JPH04219374A - Silicon nitride-based sintered compact and its production - Google Patents

Silicon nitride-based sintered compact and its production

Info

Publication number
JPH04219374A
JPH04219374A JP2410989A JP41098990A JPH04219374A JP H04219374 A JPH04219374 A JP H04219374A JP 2410989 A JP2410989 A JP 2410989A JP 41098990 A JP41098990 A JP 41098990A JP H04219374 A JPH04219374 A JP H04219374A
Authority
JP
Japan
Prior art keywords
silicon nitride
sio2
oxide
mol
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2410989A
Other languages
Japanese (ja)
Other versions
JP2708136B2 (en
Inventor
Shoji Kosaka
祥二 高坂
Yasunori Kawabe
川辺 保典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2410989A priority Critical patent/JP2708136B2/en
Publication of JPH04219374A publication Critical patent/JPH04219374A/en
Application granted granted Critical
Publication of JP2708136B2 publication Critical patent/JP2708136B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve transverse rupture strength and fracture toughness extending from ambient to high temperatures by adding a group Va element oxide to an Si3N4-RE2O3 (rare earth element oxide)-Al2O3-SiO2-based mixture. CONSTITUTION:A mixture is prepared by mixing 60-93mol% Si3N4 powder having 0.4-1.2mum grain diameter with RE2O3 (e.g. Er2O3), Al2O3 and SiO2 so as to afford 6-39.9mol% total content of the RE2O3, Al2O3 and SiO2 and 0.1-1.0mol% group Va element oxide (e.g. Nb). The resultant mixture is formed and then burned at 1700-1800 deg.C in a nitrogen-containing nonoxidizing atmosphere to provide a silicon nitride-based sintered compact, having >2 molar ratio of SiO2/RE2O3, (1/15)=(5/4) molar ratio of the Al2O3/(RE2O3+SiO2) and <=1.5mum average crystal grain diameter (minor axis) at 2-15 aspect ratio and constructed from an Si3N4 crystal phase, a crystalline grain boundary phase composed of Si, 0 and N, a grain boundary phase containing RE and Al and an oxynitride phase of the group Va element.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、室温から高温までの強
度特性に優れ、特に、自動車用部品やガスタ−ビンエン
ジン用部品等に使用される窒化珪素質焼結体およびその
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon nitride sintered body that has excellent strength properties from room temperature to high temperatures and is used particularly for automobile parts, gas turbine engine parts, etc., and a method for producing the same.

【0002】0002

【従来の技術】従来から、窒化珪素質焼結体は、耐熱性
、耐熱衝撃性および耐酸化性に優れることからエンジニ
アリングセラミックス、特にターボロータ等の熱機関用
として応用が進められている。
BACKGROUND OF THE INVENTION Silicon nitride sintered bodies have been used as engineering ceramics, particularly for heat engines such as turbo rotors, because of their excellent heat resistance, thermal shock resistance, and oxidation resistance.

【0003】近時、高密度で高強度の焼結体を作製する
ために焼結助剤として希土類元素酸化物や酸化アルミニ
ウムを添加することが特公昭52−3649号、特公昭
58−5190号にて検討されている。
[0003] Recently, in order to produce a high-density and high-strength sintered body, rare earth element oxides and aluminum oxides have been added as sintering aids, as disclosed in Japanese Patent Publication No. 52-3649 and No. 58-5190. is being considered.

【0004】また、最近では、窒化珪素質焼結体中にN
b、Ta、Ti、W等の金属の化合物を添加することに
より焼結体の強度や靱性を高める方法等が特開昭64−
87568号にて提案されている。
[0004] Also, recently, N is added to silicon nitride sintered bodies.
A method of increasing the strength and toughness of a sintered body by adding compounds of metals such as b, Ta, Ti, W, etc. is disclosed in JP-A-64-
It is proposed in No. 87568.

【0005】[0005]

【発明が解決しようとする問題点】しかしながら、焼結
助剤として酸化イットリウムと酸化アルミニウムを用い
た場合、その焼結性が高められ、高密度化できることに
より室温および高温における強度をある程度は向上する
ことができるが、実用的には未だ不十分であり、さらに
強度の改良が要求される。
[Problems to be Solved by the Invention] However, when yttrium oxide and aluminum oxide are used as sintering aids, the sinterability is improved and the density can be increased, which improves the strength at room temperature and high temperature to some extent. However, it is still insufficient for practical use, and further improvement in strength is required.

【0006】また、焼結体中にTa、Nb、Ti等を添
加する方法では、室温強度の向上は認められるが、高温
強度の向上に関してはその検討がなされていない。
[0006] Furthermore, although improvements in room temperature strength have been observed in the method of adding Ta, Nb, Ti, etc. to the sintered body, no study has been made regarding improvement in high temperature strength.

【0007】[0007]

【発明の目的】本発明の目的は、室温から高温まで自動
車用部品やガスタ−ビンエンジン用部品等で使用される
に充分な強度特性、特に、室温から1000℃の高温ま
での抗折強度に優れた窒化珪素質焼結体およびその製造
方法を提供するにある。
OBJECTS OF THE INVENTION The object of the present invention is to develop a material with sufficient strength properties to be used in automotive parts, gas turbine engine parts, etc. from room temperature to high temperatures, and in particular, to have sufficient bending strength from room temperature to high temperatures of 1000°C. An object of the present invention is to provide an excellent silicon nitride sintered body and a method for manufacturing the same.

【0008】[0008]

【問題点を解決するための手段】本発明者等は、焼結体
の高温特性を高めるためには、焼結体の組成および焼結
体中の窒化珪素結晶相の形状や、窒化珪素結晶相の粒界
に存在する副相を制御することが重要であるという見地
に基づき、検討を重ねた結果、窒化珪素を主体し、これ
に希土類元素酸化物、酸化アルミニウムならびに酸化珪
素を添加した系に対して、さらに周期律表第5a族元素
酸化物を添加し、これを成形焼成し、得られる焼結体中
に珪素、酸素および窒素から構成される結晶質の粒界相
を析出させるとともに、周期律表第5a族元素の酸窒化
物からなる相を析出させることによって優れた高温特性
を有する焼結体が得られることを知見した。
[Means for Solving the Problems] The present inventors have discovered that in order to improve the high-temperature properties of a sintered body, the composition of the sintered body, the shape of the silicon nitride crystal phase in the sintered body, and the Based on the viewpoint that it is important to control the sub-phases present at the grain boundaries of the phase, we have developed a system consisting mainly of silicon nitride with the addition of rare earth element oxides, aluminum oxide, and silicon oxide. Further, an oxide of a Group 5a element of the periodic table is added, and this is shaped and fired to precipitate a crystalline grain boundary phase consisting of silicon, oxygen, and nitrogen in the resulting sintered body. discovered that a sintered body having excellent high-temperature properties can be obtained by precipitating a phase consisting of an oxynitride of an element of group 5a of the periodic table.

【0009】以下、本発明を詳述する。本発明の窒化珪
素質焼結体は、窒化珪素を主成分とし、これに添加成分
として希土類元素、アルミニウムおよび過剰酸素、さら
に周期律表第5a族元素を含むものである。
The present invention will be explained in detail below. The silicon nitride sintered body of the present invention has silicon nitride as a main component, and contains rare earth elements, aluminum, excess oxygen, and elements of group 5a of the periodic table as additive components.

【0010】ここで、過剰酸素とは焼結体の全酸素量か
ら焼結助剤中、希土類元素酸化物、酸化アルミニウムさ
らに周期律表第5a族元素酸化物として化学量論的に各
元素に結合している酸素を除く残りの酸素量であり、そ
のほとんどは窒化珪素原料に含まれる酸素、あるいは、
SiO2 等の添加物として混入するものであり、本発
明では全てSiO2 として存在するものとして考慮す
る。
[0010] Here, excess oxygen refers to the total amount of oxygen in the sintered body, the stoichiometric amount of each element in the sintering aid, rare earth element oxides, aluminum oxide, and oxides of Group 5a elements in the periodic table. This is the remaining amount of oxygen excluding bonded oxygen, and most of it is oxygen contained in the silicon nitride raw material, or
It is mixed as an additive such as SiO2, and in the present invention, it is considered that it exists entirely as SiO2.

【0011】本発明の焼結体は、窒化珪素結晶相を主相
とするものであり、そのほとんどはβ−Si3 N4 
結晶からなるが、場合によっては少量の酸化アルミニウ
ム(Al2 O3 )が固溶し、Si−Al−O−N(
サイアロン)を形成することもある。また、この主相は
一般に柱状形状を成すがその平均結晶粒径(短径)が1
.5μm以下、アスペクト比2〜15であることが強度
、靱性向上の点から好ましい。
The sintered body of the present invention has a silicon nitride crystal phase as its main phase, most of which is β-Si3 N4
It consists of crystals, but in some cases a small amount of aluminum oxide (Al2O3) is dissolved in solid solution, forming Si-Al-O-N (
They may also form sialons. In addition, this main phase generally has a columnar shape, but the average crystal grain size (minor axis) is 1
.. It is preferable that the thickness is 5 μm or less and the aspect ratio is 2 to 15 from the viewpoint of improving strength and toughness.

【0012】本発明によれば、上記主相の粒界に副相と
して珪素、酸素および窒素からなる結晶相が存在するこ
とが大きな特徴である。この結晶相は例えば、Si2 
N2 Oで表されるシリコンオキシナイトライド結晶相
からなるもので、この結晶相の存在により高温強度を高
めることができる。
According to the present invention, a major feature is that a crystalline phase consisting of silicon, oxygen and nitrogen exists as a subphase at the grain boundaries of the main phase. This crystalline phase is, for example, Si2
It consists of a silicon oxynitride crystal phase represented by N2O, and the presence of this crystal phase can increase high-temperature strength.

【0013】また本発明によれば、上記の結晶相の他に
周期律表第5a族元素の酸窒化相が存在することも重要
である。この結晶相は、窒化珪素結晶相の異常粒成長を
抑制し、室温および高温における強度が向上する。
According to the present invention, it is also important that, in addition to the above-mentioned crystalline phase, an oxynitride phase of an element of group 5a of the periodic table is present. This crystal phase suppresses abnormal grain growth of the silicon nitride crystal phase and improves strength at room temperature and high temperature.

【0014】本発明の焼結体中には上記3種の結晶相が
生成されるが、これらの結晶相の粒界には珪素、アルミ
ニウム、酸素、希土類元素からなる粒界相が形成される
。この粒界相は、それ自体非晶質、結晶相のいずれであ
っても差し支えない。
[0014] The above three types of crystal phases are generated in the sintered body of the present invention, and grain boundary phases consisting of silicon, aluminum, oxygen, and rare earth elements are formed at the grain boundaries of these crystal phases. . This grain boundary phase itself may be either an amorphous phase or a crystalline phase.

【0015】また、本発明の焼結体は、窒化珪素が60
〜93モル%、特に68〜85モル%の割合で存在し、
周期律表第3a族元素の酸化物換算量、アルミニウムの
酸化物換算量ならびに過剰酸素のSiO2 換算量の合
計が6.0〜39.9モル%、特に14.2〜31.8
モル%からなり、さらに周期律表第5a族元素が酸化物
換算で0.1〜1.0モル%、特に0.2〜0.8モル
%の組成からなることも重要である。
[0015] Furthermore, the sintered body of the present invention contains 60% silicon nitride.
present in a proportion of ~93 mol%, in particular 68-85 mol%,
The total of the oxide equivalent amount of Group 3a elements of the periodic table, the oxide equivalent amount of aluminum, and the SiO2 equivalent amount of excess oxygen is 6.0 to 39.9 mol%, especially 14.2 to 31.8 mol%.
Furthermore, it is important that the composition consists of 0.1 to 1.0 mol %, particularly 0.2 to 0.8 mol %, of Group 5a elements of the periodic table in terms of oxides.

【0016】これは、希土類元素、アルミニウム、過剰
酸素の合量が6.0モル%より小さいと焼結過程で液相
が不足するために焼成温度を高くする必要があり、その
ために窒化珪素結晶粒子の成長が起こり強度の低下を引
き起こし、39.9モル%より大きいと焼結体中の粒界
相が多くなり、高温強度が低下するとともにさらには高
温での耐酸化特性が劣化してしまうためで、周期律表第
5a族元素が0.1モル%より小さいと窒化珪素粒子の
成長が起こるために強度低下を引き起こし、1.0モル
%より大きいと窒化珪素粒子の針状化が抑制され、破壊
靱性が低下してしまうからである。
[0016] This is because if the total amount of rare earth elements, aluminum, and excess oxygen is less than 6.0 mol%, there will be a shortage of liquid phase during the sintering process, so it is necessary to increase the sintering temperature. Grain growth occurs, causing a decrease in strength, and if it is greater than 39.9 mol%, there will be a large number of grain boundary phases in the sintered body, leading to a decrease in high-temperature strength and further deterioration of oxidation resistance at high temperatures. Therefore, if the Group 5a element of the periodic table is less than 0.1 mol%, silicon nitride particles grow, causing a decrease in strength, and if it is more than 1.0 mol%, the acicular formation of silicon nitride particles is suppressed. This is because the fracture toughness decreases.

【0017】また、本発明によれば、周期律表第3a族
元素の酸化物換算量をRE2 O3 、アルニウムの酸
化物換算量をAl2 O3 とした時、過剰酸素のSi
O2 換算量とのSiO2 /RE2 O3 で表され
るモル比が2以上、特に2〜25、および、Al2 O
3 /(SiO2 +RE2 O3 )で表されるモル
比が1/15〜5/4、特に0.1〜1.0であること
が望ましい。これは、SiO2 /RE2 O3 モル
比が2以下では、珪素、酸素および窒素からなる結晶相
が生成されにくく、強度の低下を招くためで、また、A
l2 O3 /(SiO2 +RE2 O3 )モル比
が1/15より小さいと焼結性が低下し高密度の焼結体
を得ることが難しく、5/4より大きいと、Al2 O
3 により低融点物質の生成が多くなり高温における強
度および耐酸化特性が劣化してしまうからである。
Furthermore, according to the present invention, when the oxide equivalent amount of Group 3a elements of the periodic table is RE2 O3 and the oxide equivalent amount of aluminum is Al2 O3, the excess oxygen Si
The molar ratio expressed by SiO2 /RE2 O3 with respect to O2 equivalent amount is 2 or more, especially 2 to 25, and Al2 O
It is desirable that the molar ratio expressed by 3/(SiO2 +RE2 O3) is 1/15 to 5/4, particularly 0.1 to 1.0. This is because when the SiO2/RE2O3 molar ratio is 2 or less, a crystalline phase consisting of silicon, oxygen and nitrogen is difficult to form, resulting in a decrease in strength.
If the l2O3/(SiO2 +RE2O3) molar ratio is smaller than 1/15, the sinterability will be reduced and it will be difficult to obtain a high-density sintered body, and if it is larger than 5/4, Al2O
3, the formation of low melting point substances increases, resulting in deterioration of strength and oxidation resistance at high temperatures.

【0018】本発明に用いられる希土類元素としてはY
やランタノイド系元素挙げられるが、これらの中でもY
b2 O3 、Er2 O3 、Ho2 O3 、Dy
2 O3 が焼結体の均一性および、強度の点から好ま
しい。
The rare earth element used in the present invention is Y
Among these, Y
b2 O3 , Er2 O3 , Ho2 O3 , Dy
2 O3 is preferred in terms of uniformity and strength of the sintered body.

【0019】また、周期律表第5a族元素としては、N
b、V、Taが挙げられるが、これらの中でもNbが最
も効果が大きい。
[0019] Also, as an element of Group 5a of the periodic table, N
Among these, Nb has the greatest effect.

【0020】本発明の窒化珪素質焼結体の製造方法によ
れば、原料粉末として窒化珪素粉末、希土類元素酸化物
粉末、酸化アルミニウム粉末および周期律表第5a族元
素酸化物粉末を用い、場合によってはさらに酸化珪素粉
末を用いる。
According to the method for producing a silicon nitride sintered body of the present invention, silicon nitride powder, rare earth element oxide powder, aluminum oxide powder, and group 5a element oxide powder of the periodic table are used as raw material powders, and when In some cases, silicon oxide powder is further used.

【0021】窒化珪素粉末は、それ自体α−Si3 N
4 、β−Si3 N4 のいずれでも用いることがで
き、それらの粒径は0.4〜1.2μmであることが望
ましい。
Silicon nitride powder itself is α-Si3N
4, β-Si3 N4 can be used, and it is desirable that their particle size is 0.4 to 1.2 μm.

【0022】本発明によれば、これらの粉末を用いて窒
化珪素(Si3N4 )が60乃至93モル%、特に6
8乃至85モル%、希土類元素酸化物(RE2 O3 
)、酸化アルミニウム(Al2 O3 )、過剰酸素(
SiO2 換算量)の合量が6.0乃至39.9モル%
、特に14.2乃至31.8モル%、周期律表第5a族
元素酸化物を0.1乃至1.0モル%、特に0.2乃至
0.8モル%になるように調製、混合する。この時の過
剰酸素(SiO2 )とは、窒化珪素粉末に含まれる不
純物酸素をSiO2 換算した量と添加する酸化珪素粉
末との合量である。
According to the present invention, using these powders, silicon nitride (Si3N4) is contained in an amount of 60 to 93 mol %, especially 6
8 to 85 mol%, rare earth element oxide (RE2 O3
), aluminum oxide (Al2O3), excess oxygen (
The total amount of (SiO2 equivalent amount) is 6.0 to 39.9 mol%
, especially 14.2 to 31.8 mol %, and 0.1 to 1.0 mol %, especially 0.2 to 0.8 mol % of the oxide of Group 5a element of the periodic table, and mixed. . The excess oxygen (SiO2) at this time is the total amount of the impurity oxygen contained in the silicon nitride powder converted to SiO2 and the added silicon oxide powder.

【0023】このようにして得られた混合粉末を公知の
成形方法、例えば、プレス成形、鋳込み成形、押出し成
形、射出成形、冷間静水圧成形などにより所望の形状に
成形する。
The mixed powder thus obtained is molded into a desired shape by known molding methods such as press molding, casting molding, extrusion molding, injection molding, and cold isostatic pressing.

【0024】次に、得られた成形体を公知の焼成方法、
例えば、ホットプレス方法、常圧焼成、窒素ガス圧力焼
成、さらには、これらの焼成後のHIP焼成、および、
ガラスシ−ルHIP焼成等で焼成し、緻密な焼結体を得
る。この時の焼成温度は、高温しぎると窒化珪素結晶が
粒成長し強度が低下するため、1900℃以下、特に1
700〜1800℃の窒素ガス含有非酸化性雰囲気であ
ることが望ましい。
Next, the obtained molded body is subjected to a known firing method,
For example, hot press method, normal pressure firing, nitrogen gas pressure firing, HIP firing after these firing, and
A dense sintered body is obtained by firing using glass seal HIP firing or the like. The firing temperature at this time should be below 1900°C, especially at
A non-oxidizing atmosphere containing nitrogen gas at 700 to 1800°C is desirable.

【0025】この焼成によれば、添加成分のほとんどは
窒化珪素結晶相の粒界に存在するが、これらのうち周期
律表第5a族元素は酸化物の一部が窒素置換されること
により酸窒化物が生成される。一方、その他の添加物に
より、珪素、窒素、酸素からなる結晶相と、珪素、アル
ミニウム、酸素、窒素からなる粒界相が形成されるが、
条件によって珪素、窒素、酸素からなる結晶相が生成さ
れない場合には、得られた焼結体を1000〜1500
℃の非酸化性雰囲気中で処理することにより結晶相を生
成することができる。
According to this firing, most of the additive components are present in the grain boundaries of the silicon nitride crystal phase, but among these, the elements of group 5a of the periodic table are oxidized by nitrogen substitution of a part of the oxide. Nitride is produced. On the other hand, other additives form a crystal phase consisting of silicon, nitrogen, and oxygen, and a grain boundary phase consisting of silicon, aluminum, oxygen, and nitrogen.
If a crystal phase consisting of silicon, nitrogen, and oxygen is not generated depending on the conditions, the obtained sintered body is
A crystalline phase can be generated by processing in a non-oxidizing atmosphere at .degree.

【0026】[0026]

【作用】窒化珪素結晶粒子は適当なアスペクト比と大き
さをもち、高信頼性を得るためには異常成長粒子が存在
しない事が必要である。その為には、適当量の粒界相が
必要で、かつ従来の希土類元素酸化物と酸化アルミニウ
ムの添加だけではなく、SiO2 を添加することで焼
結過程で生成する液相の融点が低下し、低温焼成が可能
となり、窒化珪素粒子の成長を抑制でき、微細な組織を
形成することができる。
[Operation] Silicon nitride crystal grains must have an appropriate aspect ratio and size, and in order to obtain high reliability, it is necessary that there are no abnormally grown grains. For this purpose, an appropriate amount of grain boundary phase is required, and in addition to the conventional addition of rare earth element oxides and aluminum oxide, the addition of SiO2 lowers the melting point of the liquid phase generated during the sintering process. , it becomes possible to perform low-temperature firing, suppress the growth of silicon nitride particles, and form a fine structure.

【0027】さらに、周期律表第5a族元素酸化物の添
加により、焼結過程で酸化物が酸窒化物に変化すること
により他の成分からなる粒界相に溶解せず酸窒化物相と
して残存するために、この酸窒化物相が窒化珪素粒子の
成長を更に抑制し、微細でアスペクト比の揃った均一な
組織を形成することができる。さらに焼結体中に珪素、
酸素、窒素からなる結晶相を形成させることにより窒化
珪素結晶相以外の成分の高温安定化が図られ、これによ
り焼結体の室温および高温における強度を高めるととも
に靱性をも高めることができる。
Furthermore, by adding an oxide of an element of Group 5a of the periodic table, the oxide changes to an oxynitride during the sintering process, so that it does not dissolve in the grain boundary phase composed of other components and forms an oxynitride phase. Since the oxynitride phase remains, it is possible to further suppress the growth of silicon nitride particles and form a fine and uniform structure with a uniform aspect ratio. Furthermore, silicon in the sintered body,
By forming a crystalline phase consisting of oxygen and nitrogen, components other than the silicon nitride crystalline phase are stabilized at high temperatures, thereby increasing the strength of the sintered body at room and high temperatures as well as its toughness.

【0028】[0028]

【実施例】実施例1 原料粉末として窒化珪素粉末(BET比表面積8m2 
/g、α率98%、酸素量1.2重量%)と各種希土類
元素酸化物粉末、酸化珪素粉末、酸化アルミニウム粉末
ならびに周期律表第5a族元素酸化物粉末を用いて、表
1に示す組成なるように調合して混合後、1t/cm2
 で金形プレス成形した。
[Example] Example 1 Silicon nitride powder (BET specific surface area: 8 m2) was used as the raw material powder.
/g, alpha rate 98%, oxygen amount 1.2% by weight) and various rare earth element oxide powders, silicon oxide powders, aluminum oxide powders, and periodic table group 5a element oxide powders as shown in Table 1. After blending and mixing the composition, 1t/cm2
It was press-molded into a mold.

【0029】[0029]

【表1】[Table 1]

【0030】得られた成形体を炭化珪素質の匣鉢に入れ
て、カ−ボンヒ−タ−を用い、常圧にて窒素ガス気流中
1750℃で4時間焼成し、焼結体を得た。
The obtained molded body was placed in a silicon carbide sagger and fired at 1750°C for 4 hours in a nitrogen gas stream at normal pressure using a carbon heater to obtain a sintered body. .

【0031】得られた焼結体をJIS−R1601にて
指定される形状まで研磨し試料を作成した。この試料に
ついてアルキメデス法に基づく比重測定、窒化珪素結晶
の平均結晶粒径(短径)およびその平均アスペクト比を
電子顕微鏡写真から測定し、JIS−R1601に基づ
く室温および1000℃での4点曲げ抗折強度試験を実
施し、さらに破壊靱性の測定を行った。またX線回折測
定により焼結体中の結晶を同定した。結果は表2に示し
た。
The obtained sintered body was polished to a shape specified by JIS-R1601 to prepare a sample. For this sample, the specific gravity was measured based on the Archimedes method, the average crystal grain size (minor axis) of the silicon nitride crystal, and its average aspect ratio were measured from electron micrographs. A folding strength test was conducted, and the fracture toughness was also measured. Furthermore, the crystals in the sintered body were identified by X-ray diffraction measurements. The results are shown in Table 2.

【0032】[0032]

【表2】[Table 2]

【0033】表1および表2の結果によると、Si3 
N4 が60モル%未満でRE2 O3 、Al2 O
3 、SiO2 の合量が39.9モル%を越えるNo
,1の焼結体は高温強度が低下しており、Si3 N4
 が93モル%を越え、RE2 O3 、Al2 O3
 、SiO2 の合量が6モル%未満のNo,10の焼
結体は緻密化不足で強度も低下していた。また、第5a
族元素が0.1モル%未満のNo,6の焼結体は室温強
度が低下し、第5a族元素が1.0モル%を越えるNo
,9の焼結体は破壊靱性と室温強度が低下していた。
According to the results in Tables 1 and 2, Si3
When N4 is less than 60 mol%, RE2 O3, Al2 O
3, No. where the total amount of SiO2 exceeds 39.9 mol%
The sintered bodies of , 1 have decreased high temperature strength, and Si3 N4
exceeds 93 mol%, RE2 O3, Al2 O3
The sintered body No. 10, in which the total amount of SiO2 was less than 6 mol %, was insufficiently densified and its strength was reduced. Also, Section 5a
The room temperature strength of the sintered body No. 6 containing less than 0.1 mol% of group elements decreases, while the sintered body No. 6 containing group 5a elements exceeding 1.0 mol%
, 9 had decreased fracture toughness and room temperature strength.

【0034】これらの比較例に対し、本発明の焼結体は
いずれも優れた抗折強度、破壊靱性を示していた。さら
に、SiO2 /RE2 O3 モル比が68より大き
く85以下で、Al2 O3 /(SiO2 +RE2
 O3 )モル比が0.1より大きく、1.0以下のN
o,2、No,5、No,7、No,8、No,11、
No,14、No,15、No,16の焼結体はさらに
優れた抗折強度、破壊靱性を示していた。
In contrast to these comparative examples, all of the sintered bodies of the present invention exhibited excellent bending strength and fracture toughness. Further, the SiO2 /RE2 O3 molar ratio is greater than 68 and 85 or less, and Al2 O3 /(SiO2 +RE2
O3) N with a molar ratio greater than 0.1 and less than 1.0
o, 2, No, 5, No, 7, No, 8, No, 11,
The sintered bodies No. 14, No. 15, and No. 16 exhibited even better bending strength and fracture toughness.

【0035】実施例2 実施例1の表1の試料のうち、No,3、No,10、
No,12、No,13の焼結体について、さらに、窒
素ガス含有アルゴンガス2000気圧、1850℃、1
時間の条件で熱間静水圧処理を行った。なお、HIP時
での組成変動は認められなかった。得られた焼結体に対
し、実施例1と同様の評価を行い、結果を表4に示した
Example 2 Among the samples in Table 1 of Example 1, No. 3, No. 10,
Regarding the sintered bodies No. 12, No. 13, further, nitrogen gas containing argon gas 2000 atm, 1850° C., 1
Hot isostatic pressure treatment was carried out under the conditions of: Note that no compositional change was observed during HIP. The obtained sintered body was evaluated in the same manner as in Example 1, and the results are shown in Table 4.

【0036】[0036]

【表3】[Table 3]

【0037】表3の結果によると、HIP処理によりい
ずれも焼結体の密度は向上したが、Si3 N4 量が
少ない試料No,10ではHIP処理しても強度を回復
することはできなかった。
According to the results in Table 3, the density of the sintered bodies was improved by the HIP treatment, but the strength of sample No. 10, which had a small amount of Si3N4, could not be recovered even by the HIP treatment.

【0038】[0038]

【発明の効果】以上詳述した通り、本発明によれば、S
i3 N4 −RE2 O3 −Al2 O3 −Si
O2 系に対して周期律表第5a族元素酸化物を添加し
、焼結体中に第5a族酸窒化物および珪素、酸素、窒素
からなる結晶相を析出させることにより、窒化珪素結晶
粒の粒成長を抑制するとともに、高温域での焼結助剤等
の添加物を安定化することができ、これにより室温から
高温において高い強度と靱性を得ることができる。
[Effects of the Invention] As detailed above, according to the present invention, S
i3 N4 -RE2 O3 -Al2 O3 -Si
By adding oxides of Group 5a elements of the periodic table to the O2 system and precipitating Group 5a oxynitrides and crystal phases consisting of silicon, oxygen, and nitrogen in the sintered body, silicon nitride crystal grains are In addition to suppressing grain growth, it is possible to stabilize additives such as sintering aids in high temperature ranges, and as a result, high strength and toughness can be obtained from room temperature to high temperature.

【0039】よって、ガスタービンやターボロータ等の
熱機関用構造材料をはじめとし、各種の室温や高温にて
使用される構造用材料として用いることができる。
Therefore, it can be used as a structural material for heat engines such as gas turbines and turbo rotors, as well as structural materials used at various room temperatures and high temperatures.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】窒化珪素結晶相と、珪素、酸素および窒素
からなる結晶質の粒界相と、少なくとも希土類元素およ
びアルミニウムを含む粒界相と、周期律表第5a族元素
の酸窒化物相から構成されることを特徴とする窒化珪素
質焼結体。
[Claim 1] A silicon nitride crystal phase, a crystalline grain boundary phase consisting of silicon, oxygen and nitrogen, a grain boundary phase containing at least a rare earth element and aluminum, and an oxynitride phase of a Group 5a element of the periodic table. A silicon nitride sintered body comprising:
【請求項2】窒化珪素が60〜93モル%、希土類元素
の酸化物換算量、アルミニウムの酸化物換算量および過
剰酸素のSiO2 換算量の合計量が6〜39.9モル
%、周期律表第5a族元素が酸化物換算量で0.1乃至
1.0モル%の割合で存在する請求項1記載の窒化珪素
質焼結体。
[Claim 2] Silicon nitride is 60 to 93 mol%, the total amount of rare earth elements in terms of oxides, aluminum in terms of oxides, and excess oxygen in terms of SiO2 is 6 to 39.9 mol%, periodic table The silicon nitride sintered body according to claim 1, wherein the Group 5a element is present in an amount of 0.1 to 1.0 mol% in terms of oxide.
【請求項3】希土類元素の酸化物換算量 (RE2 O
3 )と、過剰酸素のSiO2 換算量と、アルミニウ
ムの酸化物換算量(Al2 O3 )において、SiO
2 /RE2 O3 で表されるモル比が2を越え、且
つAl2 O3 /(RE2 O3 +SiO2 )で
表されるモル比が1/15〜5/4である請求項1記載
の窒化珪素質焼結体。
[Claim 3] Oxide equivalent amount of rare earth element (RE2 O
3), the SiO2 equivalent amount of excess oxygen, and the oxide equivalent amount of aluminum (Al2 O3), SiO
The silicon nitride sinter according to claim 1, wherein the molar ratio expressed by 2 /RE2 O3 exceeds 2, and the molar ratio expressed by Al2 O3 / (RE2 O3 + SiO2) is 1/15 to 5/4. body.
【請求項4】窒化珪素60〜93モル%と、希土類元素
酸化物、酸化アルミニウムおよび酸化珪素の合量が6〜
39.9モル%と、周期律表第5a族元素酸化物を0.
1〜1.0モル%になるように調合した混合物を成形後
、窒素を含む非酸化性雰囲気中で焼結し、窒化珪素結晶
相と、珪素、酸素および窒素からなる結晶質の粒界相と
、少なくとも希土類元素およびアルミニウムを含む粒界
相と、周期律表第5a族元素の酸窒化物相を生成させる
ことを特徴とする窒化珪素質焼結体の製造方法。
[Claim 4] 60 to 93 mol% of silicon nitride, and a total amount of rare earth element oxide, aluminum oxide, and silicon oxide of 6 to 93 mol%.
39.9 mol %, and 0.9 mol % of the oxide of Group 5a element of the periodic table.
After molding a mixture prepared to have a concentration of 1 to 1.0 mol%, it is sintered in a non-oxidizing atmosphere containing nitrogen to form a silicon nitride crystal phase and a crystalline grain boundary phase consisting of silicon, oxygen and nitrogen. , a grain boundary phase containing at least a rare earth element and aluminum, and an oxynitride phase of an element of group 5a of the periodic table.
【請求項5】前記希土類元素酸化物の添加量(RE2 
O3 )と、前記酸化珪素の添加量(SiO2 )と、
前記酸化アルミニウムの添加量(Al2 O3 )にお
いて、SiO2 /RE2 O3 で表されるモル比が
2を越え、且つAl2O3 /(RE2 O3 +Si
O2 )で表されるモル比が1/15〜5/4である請
求項4記載の窒化珪素質焼結体の製造方法。
5. Addition amount of the rare earth element oxide (RE2
O3), the amount of silicon oxide added (SiO2),
In the amount of aluminum oxide added (Al2O3), the molar ratio expressed as SiO2/RE2O3 exceeds 2, and Al2O3/(RE2O3 +Si
5. The method for producing a silicon nitride sintered body according to claim 4, wherein the molar ratio represented by O2) is 1/15 to 5/4.
JP2410989A 1990-12-14 1990-12-14 Silicon nitride sintered body and method for producing the same Expired - Fee Related JP2708136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2410989A JP2708136B2 (en) 1990-12-14 1990-12-14 Silicon nitride sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2410989A JP2708136B2 (en) 1990-12-14 1990-12-14 Silicon nitride sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH04219374A true JPH04219374A (en) 1992-08-10
JP2708136B2 JP2708136B2 (en) 1998-02-04

Family

ID=18520065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2410989A Expired - Fee Related JP2708136B2 (en) 1990-12-14 1990-12-14 Silicon nitride sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP2708136B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994027929A1 (en) * 1993-05-20 1994-12-08 Sumitomo Electric Industries, Ltd. Porous ceramic and process for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994027929A1 (en) * 1993-05-20 1994-12-08 Sumitomo Electric Industries, Ltd. Porous ceramic and process for producing the same
US5618765A (en) * 1993-05-20 1997-04-08 Sumitomo Electric Industries, Ltd. Ceramics porous body and method of preparing the same
US5695700A (en) * 1993-05-20 1997-12-09 Sumitomo Electric Industries, Ltd. Method of preparing a ceramic porous body

Also Published As

Publication number Publication date
JP2708136B2 (en) 1998-02-04

Similar Documents

Publication Publication Date Title
JP3273099B2 (en) Rare earth composite oxide-based sintered body and method for producing the same
JP3454993B2 (en) Silicon nitride sintered body and method for producing the same
JP3034100B2 (en) Silicon nitride sintered body and method for producing the same
JPH04219374A (en) Silicon nitride-based sintered compact and its production
JP3426823B2 (en) Silicon nitride sintered body and method for producing the same
JP3124865B2 (en) Silicon nitride sintered body and method for producing the same
JPH07330436A (en) Silicon nitride heat resistant member and its production
JP3124863B2 (en) Silicon nitride sintered body and method for producing the same
JP2801447B2 (en) Method for producing silicon nitride based sintered body
JPH09157028A (en) Silicon nitride sintered compact and its production
JP3034099B2 (en) Silicon nitride sintered body and method for producing the same
JPH06287066A (en) Silicon nitride sintered compact and its production
JP2746761B2 (en) Method for producing silicon nitride-silicon carbide composite sintered body
JP2783711B2 (en) Silicon nitride sintered body
JPH06116045A (en) Silicon nitride sintered compact and its production
JP3207065B2 (en) Silicon nitride sintered body
JP3124862B2 (en) Method for producing silicon nitride based sintered body
JP3124864B2 (en) Silicon nitride sintered body and method for producing the same
JP3236733B2 (en) Silicon nitride sintered body
JP3207045B2 (en) Method for producing silicon nitride based sintered body
JPH10212167A (en) Silicon nitride-base composite sintered compact and its production
JP2746759B2 (en) Silicon nitride sintered body
JPH06316465A (en) Silicon nitride-based sintered compact and production thereof
JPH0840774A (en) Silicon nitride sintered product
JPH0524926A (en) Production of silicon nitride-silicon carbide combined sintered compact

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071017

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees