JP2892244B2 - Manufacturing method of silicon nitride sintered body - Google Patents

Manufacturing method of silicon nitride sintered body

Info

Publication number
JP2892244B2
JP2892244B2 JP4347498A JP34749892A JP2892244B2 JP 2892244 B2 JP2892244 B2 JP 2892244B2 JP 4347498 A JP4347498 A JP 4347498A JP 34749892 A JP34749892 A JP 34749892A JP 2892244 B2 JP2892244 B2 JP 2892244B2
Authority
JP
Japan
Prior art keywords
firing
sintered body
sintering
pressure
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4347498A
Other languages
Japanese (ja)
Other versions
JPH06191951A (en
Inventor
真 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP4347498A priority Critical patent/JP2892244B2/en
Publication of JPH06191951A publication Critical patent/JPH06191951A/en
Application granted granted Critical
Publication of JP2892244B2 publication Critical patent/JP2892244B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、窒化珪素質焼結体の製
法に関し、詳細には、高密度、高強度で特性のバラツキ
の小さい焼結体の製法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a silicon nitride sintered body, and more particularly to a method for producing a sintered body having a high density, a high strength and a small variation in characteristics.

【0002】[0002]

【従来技術】従来、窒化珪素質焼結体は、強度、靱性な
どに優れた材料として注目され、産業用構造材料や、熱
機関用構造材料としてその応用が進められている。
2. Description of the Related Art Conventionally, silicon nitride-based sintered bodies have attracted attention as materials having excellent strength, toughness, and the like, and their applications have been promoted as industrial structural materials and heat engine structural materials.

【0003】窒化珪素質焼結体は、窒化珪素自体が難焼
結性であることから、Al2 3 やY2 3 などの周期
律表第3a族元素酸化物などの焼結助剤を添加し、窒素
などの非酸化性雰囲気中で1600〜2000℃の温度
で焼成することにより得られている。また、焼成におい
ては、焼成温度が高くなると窒化珪素が分解するため
に、焼成雰囲気を窒素ガス圧力が2気圧以上の加圧雰囲
気にて焼成する方法が採用されている。
[0003] Since silicon nitride itself is difficult to sinter, a silicon nitride-based sintered body is a sintering aid such as an oxide of a Group 3a element of the periodic table such as Al 2 O 3 or Y 2 O 3. And firing at a temperature of 1600 to 2000 ° C. in a non-oxidizing atmosphere such as nitrogen. In the firing, a method of firing in a pressurized atmosphere having a nitrogen gas pressure of 2 atm or more is adopted because silicon nitride is decomposed when the firing temperature is increased.

【0004】また、最近では、焼結体の高密度化および
さらなる特性の向上を目指し、焼成方法の改善が行われ
ている。その一例として、低窒素圧力下で開気孔率があ
る程度減少した後に、高圧窒素中で焼成する多段焼成法
が提案されている。かかる方法によれば、焼成により開
気孔が閉気孔に変化する際、閉気孔中に高圧のガスがト
ラップされることがなく、高密度の焼結体が得られると
いう利点がある。
[0004] Recently, the firing method has been improved with the aim of increasing the density of the sintered body and further improving the characteristics. As one example, a multi-stage firing method has been proposed in which the open porosity is reduced to some extent under a low nitrogen pressure, and then firing is performed in high-pressure nitrogen. According to this method, when the open pores change to closed pores by firing, there is an advantage that a high-density sintered body can be obtained without trapping high-pressure gas in the closed pores.

【0005】[0005]

【発明が解決しようとする問題点】上記方法によれば、
焼結体の緻密化を達成するという目的に対しては効果が
あるが、そもそも窒化珪素の成形体中には焼結助剤を必
然的に含んでおり、上記多段焼結での開気孔および閉気
孔の消滅過程において、焼結助剤成分が液相成分として
気孔部に凝集し、局所的に窒化珪素の結晶の異常成長を
誘発し、これにより焼結体の強度が劣化するなど焼結助
剤の偏在による弊害が生じるという問題があった。
According to the above method,
Although it is effective for the purpose of achieving the densification of the sintered body, the sintering aid is inevitably contained in the silicon nitride compact in the first place, and the open pores and the multi-stage sintering in the multi-stage sintering are required. In the process of disappearing closed pores, the sintering aid component aggregates in the pores as a liquid phase component and locally induces abnormal growth of silicon nitride crystals, thereby deteriorating the strength of the sintered body. There is a problem that adverse effects are caused by the uneven distribution of the auxiliary.

【0006】[0006]

【問題点を解決するための手段】本発明者らは、上記問
題点に対して検討を重ねた結果、高圧窒素中における焼
成によって緻密化された焼結体をさらに高温下の低圧力
雰囲気中で処理することにより、粒界に存在する焼結助
剤成分の移動を生じせしめることにより、助剤成分の偏
在を防止し、特性のバラツキの小さい焼結体を得ること
ができることを知見した。
Means for Solving the Problems As a result of repeated studies on the above problems, the present inventors have found that a sintered body densified by firing in high-pressure nitrogen is further subjected to a high-temperature low-pressure atmosphere. It has been found that by performing the treatment, the sintering aid component existing at the grain boundary is caused to move, thereby preventing the uneven distribution of the sintering aid component and obtaining a sintered body with small variation in characteristics.

【0007】即ち、本発明の窒化珪素質焼結体の製法
は、窒化珪素を主成分として、焼結助剤を含有する混合
物を成形する工程と、該成形体を1600乃至1800
℃、窒素圧力2気圧以下の雰囲気中で開気孔率が2%以
下となるまで焼成する第1の焼成工程と、該第1の焼成
工程により得られた焼結体を1700乃至2000℃、
30乃至200気圧の窒素ガス圧力雰囲気中で焼成し
て、開気孔率1%以下の焼結体を得る第2の焼成工程
と、第2の焼成工程における焼成温度よりも高い温度
で、且つ第2の焼成工程のおける窒素ガス圧力よりも低
い圧力下で焼成する第3の工程とを具備してなることを
特徴とする。
That is, the method for producing a silicon nitride-based sintered body of the present invention comprises a step of forming a mixture containing silicon nitride as a main component and a sintering aid, and forming the formed body from 1600 to 1800
C., a first baking step of baking in an atmosphere of nitrogen pressure of 2 atm or less until the open porosity is 2% or less, and a sintered body obtained by the first baking step is heated at 1700 to 2000 ° C.
Baking in a nitrogen gas pressure atmosphere of 30 to 200 atm to obtain a sintered body having an open porosity of 1% or less; and baking at a temperature higher than the baking temperature in the second baking step. And a third step of firing under a pressure lower than the nitrogen gas pressure in the firing step of (2).

【0008】以下、本発明を詳述する。本発明の製法に
よれば、まず、原料粉末として、窒化珪素粉末および焼
結助剤粉末を準備する。窒化珪素粉末としては、平均粒
径が0.3〜1.5μm、酸素量3.0重量%以下、不
純物量2.0重量%以下のα型、β型のいずれの原料で
も用いることができる。
Hereinafter, the present invention will be described in detail. According to the production method of the present invention, first, a silicon nitride powder and a sintering aid powder are prepared as raw material powders. As the silicon nitride powder, any of α-type and β-type raw materials having an average particle diameter of 0.3 to 1.5 μm, an oxygen amount of 3.0% by weight or less, and an impurity amount of 2.0% by weight or less can be used. .

【0009】焼結助剤としては、Y2 3 、La
2 3 、Er2 3 、Yb2 3 、Dy23 、Ho2
3 などの周期律表第3a族元素の酸化物や、Al2
3 、MgOおよびSiO2 などの公知の助剤を用いるこ
とができる。これらの助剤は全体量中、0.5乃至20
重量%の範囲で添加され、助剤の量が0.5重量%より
少ないと焼結性の改善ができず、20重量%を越えると
焼結体の機械的特性が劣化する。
As sintering aids, Y 2 O 3 , La
2 O 3 , Er 2 O 3 , Yb 2 O 3 , Dy 2 O 3 , Ho 2
Oxides of Group 3a elements of the periodic table such as O 3 , Al 2 O
3 , known auxiliaries such as MgO and SiO 2 can be used. These auxiliaries are used in an amount of 0.5 to 20 in the total amount.
If the amount of the auxiliary agent is less than 0.5% by weight, the sinterability cannot be improved, and if it exceeds 20% by weight, the mechanical properties of the sintered body deteriorate.

【0010】次に、上記の原料粉末を所定の割合で混合
した後、これを周知の成形方法、プレス成形、押出成
形、射出成形、冷間静水圧成形、鋳込み成形などの方法
により所望の形状に成形した後、かかる成形体を焼成す
る。
Next, after mixing the above-mentioned raw material powder at a predetermined ratio, the raw material powder is mixed to a desired shape by a known molding method, press molding, extrusion molding, injection molding, cold isostatic pressing, cast molding or the like. After forming into a compact, the compact is fired.

【0011】焼成工程は、大きく3つの工程からなる。
まず第1の焼成工程において、1600乃至1800
℃、特に1650乃至1780℃の焼成温度で焼成す
る。この第1の焼成工程は、成形体を焼結させることを
目的とするが、焼結が進行する過程において成形体の開
気孔が閉気孔に変化するが、この時の雰囲気の圧力が高
いと閉気孔中に高圧のガスがトラップされてしまう。そ
のために、開気孔率が2%以下になるまでは雰囲気の圧
力は2気圧以下に制御することが重要である。なお、圧
力2気圧以下とは、常圧および減圧雰囲気も含む。
[0011] The firing step is roughly composed of three steps.
First, in the first firing step, 1600 to 1800
C., especially at a firing temperature of 1650 to 1780.degree. The first firing step aims at sintering the molded body. In the course of the sintering, the open pores of the molded body change to closed pores. High-pressure gas is trapped in the closed pores. Therefore, it is important to control the pressure of the atmosphere to 2 atm or less until the open porosity becomes 2% or less. Note that the pressure of 2 atm or less includes a normal pressure and a reduced pressure atmosphere.

【0012】この第1焼成工程において焼成温度を上記
の範囲に限定したのは、1600℃よりも低いと焼結が
進行せず、1800℃を越えると、窒素圧力2気圧下で
は、窒化珪素が分解するためである。
In the first baking step, the baking temperature is limited to the above range. Sintering does not proceed at a temperature lower than 1600 ° C., and when the temperature exceeds 1800 ° C., silicon nitride is formed under a nitrogen pressure of 2 atm. It is for decomposing.

【0013】次に、第2の焼成工程として、上記第1の
焼成工程により得られた焼結体を窒素ガス圧力が30乃
至200気圧、望ましくは50乃至150気圧下の高圧
窒素雰囲気で焼成する。かかる高圧下での焼成によれ
ば、窒化珪素の分解を抑制することができるために、焼
成温度を1700乃至1900℃にまで高めることによ
り、さらに外的圧力と高温焼成により開気孔率をさらに
減少させることができ、最終的に開気孔率が1%以下に
まで充分に焼結させる。
Next, as a second firing step, the sintered body obtained in the first firing step is fired in a high-pressure nitrogen atmosphere at a nitrogen gas pressure of 30 to 200 atm, preferably 50 to 150 atm. . According to the sintering under such a high pressure, the decomposition of silicon nitride can be suppressed. Therefore, by increasing the sintering temperature to 1700 to 1900 ° C., the open porosity is further reduced by the external pressure and the high-temperature sintering. And finally sintering sufficiently to an open porosity of 1% or less.

【0014】さらに、本発明によれば、第3の焼成工程
として、第2の焼結工程により得られた焼結体を第2の
焼成工程における焼成温度よりも高い温度で、且つ窒素
圧力は第2の焼成工程よりも低い圧力下で焼成する。た
だし、第3の焼成工程における焼成温度と窒素ガス圧力
は、窒化珪素の窒素ガスの分解平衡圧以上に設定すべき
であることは勿論のことである。具体的には、1700
乃至2000℃、窒素圧力10乃至100気圧下で処理
される。
Further, according to the present invention, as the third firing step, the sintered body obtained in the second sintering step is heated at a temperature higher than the firing temperature in the second firing step, and the nitrogen pressure is reduced. The firing is performed under a lower pressure than in the second firing step. However, it goes without saying that the firing temperature and the nitrogen gas pressure in the third firing step should be set to be equal to or higher than the decomposition equilibrium pressure of the nitrogen gas of silicon nitride. Specifically, 1700
The treatment is carried out at a temperature of 2,000 to 2000 ° C. and a nitrogen pressure of 10 to 100 atm.

【0015】本発明によれば、上記第1乃至第3の焼成
工程は、同一の焼成炉内で連続して行うことが経済的に
有利であるが、それぞれの工程間において焼成炉より取
り出し、他の焼成炉で行っても問題はない。
According to the present invention, it is economically advantageous that the first to third sintering steps are successively performed in the same sintering furnace. There is no problem if it is performed in another firing furnace.

【0016】本発明において、上記焼成工程により、焼
結体の粒界成分の流動性を高め、粒界における助剤成分
の凝集のない焼結体を得ることができるが、上記第1お
よび第3の焼成工程に引き続き、熱間静水圧焼成(HI
P法)などによりさらに1000気圧以上の高圧窒素ガ
ス雰囲気中で1500乃至1900℃の温度で処理して
さらに高緻密化を図ってもよい。
In the present invention, the sintering step can increase the fluidity of the grain boundary component of the sintered body and obtain a sintered body without coagulation of the auxiliary component at the grain boundary. 3 followed by hot isostatic firing (HI
(P method), etc., in a high-pressure nitrogen gas atmosphere of 1000 atm or more at a temperature of 1500 to 1900 ° C. to achieve higher densification.

【0017】[0017]

【作用】本発明によれば、前記第1および第2の焼成工
程により高圧のガスのトラップのない開気孔率1%以下
の高密度焼結体を得ることができるが、さらに第3の焼
成工程によれば、温度を高めることにより粒界成分の粘
性を低め、圧力を低下させることにより、内部応力が緩
和されることにより粒界成分の流動化を図ることがで
き、これにより、第2の焼成工程後の焼結体中に存在す
る助剤成分の凝集部を拡散させ、助剤成分の均一化を図
ることができる。
According to the present invention, a high-density sintered body having an open porosity of 1% or less without trapping high-pressure gas can be obtained by the first and second firing steps. According to the process, by increasing the temperature, the viscosity of the grain boundary component is reduced, and by reducing the pressure, the internal stress is relaxed, whereby the grain boundary component can be fluidized. The agglomeration portion of the auxiliary component present in the sintered body after the firing step of (1) is diffused, whereby the auxiliary component can be made uniform.

【0018】よって、本発明によれば、第3の焼成工程
における焼成温度が第2の焼成工程の温度より低いと、
粒界のガラス質成分の粘性が上昇し、また、雰囲気圧力
が第2の焼成工程より高いと焼結体内部応力が緩和され
ずにいずれも粒界成分の流動化が阻害されてしまう。
Thus, according to the present invention, if the firing temperature in the third firing step is lower than the temperature in the second firing step,
When the viscosity of the vitreous component at the grain boundary increases, and when the atmospheric pressure is higher than that in the second firing step, the internal stress of the sintered body is not relaxed and the fluidization of the grain boundary component is hindered in any case.

【0019】本発明により得られる焼結体は、常に助剤
成分が均一に分散されているために、助剤の凝集に伴う
組織の不均一による破壊源の発生などが抑制され、高い
強度を有し、しかも量産時においても特性のバラツキを
低減することができる。
In the sintered body obtained by the present invention, since the auxiliary components are always uniformly dispersed, generation of a fracture source due to unevenness of the structure due to coagulation of the auxiliary is suppressed, and high strength is obtained. In addition, it is possible to reduce variation in characteristics even during mass production.

【0020】[0020]

【実施例】以下、本発明を次の例で説明する。 実施例 窒化珪素粉末として、平均粒径が0.7μm、酸素量
1.1重量%、金属不純物量0.3重量%、α化率93
%の粉末を準備し、助剤成分として平均粒径が0.2〜
2.5μmの表1に示す各種金属酸化物粉末を準備し、
これらを表1に示す割合で秤量混合後、1ton/cm
2 の圧力で、プレス成形した。得られた成形体に対し
て、表1に示すような焼成条件で焼成を行い、焼結体を
得た。
The present invention will be described below with reference to the following examples. Example As silicon nitride powder, the average particle size was 0.7 μm, the amount of oxygen was 1.1% by weight, the amount of metal impurities was 0.3% by weight, and the rate of α conversion was 93
% Powder is prepared and the average particle size is 0.2 to
Prepare 2.5 μm of various metal oxide powders shown in Table 1,
After weighing and mixing them at the ratios shown in Table 1, 1 ton / cm
Press molding was performed at a pressure of 2 . The obtained molded body was fired under the firing conditions shown in Table 1 to obtain a sintered body.

【0021】なお、焼成過程において、第1、第2の焼
成工程後の焼結体の開気孔率をアルキメデス法により測
定し表1に示した。また、最終的に得られた焼結体に対
して、それぞれ10本の試験片につきJISR1601
に基づき、4点曲げ抗折試験を行い強度を測定し、その
平均値および最低値を表2に示した。
In the firing process, the open porosity of the sintered body after the first and second firing steps was measured by Archimedes' method and is shown in Table 1. In addition, for each of the finally obtained sintered bodies, JISR1601
, A four-point bending test was performed to measure the strength, and the average and minimum values are shown in Table 2.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】表1および表2からも明らかなように、焼
成工程における第1および第3の焼成工程における条件
が本発明の範囲外である試料No,4乃至9は、いずれも
平均強度が低く、しかも最低強度が平均値より極端に低
く特性のバラツキが大きいことが理解される。
As is clear from Tables 1 and 2, Samples No. 4 to 9 in which the conditions in the first and third firing steps in the firing step are out of the range of the present invention have low average strengths. Further, it is understood that the minimum strength is extremely lower than the average value and the variation in characteristics is large.

【0025】これに対して、本発明の方法により製造さ
れた試料は、いずれも高い強度を示し、その最低値も平
均値とほとんど変わらず、特性が安定していることが理
解される。
On the other hand, all the samples produced by the method of the present invention show high strength, and the minimum value is almost the same as the average value, indicating that the characteristics are stable.

【0026】[0026]

【発明の効果】以上詳述した通り、本発明によれば、焼
結過程における助剤成分の凝集を拡散させて均一な組織
を有し、高密度、高強度の焼結体を得ることができると
ともに、量産時の特性のバラツキをも低減することがで
きる。
As described above in detail, according to the present invention, it is possible to obtain a sintered body having a uniform structure, high density and high strength by diffusing agglomeration of auxiliary components in the sintering process. In addition to this, variations in characteristics during mass production can be reduced.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】窒化珪素を主成分として、焼結助剤を含有
する混合物を成形する工程と、該成形体を1600乃至
1800℃、窒素圧力2気圧以下の雰囲気中で開気孔率
が2%以下となるまで焼成する第1の焼成工程と、 該第1の焼成工程により得られた焼結体を1700乃至
2000℃、30乃至200気圧の窒素ガス圧力雰囲気
中で焼成して、開気孔率1%以下の焼結体を得る第2の
焼成工程と、 第2の焼成工程のおける焼成温度よりも高い温度で、且
つ第2の焼成工程のおける窒素ガス圧力よりも低い圧力
下で焼成する第3の工程と、を具備してなる窒化珪素質
焼結体の製法。
1. A step of forming a mixture containing silicon nitride as a main component and containing a sintering aid, and subjecting the formed body to an open porosity of 2% in an atmosphere at 1600 to 1800 ° C. and a nitrogen pressure of 2 atm or less. A first sintering step of sintering until the temperature becomes below, and sintering the sintered body obtained in the first sintering step in a nitrogen gas pressure atmosphere of 1700 to 2000 ° C. and 30 to 200 atm. A second firing step of obtaining a sintered body of 1% or less, and firing at a temperature higher than the firing temperature in the second firing step and at a pressure lower than the nitrogen gas pressure in the second firing step. And a third step for producing a silicon nitride-based sintered body.
JP4347498A 1992-12-28 1992-12-28 Manufacturing method of silicon nitride sintered body Expired - Fee Related JP2892244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4347498A JP2892244B2 (en) 1992-12-28 1992-12-28 Manufacturing method of silicon nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4347498A JP2892244B2 (en) 1992-12-28 1992-12-28 Manufacturing method of silicon nitride sintered body

Publications (2)

Publication Number Publication Date
JPH06191951A JPH06191951A (en) 1994-07-12
JP2892244B2 true JP2892244B2 (en) 1999-05-17

Family

ID=18390635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4347498A Expired - Fee Related JP2892244B2 (en) 1992-12-28 1992-12-28 Manufacturing method of silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JP2892244B2 (en)

Also Published As

Publication number Publication date
JPH06191951A (en) 1994-07-12

Similar Documents

Publication Publication Date Title
JP3559382B2 (en) Method for producing silicon nitride based sintered body
JP2892244B2 (en) Manufacturing method of silicon nitride sintered body
JP2662863B2 (en) Method for producing silicon nitride based sintered body
US5545362A (en) Production method of sintered silicon nitride
JP2631115B2 (en) Manufacturing method of silicon nitride sintered body
JPH07330436A (en) Silicon nitride heat resistant member and its production
JP2687632B2 (en) Method for producing silicon nitride sintered body
JP3124866B2 (en) Method for producing silicon nitride based sintered body
JP2892186B2 (en) Method for producing silicon nitride-silicon carbide composite sintered body
JP2710865B2 (en) Manufacturing method of silicon nitride sintered body
JP2724764B2 (en) Method for producing silicon nitride based sintered body
JP2526598B2 (en) Method for manufacturing silicon nitride ceramics
JP2742619B2 (en) Silicon nitride sintered body
JP2970131B2 (en) Method for producing silicon nitride sintered body
JP2631102B2 (en) Method for producing silicon nitride based sintered body
JP2946593B2 (en) Silicon nitride sintered body and method for producing the same
JPS6389462A (en) Manufacture of silicon nitride base sintered body
JP2777051B2 (en) Method for producing silicon nitride based sintered body
JP3667145B2 (en) Silicon nitride sintered body
JP2694368B2 (en) Method for producing silicon nitride based sintered body
JP3236739B2 (en) Silicon nitride sintered body and method for producing the same
JP2734755B2 (en) Method for producing high-temperature high-strength silicon nitride sintered body
JP3241215B2 (en) Method for producing silicon nitride based sintered body
JP3176203B2 (en) Method for producing silicon nitride based sintered body
JPH04243972A (en) Sintered substance of silicon nitride

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090226

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090226

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100226

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110226

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110226

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120226

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees