JPS5855376A - Manufacture of aluminum nitride sintered body - Google Patents

Manufacture of aluminum nitride sintered body

Info

Publication number
JPS5855376A
JPS5855376A JP56152140A JP15214081A JPS5855376A JP S5855376 A JPS5855376 A JP S5855376A JP 56152140 A JP56152140 A JP 56152140A JP 15214081 A JP15214081 A JP 15214081A JP S5855376 A JPS5855376 A JP S5855376A
Authority
JP
Japan
Prior art keywords
powder
sintered body
aluminum nitride
mixed
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56152140A
Other languages
Japanese (ja)
Other versions
JPS646141B2 (en
Inventor
勝利 米屋
柘植 章彦
寛 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP56152140A priority Critical patent/JPS5855376A/en
Publication of JPS5855376A publication Critical patent/JPS5855376A/en
Publication of JPS646141B2 publication Critical patent/JPS646141B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明社窒化アル1=ウム焼結体の製造方法に係り、′
1LKWIpじくは、窒化アル之ニウム自身が本質的に
有している高熱伝導性等の優れた諸特性を略その11維
持・発揮して−ると共に、高緻密質である窒化アル1=
ウム焼結体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a sintered body of aluminum nitride,
1LKWIp actually maintains and exhibits all of the excellent properties inherently possessed by aluminum nitride itself, such as high thermal conductivity, and is highly dense.
The present invention relates to a method for manufacturing a sintered body.

窒化アル1=ウム(AJN )焼結体は、耐熱性、耐食
性及び耐熱衝撃性などの高温材貴とし【の必須の特徴を
有していると共に1高熱伝導性を有する材料とし【注目
を集めている。
Aluminum nitride (AJN) sintered body has attracted attention as a high-temperature material with essential characteristics such as heat resistance, corrosion resistance, and thermal shock resistance, and as a material with high thermal conductivity. ing.

ところで、これらの諸特性をAjN焼結体に発揮させる
Kは、jLIN焼結体が緻密質であることが必要とされ
る0この為、従来から緻密fk jkjN焼結体を製造
する技術の確立に精力が注がれている。
By the way, in order for K to exhibit these various properties in the AjN sintered body, it is necessary that the jLIN sintered body be dense.For this reason, it has been difficult to establish a technology for manufacturing dense fk jkjN sintered bodies. Energy is being poured into.

かかるm焼結体線、通常、A/N粉末を加圧成形、常圧
焼結して得られるのであるが、A/N粉末を単独で用−
ゐと、焼結性が良くない為に、緻密な焼結体が得られず
、焼結密度は、uNの真密度に対して、高々80襲前後
と極めて低いものであった。
Such a sintered body wire is usually obtained by pressure molding and pressureless sintering of A/N powder, but it is not possible to use A/N powder alone.
In addition, due to poor sinterability, a dense sintered body could not be obtained, and the sintered density was extremely low, at most around 80 times the true density of uN.

この為、ホット・プレスを用いた加圧焼結の方法を活用
することも試みられたが、良好な結果は得られてい表い
@また、AjN粉末に酸化イツトリウム(Y10□)や
醗化ランタンlatom)等の希土類元素の酸化物を焼
結助剤とし【添加して焼結する方法も試みられ【おり、
可成良質の焼結体が得られている。
For this reason, attempts have been made to utilize a pressure sintering method using a hot press, but good results have not been obtained. A method of sintering by adding rare earth element oxides such as latom as a sintering aid has also been attempted.
A sintered body of fairly good quality was obtained.

しかしながら、希土類元素の酸化物は高価な為に1コス
Fの面で難点がある上、A/N −Yt Os系焼結体
は、klN単独の焼結体と比べて、熱伝導度が低下する
領内にあり、A/N本来の高熱伝導性を維持・発揮する
ことがで禽ないという難点があった。
However, rare earth element oxides are expensive and have a drawback in terms of 1 cosF, and A/N-YtOs-based sintered bodies have lower thermal conductivity than klN-only sintered bodies. The problem was that it was difficult to maintain and demonstrate the high thermal conductivity inherent to A/N.

特11@50−23411  号公報、もしくは窯業協
会誌第SS*、330〜336頁(1981)  Kt
i、ムjN11末にカルシウム、バリウムもしく社スト
ロンチウムの酸化物、もしくは炭酸塩の粉末を添加して
焼結するAjN焼結体の製造方法が開示されている。か
かる添加物を用いたA/N焼結体は、幻Rの真密度に対
して95〜98%、或−は99%を超える焼結密度を有
する高緻密質のものとなる〇ところが、かかる高緻密化
を達成する為KFi、通常の非酸化性雰囲気下にお−て
は、焼結温度を1800℃以上とする必賛がある。従っ
て、焼結炉の消耗度が高く、或−は製品コストが高くな
るといった経済面での難点があった。
Special Publication No. 11@50-23411 or Ceramics Association Journal No. SS*, pp. 330-336 (1981) Kt
A method for producing an AjN sintered body is disclosed in which calcium, barium, or strontium oxide or carbonate powder is added to MujN11 powder and sintered. The A/N sintered body using such additives becomes highly dense with a sintered density of 95 to 98% or more than 99% of the true density of the illusion R. In order to achieve high densification, KFi requires a sintering temperature of 1800° C. or higher in a normal non-oxidizing atmosphere. Therefore, there are economical disadvantages such as high consumption of the sintering furnace and high product cost.

本発明の目的は、従来の窒化アルミニウム焼結体の製造
方法が有して−た上述の不都合な鱗消して、窒化アルS
ニウム自身が本質的に有している高熱伝導性等の優れた
諸特性を略その11維持・発揮して−ると共に高緻密質
である窒化アルにラム焼結体を、比較的(低い焼結温度
で製造する方法を提供することkある。
An object of the present invention is to eliminate the above-mentioned disadvantages of the conventional method for producing an aluminum nitride sintered body, and to
It maintains and exhibits all of the excellent properties inherent to aluminum itself, such as high thermal conductivity, and it also has a relatively (low sintering rate) It is an object of the present invention to provide a method for manufacturing at a freezing temperature.

即ち、本発明の窒化アルr=ウム焼結体の製造方法社、
窒化アルミニウム粉末に、カルシウム、バリウム及びス
トロンチウムから選ばれた少なくと%1種のチタン酸塩
粉末、又は、焼成忙よってチタン酸塩となりつる、カル
シウム、バリウムもしくはストロンチウムの酸化物と、
チタンの酸化物からなる粉末を、チタン酸塩の量として
、0.1〜15重量%添加して混合した後、この混合粉
末を成形、次いで焼結することを特徴とするものである
That is, the manufacturing method of aluminum nitride sintered body of the present invention,
Aluminum nitride powder, at least one titanate powder selected from calcium, barium, and strontium, or an oxide of calcium, barium, or strontium that becomes a titanate during sintering;
The method is characterized in that a powder made of a titanium oxide is added and mixed in an amount of titanate of 0.1 to 15% by weight, and then the mixed powder is molded and then sintered.

本発明の最も特徴とする部分は、窒化アルミニウム(A
/N )粉末を成形、焼結するに際して、予め該AjN
粉末に、カルシウム、バリウム及びストロンチウムから
選ばれた少なくとも1種のチタン酸塩を添加することに
ある。
The most characteristic part of the present invention is aluminum nitride (A
/N) When molding and sintering the powder, the AjN
The purpose is to add at least one titanate selected from calcium, barium and strontium to the powder.

本発明に用いる、前記チタン酸塩は、通常は、メタチタ
ン酸カルシウム(CaTi0. ) 、メタチタン酸バ
リウム(BaTi0= >%しく祉メタチタン酸ストロ
ンチウム(8rTiOs )であるが、例えば、オルト
チタン酸バリウム(Cat Ti0i ) 、オルトチ
タン酸バリウム(B’* TlO4) sオルトチタン
酸スト騨ンチウム(arm Ti0i )等の前記メタ
チタン酸塩以外のCaO1laOもしくは8rOとT1
0,02或分系複合酸化物であっても良−0或−は、焼
成によって、これらのチタン酸塩を生成する、カルシウ
ム、バリウムもしくはストロンチウムの酸化物、炭酸塩
、硝酸塩、硫酸塩等と、TlO,とり2或分系混合粉末
を用いても良−6これらのチタン酸塩もしくは混合粉末
は、1種でも2種以上の混合系としても用−ることがで
き、AjN粉末への添加量が微量であつ【も有効に働く
0例えば、前記混合粉末の全組成重量を100重量悌と
して、CaTl0.、BaT10gもしく d 8rT
iO,K換算して、0.1重量襲程度でも有効に作用し
”C、AjN焼結体の良熱伝導性等の優れた一特性を損
なうむとなく、高緻密化することができる。また、添加
量が余り多くなると、MN焼結体の優れた性質が失なわ
れる。側光ば、前記CaTiOs s BaT10Bも
しくは8rTiOm  に換算して、15重量囁を超え
て添加すると、結晶粒の成長が顕著になり、焼結体の強
度が次第に低下すると共に熱伝導性も低下する。従がっ
て、前記カルシウム、バリウム及びストロンチウムから
選ばれた少なくとも1種のチタン酸塩の添加量は0.1
〜15重量外重量和は、0.2〜10重量%添加するこ
とが好ましい。
The titanate salt used in the present invention is usually calcium metatitanate (CaTi0. CaO1laO or 8rO and T1 other than the above-mentioned metatitanates such as barium orthotitanate (B'*TlO4), barium orthotitanate (arm Ti0i), etc.
0.02 or fractionated composite oxides may be used. Alternatively, calcium, barium or strontium oxides, carbonates, nitrates, sulfates, etc., which produce these titanates upon calcination, may be used. , TlO, or 2-part mixed powder may be used.-6 These titanates or mixed powders can be used alone or as a mixed system of two or more, and can be added to the AjN powder. For example, if the total composition weight of the mixed powder is 100%, CaTl0. , BaT10g or d8rT
In terms of iO,K, it works effectively even at a weight density of about 0.1, and it is possible to achieve high densification without compromising one of the excellent properties of the C, AjN sintered body, such as good thermal conductivity. If the amount added is too large, the excellent properties of the MN sintered body will be lost.If the addition amount exceeds 15% by weight, calculated as CaTiOs BaT10B or 8rTiOm, the growth of crystal grains will be inhibited. The strength of the sintered body gradually decreases, and the thermal conductivity also decreases.Therefore, the amount of at least one titanate selected from calcium, barium, and strontium added is 0.1
It is preferable to add 0.2 to 10% by weight of the total weight other than 15% by weight.

前記混合粉末には、更に、パラフィン、ステアリン醗、
PVA等の結合剤を成形助剤として添加しても良い。
The mixed powder further contains paraffin, stearin,
A binder such as PVA may be added as a molding aid.

本発明に用いる、前記窒化アルミニウム粉末は、焼結性
を良くする為に、粒径が5μm以下、更にti2μm以
下のものであることが好ましい。
In order to improve sinterability, the aluminum nitride powder used in the present invention preferably has a particle size of 5 μm or less, and further preferably has a ti of 2 μm or less.

かくして得られる混合粉末を、常温圧縮などして成形し
た後、得られた成形体を焼結する。焼結社、重化防止の
為に、窒素ガス(Nl ) 、アルヅンガス(人r)、
木葉ガス(ル)、もしくはこれらの混合ガス、又は、N
、十−酸化炭素(CO)混合ガス等の非酸化性ガス雰囲
気、或−は真空中で行なうのが好ましく、焼結温度は1
500〜1900℃、更には、1s50〜1800℃で
あることが好ましい。
The thus obtained mixed powder is molded by compression at room temperature or the like, and then the molded body obtained is sintered. To prevent sintering, nitrogen gas (Nl), Aldun gas (human r),
Leaf gas (ru), or a mixture of these gases, or N
It is preferable to carry out the sintering in a non-oxidizing gas atmosphere such as a mixed gas of ten-carbon oxide (CO), or in a vacuum, and the sintering temperature is 1.
The temperature is preferably 500 to 1900°C, more preferably 1s50 to 1800°C.

1500℃未満であると、高緻密質の焼結体が得られな
一01900℃を超えると、MNの分堺が始まる為であ
る。また、添加物として、焼成によってチタン酸塩を生
成する前記混合粉末、もしくは前記結合剤を用いる場合
には、前記成形体を仮焼する工程を設けると良い。
If the temperature is less than 1,500°C, a highly dense sintered body cannot be obtained, whereas if it exceeds 1,900°C, MN separation begins. Further, in the case of using the mixed powder or the binder that produces a titanate upon firing as an additive, it is preferable to provide a step of calcining the molded body.

また、以上の説明においては、前記混合粉末を常温圧縮
により成形し、次いで常圧焼結し一″C−るのであるが
、本発明方法においては、前記混合粉末をホラF・プレ
ス等を用−て加圧焼結しても良く、或−は、得られた焼
結体を、熱間静水圧加圧(HI P’)処理などして、
更に高緻密化しても良いO′ 本発明の窒化アルミニウム焼結体の製造方法によれ7ば
、窒化−アル々ニウム粉末に、カルシウム、バリウム及
びストロンチウムから選ばれた少なくとも1種のチタン
酸塩を添加して得られた混合粉末を、成形、焼結するこ
とkより、AjNの真密度に近−焼結密度を有する高緻
密質の焼結体を得ることができる。しかも、uN粉末に
アルカリ土類元素の酸化物等を添加する、従来の方法が
、かかる高緻密質の焼結体を得る為に、焼結温度を16
00℃以上とする必要があったのと比べて、本発明方法
によれば、1500℃以上の焼結温度でも、AJNの真
密度に対して、99%を超える焼結密度を得ることがで
きる。しかも、AjN自身が本質的に有している、高熱
伝導性及び耐熱性、耐食性、耐熱衝撃性などの優れた護
持性を良好に維持・発揮する焼結体が得られる。
In addition, in the above explanation, the mixed powder is molded by cold compression and then sintered under normal pressure. However, in the method of the present invention, the mixed powder is molded using a Hora F press or the like. Alternatively, the obtained sintered body may be subjected to hot isostatic pressing (HIP') treatment, etc.
According to the method for producing an aluminum nitride sintered body of the present invention, at least one titanate selected from calcium, barium, and strontium is added to the aluminum nitride powder. By molding and sintering the mixed powder obtained by adding AjN, a highly dense sintered body having a sintered density close to the true density of AjN can be obtained. In addition, the conventional method of adding alkaline earth element oxides to uN powder requires a sintering temperature of 16°C in order to obtain such a highly dense sintered body.
According to the method of the present invention, a sintered density exceeding 99% of the true density of AJN can be obtained even at a sintering temperature of 1500°C or higher, compared to the case where the temperature had to be set at 00°C or higher. . Furthermore, a sintered body can be obtained that satisfactorily maintains and exhibits the excellent protection properties such as high thermal conductivity, heat resistance, corrosion resistance, and thermal shock resistance that AjN itself inherently has.

一一一一−−−−− 実施例1 平均粒径0.9声mのムIN粉末95重量部と、平均粒
径1.6μmのCaTi0.粉末5重量部とを配合して
混合し、更にパイシ〆−としてI#ラフイン5重量部を
添加混合した。得られた混合粉末を1 ton/−の成
形圧で成形して40so*X40■XIO■の板状成形
体を得た・この成形体を凡 気流中で400℃まで予め
加熱した後、仁の試料なAjNルツI内に入れ、試料の
周N K AjN粉末を、つめ粉とし1充填した後SN
富雰囲気中、1700℃で60分間焼結破しめた。この
結果、AJNの真密度に対して97襲の相対密度を有す
る、高緻密質で且つ高熱伝導性を有する焼結体を得た。
1111 ------- Example 1 95 parts by weight of MuIN powder with an average particle size of 0.9 μm and 0.95 parts by weight of CaTi powder with an average particle size of 1.6 μm. 5 parts by weight of powder were blended and mixed, and 5 parts by weight of I# rough-in was further added and mixed as a pastry finisher. The obtained mixed powder was molded at a molding pressure of 1 ton/- to obtain a plate-shaped molded product of 40 so* Place the sample in AjN Ruth I, fill it with the sample's circumference N K AjN powder as a nail powder, and then fill it with SN.
Sintering was performed at 1700° C. for 60 minutes in a rich atmosphere. As a result, a highly dense and highly thermally conductive sintered body having a relative density of 97 times higher than the true density of AJN was obtained.

比較例l CaTiOs  粉末を配合しな≠以外轄、実施例1と
同一粒径、同一組成の混合粉末を用い【、同一の方法に
よe*結体を得た。得られた焼結体は相対密度75襲の
多孔質体であった。
Comparative Example 1 A mixed powder having the same particle size and the same composition as in Example 1 was used, except that CaTiOs powder was not mixed, and e* aggregates were obtained by the same method. The obtained sintered body was a porous body with a relative density of 75.

実施例2〜9、参考例1 実施例2〜9及び参考例1として、第1表の組成を有す
る各混合粉末を得、この混合粉末を1実施例1と同一条
件で成形し【同−膨軟の成形体を得た。次−でこの成形
体を刈、雰囲気中、400℃重で予め加熱した後、Aj
Nルツー内に入れ、周N K AjN粉末をつめ粉とし
て充填し、凡雰囲気中、1700℃で30時間焼結した
。得られた焼結体の相対密度、及び抗折強度を測定した
0結呆をs1表に示した。
Examples 2 to 9, Reference Example 1 As Examples 2 to 9 and Reference Example 1, each mixed powder having the composition shown in Table 1 was obtained, and this mixed powder was molded under the same conditions as in Example 1. A swelling and soft molded body was obtained. Next, this molded body was cut and preheated at 400℃ in an atmosphere, and then Aj
The material was placed in a nitrogen chamber, filled with N K AjN powder as a filler powder, and sintered at 1700° C. for 30 hours in a normal atmosphere. The relative density and bending strength of the obtained sintered body were measured, and the zero crystallization was shown in Table s1.

第  1  表 第1表から明らかな様に、本発明方法により得られた窒
化アル1ニウム焼結体は、高緻密質で、機械的強度の高
ψものである。
Table 1 As is clear from Table 1, the aluminum nitride sintered body obtained by the method of the present invention is highly dense and has high mechanical strength.

実施例10〜15、比較例2 実施例1O〜15、比較例2として、第2表の組成を有
する各混合粉末を得、この混合粉末を、実施例1と同一
条件で成形し【同一形状の成形体を得た・次−でこの成
形体をN、雰囲気中、400℃まで予め加熱した後、)
JNNフッ内に入れ、周囲K AjN粉末をつめ粉とし
て充填し、N、雰囲気中、第2表に示した焼結温度で3
時間焼結した。
Examples 10 to 15, Comparative Example 2 As Examples 1O to 15 and Comparative Example 2, mixed powders having the compositions shown in Table 2 were obtained, and the mixed powders were molded under the same conditions as Example 1 [same shape]. After preheating this molded body to 400°C in a N atmosphere,
It was placed in a JNN chamber, filled with surrounding K AjN powder as a filler powder, and sintered at the sintering temperature shown in Table 2 in a N atmosphere.
Sintered for hours.

得られた焼結体の相対密度、及び抗折強度を測定した◇
結果を第2表に示した。
The relative density and bending strength of the obtained sintered body were measured◇
The results are shown in Table 2.

第  2  表 第2表から明らかなように1本発明方法によれば、15
50℃という極めて低い焼結温度においても相対密度9
0%以上の高密度を有し1機械的強度の大である窒化ア
ルミニウム焼結体が得られる。
Table 2 As is clear from Table 2, according to the method of the present invention, 15
Even at extremely low sintering temperatures of 50°C, the relative density is 9.
An aluminum nitride sintered body having a high density of 0% or more and high mechanical strength is obtained.

実施例16 平均粒径t、sxmのAjN粉末95重量部と、平均粒
径0.3μmのBILCO,粉末2重量部及び平均粒径
0.8μmのTie、粉末3重量部とを配合して混合し
、更にパイン〆−とし″′Cパラフィン5重量部を添加
、混合した。かくして得られた混合粉末を、実施例1と
同一条件により成形、焼結した。得られた焼結体の相対
密度は、96.SJGであった。
Example 16 95 parts by weight of AjN powder with average particle diameters t and sxm, 2 parts by weight of BILCO powder with an average particle diameter of 0.3 μm, and 3 parts by weight of Tie powder with an average particle diameter of 0.8 μm were mixed together. Then, 5 parts by weight of pine paste and C paraffin were added and mixed. The mixed powder thus obtained was molded and sintered under the same conditions as in Example 1. Relative density of the obtained sintered body was 96.SJG.

実施例17 平均粒径1.5μmのムjN粉末95重ffi部と、平
均粒径1.2μmの8rTiO,粉末5重社部とを配合
して混合し、更にバインダーとしてノ々ラフイン5重量
部を添加、混合した。かくして得られた混合粉末を、実
施例1と同一条件により成形、焼結した。
Example 17 95 parts by weight of MujN powder with an average particle size of 1.5 μm and 5 parts by weight of 8rTiO powder with an average particle size of 1.2 μm were blended and mixed, and further 5 parts by weight of Nono Rough In was added as a binder. was added and mixed. The thus obtained mixed powder was molded and sintered under the same conditions as in Example 1.

得られた焼結体の相対密度は、97.5−であった。The relative density of the obtained sintered body was 97.5-.

実施例18 平均粒径1.2μm lF) AjN粉末g1重量撮と
、平均粒径1.4μm f) BaTiOs粉末1重量
部とを配合して混合し、更にバインダーとしてパラフィ
ン5重量部を添加、混合した。かくして得られた混合粉
末を、実施例1と同一条件により成形し2o諺yiX1
0■の円板状成形体を得、次いでこの成形体を実施例1
と同一条件により焼結したところ、高緻密質で良熱伝導
性の焼結体が得られた。
Example 18 1 weight part of AjN powder with an average particle size of 1.2 μm (lF) and 1 part by weight of BaTiOs powder with an average particle size of 1.4 μm were mixed, and further 5 parts by weight of paraffin was added as a binder and mixed. did. The thus obtained mixed powder was molded under the same conditions as in Example 1.
A disc-shaped molded product with a size of
When sintered under the same conditions as above, a highly dense sintered body with good thermal conductivity was obtained.

Claims (1)

【特許請求の範囲】[Claims] 窒化アルミニウム粉末に1カルシウム、バリウム及びス
)ロンチウムから選杜れた少なくとも1種のチタン酸塩
粉末、又は、焼成によってチタンlI塩となシうる、カ
ルシウム、バリウムもしくはストロンチウムの酸化物と
、チタンの酸化物からなる粉末を、チタン酸塩の量とし
て、0.1〜15重量襲重量上添加合した後、この混合
粉末を成形、次−で焼結することを特徴とする窒化アル
ミニウム焼結体のII造方法。
Aluminum nitride powder, at least one titanate powder selected from calcium, barium and strontium, or an oxide of calcium, barium or strontium which can be converted into titanium salt by calcination, and titanium. An aluminum nitride sintered body characterized in that a powder consisting of an oxide is added in an amount of 0.1 to 15% by weight as a titanate, and then this mixed powder is molded and then sintered. II manufacturing method.
JP56152140A 1981-09-28 1981-09-28 Manufacture of aluminum nitride sintered body Granted JPS5855376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56152140A JPS5855376A (en) 1981-09-28 1981-09-28 Manufacture of aluminum nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56152140A JPS5855376A (en) 1981-09-28 1981-09-28 Manufacture of aluminum nitride sintered body

Publications (2)

Publication Number Publication Date
JPS5855376A true JPS5855376A (en) 1983-04-01
JPS646141B2 JPS646141B2 (en) 1989-02-02

Family

ID=15533908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56152140A Granted JPS5855376A (en) 1981-09-28 1981-09-28 Manufacture of aluminum nitride sintered body

Country Status (1)

Country Link
JP (1) JPS5855376A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6096578A (en) * 1983-10-15 1985-05-30 ヴエー・ツエー・ヘレウス・ゲゼルシャフト・ミット・ベシュレンクター・ハフツング Temperature balancing material
JPS62153173A (en) * 1985-06-28 1987-07-08 株式会社東芝 Aluminum nitride sintered body and manufacture
JPS6317262A (en) * 1986-07-10 1988-01-25 株式会社東芝 Aluminum nitride sintered body
JPH0283266A (en) * 1988-09-20 1990-03-23 Murata Mfg Co Ltd Production of aln sintered compact
US5001089A (en) * 1985-06-28 1991-03-19 Kabushiki Kaisha Toshiba Aluminum nitride sintered body
JPH07176656A (en) * 1985-06-28 1995-07-14 Toshiba Corp Sintered aluminium nitride heat dissipation plate and manufacture thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5273700A (en) * 1990-10-29 1993-12-28 Sumitomo Electric Industries Ltd. Aluminum nitride sintered body and process for producing the same
JPH05533U (en) * 1991-06-21 1993-01-08 天龍工業株式会社 Vehicle seat

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6096578A (en) * 1983-10-15 1985-05-30 ヴエー・ツエー・ヘレウス・ゲゼルシャフト・ミット・ベシュレンクター・ハフツング Temperature balancing material
JPH0217508B2 (en) * 1983-10-15 1990-04-20 Heraeus Gmbh W C
JPS62153173A (en) * 1985-06-28 1987-07-08 株式会社東芝 Aluminum nitride sintered body and manufacture
US5001089A (en) * 1985-06-28 1991-03-19 Kabushiki Kaisha Toshiba Aluminum nitride sintered body
JPH07176656A (en) * 1985-06-28 1995-07-14 Toshiba Corp Sintered aluminium nitride heat dissipation plate and manufacture thereof
JPS6317262A (en) * 1986-07-10 1988-01-25 株式会社東芝 Aluminum nitride sintered body
JPH0283266A (en) * 1988-09-20 1990-03-23 Murata Mfg Co Ltd Production of aln sintered compact

Also Published As

Publication number Publication date
JPS646141B2 (en) 1989-02-02

Similar Documents

Publication Publication Date Title
CA1146980A (en) Ceramic dental appliance and method and dental ceramic for the manufacture thereof
JPS5855377A (en) Manufacture of aluminum nitride sintered body
JPS5823345B2 (en) Method for manufacturing ceramic sintered bodies
TW449758B (en) Process for producing piezoelectric ceramics
JPS5849510B2 (en) Chitsuka Aluminum Shouketsutaino
JPS5855376A (en) Manufacture of aluminum nitride sintered body
JPS59207873A (en) Manufacture of high density silicon carbide sintered body
JPS60131865A (en) Manufacture of silicon nitride ceramics
JPS62123070A (en) Manufacture of boron nitride base sintered body
JPS6163570A (en) Manufacture of silicon nitride sintered body
JP2716530B2 (en) High strength mica ceramics
JPH0453831B2 (en)
JPS62252374A (en) Manufacture of aluminum nitride sintered body
JPS60161368A (en) Manufacture of high strength calcium phosphate sintered body
JPS5895658A (en) Manufacture of silicon nitride sintered body
JPS6110073A (en) Aluminum nitride sintered body
JPS62153170A (en) Silicon nitride ceramic sintered body and manufacture
JPS6296368A (en) Manufacture of high anticorrosive silicon nitride sintered body
JPH0250075B2 (en)
JP3026116B2 (en) Composite ceramic sintered body and method for producing the same
JP3280017B2 (en) Calcium silicate sintered body
JPS61101467A (en) Silicon nitride sintered body and manufacture
JPS6086075A (en) Manufacture of alpha-sialon sintered body
JPH0545553B2 (en)
JPS63195175A (en) Composition for sintering aluminum nitride