JP3865293B2 - Abrasion resistant hard phase forming alloy powder and method for producing wear resistant sintered alloy using the same - Google Patents

Abrasion resistant hard phase forming alloy powder and method for producing wear resistant sintered alloy using the same Download PDF

Info

Publication number
JP3865293B2
JP3865293B2 JP2001161681A JP2001161681A JP3865293B2 JP 3865293 B2 JP3865293 B2 JP 3865293B2 JP 2001161681 A JP2001161681 A JP 2001161681A JP 2001161681 A JP2001161681 A JP 2001161681A JP 3865293 B2 JP3865293 B2 JP 3865293B2
Authority
JP
Japan
Prior art keywords
wear
hard phase
powder
amount
phase forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001161681A
Other languages
Japanese (ja)
Other versions
JP2002356704A (en
Inventor
英昭 河田
幸一郎 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Powdered Metals Co Ltd
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP2001161681A priority Critical patent/JP3865293B2/en
Publication of JP2002356704A publication Critical patent/JP2002356704A/en
Application granted granted Critical
Publication of JP3865293B2 publication Critical patent/JP3865293B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、耐摩耗部材用の焼結合金の金属組織中に分散される硬質相を形成するための粉末と、それを用いた耐摩耗性焼結合金の製造方法に関する。
【0002】
【従来の技術】
耐摩耗部材に使用される焼結合金には、金属間化合物や炭化物によって硬度を高めた相、いわゆる硬質相を分散させる手法が用いられることが多く、特に高温下で使用される部材では効果的とされている。従来、そのような硬質相を形成させるためには、FeMo、FeCr等のフェロアロイ搗砕粉末やセラミック粉末を添加していたが、混合粉末の圧縮性や金型摩耗、また、母地との濡れ性の問題があった。また、Co基やFe基の溶射用粉末を硬質相形成粉末として適用することも一般的であるが、粉末冶金用に成分が最適化されたものは稀である。そこで本出願人は、特公昭61−8142号に示す通り、低合金鋼またはステンレス鋼などの母地粉末中に焼結後の濡れ性が良い含Mo鉄基硬質相形成粉末を混合したものを提案している。
【0003】
【発明が解決しようとする課題】
しかしながら、上記公報に記載の粉末は、非常に優れた耐摩耗性を示す場合と大きく摩耗してしまう場合が有り、性能の安定性に難があった。原因は析出物を支える基地の強化が不十分であったことと、硬質相と基地との固着性にあることが判明している。
【0004】
本発明はこのような状況を背景としてなされたものであって、耐摩耗部材用の焼結合金に分散される硬質相を形成するものとして最適な粉末と、そのような粉末によって形成された硬質相が分散した焼結合金の製造方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明者は、焼結合金に分散される硬質相の成分について種々の改良研究を行ったところ、上記目的が達成され得る有効な知見を得、本発明を完成するに至った。具体的には、Mnの基地強化、固着性良化の効果、さらにCrやW、V、Nbによる基地強化の効果を得ることで、従来品を上回る耐摩耗性を得た。さらに硬質相形成粉末の基材をCoやNiに置き換えることで、これらが母合金鋼へ拡散し、焼結合金の性質を変化させることを見出した。本発明はこのような知見に基づいてなされたものであり、以下の構成を特徴とする。
【0006】
まず、本発明の耐摩耗性硬質相形成用合金粉末を説明する。
本発明の第1の粉末は、質量比で、Si:3.0〜12%、Mo:20〜50%、Mn:2.0〜5.0%、および残部がFeと不可避不純物よりなることを特徴としている。
また、本発明の第2の粉末は、質量比で、Si:3.0〜12%、Mo:20〜50%、Mn:2.0〜5.0%、Cr:15%以下、および残部がFeと不可避不純物よりなることを特徴としている。
上記本発明の各粉末においては、さらに、質量比で、W、V、Nbのうち少なくとも1種以上を5%以下含有させてもよい。
【0007】
次に、本発明の耐摩耗性焼結合金の製造方法は、上記本発明の粉末:5〜50質量%を、鉄粉末または低合金鋼粉末をベースとする母合金粉末に添加して混合した混合粉末を、圧縮成形した後、1000〜1250℃の温度範囲で焼結することを特徴としている。この方法では、母合金粉末に金属硫化物粉末を含有させてもよい。
【0008】
以下、本発明の作用と成分含有量の限定理由について説明する。
Si:Siは主にMoと反応して、耐摩耗性、潤滑性に優れたMo珪化物を形成し、焼結合金の耐摩耗性の向上に寄与する。Siが1質量%未満の場合には十分なMo珪化物が得られないため十分な耐摩耗性向上効果が得られない。逆にSiが12質量%を超えると、粉末の硬さが高くなって成形時の圧縮性を損ねるだけでなく、粉末表層にSi酸化被膜を形成して母合金鋼粉末との拡散を阻害し、硬質相の固着性が低下する。固着性が低いと、使用時の衝撃によって硬質相の脱落が起き、それが研摩粉に作用することで耐摩耗性が逆に低下してしまう。よって、Si含有量は1〜12質量%とした。
【0009】
Mo:Moは主にSiと反応して、耐摩耗性、潤滑性に優れたMo珪化物を形成し、焼結合金の耐摩耗性の向上に寄与する。Moが20質量%未満の場合には十分なMo珪化物が得られないため十分な耐摩耗性向上効果が得られない。逆にMoが50質量%を超えると、粉末の硬さが高くなって成形時の圧縮性を損ねるだけでなく、形成される硬質相が脆くなるため衝撃によって一部が欠けてしまい研摩粉の作用によって耐摩耗性が逆に低下してしまう。よって、Mo含有量は20〜50質量%とした。
【0010】
Mn:Mnは硬質相のMo珪化物以外の基地部分の強化に寄与する。基地部分を強化することで、Mo珪化物の流動や脱落が防げるため、苛酷な条件下でも優れた耐摩耗性を発揮することができる。また、Mnは母合金鋼に対して硬質相の固着性を良好にする効果もあるため、硬質相自体の脱落を防止でき、耐摩耗性向上を図れる。これらの効果は、Mnが0.5質量%未満であると不十分であり、逆に5質量%を超えると、粉末表層にMn酸化被膜を形成して母合金鋼粉末との拡散を阻害し、硬質相の固着性が低下する。固着性が低いと、使用時の衝撃によって硬質相の脱落が起き、それが研摩粉に作用することで耐摩耗性が逆に低下してしまう。よって、Mn含有量は0.5〜5質量%とした。
【0011】
Fe:硬質粒子粉末の基材となるこの元素は、主に焼結時に母合金鋼へ拡散し、母合金鋼基地の強化や固着性の向上に寄与する。また、硬質相のMo珪化物以外の基地部分の強化や、一部Mo(Si)との化合物を形成して耐摩耗性を高める。Feの場合は、母合金鋼への拡散性が良好であるため硬質相の固着性が良好となり、また、コストを低くできるため汎用的に使われる部材に使用するのに好適である
【0012】
Cr:Crも前述のMnと同様、硬質相のMo珪化物以外の基地部分の強化に寄与する。また、母合金鋼へ拡散して、母合金鋼の耐摩耗性向上にも寄与する。Crが15質量%を超えると、粉末の酸素量が多くなって粉末表面に酸化被膜が形成され焼結の進行を阻害するとともに、酸化被膜により粉末が硬くなるため圧縮性の低下が生じる。そのため、焼結合金の強度が低下し耐摩耗性の低下を招くことから、Cr含有量は15質量%以下とした。
【0013】
W、V、Nb:これら元素は硬質相やその周辺で炭化物を形成して耐摩耗性向上に寄与する。Crによって強化された基地に分散すると、大きな効果を得ることができるので好適である。また、これら元素はMo珪化物の微細化の効果もあるため、硬質相の脆化しにくくなる。これら元素は単独もしくは2種以上の組合せでも同様の効果を得ることができる。
【0014】
硬質相形成粉末の添加量:硬質相形成粉末の添加量は多いほど耐摩耗性が良好となるが、5質量%未満では効果が乏しく、50質量%を超えると、混合粉末の圧縮性が低くなって焼結後の密度や強度が低くなり耐摩耗性も低下してしまうことから、5〜50質量%に限定した。
【0015】
焼結温度:本発明合金の母合金鋼の組織はパーライトやソルバイトが好ましく、ベーナイトやマルテンサイトであればより好ましい。よって、本発明方法の混合粉末には、黒鉛粉末を混合することが望ましい。本発明方法では、焼結温度が黒鉛の拡散と焼結の進み方に影響を与えるが、1000℃未満では焼結が不十分となり満足できる耐摩耗性を得ることができない。逆に1250℃を超えると硬質相が溶融、消失してしまう。よって、焼結温度は1000〜1250℃に限定した。
【0016】
【実施例】
以下、本発明の実施例を説明する。
まず、表1に示す成分からなる母合金鋼粉末(ベース粉末)B1〜B5を準備した。一方、Fe粉、Cu粉、Fe−3Cr−0.3V−0.3Mo完全合金粉、Fe−6.5Co−1.5Ni−1.5Mo完全合金粉(数値はいずれも質量%)、黒鉛粉末、成形潤滑剤、および表2に示す成分からなる本発明の請求範囲内外の硬質相形成粉末P01〜P29を準備した。次いで、これら粉末および成形潤滑剤を、母合金鋼粉末B1〜B5に対して所定量添加し、表3に示す成分からなる試料番号01〜50の混合粉末を調整した。次いで、これら混合粉末を成形圧力650MPaで所定形状に成形し、これら成形体を、アンモニア分解ガス中で60分間焼結し、焼結体を得た。焼結温度は基本的に1150℃としたが、表3に示すように、これ以外の温度でも焼結を行った。
【0017】
【表1】

Figure 0003865293
【0018】
【表2】
Figure 0003865293
【0019】
【表3】
Figure 0003865293
【0020】
次に、試料番号01〜50の焼結合金について、圧環強さの測定および簡易摩耗試験を行った。その結果を表4に示す。なお、簡易摩耗試験は、高温下で叩きと摺動の入力が掛かる状態で行った。具体的には、アルミ合金製ハウジングに、内径面に45゜のテーパ面を有するリング形状に加工した焼結合金を圧入嵌合し、SUH−36素材で作製した外径面に一部45゜のテーパ面を有する円盤形状の相手材を、モータ駆動による偏心カムの回転によって上下ピストン運動させることにより、焼結合金と相手材のテーパ面どうしを繰り返し衝突させた。なお、この試験では、相手材をバーナーで加熱した状態として焼結合金が250℃となるように温度設定し、簡易摩耗試験叩き回数を2800回/分、繰り返し時間を15時間で行った。表4における摩耗量VSは試験に供した実施例の摩耗量、摩耗量Vは相手材の摩耗量である。
【0021】
【表4】
Figure 0003865293
【0022】
次に、図1〜図9を参照して本実施例を考察し、本発明の効果を明らかにする。なお、これら図で示す番号は試料番号である。
【0023】
図1は、硬質相形成粉末中のMo量を変えた試料番号01〜05の摩耗量および圧環強さの変化を示している。これによると、Mo量が20〜50質量%の範囲で摩耗量は低く安定しており、この範囲ではSiと反応して形成されるMo珪化物が適量形成されて良好な耐摩耗性を示すことが伺える。一方、Mo量が20質量%未満および50質量%超の場合には摩耗量が増大する傾向にあり、これは、20質量%未満ではMo珪化物が不足し、50質量%超では硬質相が脆くなって割れが発生し、耐摩耗性が低下すると想定される。圧環強さに基づく強度に関しては、Mo量の増加により僅かながら低下がみられるが、この範囲では実用上問題ないレベルにある。
【0024】
図2は、硬質相形成粉末中のSi量を変えた試料番号06〜11の摩耗量および圧環強さの変化を示している。これによると、Si量が1〜12質量%の範囲で摩耗量は低く、この範囲ではMoと反応して形成されるMo珪化物が適量形成されて良好な耐摩耗性を示すことが伺える。一方、Si量が1質量%未満の場合には急激に摩耗量が増えており、12質量%超の場合でも摩耗量が増大する傾向にある。これは、1質量%未満ではMo珪化物が不足し、12質量%超では硬質相の固着性が悪化するため耐摩耗性が低下すると想定される。また、強度はSi量の増加により低下することが認められる。
【0025】
図3は、硬質相形成粉末中のMn量を変えた試料番号12〜15の摩耗量および圧環強さの変化を示している。これによると、Mn量が0.5〜5質量%の範囲で摩耗量は低く、この範囲では基地の強化および硬質相の固着性向上に伴うMo珪化物の脱落が防がれて良好な耐摩耗性を示すことが伺える。一方、Mn量が0.5質量%未満および5質量%超になると急激に摩耗量が増える傾向にあり、耐摩耗性の効果を得られないことが判る。また、強度はMn量の増加により低下することが認められる。
【0026】
図4は、硬質相形成粉末の基合金が、Fe:試料番号03、Ni:試料番号16、Co:試料番号17と、硬質相形成粉末を添加しない合金:試料番号18の摩耗量および圧環強さを示している。これによると、硬質相形成粉末を添加した合金は、添加しない合金と比べるといずれも摩耗量が大幅に抑えられて良好な耐摩耗性を示し、その効果が明らかとなっている。
【0027】
図5は、硬質相形成粉末中のCr量を変えた試料番号03、19〜21の摩耗量および圧環強さの変化を示している。これによると、Cr量が15質量%以下の範囲で摩耗量は低く、15質量%を超えると強度の低下と摩耗量の増加が進行することが判る。Cr量が15質量%を超えると焼結の進行が阻害されて強度の低下が起こるとともに、耐摩耗性が低下することが伺える。
【0028】
図6は、添加元素としてW、V、Nbのうち少なくとも1種以上を添加した合金:試料番号22〜30の摩耗量を示している。これによると、いずれの合金も摩耗量が100μm以下に抑えられ、添加元素が耐摩耗性の向上に大きく寄与することが判る。
【0029】
図7は、硬質相形成粉末の添加量を変えた試料番号18、31〜37の摩耗量および圧環強さの変化を示している。これによると、硬質相形成粉末の添加量が5質量%未満では摩耗量が増大し、一方、50質量%を超えても摩耗量が増大する傾向にある。5〜50質量%の範囲で摩耗量は低く抑えられ、この範囲で本発明の硬質相形成粉末による耐摩耗性の向上効果が発揮されることが判る。また、強度に関しては、硬質相形成粉末の増加により低下し、50質量%を超えると強度不足になることが認められる。
【0030】
図8は、焼結温度を変えた試料番号03、38〜42の摩耗量および圧環強さの変化を示している。これによると、焼結温度が1000〜1250℃の範囲で摩耗量は低く抑えられるとともに高強度が維持され、1000℃未満および1250℃超では摩耗量が増大するとともに強度が低下する傾向にある。1000℃未満では焼結が不十分であり、1250℃超では硬質相の溶融、消失が起こることにより、このような傾向が生じることが伺える。
【0031】
図9は、ベース粉末B1、B2へのC量の添加量を変えたFe−C系合金:試料番号47、48と、ベース粉末B3にCおよびCuを添加したFe−Cu−C系合金:試料番号49と、ベース粉末B4にCおよびCrを添加したFe−Cr−C系合金:試料番号50と、ベース粉末B5にCおよびCoを添加したFe−Co−C系合金:試料番号18と、これらに硬質相形成粉末を添加した試料番号試料番号43〜46、03の摩耗量を示している。これによると、いずれの系の合金も硬質相形成粉末の添加により摩耗量が大幅に抑えられ、硬質相形成粉末の添加が耐摩耗性の向上に大きく寄与することが判る。
【0032】
【発明の効果】
以上説明したように、本発明の耐摩耗性硬質相形成用合金粉末によれば、耐摩耗部材用の焼結合金に分散される硬質相を形成するものとして最適な粉末であり、本発明の耐摩耗性焼結合金の製造方法によれば、本発明の粉末によって形成された硬質相が分散した焼結合金を好適かつ効率的に製造することができるといった効果を奏する。
【図面の簡単な説明】
【図1】 本発明の実施例において硬質相形成粉末中のMo量が摩耗量と圧環強さに与える影響を示す線図である。
【図2】 本発明の実施例において硬質相形成粉末中のSi量が摩耗量と圧環強さに与える影響を示す線図である。
【図3】 本発明の実施例において硬質相形成粉末中のMn量が摩耗量と圧環強さに与える影響を示す線図である。
【図4】 本発明の実施例において硬質相形成粉末の基合金の種類を変えた合金と硬質相形成粉末が添加されていない合金の摩耗量を示す線図である。
【図5】 本発明の実施例において硬質相形成粉末中のCr量が摩耗量と圧環強さに与える影響を示す線図である。
【図6】 本発明の実施例において耐摩耗性向上用の元素が硬質相形成粉末中に添加された焼結合金の摩耗量を示す線図である。
【図7】 本発明の実施例において硬質相形成粉末の添加量が摩耗量と圧環強さに与える影響を示す線図である。
【図8】 本発明の実施例において焼結温度が摩耗量と圧環強さに与える影響を示す線図である。
【図9】 本発明の実施例において各種Fe−C系合金における硬質相形成粉末の添加の有無が摩耗量に与える影響を示す線図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a powder for forming a hard phase dispersed in a metal structure of a sintered alloy for wear-resistant members, and a method for producing a wear-resistant sintered alloy using the powder.
[0002]
[Prior art]
Sintered alloys used for wear-resistant members often use a method in which a phase whose hardness has been increased by intermetallic compounds or carbides, the so-called hard phase, is dispersed, particularly effective for members used at high temperatures. It is said that. Conventionally, in order to form such a hard phase, ferroalloy ground powders such as FeMo and FeCr and ceramic powders have been added. However, the compressibility of mixed powders, mold wear, and wetting with the base metal There was a sex problem. Further, it is common to apply a Co-based or Fe-based thermal spraying powder as a hard phase forming powder, but it is rare that components are optimized for powder metallurgy. Therefore, as shown in Japanese Examined Patent Publication No. 61-8142, the present applicant mixed a base powder such as low alloy steel or stainless steel with a Mo-containing iron-based hard phase forming powder having good wettability after sintering. is suggesting.
[0003]
[Problems to be solved by the invention]
However, the powder described in the above-mentioned publication has a case where the wear resistance is extremely excellent and a case where the powder is greatly worn, and the stability of performance is difficult. It has been found that the cause is insufficient strengthening of the base supporting the precipitates and the adhesiveness between the hard phase and the base.
[0004]
The present invention has been made against the background of the above circumstances, and is an optimum powder for forming a hard phase dispersed in a sintered alloy for wear-resistant members, and a hard formed by such a powder. It aims at providing the manufacturing method of the sintered alloy in which the phase disperse | distributed.
[0005]
[Means for Solving the Problems]
The inventor conducted various improvement studies on the components of the hard phase dispersed in the sintered alloy. As a result, the inventor obtained effective knowledge that the above-described object can be achieved and completed the present invention. Specifically, by obtaining the effect of strengthening the base of Mn and improving the adherence, and further the effect of strengthening the base by Cr, W, V, and Nb, the wear resistance exceeding that of the conventional product was obtained. Furthermore, it has been found that by replacing the base material of the hard phase forming powder with Co or Ni, these diffuse into the master alloy steel and change the properties of the sintered alloy. The present invention has been made on the basis of such findings, and is characterized by the following configurations.
[0006]
First, the wear-resistant hard phase forming alloy powder of the present invention will be described.
The first powder of the present invention has a mass ratio of Si: 3.0 to 12%, Mo: 20 to 50%, Mn: 2.0 to 5.0%, and the balance being Fe and inevitable impurities It is characterized by.
In addition, the second powder of the present invention has a mass ratio of Si: 3.0 to 12%, Mo: 20 to 50%, Mn: 2.0 to 5.0%, Cr: 15% or less, and the balance. Consists of Fe and inevitable impurities.
Each powder of the present invention may further contain 5% or less of at least one of W, V, and Nb by mass ratio.
[0007]
Next, the manufacturing method of the wear-resistant sintered alloy of the present invention is the above-mentioned powder of the present invention: 5 to 50% by mass added to the master alloy powder based on iron powder or low alloy steel powder and mixed. It is characterized by sintering the mixed powder in a temperature range of 1000 to 1250 ° C. after compression molding. In this method, the metal alloy powder may be contained in the mother alloy powder.
[0008]
Hereinafter, the effect | action of this invention and the reason for limitation of component content are demonstrated.
Si: Si mainly reacts with Mo to form Mo silicide excellent in wear resistance and lubricity, and contributes to improvement in wear resistance of the sintered alloy. When Si is less than 1% by mass, sufficient Mo silicide cannot be obtained, so that a sufficient effect of improving wear resistance cannot be obtained. Conversely, if Si exceeds 12% by mass, not only does the hardness of the powder increase and the compressibility during molding is impaired, but also an Si oxide film is formed on the powder surface layer to inhibit diffusion with the master alloy steel powder. , The sticking property of the hard phase is lowered. If the sticking property is low, the hard phase falls off due to an impact at the time of use, and this acts on the abrasive powder, so that the wear resistance is lowered. Therefore, the Si content is set to 1 to 12% by mass.
[0009]
Mo: Mo mainly reacts with Si to form Mo silicide with excellent wear resistance and lubricity, and contributes to the improvement of wear resistance of the sintered alloy. When Mo is less than 20% by mass, sufficient Mo silicide cannot be obtained, so that sufficient wear resistance improvement effect cannot be obtained. Conversely, if Mo exceeds 50% by mass, not only does the hardness of the powder increase and the compressibility at the time of molding is impaired, but the formed hard phase becomes brittle and part of the abrasive powder is missing due to impact. The wear resistance is reduced by the action. Therefore, the Mo content is set to 20 to 50% by mass.
[0010]
Mn: Mn contributes to strengthening of the base part other than the hard phase Mo silicide. By strengthening the base portion, it is possible to prevent the Mo silicide from flowing and falling off, so that excellent wear resistance can be exhibited even under severe conditions. Further, since Mn also has an effect of improving the hard phase adhesion to the mother alloy steel, the hard phase itself can be prevented from falling off and the wear resistance can be improved. These effects are insufficient when Mn is less than 0.5% by mass. Conversely, when Mn exceeds 5% by mass, a Mn oxide film is formed on the powder surface layer to inhibit diffusion with the master alloy steel powder. , The sticking property of the hard phase is lowered. If the sticking property is low, the hard phase falls off due to an impact at the time of use, and this acts on the abrasive powder, so that the wear resistance is lowered. Therefore, the Mn content is set to 0.5 to 5% by mass.
[0011]
Fe : This element which becomes the base material of the hard particle powder mainly diffuses into the master alloy steel during sintering, and contributes to strengthening of the master alloy steel base and improvement of the adhesiveness. Moreover, reinforcement | strengthening of base parts other than Mo silicide of a hard phase and a compound with a part Mo (Si) are formed, and abrasion resistance is improved. In the case of Fe, the diffusibility into the master alloy steel is good, so that the hard phase is well fixed, and the cost can be reduced, so that it is suitable for use in a member used for general purposes .
[0012]
Cr: Cr also contributes to strengthening of the base portion other than Mo silicide of the hard phase, similar to Mn described above. It also diffuses into the master alloy steel and contributes to the improvement of the wear resistance of the master alloy steel. When Cr exceeds 15% by mass, the amount of oxygen in the powder increases and an oxide film is formed on the powder surface to inhibit the progress of sintering, and the powder becomes hard due to the oxide film, resulting in a decrease in compressibility. For this reason, the strength of the sintered alloy is lowered and the wear resistance is lowered, so the Cr content is set to 15% by mass or less.
[0013]
W, V, Nb: These elements form carbides in and around the hard phase and contribute to improving wear resistance. It is preferable to disperse the bases strengthened by Cr since a great effect can be obtained. Moreover, since these elements also have the effect of miniaturizing the Mo silicide, it becomes difficult for the hard phase to become brittle. These elements can obtain the same effect even when used alone or in combination of two or more.
[0014]
Addition amount of hard phase forming powder: The greater the addition amount of hard phase forming powder, the better the wear resistance. However, if the amount is less than 5% by mass, the effect is poor, and if it exceeds 50% by mass, the compressibility of the mixed powder is low. Thus, the density and strength after sintering are lowered and the wear resistance is also lowered, so the content is limited to 5 to 50% by mass.
[0015]
Sintering temperature: The structure of the mother alloy steel of the alloy of the present invention is preferably pearlite or sorbite, more preferably bainite or martensite. Therefore, it is desirable to mix graphite powder with the mixed powder of the method of the present invention. In the method of the present invention, the sintering temperature affects the diffusion of graphite and the progress of the sintering, but if it is less than 1000 ° C., the sintering becomes insufficient and satisfactory wear resistance cannot be obtained. Conversely, when it exceeds 1250 ° C., the hard phase melts and disappears. Therefore, the sintering temperature was limited to 1000 to 1250 ° C.
[0016]
【Example】
Examples of the present invention will be described below.
First, mother alloy steel powders (base powders) B1 to B5 comprising the components shown in Table 1 were prepared. On the other hand, Fe powder, Cu powder, Fe-3Cr-0.3V-0.3Mo complete alloy powder, Fe-6.5Co-1.5Ni-1.5Mo complete alloy powder (both numerical values are mass%), graphite powder In addition, hard phase forming powders P01 to P29 were prepared which consisted of the molding lubricant and the components shown in Table 2 within and outside the scope of the present invention. Next, a predetermined amount of these powders and molding lubricant was added to the mother alloy steel powders B1 to B5 to prepare mixed powders of sample numbers 01 to 50 having the components shown in Table 3. Subsequently, these mixed powders were molded into a predetermined shape at a molding pressure of 650 MPa, and these molded bodies were sintered in ammonia decomposition gas for 60 minutes to obtain sintered bodies. Although the sintering temperature was basically 1150 ° C., as shown in Table 3, sintering was also performed at other temperatures.
[0017]
[Table 1]
Figure 0003865293
[0018]
[Table 2]
Figure 0003865293
[0019]
[Table 3]
Figure 0003865293
[0020]
Next, for the sintered alloys of sample numbers 01 to 50, measurement of the crushing strength and simple wear tests were performed. The results are shown in Table 4. Note that the simple wear test was performed in a state in which tapping and sliding input were applied at a high temperature. Specifically, a sintered alloy processed into a ring shape having a taper surface of 45 ° on the inner diameter surface is press-fitted into an aluminum alloy housing, and a part of the outer diameter surface made of SUH-36 material is 45 °. The disk-shaped mating member having a tapered surface was moved up and down by piston rotation by the rotation of an eccentric cam driven by a motor, so that the taper surfaces of the sintered alloy and the mating material collided repeatedly. In this test, the temperature was set so that the sintered alloy would be 250 ° C. with the counterpart material heated by a burner, the number of hits of the simple wear test was 2800 times / minute, and the repetition time was 15 hours. The wear amount VS in Table 4 is the wear amount of the examples used in the test, and the wear amount V is the wear amount of the counterpart material.
[0021]
[Table 4]
Figure 0003865293
[0022]
Next, this embodiment will be discussed with reference to FIGS. 1 to 9 to clarify the effects of the present invention. The numbers shown in these figures are sample numbers.
[0023]
FIG. 1 shows changes in the wear amount and the crushing strength of sample numbers 01 to 05 in which the amount of Mo in the hard phase forming powder is changed. According to this, the wear amount is low and stable when the Mo amount is in the range of 20 to 50% by mass. In this range, an appropriate amount of Mo silicide formed by reacting with Si is formed and exhibits good wear resistance. I can ask you. On the other hand, when the amount of Mo is less than 20% by mass or more than 50% by mass, the amount of wear tends to increase. When the amount of Mo is less than 20% by mass, Mo silicide is insufficient, and when the amount of Mo exceeds 50% by mass, the hard phase is insufficient. It is assumed that it becomes brittle and cracks occur, resulting in a decrease in wear resistance. With respect to the strength based on the crushing strength, a slight decrease is observed with an increase in the Mo content, but in this range, there is no practical problem.
[0024]
FIG. 2 shows changes in the wear amount and the crushing strength of sample numbers 06 to 11 in which the Si amount in the hard phase forming powder is changed. According to this, the amount of wear is low when the amount of Si is in the range of 1 to 12% by mass, and it can be seen that an appropriate amount of Mo silicide formed by reacting with Mo is formed in this range and shows good wear resistance. On the other hand, when the amount of Si is less than 1% by mass, the amount of wear increases rapidly, and when it exceeds 12% by mass, the amount of wear tends to increase. If it is less than 1% by mass, Mo silicide is insufficient, and if it exceeds 12% by mass, the hard phase is deteriorated in stickiness, so that the wear resistance is assumed to be lowered. In addition, it is recognized that the strength decreases as the Si amount increases.
[0025]
FIG. 3 shows changes in the wear amount and the crushing strength of sample numbers 12 to 15 in which the amount of Mn in the hard phase forming powder is changed. According to this, the wear amount is low when the amount of Mn is in the range of 0.5 to 5% by mass, and in this range, the Mo silicide is prevented from falling off due to the strengthening of the base and the improvement of the adhesion of the hard phase. It can be seen that it shows wear. On the other hand, when the amount of Mn is less than 0.5% by mass and more than 5% by mass, the amount of wear tends to increase rapidly, and it is understood that the effect of wear resistance cannot be obtained. In addition, it is recognized that the strength decreases as the amount of Mn increases.
[0026]
FIG. 4 shows that the base alloy of the hard phase forming powder is Fe: Sample No. 03, Ni: Sample No. 16, Co: Sample No. 17 and an alloy to which no hard phase forming powder is added: Sample No. 18 wear amount and crushing strength. It shows. According to this, all of the alloys to which the hard phase forming powder is added are significantly reduced in wear amount compared to the alloys to which the hard phase forming powder is not added, exhibiting good wear resistance, and the effect is clear.
[0027]
FIG. 5 shows changes in the wear amount and the crushing strength of Sample Nos. 03 and 19 to 21 in which the Cr amount in the hard phase forming powder was changed. According to this, it is understood that the wear amount is low when the Cr amount is 15% by mass or less, and when the Cr amount exceeds 15% by mass, the strength decreases and the wear amount increases. It can be seen that when the Cr content exceeds 15% by mass, the progress of the sintering is hindered, the strength is lowered, and the wear resistance is lowered.
[0028]
FIG. 6 shows the wear amount of alloys: sample numbers 22 to 30 added with at least one of W, V, and Nb as additive elements. According to this, the wear amount of any alloy is suppressed to 100 μm or less, and it can be seen that the additive element greatly contributes to the improvement of the wear resistance.
[0029]
FIG. 7 shows changes in the amount of wear and the crushing strength of Sample Nos. 18, 31 to 37 with the addition amount of the hard phase forming powder changed. According to this, when the addition amount of the hard phase forming powder is less than 5% by mass, the wear amount increases, and when it exceeds 50% by mass, the wear amount tends to increase. The amount of wear is kept low in the range of 5 to 50% by mass, and it can be seen that the effect of improving the wear resistance by the hard phase forming powder of the present invention is exhibited in this range. Moreover, regarding the strength, it is recognized that the strength decreases due to an increase in the hard phase forming powder, and when the amount exceeds 50% by mass, the strength becomes insufficient.
[0030]
FIG. 8 shows changes in the amount of wear and the crushing strength of sample numbers 03 and 38 to 42 with different sintering temperatures. According to this, when the sintering temperature is 1000 to 1250 ° C., the wear amount is kept low and high strength is maintained, and when it is less than 1000 ° C. and above 1250 ° C., the wear amount increases and the strength tends to decrease. If the temperature is lower than 1000 ° C., the sintering is insufficient, and if it exceeds 1250 ° C., such a tendency is caused by melting and disappearance of the hard phase.
[0031]
FIG. 9 shows Fe-C alloys in which the amount of C added to the base powders B1 and B2 is changed: sample numbers 47 and 48, and Fe-Cu-C alloys in which C and Cu are added to the base powder B3: Sample No. 49, Fe—Cr—C alloy with C and Cr added to base powder B4: Sample No. 50, Fe—Co—C alloy with C and Co added to base powder B5: Sample No. 18 These show the wear amounts of Sample Nos. 43 to 46, 03 in which hard phase forming powder is added. According to this, it can be understood that the wear amount of any alloy is greatly suppressed by the addition of the hard phase forming powder, and the addition of the hard phase forming powder greatly contributes to the improvement of the wear resistance.
[0032]
【The invention's effect】
As described above, according to the wear resistant hard phase forming alloy powder of the present invention, it is an optimum powder for forming a hard phase dispersed in a sintered alloy for wear resistant members. According to the method for producing a wear-resistant sintered alloy, there is an effect that a sintered alloy in which the hard phase formed by the powder of the present invention is dispersed can be suitably and efficiently produced.
[Brief description of the drawings]
FIG. 1 is a diagram showing the influence of the amount of Mo in a hard phase forming powder on the amount of wear and the crushing strength in an example of the present invention.
FIG. 2 is a diagram showing the influence of the amount of Si in the hard phase forming powder on the wear amount and the crushing strength in the examples of the present invention.
FIG. 3 is a diagram showing the influence of the amount of Mn in the hard phase forming powder on the wear amount and the crushing strength in the examples of the present invention.
FIG. 4 is a diagram showing the wear amount of an alloy in which the type of the base alloy of the hard phase forming powder is changed and an alloy to which no hard phase forming powder is added in the embodiment of the present invention.
FIG. 5 is a diagram showing the influence of the amount of Cr in the hard phase forming powder on the wear amount and the crushing strength in the examples of the present invention.
FIG. 6 is a diagram showing the wear amount of a sintered alloy in which an element for improving wear resistance is added to a hard phase forming powder in an example of the present invention.
FIG. 7 is a diagram showing the influence of the addition amount of hard phase forming powder on the wear amount and the crushing strength in the examples of the present invention.
FIG. 8 is a diagram showing the influence of the sintering temperature on the wear amount and the crushing strength in the examples of the present invention.
FIG. 9 is a diagram showing the influence of the presence or absence of addition of a hard phase forming powder on the amount of wear in various Fe—C based alloys in Examples of the present invention.

Claims (7)

質量比で、Si:3.0〜12%、Mo:20〜50%、Mn:2.0〜5.0%、および残部がFeと不可避不純物よりなることを特徴とする耐摩耗性硬質相形成用合金粉末。Abrasion resistant hard phase characterized in that, by mass ratio, Si: 3.0 to 12%, Mo: 20 to 50%, Mn: 2.0 to 5.0%, and the balance consisting of Fe and inevitable impurities Forming alloy powder. 質量比で、Si:3.0〜12%、Mo:20〜50%、Mn:2.0〜5.0%、Cr:15%以下、および残部がFeと不可避不純物よりなることを特徴とする耐摩耗性硬質相形成用合金粉末。It is characterized in that, by mass ratio, Si: 3.0 to 12%, Mo: 20 to 50%, Mn: 2.0 to 5.0%, Cr: 15% or less, and the balance consists of Fe and inevitable impurities Wear resistant hard phase forming alloy powder. 前記耐摩耗性硬質相形成用合金粉末に、さらに、質量比で、W、V、Nbのうち少なくとも1種以上を5%以下含むことを特徴とする請求項1または2に記載の耐摩耗性硬質相形成用合金粉末。  The wear resistance according to claim 1 or 2, wherein the wear resistant hard phase forming alloy powder further contains 5% or less of at least one of W, V, and Nb by mass ratio. Alloy powder for hard phase formation. 質量比で、Si:1.0〜12%、Mo:20〜50%、Mn:0.5〜5.0%、および残部がFe、Ni、Coのうち少なくとも1種以上と不可避不純物よりなる耐摩耗性硬質相形成用合金粉末:5〜50質量%を、鉄粉末または低合金鋼粉末をベースとする母合金粉末に添加して混合した混合粉末を、圧縮成形した後、1000〜1250℃の温度範囲で焼結することを特徴とする耐摩耗性焼結合金の製造方法。 By mass ratio, Si: 1.0 to 12%, Mo: 20 to 50%, Mn: 0.5 to 5.0%, and the balance is composed of at least one of Fe, Ni, and Co and inevitable impurities Abrasion-resistant hard phase forming alloy powder: 5 to 50% by mass added to and mixed with mother alloy powder based on iron powder or low alloy steel powder, and then compression molded, then 1000 to 1250 ° C A method for producing a wear-resistant sintered alloy, comprising sintering in a temperature range of 前記耐摩耗性硬質相形成用合金粉末が、さらに15質量%以下のCrを含むことを特徴とする請求項4に記載の耐摩耗性焼結合金の製造方法。The method for producing a wear-resistant sintered alloy according to claim 4, wherein the wear-resistant hard phase forming alloy powder further contains 15 mass% or less of Cr. 前記耐摩耗性硬質相形成用合金粉末が、さらに質量比で、W、V、Nbのうち少なくとも1種以上を5%以下含むことを特徴とする請求項4または5に記載の耐摩耗性焼結合金の製造方法。6. The wear-resistant calcination according to claim 4 or 5, wherein the wear-resistant hard phase forming alloy powder further contains 5% or less of at least one of W, V, and Nb by mass ratio. A manufacturing method of bond gold. 前記母合金粉末が金属硫化物粉末を含むことを特徴とする請求項4〜6のいずれかに記載の耐摩耗性焼結合金の製造方法。The method for producing a wear-resistant sintered alloy according to any one of claims 4 to 6, wherein the mother alloy powder contains a metal sulfide powder.
JP2001161681A 2001-05-30 2001-05-30 Abrasion resistant hard phase forming alloy powder and method for producing wear resistant sintered alloy using the same Expired - Lifetime JP3865293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001161681A JP3865293B2 (en) 2001-05-30 2001-05-30 Abrasion resistant hard phase forming alloy powder and method for producing wear resistant sintered alloy using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001161681A JP3865293B2 (en) 2001-05-30 2001-05-30 Abrasion resistant hard phase forming alloy powder and method for producing wear resistant sintered alloy using the same

Publications (2)

Publication Number Publication Date
JP2002356704A JP2002356704A (en) 2002-12-13
JP3865293B2 true JP3865293B2 (en) 2007-01-10

Family

ID=19004920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001161681A Expired - Lifetime JP3865293B2 (en) 2001-05-30 2001-05-30 Abrasion resistant hard phase forming alloy powder and method for producing wear resistant sintered alloy using the same

Country Status (1)

Country Link
JP (1) JP3865293B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103775498A (en) * 2014-02-17 2014-05-07 德州联合石油机械有限公司 Hard alloy transverse bearing body for spiral drilling rig and production method thereof
CN106011598A (en) * 2016-08-05 2016-10-12 北京科技大学 Preparation method of molybdenum steel additive
CN107262707A (en) * 2016-04-06 2017-10-20 精工爱普生株式会社 Metal powder for powder metallurgy, compound, prilling powder and sintered body
CN107838413A (en) * 2017-09-30 2018-03-27 东风商用车有限公司 A kind of heavy-duty engine powder metallurgy material for valve seat insert and preparation method thereof

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7294167B2 (en) 2003-11-21 2007-11-13 Hitachi Powdered Metals Co., Ltd. Alloy powder for forming hard phase and ferriferous mixed powder using the same, and manufacturing method for wear resistant sintered alloy and wear resistant sintered alloy
US7575619B2 (en) * 2005-03-29 2009-08-18 Hitachi Powdered Metals Co., Ltd. Wear resistant sintered member
KR100850152B1 (en) * 2005-10-12 2008-08-04 히다치 훈마츠 야킨 가부시키가이샤 Method of manufacturing the anti-wear sintered member, sintered valve seat, and method of manufacturing the same
KR100869065B1 (en) 2006-09-21 2008-11-18 요업기술원 The processing of sintering of metal nanoparticles and products thereof, the method of metla nanoparticles
JP5096130B2 (en) * 2007-12-27 2012-12-12 日立粉末冶金株式会社 Iron-based sintered alloy for sliding members
US20100008812A1 (en) 2008-07-03 2010-01-14 Hitachi Powdered Metals Co., Ltd. Hard phase forming alloy powder, wear resistant sintered alloy, and production method for wear resistant sintered alloy
JP5253131B2 (en) * 2008-12-22 2013-07-31 日立粉末冶金株式会社 Wear-resistant sintered alloy and method for producing the same
JP5253132B2 (en) * 2008-12-22 2013-07-31 日立粉末冶金株式会社 Wear-resistant sintered alloy and method for producing the same
EP2780485B1 (en) * 2011-11-18 2018-10-24 Tubitak Alloy for high temperature tooling applications
JP5637201B2 (en) * 2012-11-14 2014-12-10 トヨタ自動車株式会社 Hard particles for blending sintered alloy, wear-resistant iron-based sintered alloy, and method for producing the same
CN110218927B (en) * 2019-07-17 2021-02-12 山东省机械设计研究院 High-temperature hard alloy and manufacturing method thereof
JP2021091925A (en) * 2019-12-09 2021-06-17 国立大学法人東北大学 Fe-BASED ALLOY HAVING EXCELLENT CORROSION PITTING RESISTANCE AND METHOD FOR PRODUCING THE SAME
CN111020332A (en) * 2019-12-24 2020-04-17 江苏骏茂新材料科技有限公司 High-temperature-resistant alloy plate processing technology

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103775498A (en) * 2014-02-17 2014-05-07 德州联合石油机械有限公司 Hard alloy transverse bearing body for spiral drilling rig and production method thereof
CN103775498B (en) * 2014-02-17 2015-12-02 德州联合石油机械有限公司 A kind of helicoid hydraulic motor cemented carbide radial bearing body and production method thereof
CN107262707A (en) * 2016-04-06 2017-10-20 精工爱普生株式会社 Metal powder for powder metallurgy, compound, prilling powder and sintered body
CN107262707B (en) * 2016-04-06 2021-10-26 精工爱普生株式会社 Metal powder for powder metallurgy, composite, granulated powder, and sintered body
CN106011598A (en) * 2016-08-05 2016-10-12 北京科技大学 Preparation method of molybdenum steel additive
CN107838413A (en) * 2017-09-30 2018-03-27 东风商用车有限公司 A kind of heavy-duty engine powder metallurgy material for valve seat insert and preparation method thereof
CN107838413B (en) * 2017-09-30 2021-03-16 东风商用车有限公司 Heavy-duty engine powder metallurgy valve seat material and preparation method thereof

Also Published As

Publication number Publication date
JP2002356704A (en) 2002-12-13

Similar Documents

Publication Publication Date Title
JP3865293B2 (en) Abrasion resistant hard phase forming alloy powder and method for producing wear resistant sintered alloy using the same
JP6093405B2 (en) Nitrogen-containing low nickel sintered stainless steel
JP4183346B2 (en) Mixed powder for powder metallurgy, iron-based sintered body and method for producing the same
JP4891421B2 (en) Powder metallurgy mixture and method for producing powder metallurgy parts using the same
JP4368245B2 (en) Hard particle dispersion type iron-based sintered alloy
KR102058836B1 (en) Method of producing mixed powder for powder metallurgy, method of producing sintered body, and sintered body
JP2002363681A (en) Sintered alloy, production method therefor and valve seat
JP2011094187A (en) Method for producing high strength iron based sintered compact
JP4201830B2 (en) Iron-based powder containing chromium, molybdenum and manganese and method for producing sintered body
JP6515955B2 (en) Method of manufacturing mixed powder for powder metallurgy and iron-based sintered body
JP2001527603A (en) Method of sintering an iron-based powder mixture to form a component
JP6352959B2 (en) Method for producing wear-resistant iron-based sintered alloy, compact for sintered alloy, and wear-resistant iron-based sintered alloy
JP4371003B2 (en) Alloy steel powder for powder metallurgy
JP6077499B2 (en) Sintered alloy molded body, wear-resistant iron-based sintered alloy, and method for producing the same
JP6528899B2 (en) Method of manufacturing mixed powder and sintered body for powder metallurgy
JP5929084B2 (en) Alloy steel powder for powder metallurgy, iron-based sintered material and method for producing the same
JP7248027B2 (en) Sintered alloy and its manufacturing method
JP4715358B2 (en) Alloy steel powder for powder metallurgy
JP5253132B2 (en) Wear-resistant sintered alloy and method for producing the same
JP2001295004A (en) Iron base sintered alloy
JP5923023B2 (en) Mixed powder for powder metallurgy and method for producing sintered material
JPH0959740A (en) Powder mixture for powder metallurgy and its sintered compact
JP2010144235A (en) Wear-resistant sintered alloy and method for producing the same
JP2012126972A (en) Alloy steel powder for powder metallurgy, iron-based sintered material, and method for manufacturing the same
JP2007100115A (en) Alloy steel powder for powder metallurgy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060929

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3865293

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131013

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term