JPH0524926A - Production of silicon nitride-silicon carbide combined sintered compact - Google Patents
Production of silicon nitride-silicon carbide combined sintered compactInfo
- Publication number
- JPH0524926A JPH0524926A JP3176446A JP17644691A JPH0524926A JP H0524926 A JPH0524926 A JP H0524926A JP 3176446 A JP3176446 A JP 3176446A JP 17644691 A JP17644691 A JP 17644691A JP H0524926 A JPH0524926 A JP H0524926A
- Authority
- JP
- Japan
- Prior art keywords
- silicon
- silicon nitride
- silicon carbide
- sintered body
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Ceramic Products (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、窒化珪素および炭化珪
素を主体とする窒化珪素−炭化珪素質複合焼結体の製造
方法に関するもので、詳細には、高温構造材料に適し、
高い寸法精度が要求されるガスタービン部品等の製造に
適した焼結体の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a silicon nitride-silicon carbide composite sintered body mainly composed of silicon nitride and silicon carbide, and more specifically, suitable for high-temperature structural materials,
The present invention relates to a method for manufacturing a sintered body suitable for manufacturing a gas turbine component or the like that requires high dimensional accuracy.
【0002】[0002]
【従来技術】窒化珪素質焼結体は、従来から、強度、硬
度、熱的化学的安定性に優れることからエンジニアリン
グセラミックスとして、特に熱機関構造用材料としてそ
の応用が進められている。このような窒化珪素質焼結体
を得る方法としては、窒化珪素粉末に対して周期律表第
3a族元素酸化物等の焼結助剤を添加混合し、成形後、
非酸化性雰囲気中で1500〜2000℃の温度にて焼
成することにより得られている。2. Description of the Related Art Conventionally, silicon nitride sintered bodies have been applied to engineering ceramics, especially as materials for heat engine structures, because they are excellent in strength, hardness and thermal / chemical stability. As a method for obtaining such a silicon nitride sintered body, a sintering aid such as a Group 3a element oxide of the periodic table is added to and mixed with silicon nitride powder, and after molding,
It is obtained by firing at a temperature of 1500 to 2000 ° C. in a non-oxidizing atmosphere.
【0003】ところが、窒化珪素質焼結体は、優れた特
性を有する反面、高温において強度等が低下するという
問題を有している。この高温強度の劣化という問題に対
してこれまで、焼結助剤の改良や焼成雰囲気や焼成パタ
ーン等を変更することにより改善が進められてきたが、
決定的な対策には至っていないのが現状である。一方、
炭化珪素質焼結体は、上記窒化珪素質焼結体に比較して
絶対的な強度は低いものの、高温における強度劣化がほ
とんどないという特性を有している。However, the silicon nitride sintered material has excellent characteristics, but on the other hand, it has a problem that strength and the like decrease at high temperatures. The problem of deterioration of high temperature strength has been improved so far by improving the sintering aid and changing the firing atmosphere and firing pattern.
The current situation is that no definitive measures have been taken. on the other hand,
Although the silicon carbide based sintered body has an absolute strength lower than that of the above-mentioned silicon nitride based sintered body, it has a characteristic that the strength is hardly deteriorated at a high temperature.
【0004】そこで、最近に到り、窒化珪素に対して炭
化珪素を添加し焼成して得られる複合焼結体が提案され
ている。この複合焼結体は、窒化珪素質焼結体に比較し
て絶対的な強度が高く、しかも高温における強度劣化も
小さいという優れた特性を有するため、この焼結体の熱
機関用材料としての実用化の検討が行われている。Therefore, recently, a composite sintered body obtained by adding silicon carbide to silicon nitride and firing it has been proposed. Since this composite sintered body has the excellent characteristics that the absolute strength is higher than that of the silicon nitride sintered body and the strength deterioration at high temperature is small, the sintered body is used as a material for a heat engine. Practical application is under study.
【0005】[0005]
【発明が解決しようとする問題点】しかしながら、上記
複合焼結体は、焼成中における変形が大きく、高い高温
特性を有していても高い寸法精度が要求されるガスター
ビン部品へ適用することが難しく、焼結体を製造する際
に加工しろを大きくとる必要がある。そこで、従来より
用いる原料の改良や成形法の改良により均一で生密度の
高い成形体を作成することにより改善が行われてきた
が、決定的な対策には至っていないのが現状である。However, the above-mentioned composite sintered body is largely deformed during firing and can be applied to a gas turbine component which requires high dimensional accuracy even though it has high temperature characteristics. It is difficult and requires a large working margin when manufacturing a sintered body. Therefore, although improvements have been made by making uniform and high-density compacts by improving the raw materials and the molding method that have been conventionally used, the definitive measures have not yet been reached.
【0006】変形の主な原因としては、焼成中に収縮す
る際に自重等による応力が発生しているので均一に収縮
できないためと考えられる。上記焼結体は、生成形体と
焼結体の密度差が大きく、収縮も大きいために変形が大
きくなる傾向にある。このような焼結時における収縮−
変形は、窒化珪素と炭化珪素とを複合した場合には、そ
れぞれの焼結挙動が異なるために不可避的に発生する要
因であり、かかる複合焼結体をガスタービン等の高寸法
精度が要求される製品には適用することが困難であっ
た。It is considered that the main cause of the deformation is that the shrinkage during firing is caused by the stress due to its own weight and the like, so that the shrinkage cannot be performed uniformly. The above-mentioned sintered body has a large density difference between the green body and the sintered body, and since the contraction is large, the deformation tends to be large. Shrinkage during such sintering
Deformation is a factor that inevitably occurs when silicon nitride and silicon carbide are compounded, because their respective sintering behaviors are different, and such a compound sintered body is required to have high dimensional accuracy such as a gas turbine. However, it was difficult to apply it to various products.
【0007】[0007]
【問題点を解決するための手段】本発明者等は、上記問
題点に対して詳細に検討を行った結果、窒化珪素と炭化
珪素との複合焼結体を作成するに際し、焼結助剤として
周期律表第3a族元素酸化物を添加するとともに、成形
体中に珪素粉末を配合し、これを低温域で熱処理して珪
素粉末を窒化させて収縮を抑制しつつ密度を向上させた
後、高温域で焼成し緻密化させることにより従来の特性
を損なうことなく、変形が小さく寸法精度が高い複合焼
結体が得られることを知見した。Means for Solving the Problems As a result of a detailed study on the above problems, the present inventors have found that when a composite sintered body of silicon nitride and silicon carbide is produced, a sintering aid is used. After adding an oxide of a Group 3a element of the periodic table as described above, silicon powder is blended in the molded body, and this is heat-treated in a low temperature range to nitride the silicon powder to suppress shrinkage and improve density. It has been found that by firing in a high temperature range and densifying, a composite sintered body with small deformation and high dimensional accuracy can be obtained without impairing the conventional characteristics.
【0008】即ち、本発明の窒化珪素−炭化珪素質複合
焼結体の製造方法は、まず、周期律表第3a族元素酸化
物を0.2〜10モル%の割合で含み、残部が珪素、あ
るいは珪素と窒化珪素よりなる成分100重量部に対し
て、炭化珪素を1〜150重量部の割合で添加してなる
成形体を作成し、この成形体を800〜1500℃の窒
素含有雰囲気中で熱処理して前記珪素を窒化した後、1
600〜2000℃の非酸化性雰囲気中で焼成し、緻密
化することを特徴とするものである。That is, in the method for producing a silicon nitride-silicon carbide composite sintered body of the present invention, first, a Group 3a element oxide of the periodic table is contained in a proportion of 0.2 to 10 mol%, and the balance is silicon. Alternatively, a molded body is prepared by adding silicon carbide in an amount of 1 to 150 parts by weight to 100 parts by weight of a component composed of silicon and silicon nitride, and the molded body is placed in a nitrogen-containing atmosphere at 800 to 1500 ° C. After nitriding the silicon by heat treatment at 1
It is characterized in that it is densified by firing in a non-oxidizing atmosphere at 600 to 2000 ° C.
【0009】以下、本発明の製造方法を詳述すると、ま
ず、出発原料として、珪素粉末、炭化珪素粉末、焼結助
剤として周期律表第3a族元素酸化物、また場合により
窒化珪素粉末、酸化珪素粉末を使用する。The production method of the present invention will be described in detail below. First, silicon powder, silicon carbide powder as a starting material, a Group 3a element oxide of the periodic table as a sintering aid, and optionally a silicon nitride powder, Silicon oxide powder is used.
【0010】用いる珪素粉末は、窒化を容易にするため
にその平均粒径が10μm以下、特に3μm以下の微粒
ものが好適である。また、炭化珪素粉末としては、α
型、β型のいずれでも使用でき、その分散による窒化珪
素に対する粒成長抑制効果の点から平均粒径1μm以下
の微粒で、且つ不純物酸素量が2重量%以下のものが好
適である。さらに窒化珪素粉末としては、この系中に炭
化珪素を含みまた、珪素を窒化させるために全体の焼結
性が低下するので、α型−窒化珪素を95%以上の割合
で含有し、且つ平均粒径が1μm以下、不純物酸素量が
2重量%以下のものが使用される。なお、窒化珪素粉末
を含む場合には窒化珪素粉末および炭化珪素粉末は、そ
れぞれ個別の粉末として存在する他、窒化珪素と炭化珪
素を所定の割合で複合化した粉末を用いることもでき
る。The silicon powder used is preferably fine particles having an average particle size of 10 μm or less, particularly 3 μm or less, in order to facilitate nitriding. Further, as the silicon carbide powder, α
Type and β type can be used, and from the viewpoint of grain growth suppressing effect on silicon nitride due to dispersion thereof, fine particles having an average particle size of 1 μm or less and an impurity oxygen amount of 2% by weight or less are preferable. Further, as the silicon nitride powder, since silicon carbide is contained in this system and the sinterability of the whole is lowered due to the nitriding of silicon, α-type silicon nitride is contained in a proportion of 95% or more, and the average A particle size of 1 μm or less and an impurity oxygen amount of 2% by weight or less are used. When the silicon nitride powder is contained, the silicon nitride powder and the silicon carbide powder are present as individual powders, or a powder obtained by compounding silicon nitride and silicon carbide at a predetermined ratio can be used.
【0011】次に、これらの原料粉末を所定の割合に調
合し成形体を作成する。本発明によれば、成形体組成
が、周期律表第3a族元素酸化物を0.5〜10モル
%、特に1〜7モル%の割合で含み、残部が珪素粉末、
あるいは珪素粉末と窒化珪素粉末との混合粉末よりなる
窒化珪素成分100重量部に対して炭化珪素成分を1〜
150重量部の割合となるように調合する。Next, these raw material powders are mixed in a predetermined ratio to form a molded body. According to the present invention, the composition of the molded body contains the oxide of the Group 3a group 3a element of the periodic table in a proportion of 0.5 to 10 mol%, particularly 1 to 7 mol%, and the balance being silicon powder.
Alternatively, 1 to 100 parts by weight of a silicon carbide component may be added to 100 parts by weight of a silicon nitride component composed of a mixed powder of silicon powder and silicon nitride powder.
It is mixed so that the ratio is 150 parts by weight.
【0012】上記成形体組成において周期律表第3a族
元素酸化物の量を上記の範囲に限定したのは、系自体中
に後述するように炭化珪素が含まれていることにより焼
結性が低いために周期律表第3a族元素酸化物量が0.
5モル%より少ないと高密度焼結体が得られず、逆に1
0モル%を超えると最終焼結体の高温特性が劣化するた
めである。The amount of the Group 3a element oxide of the periodic table in the above-mentioned composition of the compact is limited to the above range because the sinterability is improved because the system itself contains silicon carbide as described later. Since it is low, the amount of oxide of Group 3a element of the periodic table is 0.
If it is less than 5 mol%, a high-density sintered body cannot be obtained, and conversely 1
This is because if it exceeds 0 mol%, the high temperature characteristics of the final sintered body deteriorate.
【0013】また、炭化珪素の添加量を上記の範囲に限
定したのは、窒化珪素成分100重量部に対して1重量
部より少ないと、窒化珪素結晶の粒成長を抑制する効果
が小さく窒化珪素の粒径が大きくなるために、抗折強度
およびクリープ特性が従来の窒化珪素質焼結体と同レベ
ルのものしか得られず、逆に100重量部を越えると系
全体の焼結性が低下し緻密質な焼結体が得られにくくな
り、焼結体の強度が低下する。なお、各特性の点からは
炭化珪素成分量は上記窒化珪素成分100重量部に対し
て30〜70重量部であることが望ましい。Further, the amount of silicon carbide added is limited to the above range because when the amount is less than 1 part by weight with respect to 100 parts by weight of the silicon nitride component, the effect of suppressing the grain growth of the silicon nitride crystal is small and the silicon nitride is reduced. As a result, the bending strength and creep properties are the same as those of the conventional silicon nitride sintered body, and if the amount exceeds 100 parts by weight, the sinterability of the entire system deteriorates. However, it becomes difficult to obtain a dense sintered body, and the strength of the sintered body decreases. From the viewpoint of each characteristic, the amount of the silicon carbide component is preferably 30 to 70 parts by weight with respect to 100 parts by weight of the silicon nitride component.
【0014】また、成形体中の上記窒化珪素成分におい
て、珪素粉末を多量に含む場合、後述する窒化工程にお
いて、添加された珪素粉末をすべて窒化珪素に変換する
ことが困難となり、逆に特性が低下することがあるため
に、本発明によれば窒化珪素粉末を適量添加することが
望ましい。If the silicon nitride component in the compact contains a large amount of silicon powder, it will be difficult to convert all of the added silicon powder into silicon nitride in the nitriding step described later, and conversely the characteristics will be poor. According to the present invention, it is desirable to add an appropriate amount of silicon nitride powder because it may decrease.
【0015】上記成形体を作成する際に採用される成形
手段としては公知の方法が採用され、例えば、プレス成
形、射出成形、押し出し成形、鋳込み成形、冷間静水圧
成形等の成形法により所望の形状に成形する。A known method is adopted as a molding means used for producing the above-mentioned molded body, and for example, a desired molding method such as press molding, injection molding, extrusion molding, cast molding, cold isostatic molding or the like is used. To shape.
【0016】次に、上記のようにして得られた成形体を
窒素雰囲気中で800〜1500℃の温度で熱処理して
成形体に含まれる珪素粉末を窒化し、窒化珪素を生成さ
せる。この窒化珪素への変換に際して、寸法変化がなく
重量増加するために成形体の密度が向上する。この窒化
処理後の成形体の対理論密度比が60%以上となるよう
に制御することが望ましい。この窒化処理において、含
有される珪素をすべて窒化させるためには、上記温度範
囲内にて温度を多段に上昇させつつ徐々に窒化させるこ
とが望ましく、一定温度での窒化処理では珪素の完全な
窒化ができない場合がある。Next, the molded body obtained as described above is heat-treated in a nitrogen atmosphere at a temperature of 800 to 1500 ° C. to nitride the silicon powder contained in the molded body to generate silicon nitride. Upon conversion into silicon nitride, there is no dimensional change and the weight increases, so the density of the molded body improves. It is desirable to control such that the ratio of the theoretical density of the molded body after the nitriding treatment is 60% or more. In this nitriding treatment, in order to completely nitrid the contained silicon, it is desirable to gradually raise the temperature within the above temperature range while raising the temperature in multiple stages. May not be possible.
【0017】次に、上記の方法により得られた成形体を
焼成温度1600〜2000℃以下、特に1600〜1
900℃の温度で、焼成温度における窒化珪素の分解平
衡圧以上に設定された窒素を含有する非酸化性雰囲気中
で焼成する。また、焼成手段としては、常圧焼成、ホッ
トプレス焼成、窒素ガス加圧焼成(GPS焼成)、熱間
静水圧焼成(HIP焼成)等が採用される。また、これ
らの焼成方法の組み合わせとして、例えば、常圧焼成や
GPS焼成により対理論密度比90%以上の焼結体を得
た後に、HIP法により1600〜1900℃のN2 あ
るいはArガス圧力50MPa以上の圧力下で焼成する
か、または成形体をガラス膜を介して前述と同様の条件
でHIP焼成することにより緻密化を図ることができ
る。Next, the molded body obtained by the above method is fired at a temperature of 1600 to 2000 ° C. or less, particularly 1600 to 1
Firing is performed at a temperature of 900 ° C. in a non-oxidizing atmosphere containing nitrogen set to be equal to or higher than the decomposition equilibrium pressure of silicon nitride at the firing temperature. Further, as the firing means, normal pressure firing, hot press firing, nitrogen gas pressure firing (GPS firing), hot isostatic pressure firing (HIP firing), etc. are adopted. As a combination of these firing methods, for example, after obtaining a sintered body having a theoretical density ratio of 90% or more by atmospheric pressure firing or GPS firing, N 2 at 1600 to 1900 ° C. or Ar gas pressure of 50 MPa by HIP method. The densification can be achieved by firing under the above pressure or HIP firing the molded body under the same conditions as described above through the glass film.
【0018】また、本発明の複合焼結体の製造方法によ
れば、高温特性に対してAl2 O3 、MgO、CaO等
は焼結体中で低融点物質を形成しやすく、また高温域に
おいて焼結体が変形することがあるために、成形体中に
含まれるAl、Mg、Caの各元素が酸化物換算量での
合量で0.5重量%以下になるように各工程からのこれ
らの元素の混入を避けることが望ましい。具体的には、
これらの元素含有量の小さい原料を用いたり、混合に際
し例えばボールミル混合等において用いるこれらの元素
の含有量の小さいボールを使用する等の配慮が必要であ
る。Further, according to the method for manufacturing the composite sintered body of the present invention, Al 2 O 3 , MgO, CaO, etc. easily form a low melting point substance in the sintered body in view of the high temperature characteristics, and the high temperature range is high. In some cases, since the sintered body may be deformed in each step, each element of Al, Mg, and Ca contained in the molded body is adjusted to 0.5% by weight or less in total amount in terms of oxide. It is desirable to avoid mixing of these elements. In particular,
It is necessary to consider using raw materials having a small content of these elements or using balls having a small content of these elements used in mixing, for example, in a ball mill.
【0019】また、上記のようにして得られた焼結体に
対しては、1100〜1700℃の非酸化性雰囲気中で
熱処理することにより焼結体の粒界を結晶化させ、例え
ばSi3 N4 −RE2 O3 (RE:周期律表第3a族元
素)−SiO2 系の周知の結晶相を析出させることによ
り高温特性の向上を図ることもできる。The sintered body obtained as described above is heat-treated in a non-oxidizing atmosphere at 1100 to 1700 ° C. to crystallize the grain boundaries of the sintered body, for example, Si 3 N 4 -RE 2 O 3: by precipitating (RE periodic table group 3a elements) -SiO 2 system known crystalline phase can also be improved high temperature properties.
【0020】このようにして得られる焼結体は、組成
上、窒化珪素成分と炭化珪素成分とから構成される。炭
化珪素成分は基本的には炭化珪素のみからなり、一方窒
化珪素成分は、窒化珪素と焼結体中の焼結助剤成分を含
む系からなる。この炭化珪素成分は、窒化珪素結晶の粒
内および/または粒界に存在することにより窒化珪素結
晶の焼結時の粒成長を抑制し焼結体を微細構造の組織に
なす。The sintered body thus obtained is composed of a silicon nitride component and a silicon carbide component in terms of composition. The silicon carbide component basically consists of silicon carbide, while the silicon nitride component consists of a system containing silicon nitride and a sintering aid component in the sintered body. This silicon carbide component is present in the grains of the silicon nitride crystal and / or in the grain boundaries, and thus suppresses grain growth during sintering of the silicon nitride crystal and makes the sintered body a microstructured structure.
【0021】さらに本発明の複合焼結体によれば、窒化
珪素結晶および炭化珪素結晶がいずれも微細な粒子とし
て存在することが望ましい。窒化珪素結晶はそれ自体粒
成長により針状形状からなり、その平均粒径(短径)が
1μm 以下、特に0.8μm以下であり、長径/短径で
表されるアスペクト比が平均で2〜10、特に3〜9の
粒子形状で存在する。この窒化珪素結晶はその大半はβ
−Si3 N4 として存在するが、炭化珪素により窒化珪
素のα型からβ型への転移抑制効果により焼結体中にα
−Si3 N4 が存在することが望ましい。Further, according to the composite sintered body of the present invention, it is desirable that both the silicon nitride crystal and the silicon carbide crystal are present as fine particles. The silicon nitride crystal itself has a needle-like shape due to grain growth, has an average grain size (minor axis) of 1 μm or less, particularly 0.8 μm or less, and has an average aspect ratio represented by major axis / minor axis of 2 to It is present in the particle form of 10, especially 3-9. Most of this silicon nitride crystal is β
-Si 3 N 4 exists as α-Si in the sintered body due to the effect of suppressing the transition of α-type to β-type of silicon nitride by silicon carbide.
The presence of —Si 3 N 4 is desirable.
【0022】一方、炭化珪素結晶はそれ自体粒状形状を
なし、前記窒化珪素結晶の粒界あるいは窒化珪素結晶粒
内に平均粒径1μm 以下、特に0.8μm 以下の粒子と
して存在させる。この炭化珪素結晶はほとんどがβ型で
あるが、場合によってはα型が存在してもよい。On the other hand, the silicon carbide crystal itself has a granular shape, and is present as a particle having an average particle size of 1 μm or less, particularly 0.8 μm or less, in the grain boundary of the silicon nitride crystal or in the silicon nitride crystal grain. Most of the silicon carbide crystals are β type, but α type may be present depending on the case.
【0023】なお、本発明において用いられる周期律表
第3a族元素としては、Y、Sc、Er、Yb、Ho、
Dyが挙げられるが、これらの中でもEr、Ybは、焼
結体中での均一分散性に優れることから特に有用であ
る。The elements of Group 3a of the periodic table used in the present invention are Y, Sc, Er, Yb, Ho,
Dy may be mentioned, but among these, Er and Yb are particularly useful because they are excellent in uniform dispersibility in the sintered body.
【0024】[0024]
【作用】本発明の製造方法によれば、焼結助剤と、炭化
珪素粉末を含む系にさらに珪素粉末を添加し、これを窒
化させることにより焼成前の成形体自体の密度を高める
ことができる。それにより、初期の成形体寸法に対して
焼成過程における成形体の収縮を抑制することができる
ために、寸法精度の高い焼結体を得ることができる。ま
た、焼結過程における変形においても、収縮率が小さく
なるために最大変形量を小さくすることができる。According to the manufacturing method of the present invention, silicon powder is further added to the system containing the sintering aid and the silicon carbide powder, and the powder is nitrided to increase the density of the compact itself before firing. it can. As a result, it is possible to suppress shrinkage of the compact in the firing process with respect to the initial compact size, and thus it is possible to obtain a sintered compact with high dimensional accuracy. Further, even in the deformation in the sintering process, the maximum deformation amount can be reduced because the shrinkage rate becomes small.
【0025】[0025]
【実施例】原料粉末として平均粒径3μmの珪素粉末、
平均粒径が0.3μmの炭化珪素粉末、平均粒径0.5
μm のY2 O3 、Er2 O3 、Yb2 O3 、Ho
2 O3 、Dy2 O3 、ならびに平均粒径0.3μm 、α
−Si3 N4 含有率98%、酸素含有量1.3重量%の
窒化珪素粉末を用いて、これらの組成が表1の割合にな
るように秤量混合し、これをメタノール中で混合粉砕し
た。これにバインダーと溶媒を加えスラリーを調製し、
鋳込み成形法によりロータを成形した。Example: Silicon powder having an average particle size of 3 μm as a raw material powder,
Silicon carbide powder with an average particle size of 0.3 μm, average particle size 0.5
μm of Y 2 O 3 , Er 2 O 3 , Yb 2 O 3 , Ho
2 O 3 , Dy 2 O 3 , and average particle size 0.3 μm, α
-Si 3 N 4 content of 98% and oxygen content of 1.3% by weight of silicon nitride powder were weighed and mixed so that their composition was in the ratio shown in Table 1, and mixed and pulverized in methanol. .. A binder and a solvent are added to this to prepare a slurry,
The rotor was molded by the casting method.
【0026】得られた成形体を表1の条件で窒化処理し
た。この際、重量増加率からいずれの試料も添加された
珪素がすべて窒化されたことを確認した。The obtained molded body was nitrided under the conditions shown in Table 1. At this time, it was confirmed from the rate of weight increase that all the added silicon was nitrided in all the samples.
【0027】その後、得られた成形体を窒素ガス圧力1
0気圧下で、表1の条件で焼成した。得られた焼結体に
対して、寸法を測定し、初期成形体の寸法に対する収縮
率を測定した。また、ロータの翼形状を測定し設計値か
らの最大変形量を測定した。Thereafter, the molded body thus obtained was subjected to nitrogen gas pressure 1
Firing was performed under the conditions of Table 1 under 0 atm. The dimensions of the obtained sintered body were measured, and the shrinkage ratio with respect to the dimensions of the initial compact was measured. In addition, the blade shape of the rotor was measured to measure the maximum deformation amount from the design value.
【0028】また、機械的特性の評価として、JISR
1601に基づく抗折試験片を切り出し、1400℃に
おける4点曲げ抗折強度を測定した。結果は表1に示し
た。In addition, as an evaluation of mechanical properties, JISR
A bending test piece based on 1601 was cut out and the 4-point bending bending strength at 1400 ° C. was measured. The results are shown in Table 1.
【0029】[0029]
【表1】 [Table 1]
【0030】表1によれば、炭化珪素成分量が窒化珪素
成分に対して150重量部を超える試料No,13では、
焼結性が大きく低下し緻密体を得ることができなかっ
た。また炭化珪素を添加しない試料No,17では、抗折
強度が低いものであった。According to Table 1, in the samples No, 13 in which the amount of silicon carbide component exceeds 150 parts by weight with respect to the silicon nitride component,
The sinterability was greatly reduced and a dense body could not be obtained. In addition, Sample No. 17 to which silicon carbide was not added had a low bending strength.
【0031】また原料として珪素粉末を添加しなかった
試料No,11、12ではいずれも収縮率が19%と大き
く、特に変形量が100μmを超えるものであった。Further, in samples No. 11, 11 and 12 to which silicon powder was not added as a raw material, the shrinkage rate was as large as 19%, and in particular, the amount of deformation exceeded 100 μm.
【0032】また、窒化後の焼成温度が高い試料No,1
9では収縮や変形は小さいが、高温特性が劣化した。さ
らに焼結助剤成分量が0.2モル%を下回る試料No,1
9では緻密化することができず、10モル%を超える試
料No,20では高温強度の劣化が生じた。Sample No. 1 having a high firing temperature after nitriding
In No. 9, shrinkage and deformation were small, but the high temperature characteristics deteriorated. Furthermore, the sample No. 1 containing less than 0.2 mol% of the sintering aid component
No. 9 could not be densified, and sample No. 20 and 20 exceeding 10 mol% suffered deterioration of high temperature strength.
【0033】これらの比較例に対して、本発明の製造方
法に基づき製造した焼結体は、いずれも高温強度が80
0MPa以上を維持しており、収縮率は15%以下で、
変形量が100μm以下と非常に寸法精度に優れたもの
であった。In contrast to these comparative examples, the sintered bodies produced according to the production method of the present invention each have a high temperature strength of 80.
0 MPa or more is maintained, the shrinkage rate is 15% or less,
The amount of deformation was 100 μm or less, which was extremely excellent in dimensional accuracy.
【0034】[0034]
【発明の効果】以上詳述したように、本発明によれば、
窒化珪素−炭化珪素の焼結過程における収縮および変形
を低減し、寸法精度の高い焼結体を作製することができ
る。これにより、この複合焼結体の高い寸法精度が要求
されるガスタービンやターボロータ等の熱機関構造用と
して、またはその他の耐熱材料として実用化を推進する
とともに、その用途を拡大することができる。As described in detail above, according to the present invention,
Shrinkage and deformation in the sintering process of silicon nitride-silicon carbide can be reduced, and a sintered body with high dimensional accuracy can be manufactured. As a result, the composite sintered body can be put into practical use as a heat engine structure such as a gas turbine or a turbo rotor in which high dimensional accuracy is required, or as another heat resistant material, and its application can be expanded. ..
Claims (1)
10モル%と、残部が珪素、あるいは珪素と窒化珪素よ
りなる成分100重量部に対して、炭化珪素を1〜15
0重量部の割合で添加してなる成形体を800〜150
0℃の窒素含有雰囲気中で熱処理して前記珪素を窒化し
た後、1600〜2000℃の非酸化性雰囲気中で焼成
し、緻密化することを特徴とする窒化珪素−炭化珪素質
複合焼結体の製造方法。Claim: What is claimed is: 1. An oxide of Group 3a element of the Periodic Table of 0.2 to
1 to 15 parts by weight of silicon carbide with respect to 100 parts by weight of 10 mol% and the balance of silicon, or a component consisting of silicon and silicon nitride.
A molded body added at a ratio of 0 parts by weight is 800 to 150.
A silicon nitride-silicon carbide composite sintered body characterized by being heat-treated in a nitrogen-containing atmosphere at 0 ° C. to nitride the silicon, and then sintered in a non-oxidizing atmosphere at 1600 to 2000 ° C. to be densified. Manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3176446A JP2892186B2 (en) | 1991-07-17 | 1991-07-17 | Method for producing silicon nitride-silicon carbide composite sintered body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3176446A JP2892186B2 (en) | 1991-07-17 | 1991-07-17 | Method for producing silicon nitride-silicon carbide composite sintered body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0524926A true JPH0524926A (en) | 1993-02-02 |
JP2892186B2 JP2892186B2 (en) | 1999-05-17 |
Family
ID=16013850
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3176446A Expired - Fee Related JP2892186B2 (en) | 1991-07-17 | 1991-07-17 | Method for producing silicon nitride-silicon carbide composite sintered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2892186B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5525556A (en) * | 1994-04-14 | 1996-06-11 | The Dow Chemical Company | Silicon nitride/silicon carbide composite powders |
JP2011116574A (en) * | 2009-12-01 | 2011-06-16 | Doshisha | Ceramic/metal nitride composite and method for producing ceramic/metal nitride composite by capsule-free hot hydrostatic press |
-
1991
- 1991-07-17 JP JP3176446A patent/JP2892186B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5525556A (en) * | 1994-04-14 | 1996-06-11 | The Dow Chemical Company | Silicon nitride/silicon carbide composite powders |
US5538675A (en) * | 1994-04-14 | 1996-07-23 | The Dow Chemical Company | Method for producing silicon nitride/silicon carbide composite |
US5643843A (en) * | 1994-04-14 | 1997-07-01 | The Dow Chemical Company | Silicon nitride/silicon carbide composite densified materials prepared using composite powders |
JP2011116574A (en) * | 2009-12-01 | 2011-06-16 | Doshisha | Ceramic/metal nitride composite and method for producing ceramic/metal nitride composite by capsule-free hot hydrostatic press |
Also Published As
Publication number | Publication date |
---|---|
JP2892186B2 (en) | 1999-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2842723B2 (en) | Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same | |
JP3231944B2 (en) | Method for manufacturing silicon nitride heat-resistant member | |
JP2892186B2 (en) | Method for producing silicon nitride-silicon carbide composite sintered body | |
JP3426823B2 (en) | Silicon nitride sintered body and method for producing the same | |
JP3034100B2 (en) | Silicon nitride sintered body and method for producing the same | |
JP2746761B2 (en) | Method for producing silicon nitride-silicon carbide composite sintered body | |
JP2687632B2 (en) | Method for producing silicon nitride sintered body | |
JPH09157028A (en) | Silicon nitride sintered compact and its production | |
JP2710865B2 (en) | Manufacturing method of silicon nitride sintered body | |
JPH1121175A (en) | Silicon nitride sintered compact | |
JP2631102B2 (en) | Method for producing silicon nitride based sintered body | |
JP2801447B2 (en) | Method for producing silicon nitride based sintered body | |
JP3667145B2 (en) | Silicon nitride sintered body | |
JP3236733B2 (en) | Silicon nitride sintered body | |
JP2746760B2 (en) | Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same | |
JP2742622B2 (en) | Silicon nitride sintered body and method for producing the same | |
JP3216973B2 (en) | Silicon nitride sintered body and method for producing the same | |
JP3207045B2 (en) | Method for producing silicon nitride based sintered body | |
JP2783711B2 (en) | Silicon nitride sintered body | |
JP2687633B2 (en) | Method for producing silicon nitride sintered body | |
JPH10212167A (en) | Silicon nitride-base composite sintered compact and its production | |
JPH0840774A (en) | Silicon nitride sintered product | |
JP2946593B2 (en) | Silicon nitride sintered body and method for producing the same | |
JP2777051B2 (en) | Method for producing silicon nitride based sintered body | |
JP3207065B2 (en) | Silicon nitride sintered body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |