JPH04275980A - Production of aluminum nitride sintered body - Google Patents

Production of aluminum nitride sintered body

Info

Publication number
JPH04275980A
JPH04275980A JP3053500A JP5350091A JPH04275980A JP H04275980 A JPH04275980 A JP H04275980A JP 3053500 A JP3053500 A JP 3053500A JP 5350091 A JP5350091 A JP 5350091A JP H04275980 A JPH04275980 A JP H04275980A
Authority
JP
Japan
Prior art keywords
sintered body
oxygen
aluminum nitride
aln
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3053500A
Other languages
Japanese (ja)
Inventor
Katsuhisa Ishikawa
石川 勝久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3053500A priority Critical patent/JPH04275980A/en
Publication of JPH04275980A publication Critical patent/JPH04275980A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a high density AlN sintered body having high heat conductivity by firing AlN powder having <=0.8wt.% oxygen content. CONSTITUTION:The oxide of an alkaline earth metal or a rare earth metal is added to AlN powder having <=0.8wt.% oxygen content as starting material and an AlN sintered body is produced with the resulting powdery mixture having >=0.8wt.% total oxygen content.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は窒化アルミニウム焼結体
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing aluminum nitride sintered bodies.

【0002】0002

【従来の技術】近年、半導体工業の急速な技術革新によ
り、IC,LSIをはじめとする大規模集積回路は高集
積化、高出力化が行われ、これに伴ってシリコン素子の
単位面積当たりの発熱量が大幅に増加してきた。このた
め、シリコン素子の通電動作による発熱により、シリコ
ン素子の正常な動作が妨げられるという問題が生じ始め
ており、それに伴って熱伝導性の良い絶縁性基板材料が
要求されている。従来、絶縁性基板材料としては、一般
にアルミナ焼結体が最も多く使用されている。しかしな
がら、最近ではアルミナ基板は熱放散に関しては満足し
ているとは言えず、さらに熱放散性(熱伝導性)の優れ
た絶縁性基板材料の開発が要求されるようになってきた
。このような絶縁性基板材料としては、熱伝導性が良い
(熱伝導率が大きい)、電気絶縁性である、熱膨張率が
シリコン単結晶の値に近い、機械的強度が大きい等の特
性が要求される。
[Background Art] In recent years, due to rapid technological innovation in the semiconductor industry, large-scale integrated circuits such as ICs and LSIs have become more highly integrated and have higher output. The amount of heat generated has increased significantly. For this reason, a problem has begun to arise in which the normal operation of the silicon element is hindered by heat generation due to the energizing operation of the silicon element, and accordingly, an insulating substrate material with good thermal conductivity is required. Conventionally, alumina sintered bodies have generally been most commonly used as insulating substrate materials. However, recently, alumina substrates cannot be said to be satisfactory in terms of heat dissipation, and there has been a demand for the development of insulating substrate materials with even better heat dissipation properties (thermal conductivity). Such insulating substrate materials have characteristics such as good thermal conductivity (high thermal conductivity), electrical insulation, thermal expansion coefficient close to that of single crystal silicon, and high mechanical strength. required.

【0003】ところで良好な熱伝導性を有することが知
られている窒化アルミニウムは、熱膨張率が約4.3×
10−6/℃(室温から400℃の平均値)で、アルミ
ナ焼結体の約7×10−6/℃に比べて小さく、シリコ
ン素子の熱膨張率3.5〜4.0×10−6/℃に近い
。また機械的強度も曲げ強さで約50Kg/mm2程度
を有し、アルミナ焼結体の値20〜30Kg/mm2に
比べて高強度な電気絶縁性に優れた材料である。従来、
窒化アルミニウム(AlN)焼結体は窒化アルミニウム
の粉末を成形、焼結して得られるのであるが、窒化アル
ミニウムは難焼結性物質であるため、緻密な焼結体を得
ることが困難である。そして現在までに焼結助剤を加え
、常圧焼結法やホットプレス法により緻密な窒化アルミ
ニウム焼結体を得る試みがなされている。例えば昭和5
9年窯業協会年会予稿集の301ペ−ジには、酸化イッ
トリウム(Y2O3)を焼結助剤として加える窒化アル
ミニウム焼結体の製造方法が示されており、この方法に
よると熱伝導率が100W/m・K(室温)の窒化アル
ミニウム焼結体が得られている。なお、この場合は、窒
化アルミニウム原料粉末の含有酸素量は1.0重量%以
上であった。しかしながら、近年の集積回路技術の発達
に伴い、さらに高熱伝導性を有する熱放散性基板材料が
求められている。
By the way, aluminum nitride, which is known to have good thermal conductivity, has a coefficient of thermal expansion of approximately 4.3×
10-6/℃ (average value from room temperature to 400℃), which is smaller than the approximately 7×10-6/℃ of alumina sintered body, and the coefficient of thermal expansion of silicon elements is 3.5 to 4.0×10- Close to 6/℃. It also has a mechanical strength of about 50 Kg/mm2 in terms of bending strength, which is a material with high strength and excellent electrical insulation, compared to the 20 to 30 Kg/mm2 of alumina sintered body. Conventionally,
Aluminum nitride (AlN) sintered bodies are obtained by molding and sintering aluminum nitride powder, but since aluminum nitride is a difficult-to-sinter substance, it is difficult to obtain dense sintered bodies. . Up to now, attempts have been made to obtain a dense aluminum nitride sintered body by adding a sintering aid and using pressureless sintering or hot pressing. For example, Showa 5
Page 301 of the 1999 Ceramics Association Annual Meeting Proceedings describes a method for producing aluminum nitride sintered bodies in which yttrium oxide (Y2O3) is added as a sintering agent, and according to this method, the thermal conductivity increases. An aluminum nitride sintered body of 100 W/m·K (room temperature) was obtained. In this case, the amount of oxygen contained in the aluminum nitride raw material powder was 1.0% by weight or more. However, with the recent development of integrated circuit technology, there is a demand for heat-dissipating substrate materials with even higher thermal conductivity.

【0004】0004

【発明が解決しようとする課題】窒化アルミニウム(以
下、AlNと記す。)焼結体は、焼結体中に残る酸素量
が少なければ少ない程高熱伝導率化される。従来、Al
N焼結体の研究は、AlN原料中に含まれる酸素料が1
.0重量%以上のものについて行われていたため、含有
酸素量が1.0重量%未満のAlN原料を焼結して、A
lN焼結体の高密度化、高熱伝導率化をするための研究
はあまりなされていなかった。また、酸素含有量の小さ
なAlN原料を用いた場合には、高熱伝導率化と緻密化
が同時になされた焼結体が得られず、それらを達成する
ための最適な条件は得られていないのが実情であった。 本発明は以上述べたような従来の問題点を解決するため
になされたもので、高熱伝導率化と高密度化を同時に満
足させ得る窒化アルミニウム焼結体の製造方法を提供す
ることを目的とする。
[Problems to be Solved by the Invention] The thermal conductivity of an aluminum nitride (hereinafter referred to as AlN) sintered body increases as the amount of oxygen remaining in the sintered body decreases. Conventionally, Al
Research on N sintered bodies has shown that the oxygen content in the AlN raw material is 1
.. Since the method was performed for 0% by weight or more, sintering of AlN raw material with an oxygen content of less than 1.0% by weight was performed.
Not much research has been done to increase the density and thermal conductivity of IN sintered bodies. Furthermore, when an AlN raw material with a small oxygen content is used, it is not possible to obtain a sintered body that has high thermal conductivity and densification at the same time, and the optimal conditions for achieving both cannot be obtained. was the reality. The present invention was made in order to solve the conventional problems as described above, and its purpose is to provide a method for manufacturing an aluminum nitride sintered body that can simultaneously satisfy high thermal conductivity and high density. do.

【0005】[0005]

【課題を解決するための手段】本発明は、含有酸素量が
0.8重量%以下の窒化アルミニウム原料粉末に、アル
カリ土類金属の酸化物または希土類金属の酸化物を添加
し、窒化アルミニウム原料粉末中に含まれている酸素量
と、添加物中に含まれている酸素量との合計量を0.8
重量%以上にした混合粉末を成形、脱脂し、次いで焼成
してなることを特徴とする窒化アルミニウム焼結体の製
造方法である。
[Means for Solving the Problems] The present invention provides aluminum nitride raw material powder by adding an alkaline earth metal oxide or rare earth metal oxide to aluminum nitride raw material powder having an oxygen content of 0.8% by weight or less. The total amount of oxygen contained in the powder and the amount of oxygen contained in the additive is 0.8
This is a method for producing an aluminum nitride sintered body, which comprises molding and degreasing a mixed powder in an amount of at least % by weight, followed by firing.

【0006】本発明で用いられる窒化アルミニウム原料
粉末は酸素含有量が0.8重量%以下のものである。酸
素含有量が0.8重量%を超えると、高熱伝導率を有す
る焼結体が得られない。本発明において、添加物として
は、アルカリ土類金属の酸化物、または熱分解によって
アルカリ土類金属の酸化物となる物質、希土類金属の酸
化物、または熱分解によって希土類金属の酸化物となる
物質が含まれる。これらの化合物の具体例としては、ア
ルカリ土類金属の化合物としてCaC2,CaF2,C
aCO3,BaC2,BaF2,BaCO3,SrC2
,SrF2,SrCO3等を用い、また、希土類金属の
化合物としてはY2O3,YF3,Dy3O3,DyF
3,La2O3,LaF3,CeO2,Nd2O3,N
dF3,Sm2O3,SmF3,Gd2O3,GdF3
等が挙げられる。AlN原料粉末に上記した添加物を加
えた混合粉末の含有酸素量は0.8重量%以上であるこ
とを要する。これが0.8重量%未満の場合には、高密
度化された焼結体が得られない。AlN焼結体を製造す
るには、上記のAlN原料粉末と添加物を混合して均一
化し、次いで常法により成形、焼結することによって得
られる。
The aluminum nitride raw material powder used in the present invention has an oxygen content of 0.8% by weight or less. If the oxygen content exceeds 0.8% by weight, a sintered body with high thermal conductivity cannot be obtained. In the present invention, additives include alkaline earth metal oxides, substances that become alkaline earth metal oxides through thermal decomposition, rare earth metal oxides, or substances that turn into rare earth metal oxides through thermal decomposition. is included. Specific examples of these compounds include CaC2, CaF2, C as alkaline earth metal compounds.
aCO3, BaC2, BaF2, BaCO3, SrC2
, SrF2, SrCO3, etc., and rare earth metal compounds such as Y2O3, YF3, Dy3O3, DyF
3, La2O3, LaF3, CeO2, Nd2O3, N
dF3, Sm2O3, SmF3, Gd2O3, GdF3
etc. The amount of oxygen contained in the mixed powder obtained by adding the above-mentioned additives to the AlN raw powder is required to be 0.8% by weight or more. If this amount is less than 0.8% by weight, a highly densified sintered body cannot be obtained. In order to produce an AlN sintered body, the above-mentioned AlN raw material powder and additives are mixed and homogenized, and then molded and sintered by a conventional method.

【0007】[0007]

【作用】Al原料粉末の含有酸素量と、得られる焼結体
の高密度化との関係を種々研究した結果、AlN原料粉
中に含まれている酸素量と、添加物中に含まれている酸
素量(例えば、CaCO3は加熱途中で分解し、CaO
+CO2↑となるので酸素量はCaOとして計算する。 )との合計が0.8重量%以下の場合は、AlN焼結体
では高密度化しないことが明らかとなった。すなわち、
AlN焼結体が高密度化される際には、一定量の酸素が
必要であり、AlN原料粉中に含まれる酸素量が0.8
重量%に満たない場合には、添加物として酸化物を混合
し、酸素を加えることが必要である。これは、AlN原
料にこれらの添加物を混合し焼結して、AlN焼結体を
高密度化する過程においては、例えば、mCaO・nA
l2O3あるいはmY2O3・nAl2O3(ここにm
,nは正の整数を示す。)等の反応があり、AlNが完
全に緻密化するには、ある一定量のアルミン酸カルシウ
ム,アルミン酸イットリウム等が必要なためである。 また、AlN原料と添加物の混合体は、焼成により高密
度化すると同時に、焼成プロセスで不要となった酸素は
結晶粒界に偏折し、さらに結晶粒界を通してAlN焼結
体の系外に蒸発し、除去される。これにより、含有酸素
量が0.8重量%に満たないAlN原料粉末を用い、高
密度化、高熱伝導率化されたAlN焼結体を製造するこ
とが可能となる。
[Effect] As a result of various studies on the relationship between the amount of oxygen contained in the Al raw material powder and the densification of the obtained sintered body, we found that the amount of oxygen contained in the AlN raw material powder and the relationship between the amount of oxygen contained in the additives (For example, CaCO3 decomposes during heating, and CaO
Since +CO2↑, the amount of oxygen is calculated as CaO. ) is 0.8% by weight or less, it has become clear that the AlN sintered body does not have a high density. That is,
When densifying an AlN sintered body, a certain amount of oxygen is required, and the amount of oxygen contained in the AlN raw material powder is 0.8
If it is less than % by weight, it is necessary to mix oxides as additives and add oxygen. This is because, for example, in the process of mixing these additives into the AlN raw material and sintering it to densify the AlN sintered body,
l2O3 or mY2O3・nAl2O3 (here m
, n indicates a positive integer. ), and a certain amount of calcium aluminate, yttrium aluminate, etc. is required for AlN to become completely densified. In addition, the mixture of AlN raw materials and additives is densified by firing, and at the same time, oxygen that is no longer needed in the firing process is polarized to the grain boundaries, and further passes through the grain boundaries to the outside of the AlN sintered body. evaporated and removed. This makes it possible to produce an AlN sintered body with high density and high thermal conductivity using AlN raw material powder containing less than 0.8% by weight of oxygen.

【0008】[0008]

【実施例】次に本発明の実施例について説明する。 実施例1 平均粒径が0.5μmで、含有酸素量が0.4重量%,
0.8重量%,1.0重量%の3種類のAlN原料粉末
に、表1に示すように添加物を加えた。これをホモジナ
イガ―にて、5000r.p.mの回転速度で5分間混
合した。泥奨を濾過・乾燥後、粉末結合剤を加え、一軸
加圧成型機で100Kg/cm2の圧力で成形し、さら
に静水圧等方加圧成型機で2000Kg/cm2の圧力
で加圧し、約φ40.0×5mmtのディスクに成形し
た。次に、脱脂炉にて脱脂し、焼成炉にて1900℃―
3時間焼成した。得られた試料をφ10×3.0mmt
のディスクに成形し、焼結密度と熱伝導率を測定し、こ
れを表2に示した。AlN焼結体の理論密度は、3.2
6g/cm3である。熱伝導率はレ―ザ―フラッシュ法
で測定した。
[Example] Next, an example of the present invention will be described. Example 1 Average particle size is 0.5 μm, oxygen content is 0.4% by weight,
Additives as shown in Table 1 were added to three types of AlN raw material powders of 0.8% by weight and 1.0% by weight. This was mixed with a homogenizer for 5000 r. p. The mixture was mixed for 5 minutes at a rotational speed of m. After filtering and drying the slurry, a powder binder is added and molded using a uniaxial pressure molding machine at a pressure of 100 kg/cm2, and further pressurized at a pressure of 2000 kg/cm2 using a hydrostatic isostatic pressure molding machine to form a mold with a diameter of approximately φ40. It was molded into a disk of .0 x 5 mmt. Next, it is degreased in a degreasing furnace, and heated to 1900℃ in a firing furnace.
It was baked for 3 hours. The obtained sample was φ10×3.0mmt
The sintered density and thermal conductivity were measured and shown in Table 2. The theoretical density of the AlN sintered body is 3.2
It is 6g/cm3. Thermal conductivity was measured by the laser flash method.

【0009】図1に、AlN混合粉中の合計酸素量と焼
結密度との関係を示す。合計酸素量が増大するほど焼結
密度が大きくなっていることがわかる。また、表1およ
び表2中、No.1〜5の試料およびNo.14の試料
は比較例である。No.1〜5の試料は、添加物を加え
ても、AlN原料粉末中に含有されている酸素量と、添
加物中に含まれている酸素量との合計が0.8重量%に
達しない時、AlNが高密度化されない例であり、No
.14の試料は、AlN原料粉末中に酸素が1.0重量
%含まれている場合は、添加物を加えなくても高密度化
されているが、熱伝導率の点で劣る例である。No.1
4の試料の場合は、酸素は1.0重量%含有されており
、この酸素がAlN原料粉中に含まれている不純物、例
えばCaやBaと反応してCaOやBaOとなり、アル
ミン酸カルシウムやアルミン酸バリウムを生成し、Al
Nの高密度化の際役立っていると考えられる。試料No
.6〜13の試料は、AlN原料粉末中に含有されてい
る酸素量と、添加物に含まれている酸素量との合計が0
.8重量%以上の場合の本発明の例であり、高密度化、
高熱伝導率化されている例である。このうち、試料No
.6の焼結体は、酸素量が0.18%であった。その他
の物性および特性としては、熱膨張係数は約4.3×1
0−6/℃、比抵抗は約3×1013Ω・cm、抗折強
度は約40Kg/mm2であり、さらに透光性を有して
いた。
FIG. 1 shows the relationship between the total amount of oxygen in the AlN mixed powder and the sintered density. It can be seen that the sintered density increases as the total amount of oxygen increases. Also, in Tables 1 and 2, No. Samples 1 to 5 and No. Sample 14 is a comparative example. No. For samples 1 to 5, even if additives are added, the total amount of oxygen contained in the AlN raw powder and the amount of oxygen contained in the additives does not reach 0.8% by weight. , is an example in which AlN is not densified, and No.
.. Sample No. 14 is an example in which, when the AlN raw powder contains 1.0% by weight of oxygen, the density can be increased without adding any additives, but the thermal conductivity is poor. No. 1
In the case of sample 4, oxygen is contained at 1.0% by weight, and this oxygen reacts with impurities contained in the AlN raw material powder, such as Ca and Ba, to form CaO and BaO, resulting in calcium aluminate and Produces barium aluminate, Al
It is thought that this is useful when increasing the density of N. Sample No.
.. In samples 6 to 13, the total amount of oxygen contained in the AlN raw powder and the amount of oxygen contained in the additive was 0.
.. This is an example of the present invention in which the content is 8% by weight or more, and densification,
This is an example of high thermal conductivity. Among these, sample No.
.. The sintered body of No. 6 had an oxygen content of 0.18%. As for other physical properties and characteristics, the coefficient of thermal expansion is approximately 4.3×1
0-6/°C, the specific resistance was about 3 x 1013 Ω·cm, the bending strength was about 40 Kg/mm2, and it also had translucency.

【0010】0010

【表1】 ─────────────────────────
───────          原料中の    
    添加物と      添加物による    合
計  No.    酸素量          添加
量        添加酸素量      酸素量  
        (重量%)      (重量%) 
   (重量%)    (重量%)────────
──────────────────────── 
 1*         0.4       CaC
2  1.4        0.0        
    0.40  2*         0.4 
      CaF2  2.0        0.
0            0.40  3*    
     0.4       CaCO3 2.2 
       0.0            0.4
0────────────────────────
────────  4*         0.4 
      CaF2  1.0        0.
21           0.61        
                Y2O3  1.0
 ────────────────────────
────────  5*         0.4 
      CaF2  2.0        0.
38           0.78        
                Dy2O3 3.0
 ────────────────────────
────────  6          0.4 
      Y2O3  3.0        0.
63           1.03  7     
     0.4       Y2O3  5.0 
       1.05           1.4
5  8          0.4       Y
2O3 10.0        2.05     
      2.45  9          0.
4       Y2O3 15.0        
3.15           3.5510    
      0.8       CaC2  1.4
        0.0            0.
8011          0.8       C
aF2  2.0        0.0      
      0.8012          0.8
       Dy2O3 2.0        0
.26           1.0613     
     0.8       Sm2O3 2.0 
       0.27           1.0
7────────────────────────
────────14*         1.0  
     無添加           0.0   
         1.00────────────
────────────────────     
 * 印:比較例である。
[Table 1] ──────────────────────────
─────── In the raw materials
Total No. by additives and additives. Oxygen amount Added amount Added oxygen amount Oxygen amount
(Weight%) (Weight%)
(Weight%) (Weight%)────────
────────────────────────
1* 0.4 CaC
2 1.4 0.0
0.40 2* 0.4
CaF2 2.0 0.
0 0.40 3*
0.4 CaCO3 2.2
0.0 0.4
0────────────────────────
──────── 4* 0.4
CaF2 1.0 0.
21 0.61
Y2O3 1.0
────────────────────────
──────── 5* 0.4
CaF2 2.0 0.
38 0.78
Dy2O3 3.0
────────────────────────
──────── 6 0.4
Y2O3 3.0 0.
63 1.03 7
0.4 Y2O3 5.0
1.05 1.4
5 8 0.4Y
2O3 10.0 2.05
2.45 9 0.
4 Y2O3 15.0
3.15 3.5510
0.8 CaC2 1.4
0.0 0.
8011 0.8C
aF2 2.0 0.0
0.8012 0.8
Dy2O3 2.0 0
.. 26 1.0613
0.8 Sm2O3 2.0
0.27 1.0
7────────────────────────
────────14* 1.0
Additive-free 0.0
1.00────────────
────────────────────
* Mark: Comparative example.

【0011】[0011]

【表2】[Table 2]

【0012】0012

【発明の効果】以上説明したように、本発明の製造方法
で製造した窒化アルミニウム焼結体は高密度で熱伝導性
に優れ、熱的特性、機械的特性さらに光学的特性も良好
である。このため、半導体工業等の放熱材料としての応
用以外に、ルツボ、蒸着容器、耐熱ジグ高温部材等の高
温材料としての応用も可能であり、さらに透光性である
といった光学的性質を利用した窓材等の光学材料として
の応用も可能であるなど、工業的に多くの利点を有する
ものである。
As explained above, the aluminum nitride sintered body produced by the production method of the present invention has high density and excellent thermal conductivity, and also has good thermal properties, mechanical properties, and optical properties. Therefore, in addition to being used as a heat dissipation material in the semiconductor industry, it is also possible to use it as a high-temperature material for crucibles, vapor deposition containers, heat-resistant jigs, and other high-temperature components.Furthermore, it can be used as a window that utilizes optical properties such as translucency. It has many industrial advantages, such as being able to be applied as an optical material.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】AlN混合粉中の合計酸素量と焼結密度との関
係を示す図である。
FIG. 1 is a diagram showing the relationship between the total amount of oxygen in the AlN mixed powder and the sintered density.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  含有酸素量が0.8重量%以下の窒化
アルミニウム原料粉末に、アルカリ土類金属の酸化物ま
たは希土類金属の酸化物を添加し、窒化アルミニウム原
料粉末中に含まれている酸素量と、添加物中に含まれて
いる酸素量との合計量を0.8重量%以上にした混合粉
末を成形、脱脂し、次いで焼成してなることを特徴とす
る窒化アルミニウム焼結体の製造方法。
Claim 1: Alkaline earth metal oxides or rare earth metal oxides are added to aluminum nitride raw material powder containing 0.8% by weight or less of oxygen, and the oxygen contained in the aluminum nitride raw material powder is removed. of aluminum nitride sintered body, characterized in that it is formed by molding, degreasing, and then firing a mixed powder in which the total amount of oxygen and oxygen contained in additives is 0.8% by weight or more. Production method.
JP3053500A 1991-02-27 1991-02-27 Production of aluminum nitride sintered body Pending JPH04275980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3053500A JPH04275980A (en) 1991-02-27 1991-02-27 Production of aluminum nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3053500A JPH04275980A (en) 1991-02-27 1991-02-27 Production of aluminum nitride sintered body

Publications (1)

Publication Number Publication Date
JPH04275980A true JPH04275980A (en) 1992-10-01

Family

ID=12944551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3053500A Pending JPH04275980A (en) 1991-02-27 1991-02-27 Production of aluminum nitride sintered body

Country Status (1)

Country Link
JP (1) JPH04275980A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11199324A (en) * 1998-01-05 1999-07-27 Fuji Electric Co Ltd Aluminum nitride sintered product and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11199324A (en) * 1998-01-05 1999-07-27 Fuji Electric Co Ltd Aluminum nitride sintered product and its production

Similar Documents

Publication Publication Date Title
JPS6353151B2 (en)
JPS6331434B2 (en)
JPH04275980A (en) Production of aluminum nitride sintered body
KR20220076996A (en) Aluminium nitride ceramics composition and manufacturing method thereof
JPH0196067A (en) Production of aluminum nitride sintered body
KR102626997B1 (en) Composition for manufacturing AlN ceramics including Sc2O3 as sintering aid and the AlN ceramics and the manufacturing method of the same
JPS61261270A (en) Manufacture of aluminum nitride sintered body
JP2876521B2 (en) Manufacturing method of aluminum nitride sintered body
JPH0312363A (en) Aluminum nitride-containing sintered body and its manufacture
JPH02279568A (en) Aluminum nitride-based sintered body and its production
JP3434963B2 (en) Aluminum nitride sintered body and method for producing the same
JP2000264737A (en) Aluminum nitride sintered compact and its production
JPH11157919A (en) Alumina-based sintered compact having high strength and its production
JPS62246867A (en) Manufacture of aluminum nitride sintered body
JPH01215760A (en) Production of aluminum nitride sintered form
JPH02149469A (en) Production of aluminum nitride sintered body
JPH0627032B2 (en) Method for manufacturing aluminum nitride sintered body
JPS63218585A (en) High heat-conductive aluminum nitride sintered body and manufacture
JPS61270264A (en) Manufacture of aluminum nitride sintered body
CN118791307A (en) Aluminum nitride powder formula and preparation method thereof
JP3106186B2 (en) Manufacturing method of aluminum nitride sintered body
JPH0566339B2 (en)
JPS61286266A (en) Manufacture of aluminum nitride base sintered body
JP2001270779A (en) Method for producing aluminum nitride sintered compact
JPH02129073A (en) Production of sintered aluminum nitride