JP2002356704A - Alloy powder for forming wear-resistant hard phase and method for producing wear-resistant sintered alloy using the same - Google Patents

Alloy powder for forming wear-resistant hard phase and method for producing wear-resistant sintered alloy using the same

Info

Publication number
JP2002356704A
JP2002356704A JP2001161681A JP2001161681A JP2002356704A JP 2002356704 A JP2002356704 A JP 2002356704A JP 2001161681 A JP2001161681 A JP 2001161681A JP 2001161681 A JP2001161681 A JP 2001161681A JP 2002356704 A JP2002356704 A JP 2002356704A
Authority
JP
Japan
Prior art keywords
powder
wear
hard phase
alloy
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001161681A
Other languages
Japanese (ja)
Other versions
JP3865293B2 (en
Inventor
Hideaki Kawada
英昭 河田
Koichiro Hayashi
幸一郎 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP2001161681A priority Critical patent/JP3865293B2/en
Publication of JP2002356704A publication Critical patent/JP2002356704A/en
Application granted granted Critical
Publication of JP3865293B2 publication Critical patent/JP3865293B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide powder which is excellent in forming a hard phase dispersed in a sintered alloy for a wear-resistant member, and a production method for a sintered alloy in which the hard phase formed by the powder is dispersed. SOLUTION: The alloy powder for forming a wear-resistant hard phase has a composition containing, by mass, 1.0 to 12% Si, 20 to 50% Mo and 0.5 to 5.0% Mn, and the balance at least one or more kinds selected from Fe, Ni and Co with inevitable impurities. This alloy is added to master alloy powder using iron powder or low alloy steel powder, and they are mixed. This powdery mixture is compacted, and is thereafter sintered in the temperature range of 1,000 to 1,250 deg.C to obtain the wear-resistant sintered alloy.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐摩耗部材用の焼
結合金の金属組織中に分散される硬質相を形成するため
の粉末と、それを用いた耐摩耗性焼結合金の製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a powder for forming a hard phase dispersed in a metal structure of a sintered alloy for a wear-resistant member, and a method for producing a wear-resistant sintered alloy using the same. About.

【0002】[0002]

【従来の技術】耐摩耗部材に使用される焼結合金には、
金属間化合物や炭化物によって硬度を高めた相、いわゆ
る硬質相を分散させる手法が用いられることが多く、特
に高温下で使用される部材では効果的とされている。従
来、そのような硬質相を形成させるためには、FeM
o、FeCr等のフェロアロイ搗砕粉末やセラミック粉
末を添加していたが、混合粉末の圧縮性や金型摩耗、ま
た、母地との濡れ性の問題があった。また、Co基やF
e基の溶射用粉末を硬質相形成粉末として適用すること
も一般的であるが、粉末冶金用に成分が最適化されたも
のは稀である。そこで本出願人は、特公昭61−814
2号に示す通り、低合金鋼またはステンレス鋼などの母
地粉末中に焼結後の濡れ性が良い含Mo鉄基硬質相形成
粉末を混合したものを提案している。
2. Description of the Related Art Sintered alloys used for wear-resistant members include:
A method of dispersing a phase whose hardness is increased by an intermetallic compound or carbide, that is, a so-called hard phase, is often used, and is considered to be particularly effective for a member used at a high temperature. Conventionally, to form such a hard phase, FeM
o, a ferroalloy ground powder such as FeCr or a ceramic powder was added, but there were problems with the compressibility of the mixed powder, mold wear, and wettability with the matrix. In addition, Co group or F
It is also common to apply e-based thermal spraying powders as hard phase forming powders, but rarely one whose components are optimized for powder metallurgy. Accordingly, the applicant of the present application has disclosed Japanese Patent Publication No. 61-814.
As shown in No. 2, there has been proposed a mixture of a base powder such as a low alloy steel or a stainless steel and a Mo-containing hard phase forming powder containing iron having good wettability after sintering.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記公
報に記載の粉末は、非常に優れた耐摩耗性を示す場合と
大きく摩耗してしまう場合が有り、性能の安定性に難が
あった。原因は析出物を支える基地の強化が不十分であ
ったことと、硬質相と基地との固着性にあることが判明
している。
However, the powders described in the above-mentioned publications have a case where they exhibit very excellent abrasion resistance and a case where they are greatly worn, and have a problem in stability of performance. It has been found that the causes are insufficient reinforcement of the matrix supporting the precipitates and the adhesion between the hard phase and the matrix.

【0004】本発明はこのような状況を背景としてなさ
れたものであって、耐摩耗部材用の焼結合金に分散され
る硬質相を形成するものとして最適な粉末と、そのよう
な粉末によって形成された硬質相が分散した焼結合金の
製造方法を提供することを目的とする。
[0004] The present invention has been made in view of such a situation, and a powder optimal for forming a hard phase dispersed in a sintered alloy for a wear-resistant member, and a powder formed by such a powder. It is an object of the present invention to provide a method for producing a sintered alloy in which a hard phase is dispersed.

【0005】[0005]

【課題を解決するための手段】本発明者は、焼結合金に
分散される硬質相の成分について種々の改良研究を行っ
たところ、上記目的が達成され得る有効な知見を得、本
発明を完成するに至った。具体的には、Mnの基地強
化、固着性良化の効果、さらにCrやW、V、Nbによ
る基地強化の効果を得ることで、従来品を上回る耐摩耗
性を得た。さらに硬質相形成粉末の基材をCoやNiに
置き換えることで、これらが母合金鋼へ拡散し、焼結合
金の性質を変化させることを見出した。本発明はこのよ
うな知見に基づいてなされたものであり、以下の構成を
特徴とする。
Means for Solving the Problems The present inventor carried out various improvement studies on the components of the hard phase dispersed in the sintered alloy. It was completed. More specifically, the effect of strengthening the matrix of Mn and improving the adhesion, and the effect of strengthening the matrix with Cr, W, V, and Nb were obtained, so that the wear resistance was higher than that of the conventional product. Furthermore, they have found that by replacing the base material of the hard phase forming powder with Co or Ni, these diffuse into the mother alloy steel and change the properties of the sintered alloy. The present invention has been made based on such knowledge, and has the following features.

【0006】まず、本発明の耐摩耗性硬質相形成用合金
粉末を説明する。本発明の第1の粉末は、質量比で、S
i:1.0〜12%、Mo:20〜50%、Mn:0.
5〜5.0%、および残部がFe、Ni、Coのうち少
なくとも1種以上と不可避不純物よりなることを特徴と
している。また、本発明の第2の粉末は、質量比で、S
i:1.0〜12%、Mo:20〜50%、Mn:0.
5〜5.0%、Cr:15%以下、および残部がFe、
Ni、Coのうち少なくとも1種以上と不可避不純物よ
りなることを特徴としている。上記本発明の各粉末にお
いては、さらに、質量比で、W、V、Nbのうち少なく
とも1種以上を5%以下含有させてもよい。
First, the wear-resistant hard phase forming alloy powder of the present invention will be described. The first powder of the present invention has a mass ratio of S
i: 1.0 to 12%, Mo: 20 to 50%, Mn: 0.
5 to 5.0%, with the balance being at least one of Fe, Ni, and Co and unavoidable impurities. Further, the second powder of the present invention has a mass ratio of S
i: 1.0 to 12%, Mo: 20 to 50%, Mn: 0.
5 to 5.0%, Cr: 15% or less, and the balance Fe,
It is characterized by comprising at least one or more of Ni and Co and unavoidable impurities. Each of the powders of the present invention may further contain at least one of W, V, and Nb in a mass ratio of 5% or less.

【0007】次に、本発明の耐摩耗性焼結合金の製造方
法は、上記本発明の粉末:5〜50質量%を、鉄粉末ま
たは低合金鋼粉末をベースとする母合金粉末に添加して
混合した混合粉末を、圧縮成形した後、1000〜12
50℃の温度範囲で焼結することを特徴としている。こ
の方法では、母合金粉末に金属硫化物粉末を含有させて
もよい。
Next, a method for producing a wear-resistant sintered alloy according to the present invention is characterized in that the powder of the present invention: 5 to 50% by mass is added to a base alloy powder based on iron powder or low alloy steel powder. After compression molding of the mixed powder thus mixed, 1000 to 12
It is characterized in that it is sintered in a temperature range of 50 ° C. In this method, the metal sulfide powder may be contained in the mother alloy powder.

【0008】以下、本発明の作用と成分含有量の限定理
由について説明する。Si:Siは主にMoと反応し
て、耐摩耗性、潤滑性に優れたMo珪化物を形成し、焼
結合金の耐摩耗性の向上に寄与する。Siが1質量%未
満の場合には十分なMo珪化物が得られないため十分な
耐摩耗性向上効果が得られない。逆にSiが12質量%
を超えると、粉末の硬さが高くなって成形時の圧縮性を
損ねるだけでなく、粉末表層にSi酸化被膜を形成して
母合金鋼粉末との拡散を阻害し、硬質相の固着性が低下
する。固着性が低いと、使用時の衝撃によって硬質相の
脱落が起き、それが研摩粉に作用することで耐摩耗性が
逆に低下してしまう。よって、Si含有量は1〜12質
量%とした。
Hereinafter, the function of the present invention and the reasons for limiting the content of the components will be described. Si: Si mainly reacts with Mo to form Mo silicide having excellent wear resistance and lubricity, and contributes to improvement of the wear resistance of the sintered alloy. If the content of Si is less than 1% by mass, a sufficient Mo silicide cannot be obtained, and a sufficient effect of improving wear resistance cannot be obtained. Conversely, Si is 12% by mass.
If it exceeds, not only the hardness of the powder becomes high and the compressibility at the time of molding is impaired, but also a Si oxide film is formed on the surface of the powder to inhibit diffusion with the mother alloy steel powder, and the adhesion of the hard phase is reduced. descend. If the sticking property is low, the impact during use causes the hard phase to fall off, which acts on the abrasive powder and conversely reduces the wear resistance. Therefore, the Si content is set to 1 to 12% by mass.

【0009】Mo:Moは主にSiと反応して、耐摩耗
性、潤滑性に優れたMo珪化物を形成し、焼結合金の耐
摩耗性の向上に寄与する。Moが20質量%未満の場合
には十分なMo珪化物が得られないため十分な耐摩耗性
向上効果が得られない。逆にMoが50質量%を超える
と、粉末の硬さが高くなって成形時の圧縮性を損ねるだ
けでなく、形成される硬質相が脆くなるため衝撃によっ
て一部が欠けてしまい研摩粉の作用によって耐摩耗性が
逆に低下してしまう。よって、Mo含有量は20〜50
質量%とした。
Mo: Mo mainly reacts with Si to form Mo silicide having excellent wear resistance and lubricity, and contributes to improvement of the wear resistance of the sintered alloy. If Mo is less than 20% by mass, sufficient Mo silicide cannot be obtained, and a sufficient effect of improving wear resistance cannot be obtained. On the other hand, if Mo exceeds 50% by mass, not only the hardness of the powder becomes high and the compressibility at the time of molding is impaired, but also the hard phase formed becomes brittle, so that a part thereof is chipped by impact and the abrasive powder Conversely, the wear resistance is reduced by the action. Therefore, the Mo content is 20 to 50.
% By mass.

【0010】Mn:Mnは硬質相のMo珪化物以外の基
地部分の強化に寄与する。基地部分を強化することで、
Mo珪化物の流動や脱落が防げるため、苛酷な条件下で
も優れた耐摩耗性を発揮することができる。また、Mn
は母合金鋼に対して硬質相の固着性を良好にする効果も
あるため、硬質相自体の脱落を防止でき、耐摩耗性向上
を図れる。これらの効果は、Mnが0.5質量%未満で
あると不十分であり、逆に5質量%を超えると、粉末表
層にMn酸化被膜を形成して母合金鋼粉末との拡散を阻
害し、硬質相の固着性が低下する。固着性が低いと、使
用時の衝撃によって硬質相の脱落が起き、それが研摩粉
に作用することで耐摩耗性が逆に低下してしまう。よっ
て、Mn含有量は0.5〜5質量%とした。
Mn: Mn contributes to strengthening of the base portion other than Mo silicide of the hard phase. By strengthening the base,
Since Mo silicide can be prevented from flowing and falling, excellent abrasion resistance can be exhibited even under severe conditions. Also, Mn
Has an effect of improving the fixability of the hard phase to the mother alloy steel, so that the hard phase itself can be prevented from falling off and the wear resistance can be improved. These effects are insufficient when Mn is less than 0.5% by mass. Conversely, when Mn is more than 5% by mass, a Mn oxide film is formed on the surface of the powder to inhibit diffusion with the mother alloy steel powder. And the fixation of the hard phase is reduced. If the adhesion is low, the impact during use causes the hard phase to fall off, which acts on the abrasive powder and conversely reduces the wear resistance. Therefore, the Mn content is set to 0.5 to 5% by mass.

【0011】Fe、Ni、Co:硬質粒子粉末の基材と
なるこれらの元素は、主に焼結時に母合金鋼へ拡散し、
母合金鋼基地の強化や固着性の向上に寄与する。また、
硬質相のMo珪化物以外の基地部分の強化や、一部Mo
(Si)との化合物を形成して耐摩耗性を高める。Fe
の場合は、母合金鋼への拡散性が良好であるため硬質相
の固着性が良好となり、また、コストを低くできるため
汎用的に使われる部材に使用するのに好適である。Ni
の場合は、硬質相とその周辺に耐食性に優れたオーステ
ナイト組織を呈するため、焼結合金の耐食性を向上させ
ることができ、耐食性が要求される部材に使用するのに
好適である。Coの場合は、硬質相とその周辺の耐熱性
を向上させることができるため、耐熱性が要求される部
材に使用するのに好適である。また、これら元素を2種
以上組み合わせることで各々の特徴を持った合金を得る
ことができ、したがって、部材が使用される環境に応じ
た成分比に調整することができる。
Fe, Ni, Co: These elements serving as the base material of the hard particle powder mainly diffuse into the mother alloy steel during sintering,
It contributes to strengthening of the base alloy steel base and improvement of the adhesion. Also,
Reinforcement of the base part other than Mo silicide in the hard phase,
Form a compound with (Si) to increase wear resistance. Fe
In the case of (1), the diffusibility into the master alloy steel is good, so that the hard phase has good fixation. In addition, the cost can be reduced, so that it is suitable for use as a general-purpose member. Ni
In case (1), since the austenite structure having excellent corrosion resistance is exhibited in and around the hard phase, the corrosion resistance of the sintered alloy can be improved, which is suitable for use in members requiring corrosion resistance. Co can improve the heat resistance of the hard phase and its surroundings, and is therefore suitable for use in members requiring heat resistance. Also, by combining two or more of these elements, an alloy having each characteristic can be obtained, and therefore, the component ratio can be adjusted to the environment in which the member is used.

【0012】Cr:Crも前述のMnと同様、硬質相の
Mo珪化物以外の基地部分の強化に寄与する。また、母
合金鋼へ拡散して、母合金鋼の耐摩耗性向上にも寄与す
る。Crが15質量%を超えると、粉末の酸素量が多く
なって粉末表面に酸化被膜が形成され焼結の進行を阻害
するとともに、酸化被膜により粉末が硬くなるため圧縮
性の低下が生じる。そのため、焼結合金の強度が低下し
耐摩耗性の低下を招くことから、Cr含有量は15質量
%以下とした。
Cr: Like Cr, Cr also contributes to strengthening of the base portion other than Mo silicide in the hard phase. Further, it diffuses into the mother alloy steel and contributes to the improvement of the wear resistance of the mother alloy steel. If the content of Cr exceeds 15% by mass, the amount of oxygen in the powder increases and an oxide film is formed on the powder surface to inhibit the progress of sintering, and the oxide film hardens the powder, resulting in a decrease in compressibility. Therefore, the Cr content is set to 15% by mass or less because the strength of the sintered alloy is reduced and the wear resistance is reduced.

【0013】W、V、Nb:これら元素は硬質相やその
周辺で炭化物を形成して耐摩耗性向上に寄与する。Cr
によって強化された基地に分散すると、大きな効果を得
ることができるので好適である。また、これら元素はM
o珪化物の微細化の効果もあるため、硬質相の脆化しに
くくなる。これら元素は単独もしくは2種以上の組合せ
でも同様の効果を得ることができる。
W, V, Nb: These elements form carbides in and around the hard phase and contribute to the improvement of wear resistance. Cr
It is preferable to disperse the base stations strengthened by the above because a great effect can be obtained. In addition, these elements are M
oSince there is also an effect of making the silicide fine, the hard phase is less likely to become brittle. The same effect can be obtained by using these elements alone or in combination of two or more.

【0014】硬質相形成粉末の添加量:硬質相形成粉末
の添加量は多いほど耐摩耗性が良好となるが、5質量%
未満では効果が乏しく、50質量%を超えると、混合粉
末の圧縮性が低くなって焼結後の密度や強度が低くなり
耐摩耗性も低下してしまうことから、5〜50質量%に
限定した。
Addition amount of hard phase-forming powder: The larger the addition amount of hard phase-forming powder, the better the abrasion resistance, but 5% by mass.
If the amount is less than 50% by mass, the effect is poor. If the amount exceeds 50% by mass, the compressibility of the mixed powder is reduced, the density and strength after sintering are reduced, and the wear resistance is reduced. did.

【0015】焼結温度:本発明合金の母合金鋼の組織は
パーライトやソルバイトが好ましく、ベーナイトやマル
テンサイトであればより好ましい。よって、本発明方法
の混合粉末には、黒鉛粉末を混合することが望ましい。
本発明方法では、焼結温度が黒鉛の拡散と焼結の進み方
に影響を与えるが、1000℃未満では焼結が不十分と
なり満足できる耐摩耗性を得ることができない。逆に1
250℃を超えると硬質相が溶融、消失してしまう。よ
って、焼結温度は1000〜1250℃に限定した。
Sintering temperature: The structure of the mother alloy steel of the alloy of the present invention is preferably pearlite or sorbite, more preferably bainite or martensite. Therefore, it is desirable to mix graphite powder with the mixed powder of the method of the present invention.
In the method of the present invention, the sintering temperature affects the diffusion of graphite and the progress of sintering. However, if the temperature is less than 1000 ° C., sintering becomes insufficient and satisfactory wear resistance cannot be obtained. Conversely 1
If the temperature exceeds 250 ° C., the hard phase melts and disappears. Therefore, the sintering temperature was limited to 1000 to 1250 ° C.

【0016】[0016]

【実施例】以下、本発明の実施例を説明する。まず、表
1に示す成分からなる母合金鋼粉末(ベース粉末)B1
〜B5を準備した。一方、Fe粉、Cu粉、Fe−3C
r−0.3V−0.3Mo完全合金粉、Fe−6.5C
o−1.5Ni−1.5Mo完全合金粉(数値はいずれ
も質量%)、黒鉛粉末、成形潤滑剤、および表2に示す
成分からなる本発明の請求範囲内外の硬質相形成粉末P
01〜P29を準備した。次いで、これら粉末および成
形潤滑剤を、母合金鋼粉末B1〜B5に対して所定量添
加し、表3に示す成分からなる試料番号01〜50の混
合粉末を調整した。次いで、これら混合粉末を成形圧力
650MPaで所定形状に成形し、これら成形体を、ア
ンモニア分解ガス中で60分間焼結し、焼結体を得た。
焼結温度は基本的に1150℃としたが、表3に示すよ
うに、これ以外の温度でも焼結を行った。
Embodiments of the present invention will be described below. First, a master alloy steel powder (base powder) B1 composed of the components shown in Table 1
~ B5 were prepared. On the other hand, Fe powder, Cu powder, Fe-3C
r-0.3V-0.3Mo perfect alloy powder, Fe-6.5C
o-1.5Ni-1.5Mo perfect alloy powder (all numerical values are mass%), graphite powder, molding lubricant, and hard phase forming powder P inside and outside the claims of the present invention comprising the components shown in Table 2.
01 to P29 were prepared. Next, these powders and forming lubricants were added in predetermined amounts to the mother alloy steel powders B1 to B5, and mixed powders of Sample Nos. 01 to 50 composed of the components shown in Table 3 were prepared. Next, these mixed powders were molded into a predetermined shape at a molding pressure of 650 MPa, and these molded bodies were sintered in an ammonia decomposition gas for 60 minutes to obtain sintered bodies.
The sintering temperature was basically 1150 ° C., but as shown in Table 3, sintering was performed at other temperatures.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】[0019]

【表3】 [Table 3]

【0020】次に、試料番号01〜50の焼結合金につ
いて、圧環強さの測定および簡易摩耗試験を行った。そ
の結果を表4に示す。なお、簡易摩耗試験は、高温下で
叩きと摺動の入力が掛かる状態で行った。具体的には、
アルミ合金製ハウジングに、内径面に45゜のテーパ面
を有するリング形状に加工した焼結合金を圧入嵌合し、
SUH−36素材で作製した外径面に一部45゜のテー
パ面を有する円盤形状の相手材を、モータ駆動による偏
心カムの回転によって上下ピストン運動させることによ
り、焼結合金と相手材のテーパ面どうしを繰り返し衝突
させた。なお、この試験では、相手材をバーナーで加熱
した状態として焼結合金が250℃となるように温度設
定し、簡易摩耗試験叩き回数を2800回/分、繰り返
し時間を15時間で行った。表4における摩耗量VSは
試験に供した実施例の摩耗量、摩耗量Vは相手材の摩耗
量である。
Next, the sintered alloys of Sample Nos. 01 to 50 were subjected to measurement of radial crushing strength and a simple wear test. Table 4 shows the results. The simple abrasion test was performed in a state where hitting and sliding input were applied at a high temperature. In particular,
A sintered alloy processed into a ring shape having a 45 ° tapered surface on the inner diameter surface is press-fitted into an aluminum alloy housing,
A disk-shaped mating member having a 45 ° taper surface on the outer diameter surface made of SUH-36 material is moved up and down by a motor-driven eccentric cam to move the piston upward and downward, so that the taper between the sintered alloy and mating member is obtained. The faces collided repeatedly. In this test, the temperature of the sintered alloy was set to 250 ° C. while the mating material was heated by a burner, the number of taps in the simple wear test was 2800 times / minute, and the repetition time was 15 hours. The wear amount VS in Table 4 is the wear amount of the example subjected to the test, and the wear amount V is the wear amount of the mating material.

【0021】[0021]

【表4】 [Table 4]

【0022】次に、図1〜図9を参照して本実施例を考
察し、本発明の効果を明らかにする。なお、これら図で
示す番号は試料番号である。
Next, the present embodiment will be considered with reference to FIGS. 1 to 9 to clarify the effects of the present invention. The numbers shown in these figures are sample numbers.

【0023】図1は、硬質相形成粉末中のMo量を変え
た試料番号01〜05の摩耗量および圧環強さの変化を
示している。これによると、Mo量が20〜50質量%
の範囲で摩耗量は低く安定しており、この範囲ではSi
と反応して形成されるMo珪化物が適量形成されて良好
な耐摩耗性を示すことが伺える。一方、Mo量が20質
量%未満および50質量%超の場合には摩耗量が増大す
る傾向にあり、これは、20質量%未満ではMo珪化物
が不足し、50質量%超では硬質相が脆くなって割れが
発生し、耐摩耗性が低下すると想定される。圧環強さに
基づく強度に関しては、Mo量の増加により僅かながら
低下がみられるが、この範囲では実用上問題ないレベル
にある。
FIG. 1 shows the changes in the wear amount and radial crushing strength of Sample Nos. 01 to 05 in which the amount of Mo in the hard phase forming powder was changed. According to this, the amount of Mo is 20 to 50% by mass.
The wear amount is low and stable in the range of
It can be said that Mo silicide formed by reacting with a suitable amount is formed and exhibits good wear resistance. On the other hand, when the amount of Mo is less than 20% by mass or more than 50% by mass, the amount of abrasion tends to increase. It is assumed that the material becomes brittle and cracks occur, and the wear resistance is reduced. With respect to the strength based on the radial crushing strength, a slight decrease is observed with an increase in the Mo content, but within this range, there is no practical problem.

【0024】図2は、硬質相形成粉末中のSi量を変え
た試料番号06〜11の摩耗量および圧環強さの変化を
示している。これによると、Si量が1〜12質量%の
範囲で摩耗量は低く、この範囲ではMoと反応して形成
されるMo珪化物が適量形成されて良好な耐摩耗性を示
すことが伺える。一方、Si量が1質量%未満の場合に
は急激に摩耗量が増えており、12質量%超の場合でも
摩耗量が増大する傾向にある。これは、1質量%未満で
はMo珪化物が不足し、12質量%超では硬質相の固着
性が悪化するため耐摩耗性が低下すると想定される。ま
た、強度はSi量の増加により低下することが認められ
る。
FIG. 2 shows the changes in the wear amount and radial crushing strength of Sample Nos. 06 to 11 in which the amount of Si in the hard phase forming powder was changed. According to this, when the Si content is in the range of 1 to 12% by mass, the wear amount is low, and in this range, an appropriate amount of Mo silicide formed by reacting with Mo is formed, indicating good wear resistance. On the other hand, when the amount of Si is less than 1% by mass, the amount of wear increases sharply, and when the amount of Si exceeds 12% by mass, the amount of wear tends to increase. It is presumed that when the content is less than 1% by mass, Mo silicide is insufficient, and when the content is more than 12% by mass, the fixation of the hard phase is deteriorated, so that the wear resistance is reduced. Further, it is recognized that the strength decreases with an increase in the amount of Si.

【0025】図3は、硬質相形成粉末中のMn量を変え
た試料番号12〜15の摩耗量および圧環強さの変化を
示している。これによると、Mn量が0.5〜5質量%
の範囲で摩耗量は低く、この範囲では基地の強化および
硬質相の固着性向上に伴うMo珪化物の脱落が防がれて
良好な耐摩耗性を示すことが伺える。一方、Mn量が
0.5質量%未満および5質量%超になると急激に摩耗
量が増える傾向にあり、耐摩耗性の効果を得られないこ
とが判る。また、強度はMn量の増加により低下するこ
とが認められる。
FIG. 3 shows the changes in the wear amount and radial crushing strength of Sample Nos. 12 to 15 in which the amount of Mn in the hard phase forming powder was changed. According to this, the Mn content is 0.5 to 5% by mass.
In this range, the amount of wear is low, and in this range, it is possible to prevent the Mo silicide from dropping off due to the strengthening of the matrix and the improvement in the fixation of the hard phase, and it is possible to exhibit good wear resistance. On the other hand, when the amount of Mn is less than 0.5% by mass or more than 5% by mass, the amount of abrasion tends to increase rapidly, and it can be seen that the effect of abrasion resistance cannot be obtained. Further, it is recognized that the strength decreases with an increase in the amount of Mn.

【0026】図4は、硬質相形成粉末の基合金が、F
e:試料番号03、Ni:試料番号16、Co:試料番
号17と、硬質相形成粉末を添加しない合金:試料番号
18の摩耗量および圧環強さを示している。これによる
と、硬質相形成粉末を添加した合金は、添加しない合金
と比べるといずれも摩耗量が大幅に抑えられて良好な耐
摩耗性を示し、その効果が明らかとなっている。
FIG. 4 shows that the base alloy of the hard phase forming powder is F
e shows the wear amount and radial crushing strength of sample No. 03, Ni: sample No. 16, Co: sample No. 17, and alloy without addition of the hard phase forming powder: sample No. 18. According to this, the alloys to which the hard phase-forming powder was added all had significantly reduced abrasion amounts and exhibited good wear resistance as compared with the alloys to which no hard phase forming powder was added, and the effect is clear.

【0027】図5は、硬質相形成粉末中のCr量を変え
た試料番号03、19〜21の摩耗量および圧環強さの
変化を示している。これによると、Cr量が15質量%
以下の範囲で摩耗量は低く、15質量%を超えると強度
の低下と摩耗量の増加が進行することが判る。Cr量が
15質量%を超えると焼結の進行が阻害されて強度の低
下が起こるとともに、耐摩耗性が低下することが伺え
る。
FIG. 5 shows the changes in the wear amount and radial crushing strength of Sample Nos. 03 and 19 to 21 in which the amount of Cr in the hard phase forming powder was changed. According to this, the amount of Cr was 15% by mass.
It can be seen that the wear amount is low in the following range, and that when the amount exceeds 15% by mass, the strength decreases and the wear amount increases. When the amount of Cr exceeds 15% by mass, the progress of sintering is hindered, the strength is reduced, and the wear resistance is reduced.

【0028】図6は、添加元素としてW、V、Nbのう
ち少なくとも1種以上を添加した合金:試料番号22〜
30の摩耗量を示している。これによると、いずれの合
金も摩耗量が100μm以下に抑えられ、添加元素が耐
摩耗性の向上に大きく寄与することが判る。
FIG. 6 shows alloys containing at least one of W, V, and Nb as additional elements: Sample Nos. 22 to
30 shows the wear amount. According to this, it can be understood that the wear amount of each alloy is suppressed to 100 μm or less, and that the added element greatly contributes to the improvement of the wear resistance.

【0029】図7は、硬質相形成粉末の添加量を変えた
試料番号18、31〜37の摩耗量および圧環強さの変
化を示している。これによると、硬質相形成粉末の添加
量が5質量%未満では摩耗量が増大し、一方、50質量
%を超えても摩耗量が増大する傾向にある。5〜50質
量%の範囲で摩耗量は低く抑えられ、この範囲で本発明
の硬質相形成粉末による耐摩耗性の向上効果が発揮され
ることが判る。また、強度に関しては、硬質相形成粉末
の増加により低下し、50質量%を超えると強度不足に
なることが認められる。
FIG. 7 shows the changes in the wear amount and radial crushing strength of Sample Nos. 18, 31 to 37 in which the addition amount of the hard phase forming powder was changed. According to this, when the addition amount of the hard phase forming powder is less than 5% by mass, the amount of wear tends to increase, while when it exceeds 50% by mass, the amount of wear tends to increase. In the range of 5 to 50% by mass, the amount of abrasion is suppressed low, and it is understood that the effect of improving the abrasion resistance by the hard phase forming powder of the present invention is exhibited in this range. Further, regarding the strength, it is recognized that the strength is reduced by increasing the hard phase forming powder, and the strength is insufficient when the content exceeds 50% by mass.

【0030】図8は、焼結温度を変えた試料番号03、
38〜42の摩耗量および圧環強さの変化を示してい
る。これによると、焼結温度が1000〜1250℃の
範囲で摩耗量は低く抑えられるとともに高強度が維持さ
れ、1000℃未満および1250℃超では摩耗量が増
大するとともに強度が低下する傾向にある。1000℃
未満では焼結が不十分であり、1250℃超では硬質相
の溶融、消失が起こることにより、このような傾向が生
じることが伺える。
FIG. 8 shows sample No. 03 with different sintering temperatures.
38 shows changes in wear amount and radial crushing strength of Nos. 38 to 42. According to this, when the sintering temperature is in the range of 1000 to 1250 ° C., the amount of wear is kept low and high strength is maintained. If the temperature is less than 1000 ° C. and exceeds 1250 ° C., the amount of wear increases and the strength tends to decrease. 1000 ° C
If it is less than 1, the sintering is insufficient, and if it exceeds 1250 ° C., the hard phase melts and disappears, which indicates that such a tendency occurs.

【0031】図9は、ベース粉末B1、B2へのC量の
添加量を変えたFe−C系合金:試料番号47、48
と、ベース粉末B3にCおよびCuを添加したFe−C
u−C系合金:試料番号49と、ベース粉末B4にCお
よびCrを添加したFe−Cr−C系合金:試料番号5
0と、ベース粉末B5にCおよびCoを添加したFe−
Co−C系合金:試料番号18と、これらに硬質相形成
粉末を添加した試料番号試料番号43〜46、03の摩
耗量を示している。これによると、いずれの系の合金も
硬質相形成粉末の添加により摩耗量が大幅に抑えられ、
硬質相形成粉末の添加が耐摩耗性の向上に大きく寄与す
ることが判る。
FIG. 9 shows Fe—C based alloys in which the amount of C added to the base powders B1 and B2 was changed: Sample Nos. 47 and 48
And Fe-C obtained by adding C and Cu to the base powder B3
uC-based alloy: Sample No. 49 and Fe-Cr-C-based alloy obtained by adding C and Cr to base powder B4: Sample No. 5
0 and Fe- in which C and Co are added to the base powder B5.
Co-C alloy: Sample No. 18 and sample Nos. 43 to 46 and 03 obtained by adding a hard phase forming powder thereto show the wear amount. According to this, the wear of both alloys was significantly reduced by the addition of the hard phase forming powder,
It is understood that the addition of the hard phase forming powder greatly contributes to the improvement of the wear resistance.

【0032】[0032]

【発明の効果】以上説明したように、本発明の耐摩耗性
硬質相形成用合金粉末によれば、耐摩耗部材用の焼結合
金に分散される硬質相を形成するものとして最適な粉末
であり、本発明の耐摩耗性焼結合金の製造方法によれ
ば、本発明の粉末によって形成された硬質相が分散した
焼結合金を好適かつ効率的に製造することができるとい
った効果を奏する。
As described above, according to the alloy powder for forming a wear-resistant hard phase of the present invention, the most suitable powder for forming a hard phase dispersed in a sintered alloy for a wear-resistant member. In addition, according to the method for producing a wear-resistant sintered alloy of the present invention, there is an effect that a sintered alloy in which the hard phase formed by the powder of the present invention is dispersed can be suitably and efficiently produced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施例において硬質相形成粉末中の
Mo量が摩耗量と圧環強さに与える影響を示す線図であ
る。
FIG. 1 is a diagram showing the effect of the amount of Mo in a hard phase forming powder on the amount of wear and radial crushing strength in Examples of the present invention.

【図2】 本発明の実施例において硬質相形成粉末中の
Si量が摩耗量と圧環強さに与える影響を示す線図であ
る。
FIG. 2 is a graph showing the effect of the amount of Si in a hard phase forming powder on the amount of wear and radial crushing strength in Examples of the present invention.

【図3】 本発明の実施例において硬質相形成粉末中の
Mn量が摩耗量と圧環強さに与える影響を示す線図であ
る。
FIG. 3 is a graph showing the effect of the amount of Mn in a hard phase forming powder on the amount of wear and radial crushing strength in Examples of the present invention.

【図4】 本発明の実施例において硬質相形成粉末の基
合金の種類を変えた合金と硬質相形成粉末が添加されて
いない合金の摩耗量を示す線図である。
FIG. 4 is a graph showing the wear amount of an alloy in which the type of the base alloy of the hard phase forming powder is changed and an alloy to which the hard phase forming powder is not added in the example of the present invention.

【図5】 本発明の実施例において硬質相形成粉末中の
Cr量が摩耗量と圧環強さに与える影響を示す線図であ
る。
FIG. 5 is a graph showing the effect of the amount of Cr in a hard phase forming powder on the amount of wear and radial crushing strength in Examples of the present invention.

【図6】 本発明の実施例において耐摩耗性向上用の元
素が硬質相形成粉末中に添加された焼結合金の摩耗量を
示す線図である。
FIG. 6 is a diagram showing a wear amount of a sintered alloy in which an element for improving wear resistance is added to a hard phase forming powder in an example of the present invention.

【図7】 本発明の実施例において硬質相形成粉末の添
加量が摩耗量と圧環強さに与える影響を示す線図であ
る。
FIG. 7 is a graph showing the effect of the amount of the hard phase forming powder added on the wear amount and the radial crushing strength in the examples of the present invention.

【図8】 本発明の実施例において焼結温度が摩耗量と
圧環強さに与える影響を示す線図である。
FIG. 8 is a diagram showing the effect of the sintering temperature on the amount of wear and radial crushing strength in the example of the present invention.

【図9】 本発明の実施例において各種Fe−C系合金
における硬質相形成粉末の添加の有無が摩耗量に与える
影響を示す線図である。
FIG. 9 is a graph showing the effect of the presence or absence of a hard phase forming powder on the amount of wear in various Fe—C alloys in Examples of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 19/07 C22C 19/07 J 27/04 102 27/04 102 38/00 302 38/00 302Z 38/12 38/12 (72)発明者 林 幸一郎 千葉県柏市南増尾7−10−25−206 Fターム(参考) 4K018 AA07 AA10 AA21 AA25 CA01 DA21 KA14 KA18 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22C 19/07 C22C 19/07 J 27/04 102 27/04 102 38/00 302 38/00 302Z 38 / 12 38/12 (72) Inventor Koichiro Hayashi 7-10-25-206 Minamimasu, Kashiwa-shi, Chiba F-term (reference) 4K018 AA07 AA10 AA21 AA25 CA01 DA21 KA14 KA18

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 質量比で、Si:1.0〜12%、M
o:20〜50%、Mn:0.5〜5.0%、および残
部がFe、Ni、Coのうち少なくとも1種以上と不可
避不純物よりなることを特徴とする耐摩耗性硬質相形成
用合金粉末。
1. A mass ratio of Si: 1.0 to 12%, M
o: 20 to 50%, Mn: 0.5 to 5.0%, and the balance is at least one or more of Fe, Ni, and Co and an unavoidable impurity, and is an alloy for forming a wear-resistant hard phase. Powder.
【請求項2】 質量比で、Si:1.0〜12%、M
o:20〜50%、Mn:0.5〜5.0%、Cr:1
5%以下、および残部がFe、Ni、Coのうち少なく
とも1種以上と不可避不純物よりなることを特徴とする
耐摩耗性硬質相形成用合金粉末。
2. A mass ratio of Si: 1.0 to 12%, M
o: 20 to 50%, Mn: 0.5 to 5.0%, Cr: 1
An alloy powder for forming a wear-resistant hard phase, wherein the alloy powder comprises 5% or less, and the balance is at least one of Fe, Ni, and Co and inevitable impurities.
【請求項3】 前記耐摩耗性硬質相形成用合金粉末に、
さらに、質量比で、W、V、Nbのうち少なくとも1種
以上を5%以下含むことを特徴とする請求項1または2
に記載の耐摩耗性硬質相形成用合金粉末。
3. The alloy powder for forming a wear-resistant hard phase,
3. The composition according to claim 1, further comprising at least one of W, V, and Nb in a mass ratio of 5% or less.
2. The alloy powder for forming a wear-resistant hard phase according to item 1.
【請求項4】 請求項1〜3のいずれかに記載の耐摩耗
性硬質相形成用合金粉末:5〜50質量%を、鉄粉末ま
たは低合金鋼粉末をベースとする母合金粉末に添加して
混合した混合粉末を、圧縮成形した後、1000〜12
50℃の温度範囲で焼結することを特徴とする耐摩耗性
焼結合金の製造方法。
4. An alloy powder for forming a wear-resistant hard phase according to claim 1, wherein 5 to 50% by mass is added to a base alloy powder based on iron powder or low alloy steel powder. After compression molding of the mixed powder thus mixed, 1000 to 12
A method for producing a wear-resistant sintered alloy, comprising sintering in a temperature range of 50 ° C.
【請求項5】 前記母合金粉末が金属硫化物粉末を含む
ことを特徴とする請求項4に記載の耐摩耗性焼結合金の
製造方法。
5. The method for producing a wear-resistant sintered alloy according to claim 4, wherein the mother alloy powder contains a metal sulfide powder.
JP2001161681A 2001-05-30 2001-05-30 Abrasion resistant hard phase forming alloy powder and method for producing wear resistant sintered alloy using the same Expired - Lifetime JP3865293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001161681A JP3865293B2 (en) 2001-05-30 2001-05-30 Abrasion resistant hard phase forming alloy powder and method for producing wear resistant sintered alloy using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001161681A JP3865293B2 (en) 2001-05-30 2001-05-30 Abrasion resistant hard phase forming alloy powder and method for producing wear resistant sintered alloy using the same

Publications (2)

Publication Number Publication Date
JP2002356704A true JP2002356704A (en) 2002-12-13
JP3865293B2 JP3865293B2 (en) 2007-01-10

Family

ID=19004920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001161681A Expired - Lifetime JP3865293B2 (en) 2001-05-30 2001-05-30 Abrasion resistant hard phase forming alloy powder and method for producing wear resistant sintered alloy using the same

Country Status (1)

Country Link
JP (1) JP3865293B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2424652A (en) * 2005-03-29 2006-10-04 Hitachi Powdered Metals Method of making a sintered body comprising manganese sulphide
CN1309854C (en) * 2003-11-21 2007-04-11 日立粉末冶金株式会社 Alloy powder, ferriferous mixed powder and sintered alloy and manufacturing method
KR100869065B1 (en) 2006-09-21 2008-11-18 요업기술원 The processing of sintering of metal nanoparticles and products thereof, the method of metla nanoparticles
JP2010144238A (en) * 2008-12-22 2010-07-01 Hitachi Powdered Metals Co Ltd Wear-resistant sintered alloy and method for producing the same
JP2010144236A (en) * 2008-12-22 2010-07-01 Hitachi Powdered Metals Co Ltd Wear-resistant sintered alloy and method for producing the same
US7892481B2 (en) 2005-10-12 2011-02-22 Hitachi Powdered Metals Co., Ltd. Manufacturing method for wear resistant sintered member, sintered valve seat, and manufacturing method therefor
KR101087376B1 (en) * 2007-12-27 2011-11-25 히다치 훈마츠 야킨 가부시키가이샤 Iron base sintered alloy for slide member
JP2014098189A (en) * 2012-11-14 2014-05-29 Toyota Motor Corp Hard particle for blending in sintered alloy, abrasion resistant iron-based sintered alloy and its manufacturing method
CN104080933A (en) * 2011-11-18 2014-10-01 土耳其科学技术研究理事会 Alloy for high temperature tooling applications
US9260772B2 (en) 2008-07-03 2016-02-16 Hitachi Powdered Metals Co., Ltd. Hard phase forming alloy powder, wear resistant sintered alloy, and production method for wear resistant sintered alloy
CN106011598A (en) * 2016-08-05 2016-10-12 北京科技大学 Preparation method of molybdenum steel additive
CN107838413A (en) * 2017-09-30 2018-03-27 东风商用车有限公司 A kind of heavy-duty engine powder metallurgy material for valve seat insert and preparation method thereof
CN111020332A (en) * 2019-12-24 2020-04-17 江苏骏茂新材料科技有限公司 High-temperature-resistant alloy plate processing technology
US20210017086A1 (en) * 2019-07-17 2021-01-21 Shandong Institute Of Mechanical Design And Research High Temperature Resistant Cemented Carbide and Manufacturing Method Thereof
JP2021091925A (en) * 2019-12-09 2021-06-17 国立大学法人東北大学 Fe-BASED ALLOY HAVING EXCELLENT CORROSION PITTING RESISTANCE AND METHOD FOR PRODUCING THE SAME

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103775498B (en) * 2014-02-17 2015-12-02 德州联合石油机械有限公司 A kind of helicoid hydraulic motor cemented carbide radial bearing body and production method thereof
JP6372512B2 (en) * 2016-04-06 2018-08-15 セイコーエプソン株式会社 Metal powder for powder metallurgy, compound, granulated powder, sintered body and heat-resistant parts

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7601196B2 (en) 2003-11-21 2009-10-13 Hitachi Powdered Metals Co., Ltd. Alloy powder for forming hard phase and ferriferous mixed powder using the same, and manufacturing method for wear resistant sintered alloy and wear resistant sintered alloy
CN1309854C (en) * 2003-11-21 2007-04-11 日立粉末冶金株式会社 Alloy powder, ferriferous mixed powder and sintered alloy and manufacturing method
US7294167B2 (en) 2003-11-21 2007-11-13 Hitachi Powdered Metals Co., Ltd. Alloy powder for forming hard phase and ferriferous mixed powder using the same, and manufacturing method for wear resistant sintered alloy and wear resistant sintered alloy
GB2424652B (en) * 2005-03-29 2008-09-03 Hitachi Powdered Metals Wear resistant sintered member and production method therefor
GB2424652A (en) * 2005-03-29 2006-10-04 Hitachi Powdered Metals Method of making a sintered body comprising manganese sulphide
US7575619B2 (en) 2005-03-29 2009-08-18 Hitachi Powdered Metals Co., Ltd. Wear resistant sintered member
DE102006048442B4 (en) * 2005-10-12 2011-03-31 Hitachi Powdered Metals Co., Ltd., Matsudo A method of manufacturing a wear resistant sintered element, a sintered valve seat, and manufacturing methods therefor
US7892481B2 (en) 2005-10-12 2011-02-22 Hitachi Powdered Metals Co., Ltd. Manufacturing method for wear resistant sintered member, sintered valve seat, and manufacturing method therefor
KR100869065B1 (en) 2006-09-21 2008-11-18 요업기술원 The processing of sintering of metal nanoparticles and products thereof, the method of metla nanoparticles
KR101087376B1 (en) * 2007-12-27 2011-11-25 히다치 훈마츠 야킨 가부시키가이샤 Iron base sintered alloy for slide member
US9260772B2 (en) 2008-07-03 2016-02-16 Hitachi Powdered Metals Co., Ltd. Hard phase forming alloy powder, wear resistant sintered alloy, and production method for wear resistant sintered alloy
JP2010144238A (en) * 2008-12-22 2010-07-01 Hitachi Powdered Metals Co Ltd Wear-resistant sintered alloy and method for producing the same
JP2010144236A (en) * 2008-12-22 2010-07-01 Hitachi Powdered Metals Co Ltd Wear-resistant sintered alloy and method for producing the same
CN104080933A (en) * 2011-11-18 2014-10-01 土耳其科学技术研究理事会 Alloy for high temperature tooling applications
JP2014098189A (en) * 2012-11-14 2014-05-29 Toyota Motor Corp Hard particle for blending in sintered alloy, abrasion resistant iron-based sintered alloy and its manufacturing method
CN106011598A (en) * 2016-08-05 2016-10-12 北京科技大学 Preparation method of molybdenum steel additive
CN107838413A (en) * 2017-09-30 2018-03-27 东风商用车有限公司 A kind of heavy-duty engine powder metallurgy material for valve seat insert and preparation method thereof
CN107838413B (en) * 2017-09-30 2021-03-16 东风商用车有限公司 Heavy-duty engine powder metallurgy valve seat material and preparation method thereof
US20210017086A1 (en) * 2019-07-17 2021-01-21 Shandong Institute Of Mechanical Design And Research High Temperature Resistant Cemented Carbide and Manufacturing Method Thereof
JP2021091925A (en) * 2019-12-09 2021-06-17 国立大学法人東北大学 Fe-BASED ALLOY HAVING EXCELLENT CORROSION PITTING RESISTANCE AND METHOD FOR PRODUCING THE SAME
CN111020332A (en) * 2019-12-24 2020-04-17 江苏骏茂新材料科技有限公司 High-temperature-resistant alloy plate processing technology

Also Published As

Publication number Publication date
JP3865293B2 (en) 2007-01-10

Similar Documents

Publication Publication Date Title
JP6093405B2 (en) Nitrogen-containing low nickel sintered stainless steel
JP4183346B2 (en) Mixed powder for powder metallurgy, iron-based sintered body and method for producing the same
JP2002356704A (en) Alloy powder for forming wear-resistant hard phase and method for producing wear-resistant sintered alloy using the same
JP5308123B2 (en) High-strength composition iron powder and sintered parts using it
EP2778243B1 (en) Iron based sintered sliding member and method for producing the same
TW201107495A (en) High strength low alloyed sintered steel
CN102361997A (en) Iron vanadium powder alloy
JP6722511B2 (en) Carburized Sintered Steel, Carburized Sintered Member and Manufacturing Methods Thereof
WO2005102564A1 (en) Mixed powder for powder metallurgy
CN104711485A (en) Low alloyed steel powder
JP5114233B2 (en) Iron-based sintered alloy and method for producing the same
JP4556755B2 (en) Powder mixture for powder metallurgy
JPH07300656A (en) Sintered bearing alloy for high temperature use and its production
JP4371003B2 (en) Alloy steel powder for powder metallurgy
JP6528899B2 (en) Method of manufacturing mixed powder and sintered body for powder metallurgy
JP2007169736A (en) Alloy steel powder for powder metallurgy
JP4715358B2 (en) Alloy steel powder for powder metallurgy
JP7248027B2 (en) Sintered alloy and its manufacturing method
JP3351844B2 (en) Alloy steel powder for iron-based sintered material and method for producing the same
JP2003166025A (en) Hard-grain dispersion type sintered alloy and manufacturing method therefor
JP5253132B2 (en) Wear-resistant sintered alloy and method for producing the same
JP6341455B2 (en) Manufacturing method of iron-based sintered sliding member
JP4093070B2 (en) Alloy steel powder
JP2003239002A (en) Iron based powdery mixture and method of producing iron based sintered compact
JPH0959740A (en) Powder mixture for powder metallurgy and its sintered compact

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060929

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3865293

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131013

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term