であって、前記硬質合金粒子相
は、前記素地中に、断面花びら状のFe基合金相により
に包囲された状態で分散している鉄基燒結合金、(17)
Cu:10〜40質量%を含有し、さらにCo、Cr、
Mo、W、Mn、V、Nb、Siの内の1種または2種
以上を合計で3〜35質量%を含有し、残りがFeおよ
び不可避不純物からなる組成、並びにFeを主成分とす
るFe基合金相をCuを主成分とするCu基合金相で結
合してなる素地中にMHV:500〜1700の硬質合
金粒子相が5〜30容量%の割合で分散した組織を有す
る鉄基焼結合金であって、前記硬質合金粒子相は、前記
素地中に、断面花びら状のFe基合金相によりに包囲さ
れた状態で分散している鉄基燒結合金、(18)Cu:1
0〜40質量%、C:0.05〜3.5質量%を含有
し、さらにCo、Cr、Mo、W、Mn、V、Nb、S
iの内の1種または2種以上を合計で3〜35質量%を
含有し、残りがFeおよび不可避不純物からなる組成、
並びにFeを主成分とするFe基合金相をCuを主成分
とするCu基合金相で結合してなる素地中にMHV:5
00〜1700の硬質合金粒子相が5〜30容量%の割
合で分散した組織を有する鉄基焼結合金であって、前記
硬質合金粒子相は、前記素地中に、断面花びら状のFe
基合金相によりに包囲された状態で分散している鉄基燒
結合金、(19)Cu:10〜40質量%、Ni:0.1
〜15質量%を含有し、さらにCo、Cr、Mo、W、
Mn、V、Nb、Siの内の1種または2種以上を合計
で3〜35質量%を含有し、残りがFeおよび不可避不
純物からなる組成、並びにFeを主成分とするFe基合
金相をCuを主成分とするCu基合金相で結合してなる
素地中にMHV:500〜1700の硬質合金粒子相が
5〜30容量%の割合で分散した組織を有する鉄基焼結
合金であって、前記硬質合金粒子相は、前記素地中に、
断面花びら状のFe基合金相によりに包囲された状態で
分散している鉄基燒結合金、(20)Cu:10〜40質
量%、Ni:0.1〜15質量%、C:0.05〜3.
5質量%を含有し、さらにCo、Cr、Mo、W、M
n、V、Nb、Siの内の1種または2種以上を合計で
3〜35質量%を含有し、残りがFeおよび不可避不純
物からなる組成、並びにFeを主成分とするFe基合金
相をCuを主成分とするCu基合金相で結合してなる素
地中にMHV:500〜1700の硬質合金粒子相が5
〜30容量%の割合で分散した組織を有する鉄基焼結合
金であって、前記硬質合金粒子相は、前記素地中に、断
面花びら状のFe基合金相によりに包囲された状態で分
散している鉄基燒結合金、に特徴を有するものである。[0008] The hard alloy particle phase having MHV: 500 to 1700 is an Fe-based alloy phase containing Fe as a main component.
It is even more preferable that the base material combined with a Cu-based alloy phase containing u as a main component contains 5 to 30% by volume. Iron-based sintering having a structure in which a hard alloy particle phase having an MHV of 500 to 1700 is dispersed at a ratio of 5 to 30% by volume in a base material obtained by combining an alloy phase with a Cu-based alloy phase containing Cu as a main component. (17) a binder metal, wherein the hard alloy particle phase is dispersed in the matrix in a state surrounded by a Fe-based alloy phase having a petal cross section,
Cu: 10 to 40% by mass, and further Co, Cr,
One or more of Mo, W, Mn, V, Nb, and Si in a total amount of 3 to 35% by mass, with the balance being Fe and unavoidable impurities; Iron-base sintering bonding having a structure in which a hard alloy particle phase of MHV: 500 to 1700 is dispersed at a ratio of 5 to 30% by volume in a base material obtained by bonding a base alloy phase with a Cu-based alloy phase containing Cu as a main component. (18) Cu: 1 gold, wherein the hard alloy particle phase is dispersed in the matrix in a state surrounded by an Fe-based alloy phase having a petal cross section.
0 to 40% by mass, C: 0.05 to 3.5% by mass, and Co, Cr, Mo, W, Mn, V, Nb, S
a composition comprising a total of 3 to 35% by mass of one or more of i, and a balance of Fe and unavoidable impurities;
And MHV: 5 in a substrate formed by combining an Fe-based alloy phase mainly containing Fe with a Cu-based alloy phase mainly containing Cu.
An iron-based sintered alloy having a structure in which 00 to 1700 hard alloy particle phases are dispersed at a ratio of 5 to 30% by volume, wherein the hard alloy particle phase contains Fe-like cross-sectional petals in the base.
(19) Cu: 10 to 40% by mass, Ni: 0.1, dispersed in a state surrounded by a base alloy phase.
-15% by mass, and Co, Cr, Mo, W,
One or more of Mn, V, Nb, and Si are contained in a total of 3 to 35% by mass, and the remainder is composed of Fe and unavoidable impurities, and a Fe-based alloy phase containing Fe as a main component. An iron-based sintered alloy having a structure in which a hard alloy particle phase having an MHV of 500 to 1700 is dispersed at a ratio of 5 to 30% by volume in a matrix formed of a Cu-based alloy phase containing Cu as a main component. , The hard alloy particle phase in the base,
Iron-based sintered bonding metal dispersed in a state surrounded by an Fe-based alloy phase having a petal cross section, (20) Cu: 10 to 40% by mass, Ni: 0.1 to 15% by mass, C: 0.05 ~ 3.
5% by mass, and Co, Cr, Mo, W, M
One or more of n, V, Nb, and Si are contained in a total of 3 to 35% by mass, and the remainder is composed of Fe and unavoidable impurities, and a Fe-based alloy phase containing Fe as a main component. A hard alloy particle phase having an MHV of 500 to 1700 contains 5
An iron-based sintered alloy having a structure dispersed at a rate of about 30% by volume, wherein the hard alloy particle phase is dispersed in the matrix while being surrounded by a Fe-based alloy phase having a petal cross section. Iron-based sintered metal.
【0009】この発明の(1)〜(20)記載の鉄基焼結
合金は、Fe粉末、Cu粉末、黒鉛粉末、Ni粉末、お
よびCo、Cr、Mo、W、Mn、V、Nb、Siの内
の1種または2種以上を含む硬質合金粉末を所定の割合
で配合し、得られた配合粉末を混合し、さらに金型成形
時の潤滑剤であるステアリン酸亜鉛粉末とともにダブル
コーンミキサーで混合し、プレス成形して圧粉体を作製
し、この圧粉体を水素を含む窒素雰囲気中、温度:11
00〜1300℃で焼結して得られる。前記Fe粉末の
代わりにCo、Cr、Mo、W、Mn、V、Nb、Si
の内の1種または2種以上を含む低合金鋼粉末を用いて
も良く、またCu粉末の代わりにCu−Ni銅基合金粉
末やCu−Ni−Mn銅基合金粉末を用いても良い。こ
のようにして得られたこの発明の鉄基焼結合金は、Fe
を主成分とするFe基合金相をCuを主成分とするCu
基合金相で結合してなる素地中に硬質合金粒子相が断面
花びら状のFe基合金相により包囲された状態で分散し
た組織を有している。The iron-based sintered alloy according to (1) to (20) of the present invention includes Fe powder, Cu powder, graphite powder, Ni powder, and Co, Cr, Mo, W, Mn, V, Nb, Si A hard alloy powder containing one or two or more of the above is blended in a predetermined ratio, the resulting blended powder is mixed, and further mixed with a zinc stearate powder, which is a lubricant at the time of mold molding, using a double cone mixer. Mixing and press molding to produce a green compact, and this green compact was placed in a nitrogen atmosphere containing hydrogen at a temperature of 11
It is obtained by sintering at 00 to 1300 ° C. Instead of the Fe powder, Co, Cr, Mo, W, Mn, V, Nb, Si
May be used, or a low alloy steel powder containing one or more of them may be used, and instead of the Cu powder, a Cu-Ni copper-based alloy powder or a Cu-Ni-Mn copper-based alloy powder may be used. The iron-based sintered alloy of the present invention obtained in this manner has Fe
Fe-based alloy phase whose main component is Cu and whose main component is Cu
It has a structure in which a hard alloy particle phase is dispersed and surrounded by an Fe-based alloy phase having a petal cross section in a base material bonded by the base alloy phase.
【0010】この発明の鉄基燒結合金は、燒結中に硬質
合金粉末の表面にFe粉末が溶着して一体化し、硬質合
金粒子相の外面に半球状のFe基合金相が付着した塊が
形成され、この塊の断面を金属顕微鏡で見ると、硬質合
金粒子相が前記Fe基合金相により断面花びら状に包囲
された状態で分散した組織として観察される。硬質合金
粒子相が断面花びら状のFe基合金相により包囲される
ことにより、相手材に対する攻撃性が小さくかつ硬質合
金粒子相の脱落が少なくなって高温における耐摩耗性が
向上するものと考えられる。In the iron-base sintered gold of the present invention, during sintering, Fe powder is welded to the surface of the hard alloy powder to be integrated, and a lump having a hemispherical Fe-based alloy phase attached to the outer surface of the hard alloy particle phase is formed. When the cross section of this mass is viewed with a metallurgical microscope, it is observed as a structure in which the hard alloy particle phase is dispersed in a state of being surrounded by the Fe-based alloy phase in a petal cross section. It is considered that, since the hard alloy particle phase is surrounded by the Fe-based alloy phase having a petal cross section, the aggressiveness to the counterpart material is small, and the falling off of the hard alloy particle phase is reduced, so that the wear resistance at high temperatures is improved. .
【0011】原料粉末としての硬質合金粉末は、代表的
なものとして、 Fe:10〜50質量%を含有し、残部がMoである組
成のMo−Fe硬質合金粉末、 Fe:10〜50質量%、C:0.05〜5質量%を含
有し、残部がMoである組成のMo−Fe−C硬質合金
粉末、 Fe:10〜50質量%、Ni:1〜10質量%、C:
0.05〜5質量%を含有し、残部がMoである組成の
Mo−Fe−Ni−C硬質合金粉末、 Mo:15〜35質量%,Cr:2〜13質量%,S
i:0.5〜5質量%を含有し、残部がCoである組成
のCo−Mo−Cr−Si硬質合金粉末、 Cr:10〜50質量%,W:15〜35質量%,C
o:5〜35質量%,C:0.1〜3質量%,Si:
0.1〜3質量%,Nb:0.1〜3質量%を含有し、
残部がFeの組成を有するCr−W−Co−Fe−C−
Si−Nb硬質合金粉末、 Co:5〜40質量%,Mo:5〜30質量%,Cr:
5〜30質量%,Mn:0.1〜10質量%,C:0.
1〜3質量%,Si:0.1〜3質量%,V:0.1〜
3質量%を含有し、残部がFeの組成を有するCo−M
o−Cr−Fe−Mn−C−Si−V硬質合金粉末等が
挙げられる。これら硬質合金粉末は、燒結により素地中
に分散したMHV:500〜1700を有する硬質合金
粒子相となる。A hard alloy powder as a raw material powder is typically a Mo-Fe hard alloy powder having a composition containing 10 to 50% by mass of Fe and the balance being Mo, and 10 to 50% by mass of Fe. , C: Mo—Fe—C hard alloy powder having a composition containing 0.05 to 5% by mass and the balance being Mo, Fe: 10 to 50% by mass, Ni: 1 to 10% by mass, C:
Mo-Fe-Ni-C hard alloy powder having a composition of 0.05 to 5% by mass, with the balance being Mo: Mo: 15 to 35% by mass, Cr: 2 to 13% by mass, S
i: Co-Mo-Cr-Si hard alloy powder having a composition containing 0.5 to 5% by mass and the balance being Co, Cr: 10 to 50% by mass, W: 15 to 35% by mass, C
o: 5 to 35% by mass, C: 0.1 to 3% by mass, Si:
0.1 to 3% by mass, Nb: 0.1 to 3% by mass,
Cr-W-Co-Fe-C- with the balance being Fe
Si-Nb hard alloy powder, Co: 5 to 40% by mass, Mo: 5 to 30% by mass, Cr:
5 to 30% by mass, Mn: 0.1 to 10% by mass, C: 0.
1-3 mass%, Si: 0.1-3 mass%, V: 0.1-
Co-M containing 3% by mass, with the balance being Fe
o-Cr-Fe-Mn-C-Si-V hard alloy powder and the like. These hard alloy powders form a hard alloy particle phase having an MHV: 500 to 1700 dispersed in the base material by sintering.
【0012】したがって、この発明は、(21)前記硬質
合金粒子相は、MoおよびFeを主成分とするMo−F
e系合金からなる前記(1)〜(20)の内のいずれかに
記載の鉄基燒結合金、(22)前記硬質合金粒子相は、M
o、FeおよびCを主成分とするMo−Fe−C系合金
からなる前記(1)〜(20)の内のいずれかに記載の鉄
基燒結合金、(23)前記硬質合金粒子相は、Mo、F
e、NiおよびCを主成分とするMo−Fe−Ni−C
系合金からなる前記(1)〜(20)の内のいずれかに記
載の鉄基燒結合金、(24)前記硬質合金粒子相は、C
o、Mo、CrおよびSiを主成分とするCo−Mo−
Cr−Si系合金からなる前記(1)〜(20)の内のい
ずれかに記載の鉄基燒結合金、(25)前記硬質合金粒子
相は、Cr、W、Co、Fe、C、SiおよびNbを主
成分とするCr−W−Co−Fe−C−Si−Nb系合
金からなる前記(1)〜(20)の内のいずれかに記載の
鉄基燒結合金、(26)前記硬質合金粒子相は、Co、M
o、Cr、Fe、Mn、C、SiおよびVを主成分とす
るCo−Mo−Cr−Fe−Mn−C−Si−V系合金
からなる前記(1)〜(20)の内のいずれかに記載の鉄
基燒結合金、(27)前記(21)〜(26)記載の合金から
なる硬質合金粒子相が2種以上混在している鉄基燒結合
金、に特徴を有するものである。Therefore, the present invention provides (21) the above-mentioned hard alloy particle phase, wherein Mo-F containing Mo and Fe as main components.
an iron-based sintered metal according to any one of the above (1) to (20) comprising an e-based alloy, (22) the hard alloy particle phase is M
The iron-based sintered bonding metal according to any one of the above (1) to (20) comprising a Mo—Fe—C-based alloy containing o, Fe and C as main components, (23) the hard alloy particle phase, Mo, F
Mo-Fe-Ni-C containing e, Ni and C as main components
And (24) the hard alloy particle phase is a C-based alloy according to any one of (1) to (20),
Co-Mo- containing o, Mo, Cr and Si as main components
The iron-based sintered bond according to any one of the above (1) to (20), comprising a Cr-Si alloy, (25) the hard alloy particle phase includes Cr, W, Co, Fe, C, Si and (26) The hard alloy according to any one of (1) to (20), comprising a Cr-W-Co-Fe-C-Si-Nb-based alloy containing Nb as a main component. The particle phase is Co, M
any one of the above (1) to (20) comprising a Co-Mo-Cr-Fe-Mn-C-Si-V alloy containing o, Cr, Fe, Mn, C, Si and V as main components And (27) an iron-based sintered bond in which two or more types of hard alloy particle phases composed of the alloys described in (21) to (26) are mixed.
【0013】前記鉄基燒結合金の素地中に分散する硬質
合金粒子相は、MHV:500〜1700の範囲内の硬
質合金粒子相であればよいが、摺動部品材として使用す
る場合は、相手材の材質によって鉄基燒結合金の素地中
に分散する硬質合金粒子相をMHV:500〜1000
の硬質合金粒子相、MHV:800〜1700の硬質合
金粒子相、並びにMHV:500〜1000およびMH
V:800〜1700の硬質粒子混合相に分けて使用す
ることが一層好ましい。例えば、相手材であるバルブの
材質がSUH35、SUH36などのオーステナイト系
耐熱鋼である場合は、鉄基燒結合金の素地中に分散する
硬質合金粒子相をMHV:500〜1000の範囲内の
硬質合金粒子相であることが一層好ましく、相手材であ
るバルブの材質がSUH3、SUH11などのマルテン
サイト系耐熱鋼である場合は、鉄基燒結合金の素地中に
分散する硬質合金粒子相をMHV:800〜1700の
硬質合金粒子相であることが一層好ましく、さらに、相
手材であるバルブのフェース面材質がCo基耐熱合金の
盛金である場合は、鉄基燒結合金の素地中に分散する硬
質合金粒子相をMHV:500〜1000およびMH
V:800〜1700の硬質粒子混合相とすることが好
ましい。The hard alloy particle phase dispersed in the base material of the iron-based sintered gold may be a hard alloy particle phase having an MHV within the range of 500 to 1700. Depending on the material, the hard alloy particle phase dispersed in the base material of iron-base sintered gold is MHV: 500 to 1000.
Hard alloy particle phase, MHV: 800-1700, and MHV: 500-1000 and MH
V: It is more preferable to use the mixture in a hard particle mixed phase of 800 to 1700. For example, when the material of the valve as a mating material is a heat-resistant austenitic steel such as SUH35 or SUH36, the hard alloy particle phase dispersed in the base material of the iron-base sintered bond is a hard alloy having an MHV within the range of 500 to 1000. In the case where the material of the valve, which is a mating material, is a martensitic heat-resistant steel such as SUH3 or SUH11, the hard alloy particle phase dispersed in the base material of the iron-based sintered bond MHV is 800. And more preferably a hard alloy particle phase of about 1700. Further, when the face surface material of the valve as a mating material is a metal base of a Co-base heat-resistant alloy, the hard alloy dispersed in the base material of the iron-base sintered bond gold The particle phase is MHV: 500-1000 and MH
V: A hard particle mixed phase of 800 to 1700 is preferable.
【0014】この発明の鉄基燒結合金の素地を構成する
Feを主成分とするFe基合金相はFeを50質量%以
上含むFe合金相であり、Cuを主成分とするCu基合
金相はCuを50質量%以上含むCu合金相である。The Fe-based alloy phase mainly composed of Fe and constituting the base material of the iron-based sintered gold of the present invention is an Fe alloy phase containing 50% by mass or more of Fe, and the Cu-based alloy phase mainly composed of Cu is This is a Cu alloy phase containing 50% by mass or more of Cu.
【0015】この発明の鉄基燒結合金を燒結する温度
は、1100〜1300℃であるが、1090〜120
0℃が一層好ましい。原料粉末である硬質合金粉末は、
焼結しても溶融することなく、添加時の原料粉末形状と
ほぼ同じ形状を保ち、前記硬質合金粉末は焼結中に硬質
合金粉末の周囲に存在するFe粉末を吸着し、Fe粉末
は硬質合金粒子相の周囲を断面花びら状(立体的にみる
と半団子状)のFe基合金相が包囲した状態で分散して
いる組織を形成する。かかる断面花びら状(立体的にみ
ると半団子状)のFe基合金相はCu基合金相に対する
接触面積を増加させ、Fe基合金相とCu基合金相の結
合強度を一層増加させる。The temperature for sintering the iron-based sintered gold of the present invention is 1100 to 1300 ° C.
0 ° C. is more preferred. The hard alloy powder, which is the raw material powder,
It does not melt even after sintering and keeps almost the same shape as the raw material powder at the time of addition, the hard alloy powder adsorbs Fe powder existing around the hard alloy powder during sintering, and the Fe powder is hard. A structure is formed in which the Fe-based alloy phase having a petal cross section (semi-dangling when viewed three-dimensionally) is dispersed around the alloy particle phase in a state of being surrounded. The Fe-based alloy phase having a petal cross section (semi-dangling when viewed three-dimensionally) increases the contact area with the Cu-based alloy phase and further increases the bonding strength between the Fe-based alloy phase and the Cu-based alloy phase.
【0016】つぎに、この発明の鉄基燒結合金の成分組
成を上記のごとく限定した理由について説明する。Next, the reason why the component composition of the iron-based sintered bond of the present invention is limited as described above will be described.
【0017】[I]成分組成 (a)Cu Cuは、密度、強度および耐摩耗性を向上させる効果が
あるが、その含有量が10質量%未満では液相の発生量
が十分でなく、したがって密度、強度および耐摩耗性の
効果が十分でなく、一方、40質量%を越えると液相が
過大となり、焼結中に変形が生じて寸法のバラツキが大
きくなるので好ましくない。したがって、Cuの含有量
は10〜40質量%に定めた。Cuの含有量の一層好ま
しい範囲は17〜30質量%であり、さらに一層好まし
い範囲は20〜28質量%である。[I] Ingredient Composition (a) Cu Cu has the effect of improving the density, strength and abrasion resistance. However, if its content is less than 10% by mass, the amount of liquid phase generated is not sufficient. The effects of density, strength and abrasion resistance are not sufficient. On the other hand, if it exceeds 40% by mass, the liquid phase becomes excessively large, causing deformation during sintering and undesirably increasing dimensional variations. Therefore, the content of Cu is set to 10 to 40% by mass. A more preferred range of the Cu content is 17 to 30% by mass, and an even more preferred range is 20 to 28% by mass.
【0018】(b)Co、Cr、Mo、W、Mn、V、
Nb、Si これら成分は、硬質合金粒子相を形成し、耐摩耗性を向
上させたり、素地に固溶してFe基合金相の強度を向上
させる作用があるが、その含有量が3質量%未満では硬
質合金粒子相の分散量が5容量%未満となって十分な量
の硬質合金粒子相を形成することはできず、一方、35
質量%を越えて含有すると、硬質合金粒子相の量が30
容量%を越えて多くなり過ぎ、さらにこれら成分がFe
基合金相に固溶してFe基合金相の硬さを極端に高める
ために相手攻撃性が大きくなり過ぎるので好ましくな
い。したがって、この発明に含まれるCo、Cr、M
o、W、Mn、V、Nb、Siの内の1種または2種以
上は合計で3〜35質量%(一層好ましくは5〜20質
量%)に定めた。(B) Co, Cr, Mo, W, Mn, V,
Nb, Si These components form a hard alloy particle phase and have an effect of improving abrasion resistance and improving the strength of the Fe-based alloy phase by forming a solid solution in a base material, but the content is 3% by mass. If it is less than 5, the dispersion amount of the hard alloy particle phase is less than 5% by volume, and a sufficient amount of the hard alloy particle phase cannot be formed.
If the content exceeds 30% by mass, the amount of the hard alloy particle phase becomes 30%.
% By volume, and these components become Fe
It is not preferable because the solid phase dissolves in the base alloy phase and extremely increases the hardness of the Fe base alloy phase, so that the opponent aggressiveness becomes too large. Therefore, Co, Cr, M contained in the present invention
One or more of o, W, Mn, V, Nb, and Si are determined to be 3 to 35% by mass (more preferably 5 to 20% by mass) in total.
【0019】(c)C Cは、強度および硬さを向上させる作用があるので必要
に応じて添加するが、その含有量が0.05質量%未満
では効果が十分でなく、一方、3.5質量%を越えて含
有する靭性を低下させるので好ましくない。したがっ
て、Cの含有量は0.05〜3.5質量%に定めた。C
の含有量の一層好ましい範囲は0.3〜2.0質量%で
ある。(C) C C is added as necessary because it has the effect of improving the strength and hardness, but if its content is less than 0.05% by mass, the effect is not sufficient. It is not preferable because the toughness contained exceeding 5% by mass is reduced. Therefore, the content of C is set to 0.05 to 3.5% by mass. C
Is more preferably in the range of 0.3 to 2.0% by mass.
【0020】(d)Ni Niは、Cu合金相中にあってCu合金相の融点を上昇
させ、液相焼結をコントロールし、またFe合金相の強
度および靭性を向上させる作用があるので必要に応じて
添加するが、その含有量が0.1質量%未満ではその効
果が十分でなく、一方、15質量%を越えて含有しても
それ以上の効果が少ない。したがって、Niの含有量は
0.1〜15質量%に定めた。これら成分の含有量の一
層好ましい範囲は1〜6質量%である。(D) Ni Ni is necessary because it has the effect of increasing the melting point of the Cu alloy phase in the Cu alloy phase, controlling liquid phase sintering, and improving the strength and toughness of the Fe alloy phase. However, if the content is less than 0.1% by mass, the effect is not sufficient, and if the content exceeds 15% by mass, the further effect is small. Therefore, the content of Ni is set to 0.1 to 15% by mass. A more preferred range for the content of these components is 1 to 6% by mass.
【0021】[II]組織 この発明の鉄基燒結合金は、Feを主成分とするFe基
合金相をCuを主成分とするCu基合金相により結合し
た素地中に硬質合金粒子相が分散しており、硬質合金粒
子相の周囲をFe基合金相が断面花びら状(立体的にみ
ると半団子状)に包囲している組織を有している。硬質
合金粒子相の周囲を包囲しているFe基合金相が断面花
びら状(立体的にみると半団子状)になることによりF
e基合金相とCu基合金相の接触面積が増大してより一
層大きな結合力が得られ、それによって高温耐摩耗性が
一層向上し、さらに硬質合金粒子相の周囲をFe基合金
相が断面花びら状に包囲ことにより硬質合金粒子相の相
手攻撃性を和らげる作用がある。[II] Microstructure The iron-based sintered bonding metal of the present invention has a hard alloy particle phase dispersed in a matrix in which an Fe-based alloy phase containing Fe as a main component is bonded by a Cu-based alloy phase containing Cu as a main component. It has a structure in which the Fe-based alloy phase surrounds the hard alloy particle phase in a petal cross section (semi-dangling when viewed three-dimensionally). When the Fe-based alloy phase surrounding the periphery of the hard alloy particle phase becomes petal-shaped (semi-dangling when viewed three-dimensionally), F
The contact area between the e-based alloy phase and the Cu-based alloy phase is increased, so that a larger bonding force is obtained, whereby the high-temperature wear resistance is further improved, and the Fe-based alloy phase has a cross section around the hard alloy particle phase. Surrounding in the shape of a petal has the effect of reducing the aggressiveness of the hard alloy particle phase.
【0022】[III]硬質合金粒子相 この発明の鉄基燒結合金の素地に分散する硬質合金粒子
相は、MHVが500未満の硬質合金粒子相では十分な
耐摩耗性が得られないので好ましくなく、一方、MHV
が1700を越えると相手材を過大に摩耗させるので好
ましくない。したがって、この発明の鉄基燒結合金の素
地に分散する硬質合金粒子相は、MHV:500〜17
00に定めた。また、鉄基燒結合金素地中に5容量%分
散していても十分な耐摩耗性が得られないので好ましく
なく、一方、30容量%を越えて分散すると硬質合金粒
子相が多過て靭性が不足するので好ましくない。したが
って、硬質合金粒子相の分散量は5〜30容量%に定め
た。硬質合金粒子相の分散量の一層好ましい範囲は8〜
25容量%である。なお、この発明の鉄基燒結合金の素
地に分散する硬質合金粒子相は、MHV:500〜17
00を有する硬質合金粒子相であればいかなる成分組成
の硬質合金粒子相であっても良いが、Co、Cr、M
o、W、Mn、V、Nb、Siの内の1種または2種以
上を含む組成を有することが一層好ましい。[III] Hard alloy particle phase The hard alloy particle phase of the present invention dispersed in the base material of the iron-based sintered gold is not preferable because the hard alloy particle phase having an MHV of less than 500 cannot provide sufficient wear resistance. , On the other hand, MHV
Is more than 1700, which undesirably causes excessive wear of the mating material. Therefore, the hard alloy particle phase dispersed in the base material of the iron-based sintered gold of the present invention has an MHV of 500 to 17
00 was set. It is not preferable that 5% by volume is dispersed in the iron-based sintered gold base material because sufficient wear resistance cannot be obtained. On the other hand, if it is more than 30% by volume, the hard alloy particle phase is excessive and the toughness is reduced. It is not preferable because it runs short. Therefore, the dispersion amount of the hard alloy particle phase is set to 5 to 30% by volume. A more preferable range of the dispersion amount of the hard alloy particle phase is from 8 to
25% by volume. The hard alloy particle phase dispersed in the base material of the iron-based sintered gold according to the present invention has an MHV of 500 to 17
The hard alloy particle phase of any component composition may be used as long as it is a hard alloy particle phase having a composition of Co, Cr, M
It is more preferable to have a composition containing one or more of o, W, Mn, V, Nb, and Si.
【0023】[0023]
【発明の実施の形態】原料粉末として、平均粒径:55
μmのFe粉末、平均粒径:11μmのCu粉末、平均
粒径:18μmの黒鉛粉末、平均粒径:10μmのNi
粉末を用意し、さらに下記の表1に示される成分組成を
有する硬質合金粉末A〜Fを用意した。BEST MODE FOR CARRYING OUT THE INVENTION The raw material powder has an average particle size of 55.
μm Fe powder, average particle size: 11 μm Cu powder, average particle size: 18 μm graphite powder, average particle size: 10 μm Ni
Powders were prepared, and hard alloy powders A to F having the component compositions shown in Table 1 below were prepared.
【0024】[0024]
【表1】 [Table 1]
【0025】前記用意したFe粉末、Cu粉末、黒鉛粉
末、Ni粉末および表1の硬質合金粉末A〜Fを表2〜
3に示される割合で配合し混合することにより原料混合
粉末を作製し、この原料混合粉末にさらに金型成形時の
潤滑剤であるステアリン酸亜鉛粉末を外掛けで0.8質
量%に当たる量だけ添加して混合し、プレス成形して圧
粉体を作製した。この圧粉体をN2−5%H2の混合雰囲
気中、温度:1140℃、20分保持の条件で焼結し、
表4〜5に示される成分組成を有する本発明鉄基燒結合
金(以下、本発明合金という)1〜24および従来鉄基
燒結合金(以下、従来合金という)を作製した。The prepared Fe powder, Cu powder, graphite powder, Ni powder and hard alloy powders A to F in Table 1
A raw material mixed powder is prepared by mixing and mixing at the ratio shown in 3, and zinc stearate powder, which is a lubricant at the time of mold molding, is added to the raw material mixed powder in an amount equivalent to 0.8% by mass on the outside. The mixture was added, mixed, and pressed to produce a green compact. This green compact is sintered in a mixed atmosphere of N 2 -5% H 2 at a temperature of 1140 ° C. for 20 minutes,
The iron-based sintered bond of the present invention (hereinafter, referred to as an alloy of the present invention) 1 to 24 and the conventional iron-based sintered bond (hereinafter, referred to as a conventional alloy) having the component compositions shown in Tables 4 and 5 were produced.
【0026】このようにして作製した本発明合金6を切
断し、研磨し、金属顕微鏡による組織観察を行い、硬質
合金粒子相を中心とした組織写生図を図1に示した。図
1において、1はFe基合金相、2はCu基合金相、3
は硬質合金粒子相である。さらに本発明合金11を切断
し、研磨し、金属顕微鏡による組織観察を行い、硬質合
金粒子相を中心とした組織写生図を図2に示した。図2
において、1はFe基合金相、2はCu基合金相、3は
硬質合金粒子相である。The alloy 6 of the present invention thus produced was cut and polished, and the structure thereof was observed with a metallographic microscope. A structure photograph centered on the hard alloy particle phase is shown in FIG. In FIG. 1, 1 is an Fe-based alloy phase, 2 is a Cu-based alloy phase, 3
Is a hard alloy particle phase. Further, the alloy 11 of the present invention was cut and polished, and the structure was observed with a metallographic microscope. A structure photograph of the hard alloy particle phase was shown in FIG. FIG.
, 1 is an Fe-based alloy phase, 2 is a Cu-based alloy phase, and 3 is a hard alloy particle phase.
【0027】図1および図2に示した金属組織の写生図
から明らかなように、本発明合金6および11はFe基
合金相1をCu基合金相2で結合してなる素地を有し、
特に素地中に分散しているMHV500〜1700の硬
質合金粒子相3は断面花びら状(立体的にみると半団子
状)のFe基合金相1´により包囲された状態で分散し
ていることが分かる。さらにその他の本発明合金1〜
5、本発明合金7〜10および本発明合金12〜24に
ついても金属組織を観察したところ、いずれの本発明合
金においても硬質合金粒子相は断面花びら状(立体的に
みると半団子状)のFe基合金相により包囲された状態
で分散していることが分かった。しかし、従来合金に
は、断面花びら状のFe基合金相は見られなかった。As is clear from the sketches of the metal structure shown in FIGS. 1 and 2, the alloys 6 and 11 of the present invention have a base material obtained by bonding the Fe-based alloy phase 1 with the Cu-based alloy phase 2.
In particular, the hard alloy particle phase 3 of MHV 500 to 1700 dispersed in the base material is dispersed in a state surrounded by the Fe-based alloy phase 1 ′ having a petal cross section (semi-dangling when viewed three-dimensionally). I understand. Still other alloys of the present invention 1
5. The metal structures of the alloys of the present invention 7 to 10 and the alloys of the present invention 12 to 24 were also observed. In any of the alloys of the present invention, the hard alloy particle phase had a petal-like cross section (semi-dangling when viewed in three dimensions). It was found that the particles were dispersed in a state surrounded by the Fe-based alloy phase. However, no Fe-based alloy phase having a petal cross section was found in the conventional alloy.
【0028】さらに前記本発明合金1〜24および従来
合金について下記の摩耗試験を行った。SUH36の材
質からなり外径が30mmの傘部分を有するバルブを用
意し、このバルブの傘部分を温度:900℃に保持し、
さらに本発明合金1〜24および従来合金からなるバル
ブシートをそれぞれ内部が水冷されている治具に圧入
し、ガソリン燃焼雰囲気中で着座荷重:20kg、バル
ブ着座回数:3000回/分の条件で200時間試験
し、バルブシートおよびバルブの最大摩耗量を測定し、
その結果を表4〜5に示した。The alloys 1 to 24 of the present invention and the conventional alloy were subjected to the following wear test. A valve having an umbrella portion made of SUH36 material and having an outer diameter of 30 mm is prepared, and the umbrella portion of this valve is maintained at a temperature of 900 ° C.
Further, each of the valve seats made of the alloys 1 to 24 of the present invention and the conventional alloy is press-fitted into a jig whose inside is water-cooled, and the seating load is 20 kg, the number of times of valve seating is 3000 times / min. Time test, measure the maximum wear of valve seat and valve,
The results are shown in Tables 4 and 5.
【0029】[0029]
【表2】 [Table 2]
【0030】[0030]
【表3】 [Table 3]
【0031】[0031]
【表4】 [Table 4]
【0032】[0032]
【表5】 [Table 5]
【0033】表4〜表5に示される結果から、本発明合
金1〜24は、従来合金に比べて、バルブシート自体の
最大摩耗量および相手材であるバルブの最大摩耗量が少
ないことから、高温における耐摩耗性に優れ、さらに相
手攻撃性が少ないが分かる。From the results shown in Tables 4 and 5, the alloys 1 to 24 of the present invention have a smaller maximum wear of the valve seat itself and a smaller amount of wear of the valve which is a mating material than the conventional alloys. It can be seen that the abrasion resistance at high temperatures is excellent and the aggressiveness to the opponent is low.
【0034】[0034]
【発明の効果】上述のように、この発明の鉄基燒結合金
は、高温における耐摩耗性に優れ、さらに相手材である
バルブに対する相手攻撃性が少ないところから、高温に
曝されるエンジンなどの各種摺動機械部品の製造に使用
され、自動車産業の発展に大いに貢献し得るものであ
る。As described above, the iron-base sintered metal according to the present invention has excellent wear resistance at high temperatures and low aggressiveness against a valve as a mating material. Used in the manufacture of various sliding machine parts, it can greatly contribute to the development of the automobile industry.
【図1】この発明の鉄基燒結合金の顕微鏡組織の写生図
である。FIG. 1 is a sketch of a microstructure of an iron-based sintered gold according to the present invention.
【図2】この発明の鉄基燒結合金の顕微鏡組織の写生図
である。FIG. 2 is a sketch of the microstructure of the iron-based sintered gold of the present invention.
1 Fe基合金相 1´ 断面花びら状のFe基合金相 2 Cu基合金相 3 硬質合金粒子相 Reference Signs List 1 Fe-based alloy phase 1 'Fe-based alloy phase with petal cross section 2 Cu-based alloy phase 3 Hard alloy particle phase
Claims (16)
主成分とするCu基合金相で結合してなる素地中に硬質
合金粒子相が分散した組織を有する鉄基焼結合金であっ
て、 前記硬質合金粒子相は、前記素地中に、断面花びら状の
Fe基合金相によりに包囲された状態で分散しているこ
とを特徴とする鉄基燒結合金。1. An iron-based sintered alloy having a structure in which a hard alloy particle phase is dispersed in a matrix formed by combining an Fe-based alloy phase containing Fe as a main component with a Cu-based alloy phase containing Cu as a main component. The iron-based sintered gold is characterized in that the hard alloy particle phase is dispersed in the matrix while being surrounded by an Fe-based alloy phase having a petal cross section.
Co、Cr、Mo、W、Mn、V、Nb、Siの内の1
種または2種以上を合計で3〜35質量%を含有し、残
りがFeおよび不可避不純物からなる組成、並びにFe
を主成分とするFe基合金相をCuを主成分とするCu
基合金相で結合してなる素地中に硬質合金粒子相が分散
した組織を有する鉄基焼結合金であって、 前記硬質合金粒子相は、前記素地中に、断面花びら状の
Fe基合金相によりに包囲された状態で分散しているこ
とを特徴とする鉄基燒結合金。2. Cu: 10 to 40% by mass, and one of Co, Cr, Mo, W, Mn, V, Nb, and Si.
A composition comprising a total of 3 to 35% by mass of at least one species or two or more species, with the balance being Fe and unavoidable impurities;
Fe-based alloy phase whose main component is Cu and whose main component is Cu
An iron-based sintered alloy having a structure in which a hard alloy particle phase is dispersed in a base material combined with a base alloy phase, wherein the hard alloy particle phase is a Fe-based alloy phase having a petal cross section in the base material. An iron-based sintered metal, which is dispersed in a state surrounded by:
3.5質量%を含有し、さらにCo、Cr、Mo、W、
Mn、V、Nb、Siの内の1種または2種以上を合計
で3〜35質量%を含有し、残りがFeおよび不可避不
純物からなる組成、並びにFeを主成分とするFe基合
金相をCuを主成分とするCu基合金相で結合してなる
素地中に硬質合金粒子相が分散した組織を有する鉄基焼
結合金であって、 前記硬質合金粒子相は、前記素地中に、断面花びら状の
Fe基合金相によりに包囲された状態で分散しているこ
とを特徴とする鉄基燒結合金。3. Cu: 10 to 40% by mass, C: 0.05 to
3.5% by mass, and further Co, Cr, Mo, W,
One or more of Mn, V, Nb, and Si are contained in a total of 3 to 35% by mass, and the remainder is composed of Fe and unavoidable impurities, and a Fe-based alloy phase containing Fe as a main component. An iron-based sintered alloy having a structure in which a hard alloy particle phase is dispersed in a body formed of a Cu-based alloy phase containing Cu as a main component, wherein the hard alloy particle phase has a cross-section in the base. An iron-based sintered bond, which is dispersed in a state surrounded by a petal-like Fe-based alloy phase.
15質量%を含有し、さらにCo、Cr、Mo、W、M
n、V、Nb、Siの内の1種または2種以上を合計で
3〜35質量%を含有し、残りがFeおよび不可避不純
物からなる組成、並びにFeを主成分とするFe基合金
相をCuを主成分とするCu基合金相で結合してなる素
地中に硬質合金粒子相が分散した組織を有する鉄基焼結
合金であって、 前記硬質合金粒子相は、前記素地中に、断面花びら状の
Fe基合金相によりに包囲された状態で分散しているこ
とを特徴とする鉄基燒結合金。4. Cu: 10 to 40% by mass, Ni: 0.1 to
Co, Cr, Mo, W, M
One or more of n, V, Nb, and Si are contained in a total of 3 to 35% by mass, and the remainder is composed of Fe and unavoidable impurities, and a Fe-based alloy phase containing Fe as a main component. An iron-based sintered alloy having a structure in which a hard alloy particle phase is dispersed in a body formed of a Cu-based alloy phase containing Cu as a main component, wherein the hard alloy particle phase has a cross-section in the base. An iron-based sintered bond, which is dispersed in a state surrounded by a petal-like Fe-based alloy phase.
3.5質量%、Ni:0.1〜15質量%を含有し、さ
らにCo、Cr、Mo、W、Mn、V、Nb、Siの内
の1種または2種以上を合計で3〜35質量%を含有
し、残りがFeおよび不可避不純物からなる組成、並び
にFeを主成分とするFe基合金相をCuを主成分とす
るCu基合金相で結合してなる素地中に硬質合金粒子相
が分散した組織を有する鉄基焼結合金であって、 前記硬質合金粒子相は、前記素地中に、断面花びら状の
Fe基合金相によりに包囲された状態で分散しているこ
とを特徴とする鉄基燒結合金。5. Cu: 10 to 40% by mass, C: 0.05 to
3.5% by mass, Ni: 0.1 to 15% by mass, and one or more of Co, Cr, Mo, W, Mn, V, Nb, and Si in a total amount of 3 to 35. % By mass, the balance consisting of Fe and inevitable impurities, and a hard alloy particle phase in a matrix formed by combining an Fe-based alloy phase mainly composed of Fe with a Cu-based alloy phase mainly composed of Cu. Is an iron-based sintered alloy having a dispersed structure, wherein the hard alloy particle phase is dispersed in the matrix in a state surrounded by an Fe-based alloy phase having a petal cross section in cross section. Iron-base sintered metal.
ス硬さ(以下、MHVという):500〜1700を有
する硬質合金粒子相であることを特徴とする請求項1、
2、3、4または5記載の鉄基燒結合金。6. The hard alloy particle phase according to claim 1, wherein the hard alloy particle phase has a micro-Vickers hardness (hereinafter, referred to as MHV): 500 to 1700.
6. The iron-based sintered bonding metal according to 2, 3, 4 or 5.
0容量%の割合で分散した組織を有することを特徴とす
る請求項1、2、3、4または5記載の鉄基燒結合金。7. The hard alloy particle phase contains 5 to 3 particles in a base material.
The iron-based sintered bond according to claim 1, 2, 3, 4, or 5, which has a structure dispersed at a ratio of 0% by volume.
1700を有し、素地中に5〜30容量%の割合で分散
していることを特徴とする請求項1、2、3、4または
5記載の鉄基燒結合金。8. The hard alloy particle phase has an MHV of 500 to 500.
The iron-based sintered bond according to claim 1, 2, 3 or 4, wherein the metal has 1700 and is dispersed in the base at a ratio of 5 to 30% by volume.
o、W、Mn、V、Nb、Siの内の1種または2種以
上を含む組成を有することを特徴とする請求項1,2,
3,4,5、6、7または8記載の鉄基燒結合金。9. The hard alloy particle phase comprises Co, Cr, M
3. A composition comprising one or more of o, W, Mn, V, Nb, and Si.
3. An iron-based sintered bond according to 3, 4, 5, 6, 7 or 8.
を主成分とするMo−Fe系合金からなることを特徴と
する請求項9記載の鉄基燒結合金。10. The hard alloy particle phase comprises Mo and Fe.
The iron-based sintered bond according to claim 9, comprising a Mo—Fe-based alloy mainly composed of:
びCを主成分とするMo−Fe−C系合金からなること
を特徴とする請求項9記載の鉄基燒結合金。11. The iron-based sintered bond according to claim 9, wherein said hard alloy particle phase is made of a Mo—Fe—C based alloy containing Mo, Fe and C as main components.
iおよびCを主成分とするMo−Fe−Ni−C系合金
からなることを特徴とする請求項9記載の鉄基燒結合
金。12. The hard alloy particle phase comprises Mo, Fe, N
The iron-based sintered bond according to claim 9, comprising a Mo-Fe-Ni-C-based alloy containing i and C as main components.
rおよびSiを主成分とするCo−Mo−Cr−Si系
合金からなることを特徴とする請求項9記載の鉄基燒結
合金。13. The hard alloy particle phase comprises Co, Mo, C
The iron-based sintered bond according to claim 9, comprising a Co-Mo-Cr-Si-based alloy containing r and Si as main components.
o、Fe、C、SiおよびNbを主成分とするCr−W
−Co−Fe−C−Si−Nb系合金からなることを特
徴とする請求項9記載の鉄基燒結合金。14. The hard alloy particle phase comprises Cr, W, C
Cr-W containing o, Fe, C, Si and Nb as main components
The iron-based sintered bond according to claim 9, comprising a -Co-Fe-C-Si-Nb-based alloy.
r、Fe、Mn、C、SiおよびVを主成分とするCo
−Mo−Cr−Fe−Mn−C−Si−V系合金からな
ることを特徴とする請求項9記載の鉄基燒結合金。15. The hard alloy particle phase comprises Co, Mo, C
Co containing r, Fe, Mn, C, Si and V as main components
The iron-based sintered bond according to claim 9, comprising a -Mo-Cr-Fe-Mn-C-Si-V alloy.
質合金粒子相が2種以上混在していることを特徴とする
鉄基燒結合金。16. An iron-based sintered metal comprising two or more hard alloy particle phases comprising the alloy according to claim 10 mixed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000044082A JP2001295004A (en) | 2000-02-09 | 2000-02-22 | Iron base sintered alloy |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000031400 | 2000-02-09 | ||
JP2000-31400 | 2000-02-09 | ||
JP2000044082A JP2001295004A (en) | 2000-02-09 | 2000-02-22 | Iron base sintered alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001295004A true JP2001295004A (en) | 2001-10-26 |
Family
ID=26585080
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000044082A Pending JP2001295004A (en) | 2000-02-09 | 2000-02-22 | Iron base sintered alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001295004A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102189262A (en) * | 2011-04-26 | 2011-09-21 | 常熟市双月机械有限公司 | Valve guide pipe |
JP2012162771A (en) * | 2011-02-07 | 2012-08-30 | Oiles Corp | Iron-based sintered sliding member, and method for manufacturing the same |
WO2015012249A1 (en) * | 2013-07-26 | 2015-01-29 | 株式会社リケン | Valve guide made from sintered alloy, and method for producing same |
CN113881903A (en) * | 2021-09-01 | 2022-01-04 | 安徽金亿新材料股份有限公司 | Application of Chang' e steel in preparation of valve guide or multi-step complex structural part, valve guide and multi-step complex structural part and preparation |
JP2022063501A (en) * | 2020-10-12 | 2022-04-22 | トヨタ自動車株式会社 | Hard particle, sliding member, and production method for sintered alloy |
-
2000
- 2000-02-22 JP JP2000044082A patent/JP2001295004A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012162771A (en) * | 2011-02-07 | 2012-08-30 | Oiles Corp | Iron-based sintered sliding member, and method for manufacturing the same |
CN102189262A (en) * | 2011-04-26 | 2011-09-21 | 常熟市双月机械有限公司 | Valve guide pipe |
WO2015012249A1 (en) * | 2013-07-26 | 2015-01-29 | 株式会社リケン | Valve guide made from sintered alloy, and method for producing same |
JP2015025169A (en) * | 2013-07-26 | 2015-02-05 | 株式会社リケン | Sintered alloy valve guide and manufacturing method thereof |
CN105452507A (en) * | 2013-07-26 | 2016-03-30 | 株式会社理研 | Valve guide made from sintered alloy, and method for producing same |
EP3026141A1 (en) * | 2013-07-26 | 2016-06-01 | Kabushiki Kaisha Riken | Valve guide made from sintered alloy, and method for producing same |
EP3026141A4 (en) * | 2013-07-26 | 2017-03-29 | Kabushiki Kaisha Riken | Valve guide made from sintered alloy, and method for producing same |
JP2022063501A (en) * | 2020-10-12 | 2022-04-22 | トヨタ自動車株式会社 | Hard particle, sliding member, and production method for sintered alloy |
JP7453118B2 (en) | 2020-10-12 | 2024-03-19 | トヨタ自動車株式会社 | Method for manufacturing hard particles, sliding members, and sintered alloys |
CN113881903A (en) * | 2021-09-01 | 2022-01-04 | 安徽金亿新材料股份有限公司 | Application of Chang' e steel in preparation of valve guide or multi-step complex structural part, valve guide and multi-step complex structural part and preparation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4948636B2 (en) | Hard particles for blending sintered alloys, wear-resistant iron-based sintered alloys, and valve seats | |
JP3346321B2 (en) | High strength Fe-based sintered valve seat | |
JP2007107034A (en) | Method for producing abrasion-resistant sintered member | |
JP3865293B2 (en) | Abrasion resistant hard phase forming alloy powder and method for producing wear resistant sintered alloy using the same | |
JP2002363681A (en) | Sintered alloy, production method therefor and valve seat | |
JPH11140606A (en) | Valve seat made of iron-base sintered alloy excellent in wear resistance | |
US5498483A (en) | Wear-resistant sintered ferrous alloy for valve seat | |
US10619229B2 (en) | Manufacturing method of wear-resistant iron-based sintered alloy and wear-resistant iron-based sintered alloy | |
JP6352959B2 (en) | Method for producing wear-resistant iron-based sintered alloy, compact for sintered alloy, and wear-resistant iron-based sintered alloy | |
JP6077499B2 (en) | Sintered alloy molded body, wear-resistant iron-based sintered alloy, and method for producing the same | |
JP2001295004A (en) | Iron base sintered alloy | |
US5808214A (en) | Powder-produced material having wear-resistance | |
JP2004211185A (en) | Iron based sintered alloy excellent in dimensional precision, strength and sliding property, and its production method | |
JP5253132B2 (en) | Wear-resistant sintered alloy and method for producing the same | |
JP3942136B2 (en) | Iron-based sintered alloy | |
JP7156193B2 (en) | Hard particles and sintered sliding member using the same | |
JP3331963B2 (en) | Sintered valve seat and method for manufacturing the same | |
JP3275729B2 (en) | Method for producing valve seat made of Fe-based sintered alloy with excellent wear resistance | |
JP7453118B2 (en) | Method for manufacturing hard particles, sliding members, and sintered alloys | |
JP2006274359A (en) | Alloy powder for forming hard phase and ferrous powder mixture using the same | |
JP3346306B2 (en) | Valve seat made of iron-based sintered alloy | |
JP2001173679A (en) | Iron-base sintered alloy-made synchronizer ring excellent in seisure resistance | |
JP3346286B2 (en) | Synchronizer ring made of iron-based sintered alloy | |
JP2001348654A (en) | Al OXIDE-DISPERSED Fe-BASED SINTERED ALLOY EXCELLENT IN WEAR RESISTANCE AND ITS PRODUCTION METHOD | |
JPH11302804A (en) | Synchronizer ring made of iron-base sintered alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040329 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050613 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050621 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060110 |