JP3450400B2 - Aluminum nitride sintered body and aluminum nitride multilayer circuit board - Google Patents

Aluminum nitride sintered body and aluminum nitride multilayer circuit board

Info

Publication number
JP3450400B2
JP3450400B2 JP33672493A JP33672493A JP3450400B2 JP 3450400 B2 JP3450400 B2 JP 3450400B2 JP 33672493 A JP33672493 A JP 33672493A JP 33672493 A JP33672493 A JP 33672493A JP 3450400 B2 JP3450400 B2 JP 3450400B2
Authority
JP
Japan
Prior art keywords
aluminum nitride
sintered body
thermal conductivity
oxygen
aln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33672493A
Other languages
Japanese (ja)
Other versions
JPH07187789A (en
Inventor
旬 門馬
美保 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP33672493A priority Critical patent/JP3450400B2/en
Publication of JPH07187789A publication Critical patent/JPH07187789A/en
Application granted granted Critical
Publication of JP3450400B2 publication Critical patent/JP3450400B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は窒化アルミニウム焼結体
および窒化アルミニウム多層回路基板に係り、特にある
程度の不純物を含有していても熱伝導率が高く、安価に
製造することが可能な窒化アルミニウム焼結体およびそ
の焼結体を使用した窒化アルミニウム多層回路基板に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum nitride sintered body and an aluminum nitride multilayer circuit board, and particularly to aluminum nitride which has a high thermal conductivity even if it contains a certain amount of impurities and can be manufactured at low cost. The present invention relates to a sintered body and an aluminum nitride multilayer circuit board using the sintered body.

【0002】[0002]

【従来の技術】窒化アルミニウム(AlN)焼結体は高
温まで強度低下が少なく、化学的耐性にも優れているた
め、耐熱材料として用いられる一方、その高熱伝導性,
高電気絶縁性を利用して半導体装置の放熱板材料,回路
基板用絶縁体材料としても広く使用されている。
BACKGROUND OF THE INVENTION Aluminum nitride (AlN) sintered body has low strength decreases to a high temperature, chemically resistant to <br/> Me also was that excellent, while used as the heat-resistant material, its high thermal conductivity,
It has been widely used as a heat sink material for semiconductor devices and an insulator material for circuit boards by utilizing its high electrical insulation.

【0003】特に半導体素子の高集積化および高密度実
装化,半導体装置の高速化高出力化に対応して、特に熱
伝導率が高い窒化アルミニウム焼結体の用途が拡大され
ており、さらに高い熱伝導率を有する窒化アルミニウム
焼結体の開発が望まれている。
In particular, in response to high integration and high density mounting of semiconductor elements and high speed and high output of semiconductor devices, the applications of aluminum nitride sintered bodies having particularly high thermal conductivity are expanding, and higher. Development of an aluminum nitride sintered body having thermal conductivity is desired.

【0004】上記技術的要請に対応して従来の高熱伝導
性窒化アルミニウム焼結体は、不純物含有量が可及的に
少ない原料粉末を使用したり、AlN焼結体中の酸素量
および陽イオン不純物量を可能な限り減少させる方法で
製造されていた。すなわちカーボン製の焼成容器内に成
形体を配置して強い還元雰囲気を形成し、しかも48〜
100時間程度の長時間の焼成操作を行って高熱伝導性
を確保していた。
In response to the above technical requirements, the conventional high thermal conductivity aluminum nitride sintered body uses a raw material powder containing as little impurities as possible, and the oxygen content and cations in the AlN sintered body are used. It was manufactured by a method that reduces the amount of impurities as much as possible. That is, a compact is placed in a carbon baking container to form a strong reducing atmosphere.
High thermal conductivity was ensured by performing a firing operation for a long time of about 100 hours.

【0005】この焼成操作によりAlN結晶粒中の不純
物酸素を粒界相(Al−O−Y相)へとトラップすると
ともに、焼結体表面近傍の粒界相が、雰囲気中のCおよ
びCOによって還元され、Al−O,Y−N(Y2 3
剤を使用した場合)等の揮散物質として焼結体から排除
され、この揮散により焼結体表面近傍が高純度化される
に伴って、内部の粒界相が表面に移動し、焼結体内部が
高純度化される。さらに研削加工等により、表面相を除
去することにより、全体が高純度で高い熱伝導率を有す
る窒化アルミニウム焼結体が得られる。
By this firing operation, the impurity oxygen in the AlN crystal grains is trapped in the grain boundary phase (Al-O-Y phase), and the grain boundary phase near the surface of the sintered body is changed by C and CO in the atmosphere. reduced, Al-O, are excluded from the sintered body as a Y-N (when using Y 2 O 3 aid) volatilization substance such as, with the sintered body near the surface is highly purified by this volatilization As a result, the grain boundary phase inside moves to the surface, and the inside of the sintered body is highly purified. Further, by removing the surface phase by grinding or the like, an aluminum nitride sintered body having high purity and high thermal conductivity as a whole can be obtained.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来の
高熱伝導性AlN焼結体の製造方法において、酸素等の
不純物含有量の少ない原料粉末は高価であり、必然的に
製造コストの上昇をもたらしていた。また強い還元性雰
囲気において長時間焼成して高純度化を図るため、製造
効率も大幅に低下し製品コストが大幅に上昇する問題点
があった。
However, in the conventional method for producing a high thermal conductivity AlN sintered body, the raw material powder having a small content of impurities such as oxygen is expensive, and inevitably causes an increase in production cost. It was Further, since it is burned for a long time in a strong reducing atmosphere to achieve high purity, there is a problem that manufacturing efficiency is significantly reduced and product cost is significantly increased.

【0007】特にAlN成形体表面に配線導体パターン
を形成した基板要素を多数積層した状態で同時焼成して
AlN多層配線基板を製造する場合には、導体の炭化や
収縮率差の拡大により、導体配線抵抗が増大したり、断
線を引き起こし易いため、内層に導体を含むAlN多層
回路基板の製造工程においては、上記強還元性雰囲気に
おける長時間同時焼成法は適用できない欠点がある。
In particular, when a plurality of substrate elements each having a wiring conductor pattern formed on the surface of an AlN molded body are laminated and co-fired to manufacture an AlN multilayer wiring board, the conductor is carbonized and the difference in shrinkage ratio is increased. Since the wiring resistance is likely to increase and disconnection is likely to occur, there is a drawback that the long-time simultaneous firing method in the strongly reducing atmosphere cannot be applied in the manufacturing process of the AlN multilayer circuit board including the conductor in the inner layer.

【0008】また高純度化されたAlN焼結体は高熱伝
導性を有する一方で、若干の透光性を有することとなる
ため、AlN焼結体基板に搭載された半導体素子が、基
板を透過してきた紫外線等によって、誤動作を誘発する
可能性が高くなり、いずれにしても動作信頼性に優れた
多層回路基板が得られないという問題点があった。
Further, the highly purified AlN sintered body has high thermal conductivity, but also has a slight light transmitting property. Therefore, the semiconductor element mounted on the AlN sintered body substrate transmits through the substrate. However, there is a problem that malfunctions are likely to be caused by the ultraviolet rays and the like, and in any case, a multilayer circuit board having excellent operation reliability cannot be obtained.

【0009】本発明は上記問題点を解決するためになさ
れたものであり、遷移金属化合物等の不純物を含有せし
めて遮光性を付与した場合においても高い熱伝導率を有
し、かつ安価に製造することが可能な窒化アルミニウム
焼結体およびその焼結体を使用した窒化アルミニウム多
層回路基板を提供することを目的とする。
The present invention has been made in order to solve the above-mentioned problems, and has high thermal conductivity even when an impurity such as a transition metal compound is contained to provide a light-shielding property, and the manufacturing cost is low. It is an object of the present invention to provide an aluminum nitride sintered body which can be manufactured and an aluminum nitride multilayer circuit board using the sintered body.

【0010】[0010]

【課題を解決するための手段と作用】上記目的を達成す
るため、本願発明者らは、AlN焼結体を製造するため
に使用していたAlN原料粉末の純度,焼結助剤や添加
物の種類,焼結条件等を種々変えて、それらの条件要素
が、最終製品としてのAlN焼結体の組織形状および特
性に及ぼす影響を実験により確認した。
In order to achieve the above object, the inventors of the present invention have found the purity of the AlN raw material powder used for producing the AlN sintered body, the sintering aid and the additives. The effect of these condition elements on the microstructure and properties of the AlN sintered body as the final product was confirmed by experiments by changing the types of the above, the sintering conditions, and the like.

【0011】その結果、焼結時の雰囲気および焼結後に
おける焼結体の冷却速度を適正に設定することにより、
窒化アルミニウムの焼結が進行する際に、窒化アルミニ
ウム原料粉末および焼結助剤に含有されていた陽イオン
不純物と含有酸素とを粒界相として濃縮でき、かつその
粒界相のみを塊状に凝集させた化合物が焼結体組織内に
形成され、この塊状の化合物は、窒化アルミニウム焼結
後の一次粒子と同程度か、それ以上の大きさに形成され
ることが判明した。そのため、AlN焼結体組織におい
て、窒化アルミニウム結晶粒子同士が直接接触する面積
が大幅に増加し、高熱伝導性を有するAlN結晶粒子が
連続するような組織の割合が高まる一方で、熱伝導性を
阻害する不純物を含有する化合物が局所的に凝集するこ
とが判明した。その結果、焼結体全体として高い熱伝導
率を有するAlN焼結体が得られるという知見を得た。
なお、例えばWOなどの遷移金属化合物を焼結体成分
として添加することにより、焼結体に遮光性を付与する
こともできた。本発明は上記知見に基づいて完成された
ものである。
As a result, by properly setting the atmosphere during sintering and the cooling rate of the sintered body after sintering,
As the sintering of aluminum nitride progresses, the aluminum nitride
The cation impurities and oxygen contained in the raw material powder and sintering aid can be concentrated as a grain boundary phase, and a compound in which only the grain boundary phase is agglomerated in a lump form is formed in the sintered body structure. It was found that this massive compound was formed to a size comparable to or larger than the primary particles after aluminum nitride sintering. Therefore, in the AlN sintered body structure, the area in which the aluminum nitride crystal grains are in direct contact with each other is significantly increased, and the proportion of the structure in which the AlN crystal grains having high thermal conductivity are continuous is increased, while the thermal conductivity is improved. It was found that compounds containing interfering impurities aggregate locally. As a result, it was found that an AlN sintered body having a high thermal conductivity as the whole sintered body can be obtained.
In addition, it was possible to impart a light-shielding property to the sintered body by adding a transition metal compound such as WO 3 as a sintered body component. The present invention has been completed based on the above findings.

【0012】すなわち本発明に係る窒化アルミニウム焼
結体は、0.8重量%以上の酸素および0.16重量%
以上の陽イオン不純物の少なくとも一方を含有する窒化
アルミニウム結晶組織から成り、上記酸素と陽イオン不
純物とを含有する塊状化合物が結晶組織中に形成され上
記塊状化合物の平均粒径が窒化アルミニウム結晶粒の平
均粒径以上であることを特徴とする。また熱伝導率が2
00W/m・K以上の高熱伝導性AlN焼結体である。
That is, the aluminum nitride sintered body according to the present invention contains 0.8% by weight or more of oxygen and 0.16% by weight.
An aluminum nitride crystal structure containing at least one of the above cation impurities, a lump compound containing the oxygen and the cation impurities is formed in the crystal structure, and the average particle size of the lump compound is an aluminum nitride crystal grain. It is characterized by having an average particle size or more. The thermal conductivity is 2
It is an AlN sintered body having a high thermal conductivity of 00 W / m · K or more.

【0013】さらに本発明に係る窒化アルミニウム多層
回路基板は、AlN成形体表面に配線導体を形成した基
板要素を複数枚積層し、AlN焼結体中の粒界相が塊状
になるように同時焼成して得ることができる。
Further, in the aluminum nitride multilayer circuit board according to the present invention, a plurality of board elements each having a wiring conductor formed on the surface of an AlN compact are laminated and co-fired so that the grain boundary phase in the AlN sintered body becomes a lump. You can get it.

【0014】ここで酸素および陽イオン不純物は、本
来、いずれもAl成分等と化合して熱伝導性を阻害する
化合物を形成し、AlN焼結体の熱伝導性を低下させる
が、本願発明に係るAlN焼結体においては、酸素およ
び陽イオン不純物は、粒界に凝集されるため、熱伝導性
を阻害することが少ない。
Originally, both oxygen and cation impurities combine with an Al component or the like to form a compound that inhibits the thermal conductivity, which lowers the thermal conductivity of the AlN sintered body. In such an AlN sintered body, oxygen and cation impurities are agglomerated at the grain boundaries, so that thermal conductivity is less likely to be hindered.

【0015】上記酸素の含有量が0.8重量%未満また
は陽イオン不純物の含有量が0.16重量%未満とする
ためには、粒界相を排出するための焼結にかなりの時間
がかかり、製造コストが増加する。一方、酸素の含有量
が1.5%を超えるか、または陽イオン不純物の含有量
が1重量%を超える場合には、やはり熱伝導性を阻害す
る酸化物相が粒界に均一に形成され易くなり、AlN焼
結体の熱伝導性が低下するため、上記酸素の含有量は、
0.8〜1.5重量%の範囲に設定するとともに、陽イ
オン不純物の含有量は0.16〜1重量%の範囲に設定
される。なお、酸素および陽イオン不純物の合計含有量
は2.0重量%以下に設定することが、さらに望まし
い。
In order for the oxygen content to be less than 0.8% by weight or the cationic impurity content to be less than 0.16% by weight, it takes a considerable time for sintering to discharge the grain boundary phase. This increases the manufacturing cost. On the other hand, when the oxygen content exceeds 1.5% or the cation impurity content exceeds 1% by weight, an oxide phase which also impairs thermal conductivity is uniformly formed at the grain boundaries. Since it becomes easier and the thermal conductivity of the AlN sintered body decreases, the content of oxygen is
The content of cationic impurities is set in the range of 0.8 to 1.5% by weight and the range of 0.16 to 1% by weight. The total content of oxygen and cationic impurities is more preferably set to 2.0% by weight or less.

【0016】本発明に係る窒化アルミニウム焼結体は、
例えば以下のような工程で製造される。すなわち窒化ア
ルミニウム原料粉末に対して、Yなどの焼結助剤
を3〜8重量%と所定量のバインダとを添加した原料混
合体を成形し、得られた成形体を脱脂後、窒素等の非酸
化性雰囲気で1600〜1900℃の温度域で2〜15
時間焼結し、上記焼結温度から1400〜1750℃ま
での冷却速度を毎時5〜10℃に設定し徐冷して製造さ
れる。なお、徐冷中に焼結雰囲気を200〜300To
rrまで減圧すると、AlN焼結体の熱伝導率をさらに
上昇させることができる。
The aluminum nitride sintered body according to the present invention is
For example, it is manufactured by the following steps. Against Sunawa Chi nitrided aluminum raw material powder, molding the Y 2 O 3 raw material mixture obtained by adding 3 to 8% by weight and a predetermined amount of binder sintering aid, such as, the obtained molded body After degreasing, 2 to 15 in a temperature range of 1600 to 1900 ° C in a non-oxidizing atmosphere such as nitrogen
Sintering is carried out for an hour, and the cooling rate from the above sintering temperature to 1400 to 1750 ° C. is set to 5 to 10 ° C. per hour and gradually cooled to manufacture. During the slow cooling, the sintering atmosphere was changed to 200 to 300 To.
When the pressure is reduced to rr, the thermal conductivity of the AlN sintered body can be further increased.

【0017】上記窒化アルミニウム焼結体によれば、原
料中に含まれていた酸素と陽イオン不純物とAlなどの
原料成分とが凝集反応して粒界部に塊状の化合物相が形
成され、かつこの化合物の平均粒径が窒化アルミニウム
結晶粒と同等以上になっているため、高熱伝導性を有す
る高純度のAlN粒子同士が連続して接触する組織割合
が増加する一方、熱伝導性を阻害する不純物を含有する
化合物が局所的に凝集して形成される。したがって、焼
結体全体として高い熱伝導率を有し、かつ上記化合物に
よって透光性が抑制されたAlN焼結体が得られる。
According to the above-mentioned aluminum nitride sintered body, the oxygen contained in the raw material, the cation impurities and the raw material components such as Al undergo an agglomeration reaction to form a massive compound phase at the grain boundary portion, and Since the average grain size of this compound is equal to or larger than that of the aluminum nitride crystal grains, the proportion of the structure in which high-purity AlN particles having high thermal conductivity are continuously in contact with each other is increased, while inhibiting the thermal conductivity. The compound containing impurities is locally aggregated and formed. Therefore, it is possible to obtain an AlN sintered body that has a high thermal conductivity as a whole as a whole and that has a light transmissive property suppressed by the above compound.

【0018】また酸素および陽イオン不純物は熱伝導性
を阻害しない程度に焼結体の局部に凝集されるため、こ
れらの不純物を積極的に除去する操作は必要としない。
したがって、不可避的に付着する酸素も含めて不純物含
有量が多い安価な原料を使用することが可能になり、原
料コストを大幅に低減することができる。特に従来、高
熱伝導性を達成するために、上記不純物を除去すべく、
還元性雰囲気中で長時間、高純度化焼成処理が必要であ
ったが、本願発明によれば、窒素ガス等の非酸化性雰囲
気における焼結操作により、熱伝導率が200W/m・
K以上と、熱伝導率に優れたAlN焼結体が安価に製造
できる。
Oxygen and cation impurities are agglomerated locally in the sintered body to the extent that they do not hinder the thermal conductivity, so that it is not necessary to positively remove these impurities.
Therefore, it becomes possible to use an inexpensive raw material having a large amount of impurities including oxygen inevitably attached, and the raw material cost can be significantly reduced. In particular, in order to achieve high thermal conductivity in the past, in order to remove the above impurities,
Although a high-purification baking treatment was required for a long time in a reducing atmosphere, according to the present invention, the thermal conductivity was 200 W / m.multidot. Due to the sintering operation in a non-oxidizing atmosphere such as nitrogen gas.
When it is K or more, an AlN sintered body having excellent thermal conductivity can be manufactured at low cost.

【0019】また本発明に係る窒化アルミニウム多層回
路基板を、同時焼成法を使用して製造する場合は、以下
の工程に従う。すなわち、所定量の酸素,陽イオン不純
物,焼結助剤およびバインダ等を配合した窒化アルミニ
ウム混合粉末に溶剤を添加して原料スラリーを調製し、
この原料スラリーを、ドクターブレード法などの成形法
を利用してシート状成形体を形成し、このシート状成形
体表面に、Wなどの導電金属を含有する導体ペーストに
て配線導体パターンを形成し、各配線導体パターンを形
成したシート状成形体を複数枚積層熱圧着して積層体を
形成し、得られた積層体を脱脂後、窒素等の非酸化性雰
囲気で1600〜1900℃の温度域で2〜15時間同
時焼成し、上記焼成温度から1400〜1750℃まで
の冷却速度を毎時5〜10℃に設定し徐冷して製造され
る。なお、徐冷中に焼結雰囲気を200〜300Tor
rまで減圧すると、AlN焼結体の熱伝導率をさらに上
昇させることができる。
When the aluminum nitride multilayer circuit board according to the present invention is manufactured by the co-firing method, the following steps are followed. That is, a raw material slurry is prepared by adding a solvent to an aluminum nitride mixed powder containing a predetermined amount of oxygen, cationic impurities, a sintering aid, a binder, and the like.
This raw material slurry is used to form a sheet-shaped molded body by using a molding method such as a doctor blade method, and a wiring conductor pattern is formed on the surface of the sheet-shaped molded body with a conductive paste containing a conductive metal such as W. , A plurality of sheet-shaped compacts each having a wiring conductor pattern formed thereon are laminated by thermocompression bonding to form a laminate, and after degreasing the obtained laminate, a temperature range of 1600 to 1900 ° C. in a non-oxidizing atmosphere such as nitrogen. It is manufactured by co-firing for 2 to 15 hours, gradually cooling from the above firing temperature to 1400 to 1750 ° C. at a cooling rate of 5 to 10 ° C. per hour. In addition, the sintering atmosphere is set to 200 to 300 Tor during slow cooling.
When the pressure is reduced to r, the thermal conductivity of the AlN sintered body can be further increased.

【0020】上記構成に係る窒化アルミニウム多層回路
基板によれば、配線導体を形成した各層の基板において
酸素等の不純物が局所的に凝集して化合物を形成してい
るため、熱伝導性が高く高純度のAlN粒子が連続する
割合が多い。したがって、多層回路基板全体として熱伝
導率が高く、また上記化合物の存在により、遮光性も付
与される。
According to the aluminum nitride multi-layer circuit board having the above structure, impurities such as oxygen are locally aggregated to form a compound on the board of each layer on which the wiring conductor is formed, so that the thermal conductivity is high and high. A large proportion of pure AlN particles is continuous. Therefore, the multilayer circuit board as a whole has a high thermal conductivity, and the presence of the above compound also imparts a light-shielding property.

【0021】特に製造工程において、酸素等の不純物を
完全に除去するために強還元性雰囲気(カーボンガス含
有)において長時間、高純度化焼成処理を行なう必要が
なく、窒素ガス等の不活性ガス雰囲気中で焼成操作を実
施することができるため、焼成時における配線導体の炭
化による損傷,断線がないため、信頼性に優れた多層回
路基板を、高い歩留りで生産することができる。
Particularly in the manufacturing process, it is not necessary to carry out a high-purification baking treatment in a strong reducing atmosphere (containing carbon gas) for a long time in order to completely remove impurities such as oxygen, and an inert gas such as nitrogen gas is used. Since the firing operation can be carried out in the atmosphere, there is no damage or disconnection due to carbonization of the wiring conductor during firing, so that a highly reliable multilayer circuit board can be produced with a high yield.

【0022】[0022]

【実施例】以下、実施例に基づいて本発明を、より具体
的に説明する。
EXAMPLES The present invention will be described in more detail based on the following examples.

【0023】実施例1および比較例1 酸素含有量0.8重量%の窒化アルミニウム原料粉末に
対して、焼結助剤としてのY2 3 (酸化イットリウ
ム)を5重量%と、バインダとしてのPVB樹脂を8重
量%配合した混合粉に、アルコール系および芳香族系炭
化水素溶剤の混合液を添加し、ボールミルにて24時間
混合して原料スラリーを調製した。
Example 1 and Comparative Example 1 5% by weight of Y 2 O 3 (yttrium oxide) as a sintering aid, and 5% by weight of a binder were added to aluminum nitride raw material powder having an oxygen content of 0.8% by weight. A mixed liquid of alcoholic and aromatic hydrocarbon solvents was added to a mixed powder containing 8% by weight of PVB resin, and mixed for 24 hours in a ball mill to prepare a raw material slurry.

【0024】次にドクターブレード法を使用して、上記
原料スラリーをシート状に成形し、8枚のシート状成形
体を積層後、熱圧着して積層体を形成し、さらにこの積
層体を窒化ガス中で450℃で1時間脱脂した。
Next, using the doctor blade method, the above-mentioned raw material slurry is formed into a sheet shape, eight sheet-like formed bodies are laminated and then thermocompression bonded to form a laminated body, and the laminated body is nitrided. It was degreased in gas at 450 ° C. for 1 hour.

【0025】次に脱脂積層体を、窒素ガス雰囲気中で温
度1850℃で10時間保持して焼結した後に、毎時1
0℃の冷却速度で1750℃まで徐冷し、その後120
0℃まで毎時300℃で冷却した後、室温まで炉冷する
ことにより、実施例1に係るAlN焼結体を多数製造し
た。
Next, the degreased laminate was sintered by holding it in a nitrogen gas atmosphere at a temperature of 1850 ° C. for 10 hours, and then 1 hour / hour.
Gradually cool to 1750 ° C at 0 ° C cooling rate, then 120
A large number of AlN sintered bodies according to Example 1 were manufactured by cooling to 0 ° C. at 300 ° C./hour and then cooling to room temperature in a furnace.

【0026】一方比較例1として、温度1850℃で1
0時間保持して焼結した後に、従来法通り、毎時200
℃の冷却速度で急冷した以外は、実施例1と同様な原料
および処理方法を使用して比較例1に係るAlN焼結体
を多数製造した。
On the other hand, as Comparative Example 1, 1 at a temperature of 1850 ° C.
After holding for 0 hours to sinter, 200 hours per hour as in the conventional method
A large number of AlN sintered bodies according to Comparative Example 1 were manufactured by using the same raw materials and processing method as in Example 1 except that they were rapidly cooled at a cooling rate of ° C.

【0027】こうして得られた実施例1および比較例1
に係るAlN焼結体から直径10mm,厚さ3mmの試料片
を切り出し、レーザフラッシュ法に基づいてその熱伝導
率を測定するとともに、酸素含有量およびイットリウム
(Y)含有量を定量分析し、下記表1に示す結果を得
た。
Example 1 and Comparative Example 1 thus obtained
A sample piece having a diameter of 10 mm and a thickness of 3 mm was cut out from the AlN sintered body according to, and its thermal conductivity was measured based on the laser flash method, and the oxygen content and the yttrium (Y) content were quantitatively analyzed. The results shown in Table 1 were obtained.

【0028】[0028]

【表1】 [Table 1]

【0029】表1に示す結果から明らかなように、酸素
量および焼結助剤として添加したイットリア(Y
2 3 )に起因するイットリウム量は、実施例1および
比較例1においてほぼ同等の値を示しているが、結晶組
織形態の相違によって実施例1に係るAlN焼結体の方
が高い熱伝導率を有することが判明した。
As is clear from the results shown in Table 1, the amount of oxygen and the yttria (Y
The amount of yttrium due to 2 O 3 ) is almost the same in Example 1 and Comparative Example 1, but the thermal conductivity of the AlN sintered body according to Example 1 is higher due to the difference in crystal structure morphology. It turned out to have a rate.

【0030】さらに上記結晶組織形態の相違を確認する
ために、各試料片の破断面を走査型電子顕微鏡(SE
M)にて観察し、それぞれ図1(実施例1)および図2
(比較例1)に示す結果を得た。
Further, in order to confirm the above-mentioned difference in crystal structure morphology, the fracture surface of each sample piece was examined with a scanning electron microscope (SE).
M) and observed in FIG. 1 (Example 1) and FIG. 2 respectively.
The results shown in (Comparative Example 1) were obtained.

【0031】図1に示すように、実施例1に係るAlN
焼結体においては、AlN結晶粒子1が連続した組織中
に、斜線部で示すように酸素および陽イオン不純物を含
有する塊状の化合物2が形成されている。この化合物2
はAl2 4 9 ,Y2 3などの酸化物から成り、A
lN結晶粒子1と同程度の粒径をもって組織中に局部的
に形成されている。このように熱伝導性を阻害する化合
物2が局部的に凝集している一方、高熱伝導性を有する
高純度AlN結晶粒子1が連続して形成される組織形態
を有するため、高い熱伝導率と上記化合物2の介在によ
る優れた遮光性とを兼ね備えるAlN焼結体が得られ
た。
As shown in FIG. 1, AlN according to Example 1
In the sintered body, a lumpy compound 2 containing oxygen and a cation impurity is formed in the structure where the AlN crystal particles 1 are continuous, as shown by the hatched portion. This compound 2
Is an oxide such as Al 2 Y 4 O 9 or Y 2 O 3 ,
It is locally formed in the tissue with a grain size similar to that of the 1N crystal grain 1. As described above, while the compound 2 which inhibits the thermal conductivity is locally aggregated, the high-purity AlN crystal particles 1 having high thermal conductivity have a structure morphology that is continuously formed. An AlN sintered body having excellent light-shielding properties due to the inclusion of Compound 2 was obtained.

【0032】一方、図2に示すように焼結後に急冷して
調製された比較例1のAlN焼結体においては、酸素お
よび陽イオン不純物とAlとからる化合物(酸化物)
2aが、斜線部で示すように、AlN結晶組織の粒界に
沿って薄くかつ広く分布し、高純度のAlN結晶粒子1
同士が直接接触する割合が少ないため、遮光性は充分で
はあるが、熱抵抗が大きく、焼結体全体としての熱伝導
率が低下してしまうことが判明した。
On the other hand, in the AlN sintered body of Comparative Example 1 prepared by quenching after sintering as shown in FIG. 2, oxygen and Ru compounds Na from a cation impurities and Al (oxide)
2a is thin and widely distributed along the grain boundaries of the AlN crystal structure as shown by the shaded area, and high purity AlN crystal particles 1
It was found that the light-shielding property is sufficient because the proportion of direct contact between the two is small, but the thermal resistance is large and the thermal conductivity of the entire sintered body is reduced.

【0033】本実施例によれば焼結助剤として添加した
陽イオン元素や不可避的に混入する酸素を焼結体内に残
留させた状態でも、高熱伝導性を有するAlN焼結体を
安価に提供することができる。
According to this embodiment, an AlN sintered body having a high thermal conductivity can be provided at a low cost even when the cation element added as a sintering aid and oxygen inevitably mixed remain in the sintered body. can do.

【0034】実施例2および比較例2〜3 酸素含有量0.8重量%の窒化アルミニウム原料粉末に
対して、焼結助剤としてのY2 3 (酸化イットリウ
ム)を5重量%と、バインダとしてのPVB樹脂を8重
量%配合した混合粉に、アルコール系および芳香族系炭
化水素溶剤の混合液を添加し、ボールミルにて24時間
混合して原料スラリーを調製した。
Example 2 and Comparative Examples 2 to 3 5% by weight of Y 2 O 3 (yttrium oxide) as a sintering aid was added to a raw material powder of aluminum nitride having an oxygen content of 0.8% by weight, and a binder. A mixed liquid of an alcoholic hydrocarbon solvent and an aromatic hydrocarbon solvent was added to a mixed powder containing 8% by weight of a PVB resin as described above and mixed for 24 hours in a ball mill to prepare a raw material slurry.

【0035】次にドクターブレード法を使用して、上記
原料スラリーをシート状に成形し、各シートの所定位置
にドリルで貫通孔(スルーホール)を穿設した。次にW
を含有する導体ペーストを使用して、上記各貫通孔に充
填するともに、各シート表面に所定形状の配線導体パタ
ーンを印刷した後に、各シートを積層し、熱圧着してA
lN多層回路基板用の成形体を調製した。
Next, using the doctor blade method, the above-mentioned raw material slurry was formed into a sheet, and a through hole was formed at a predetermined position of each sheet with a drill. Then W
After filling the above through holes with a conductor paste containing, and printing a wiring conductor pattern of a predetermined shape on the surface of each sheet, the sheets are laminated and thermocompression bonded to each other.
A molded body for an IN multilayer circuit board was prepared.

【0036】次に得られた成形体を、水蒸気を含む窒素
−水素混合ガス(N2 +H2 +H2 O)雰囲気中で温度
900℃で脱脂した後に、窒素ガス雰囲気中で温度18
50℃で6時間保持して、成形体を構成する各シートと
配線導体パターンとを同時焼成し、しかる後に毎時5℃
の冷却速度で1750℃まで冷却後、炉冷することによ
り、実施例2に係るAlN多層回路基板を調製した。
Next, the molded body thus obtained was degreased in a nitrogen-hydrogen mixed gas (N 2 + H 2 + H 2 O) atmosphere containing water vapor at a temperature of 900 ° C., and then in a nitrogen gas atmosphere at a temperature of 18 ° C.
By holding at 50 ° C. for 6 hours, each sheet constituting the molded body and the wiring conductor pattern are simultaneously fired, and thereafter 5 ° C./hour
After cooling to 1750 ° C. at a cooling rate of 1 and then furnace cooling, an AlN multilayer circuit board according to Example 2 was prepared.

【0037】一方比較例2として、脱脂した成形体をカ
ーボン製の焼成容器(さや)内に充填して、強還元性雰
囲気を形成した状態で温度1900℃で48時間と長時
間に渡って連続して同時焼成した以外は実施例2と同一
の原料および処理条件によって処理して、比較例2に係
るAlN多層回路基板を調製した。
On the other hand, as Comparative Example 2, the degreased molded body was filled in a carbon baking vessel (sheath) and continuously formed at a temperature of 1900 ° C. for 48 hours in a state of forming a strongly reducing atmosphere. Then, the AlN multilayer circuit board according to Comparative Example 2 was prepared by treating with the same raw materials and treating conditions as in Example 2, except that the firing was performed at the same time.

【0038】さらに比較例3として、脱脂した成形体を
窒素ガス雰囲気中で温度1850℃で4時間保持して同
時焼成した後に、従来法通りに1200℃まで毎時30
0℃の冷却速度で冷却し、1200℃から炉冷した以外
は実施例2と同一条件で処理して比較例3に係るAlN
多層回路基板を調製した。
Further, as Comparative Example 3, the degreased molded body was held in a nitrogen gas atmosphere at a temperature of 1850 ° C. for 4 hours and simultaneously fired, and then heated up to 1200 ° C. at a rate of 30 per hour as in the conventional method.
AlN according to Comparative Example 3 under the same conditions as in Example 2 except that the cooling rate was 0 ° C. and the furnace was cooled from 1200 ° C.
A multilayer circuit board was prepared.

【0039】こうして調製した実施例2および比較例2
〜3に係るAlN多層回路基板を評価するために、各試
料について酸素含有量,陽イオン不純物含有量,一定配
線長さにおける配線抵抗,基板密度および熱伝導率をそ
れぞれ測定し、下記表2に示す結果を得た。なお、基板
密度,熱伝導率,酸素含有量および陽極イオン不純物量
は、多層基板のAlN焼結体基板のみの部分について測
定した。
Example 2 and Comparative Example 2 thus prepared
In order to evaluate the AlN multilayer circuit boards according to 3 to 3, the oxygen content, the cation impurity content, the wiring resistance at a fixed wiring length, the substrate density and the thermal conductivity of each sample were measured, and the results are shown in Table 2 below. The results shown were obtained. The substrate density, thermal conductivity, oxygen content, and anodic ionic impurity amount were measured only for the portion of the AlN sintered body substrate of the multilayer substrate.

【0040】[0040]

【表2】 [Table 2]

【0041】表2に示す結果から明らかなように、実施
例2に係るAlN多層回路基板において、酸素および陽
イオン不純物含有量が高いにも拘らず、高い熱伝導率を
有する。
As is clear from the results shown in Table 2, the AlN multilayer circuit board according to Example 2 has a high thermal conductivity despite the high oxygen and cation impurity contents.

【0042】一方、比較例2においては、還元性雰囲気
中でAlN焼結体の高純度化焼成を長時間(48時間)
継続して実施しているため、酸素量および陽イオン量は
他の例と比較して大幅に減少し、実施例2より高い熱伝
導率が得られている。しかしながら、焼成に長時間を要
するため、基板製造コストは大幅に増大化し、量産性お
よび経済性は低い。しかもカーボンガスから成る強還元
雰囲気で長時間焼成しているため、配線導体の炭化が進
行し、配線抵抗が大幅に増加した。
On the other hand, in Comparative Example 2, high-purity firing of the AlN sintered body was carried out for a long time (48 hours) in a reducing atmosphere.
Since it is continuously carried out, the amount of oxygen and the amount of cations are significantly reduced as compared with the other examples, and higher thermal conductivity than that of Example 2 is obtained. However, since baking takes a long time, the cost of manufacturing the substrate is significantly increased, and mass productivity and economical efficiency are low. Moreover, since the wiring conductor was carbonized for a long time in a strong reducing atmosphere of carbon gas, the wiring resistance was significantly increased.

【0043】また比較例3においては、同時焼成後、急
冷しているために、酸素および陽イオン不純物を含有す
る微細な酸化物が、図2に示す比較例1の場合と同様に
AlN結晶粒界に沿って薄く、かつ広範囲に分散して形成
される。したがって、熱抵抗が大きく、高い熱伝導性は
得られなかった。
Further, in Comparative Example 3, since the material was rapidly cooled after co-firing, fine oxides containing oxygen and cationic impurities were formed in the same manner as in Comparative Example 1 shown in FIG.
It is formed thinly along the AlN crystal grain boundary and widely dispersed. Therefore, the thermal resistance was large and high thermal conductivity could not be obtained.

【0044】[0044]

【発明の効果】以上説明の通り本発明に係る窒化アルミ
ニウム焼結体によれば、原料中に含まれていた酸素と陽
イオン不純物とAlなどの原料成分とが凝集反応して粒
界部に塊状の化合物相が形成され、かつこの化合物の平
均粒径が窒化アルミニウム結晶粒と同等以上になってい
るため、高熱伝導性を有する高純度のAlN粒子同士が
連続して接触する組織割合が増加する一方、熱伝導性を
阻害する不純物を含有する化合物が局所的に凝集して形
成される。したがって、焼結体全体として高い熱伝導率
を有し、かつ上記化合物によって透光性が充分に抑制さ
れたAlN焼結体が得られる。
As described above, according to the aluminum nitride sintered body of the present invention, the oxygen contained in the raw material, the cation impurities and the raw material components such as Al undergo an agglomeration reaction to form a grain boundary portion. Since a massive compound phase is formed and the average grain size of this compound is equal to or greater than that of the aluminum nitride crystal grains, the proportion of the structure in which high-purity AlN particles having high thermal conductivity are continuously in contact with each other is increased. On the other hand, a compound containing an impurity that impairs thermal conductivity is locally aggregated and formed. Therefore, it is possible to obtain an AlN sintered body having a high thermal conductivity as a whole as a whole and having the translucency sufficiently suppressed by the above compound.

【0045】また酸素および陽イオン不純物は熱伝導性
を阻害しない程度に焼結体の局部に凝集されるため、こ
れらの不純物を積極的に除去する操作は必要としない。
したがって、不可避的に付着する酸素も含めて不純物含
有量が多い安価な原料を使用することが可能になり、原
料コストを低減することができる。特に従来、高熱伝導
性を達成するために、上記不純物を除去すべく、還元性
雰囲気中で長時間、焼結体の高純度化焼成処理が必要で
あったが、本願発明によれば、窒素ガス等の非酸化性雰
囲気における焼結により、熱伝導率が200W/m・K
以上と、熱伝導性に優れたAlN焼結体が安価に製造で
きる。
Oxygen and cation impurities are agglomerated locally in the sintered body to the extent that they do not impair the thermal conductivity, so that it is not necessary to actively remove these impurities.
Therefore, it becomes possible to use an inexpensive raw material containing a large amount of impurities including oxygen which is inevitably attached, and the raw material cost can be reduced. In particular, conventionally, in order to achieve the high thermal conductivity, it was necessary to perform a high-purification firing treatment on the sintered body for a long time in a reducing atmosphere in order to remove the impurities. Thermal conductivity of 200 W / mK by sintering in non-oxidizing atmosphere such as gas
From the above, an AlN sintered body having excellent thermal conductivity can be manufactured at low cost.

【0046】また本発明に係る窒化アルミニウム多層回
路基板によれば、配線導体を形成した各層の基板におい
て酸素等の不純物が局所的に凝集して化合物を形成して
いるため、熱伝導性が高く高純度のAlN粒子が連続す
る割合が多い。したがって、多層回路基板全体として熱
伝導率が高い。
Further, according to the aluminum nitride multilayer circuit board of the present invention, since impurities such as oxygen are locally aggregated to form a compound in the board of each layer on which the wiring conductor is formed, the thermal conductivity is high. There are many continuous high-purity AlN particles. Therefore, the thermal conductivity of the entire multilayer circuit board is high.

【0047】特に製造工程において、酸素等の不純物を
完全にするために強還元性雰囲気において長時間、高純
度化焼成処理を行なう必要がなく、窒素ガス等の不活性
ガス雰囲気中で焼成操作を実施することができるため、
焼成時における配線導体の炭化による損傷,断線がない
ため、信頼性に優れた多層回路基板を、高い歩留りおよ
び製造効率で生産することができる。
Particularly in the manufacturing process, it is not necessary to carry out the high-purification baking treatment in a strong reducing atmosphere for a long time in order to completely remove impurities such as oxygen, and the baking operation is performed in an inert gas atmosphere such as nitrogen gas. Because it can be implemented
Since there is no damage or disconnection due to carbonization of the wiring conductor during firing, it is possible to produce a highly reliable multilayer circuit board with high yield and manufacturing efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1に係る窒化アルミニウム焼結体の破断
面の結晶組織を模式的に示す組織図。
FIG. 1 is a structural diagram schematically showing a crystal structure of a fracture surface of an aluminum nitride sintered body according to Example 1.

【図2】比較例1に係る窒化アルミニウム焼結体の破断
面の結晶組織を模式的に示す組織図。
FIG. 2 is a structural diagram schematically showing a crystal structure of a fracture surface of an aluminum nitride sintered body according to Comparative Example 1.

【符号の説明】[Explanation of symbols]

1 AlN結晶粒子 2 塊状化合物(酸化物相) 2a 化合物(酸化物) 1 AlN crystal particles 2 Bulk compound (oxide phase) 2a compound (oxide)

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−126286(JP,A) 特開 平5−105527(JP,A) 特開 平5−17236(JP,A) 特表 平8−508461(JP,A) (58)調査した分野(Int.Cl.7,DB名) C04B 35/581 ─────────────────────────────────────────────────── --Continued from the front page (56) References JP-A-1-126286 (JP, A) JP-A-5-105527 (JP, A) JP-A-5-17236 (JP, A) Special Table 8- 508461 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C04B 35/581

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 0.8重量%以上の酸素および0.16
重量%以上の陽イオン不純物の少なくとも一方を含有す
る窒化アルミニウム結晶組織から成り、上記酸素と陽イ
オン不純物とを含有する塊状化合物が結晶組織中に形成
され上記塊状化合物の平均粒径が窒化アルミニウム結晶
粒の平均粒径以上であることを特徴とする窒化アルミニ
ウム焼結体。
1. 0.8% by weight or more of oxygen and 0.16
An aluminium nitride crystal structure containing at least one of the cation impurities in an amount of at least% by weight, and a lump compound containing the oxygen and the cation impurities is formed in the crystal structure, and the lump compound has an average particle diameter of aluminum nitride crystal. An aluminum nitride sintered body characterized by having an average grain size or more.
【請求項2】 熱伝導率が200W/m・K以上である
ことを特徴とする請求項1記載の窒化アルミニウム焼結
体。
2. The aluminum nitride sintered body according to claim 1, which has a thermal conductivity of 200 W / m · K or more.
【請求項3】 0.8重量%以上の酸素および0.16
重量%以上の陽イオン不純物の少なくとも一方を含有す
る窒化アルミニウム結晶組織から成り、上記酸素と陽イ
オン不純物とを含有する塊状化合物が結晶組織中に形成
され上記塊状化合物の平均粒径が窒化アルミニウム結晶
粒の平均粒径以上である窒化アルミニウム焼結体と配線
導体とが同時焼結されていることを特徴とする窒化アル
ミニウム多層回路基板。
3. Oxygen of 0.8% by weight or more and 0.16
An aluminium nitride crystal structure containing at least one of the cation impurities in an amount of at least% by weight, and a lump compound containing the oxygen and the cation impurities is formed in the crystal structure, and the lump compound has an average particle diameter of aluminum nitride crystal. An aluminum nitride multilayer circuit board, characterized in that an aluminum nitride sintered body having an average grain size or more and a wiring conductor are simultaneously sintered.
JP33672493A 1993-12-28 1993-12-28 Aluminum nitride sintered body and aluminum nitride multilayer circuit board Expired - Lifetime JP3450400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33672493A JP3450400B2 (en) 1993-12-28 1993-12-28 Aluminum nitride sintered body and aluminum nitride multilayer circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33672493A JP3450400B2 (en) 1993-12-28 1993-12-28 Aluminum nitride sintered body and aluminum nitride multilayer circuit board

Publications (2)

Publication Number Publication Date
JPH07187789A JPH07187789A (en) 1995-07-25
JP3450400B2 true JP3450400B2 (en) 2003-09-22

Family

ID=18302136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33672493A Expired - Lifetime JP3450400B2 (en) 1993-12-28 1993-12-28 Aluminum nitride sintered body and aluminum nitride multilayer circuit board

Country Status (1)

Country Link
JP (1) JP3450400B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6316116B1 (en) 1999-04-30 2001-11-13 Kabushiki Kaisha Toshiba Ceramic circuit board and method of manufacturing the same
JP4918663B2 (en) * 2008-09-12 2012-04-18 株式会社東芝 Circuit board manufacturing method
DE102009033501B4 (en) * 2009-07-15 2016-07-21 Schott Ag Method and device for continuous melting or refining of melts

Also Published As

Publication number Publication date
JPH07187789A (en) 1995-07-25

Similar Documents

Publication Publication Date Title
JP6822362B2 (en) Manufacturing method of silicon nitride substrate and silicon nitride substrate
US4272500A (en) Process for forming mullite
JPH01203270A (en) Sintered aluminum nitride body having high thermal conductivity and its production
CN1356967A (en) Low temp sinterable and low loss dielectric ceramic compsns. and method thereof
US5145540A (en) Ceramic composition of matter and its use
EP3613718B1 (en) Sintered body, substrate, circuit board, and method of manufacturing a sintered body
JPH042663A (en) Colored aluminum nitride sintered material having high thermal conductivity and production thereof
EP2189431B1 (en) Aluminum nitride sintered product, method for producing the same and electrostatic chuck including the same
JP3450400B2 (en) Aluminum nitride sintered body and aluminum nitride multilayer circuit board
JPH06206772A (en) Aluminum nitride sintered compact and ceramic circuit substrate
JPH0616477A (en) Production of low-temperature sintering type ceramic for packaging of semiconductor device
US6602623B1 (en) Low-temperature firing ceramic composition, process for producing same and wiring substrate prepared by using same
JP2018008863A (en) Dielectric ceramic material and dielectric ceramic composition
KR102189481B1 (en) Dielectric ceramics composition for high frequency device, ceramic substrate thereby and manufacturing method thereof
JP4533994B2 (en) Plasma corrosion resistant material, manufacturing method thereof and member thereof
JP2006151775A (en) Method for manufacturing low-temperature firing oxide ceramic material, low-temperature firing oxide ceramic material, low-temperature firing oxide ceramic material electronic component, and method for manufacturing the same
JPS63277569A (en) Production of sintered aluminum nitride having high thermal conductivity
CN113800898B (en) Low-cost low-dielectric microwave dielectric ceramic co-fired with aluminum electrode and preparation method thereof
JP2016160176A (en) Method for producing low temperature sintered alumina ceramic
JP2003073169A (en) Aluminum nitride sintered compact, its manufacturing method and circuit substrate using the same
JPH02279568A (en) Aluminum nitride-based sintered body and its production
JP2851712B2 (en) Aluminum nitride circuit board
JPH0352287A (en) Ceramic circuit board, package, and its manufacture and material therefor
JPH0881266A (en) Production of aluminum nitride sintered compact
JPH08259329A (en) Aln continuous baking furnace

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090711

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100711

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100711

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 10

EXPY Cancellation because of completion of term