JP4623159B2 - Electrostatic chuck - Google Patents

Electrostatic chuck Download PDF

Info

Publication number
JP4623159B2
JP4623159B2 JP2008201771A JP2008201771A JP4623159B2 JP 4623159 B2 JP4623159 B2 JP 4623159B2 JP 2008201771 A JP2008201771 A JP 2008201771A JP 2008201771 A JP2008201771 A JP 2008201771A JP 4623159 B2 JP4623159 B2 JP 4623159B2
Authority
JP
Japan
Prior art keywords
electrostatic chuck
titanium oxide
alumina
volume resistivity
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008201771A
Other languages
Japanese (ja)
Other versions
JP2009010399A (en
Inventor
正美 安藤
淳 宮地
修 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2008201771A priority Critical patent/JP4623159B2/en
Publication of JP2009010399A publication Critical patent/JP2009010399A/en
Application granted granted Critical
Publication of JP4623159B2 publication Critical patent/JP4623159B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

本発明は半導体ウエハおよびFPD用ガラス基板等の被吸着物を静電力で吸着固定する静電チャックに関する発明である。   The present invention relates to an electrostatic chuck for attracting and fixing an object to be adsorbed such as a semiconductor wafer and a glass substrate for FPD by electrostatic force.

従来の静電チャックセラミック誘電体は、その電気特性を制御することを目的として構成されていた(例えば、特許文献1参照)。
このような場合、プラズマ環境下にセラミック組織がさらされた場合、組織が侵食を受け表面粗さが悪くなりその結果、静電チャック表面とウェハ間の接触状態が変化することによる経時変化が生じたり、焼結体から粒子が脱粒しパーティクルとして発塵しLSIの配線間ショートを引き起こすなどの原因となる場合があった。
Conventional electrostatic chuck ceramic dielectrics have been configured for the purpose of controlling their electrical characteristics (see, for example, Patent Document 1).
In such a case, when the ceramic structure is exposed to a plasma environment, the structure is eroded and the surface roughness is deteriorated, resulting in a change with time due to a change in the contact state between the electrostatic chuck surface and the wafer. In some cases, particles may fall from the sintered body and be generated as particles, causing a short circuit between LSI wirings.

また、粒子径が2μm以下、相対密度99.9%であって耐プラズマ性を向上させたアルミナセラミック材料で静電チャックに適用した例もある(例えば、特許文献2参照。)。しかし、この場合も耐プラズマ性は良好であってもその電気物性に関しての記載がなく大きな吸着力が発現するいわゆるジョンセンッラーベック型静電チャックの基本的な機能を発揮させられない。   Also, there is an example in which an alumina ceramic material having a particle size of 2 μm or less and a relative density of 99.9% and improved plasma resistance is applied to an electrostatic chuck (for example, see Patent Document 2). However, even in this case, even if the plasma resistance is good, there is no description about the electrical physical properties, and the basic function of the so-called John Seller Beck type electrostatic chuck that expresses a large adsorption force cannot be exhibited.

また、酸化チタンが0.1〜1wt%含有し、体積抵抗率を10〜10Ωcmを示すアルミナセラミックが開示されている(例えば、特許文献3参照。)。しかし、この場合静電チャックとしての機能を発揮させるような電気特性を得ることができない。 Further, an alumina ceramic containing 0.1 to 1 wt% of titanium oxide and having a volume resistivity of 10 0 to 10 4 Ωcm is disclosed (for example, see Patent Document 3). However, in this case, it is not possible to obtain electrical characteristics that can function as an electrostatic chuck.

また、アルミナセラミックに酸化チタンを0.5〜2wt%添加することにより誘電体の体積抵抗率を低くした静電チャックが開示されている。(例えば、特許文献4参照。)この場合、0.5wt%より低いと抵抗が下がらず、2wt%以上添加すると電流が流れすぎることが開示されている。さらに酸化チタンはアルミナセラミックスの粒界に析出することが開示されている。すなわち体積抵抗率を下げるには少なくとも0.5wt%以上の添加物が必要であり、被吸着物に対する不純物の混入に厳しい制約のある静電チャックとしては添加物の量が多い。   Also disclosed is an electrostatic chuck in which the volume resistivity of the dielectric is reduced by adding 0.5 to 2 wt% of titanium oxide to alumina ceramic. (For example, refer to Patent Document 4.) In this case, it is disclosed that the resistance does not decrease when the content is lower than 0.5 wt%, and the current flows too much when 2 wt% or more is added. Furthermore, it is disclosed that titanium oxide precipitates at the grain boundaries of alumina ceramics. That is, an additive of at least 0.5 wt% or more is necessary to reduce the volume resistivity, and the amount of the additive is large as an electrostatic chuck having severe restrictions on the mixing of impurities into the adsorbed object.

また、アルミナが99%以上、平均粒子径が1〜3μmであり、300〜500℃においてその体積抵抗率が10〜1011Ωcmとなるような静電チャックが開示されている。(例えば、特許文献5)しかし、それ以外の温度例えば100℃以下の比較的低温で使用される静電チャックに必要な誘電体の物性に関する記載はない。
特許第3084869号公報 特開平10−279349号公報 特開平2004−18296号公報 特公平6−97675号公報 特開平11−312729号公報
Further, an electrostatic chuck is disclosed in which alumina is 99% or more, the average particle diameter is 1 to 3 μm, and the volume resistivity is 10 8 to 10 11 Ωcm at 300 to 500 ° C. (For example, Patent Document 5) However, there is no description regarding the physical properties of the dielectric necessary for the electrostatic chuck used at other temperatures, for example, at a relatively low temperature of 100 ° C. or lower.
Japanese Patent No. 3084869 JP-A-10-279349 Japanese Patent Laid-Open No. 2004-18296 Japanese Patent Publication No. 6-97675 Japanese Patent Laid-Open No. 11-312729

本発明は、プラズマにさらされた後も平滑な面が維持できその結果、シリコンウェハ等の被吸着物に対するパーティクル汚染を抑制でき、かつ被吸着体の吸着、離脱特性の優れ、低温焼成で作製することが容易な静電チャックを提供することである。   The present invention can maintain a smooth surface even after being exposed to plasma. As a result, it can suppress particle contamination of the adsorbed material such as a silicon wafer and has excellent adsorption and desorption characteristics of the adsorbed material. An electrostatic chuck that is easy to do is to be provided.

上記目的を達成するために本発明においては、アルミナの重量パーセントをX、酸化チタンの重量パーセントを(100−X)としたときに、Xが99.4wt%以上であり99.8wt%よりも小さく、体積抵抗率が室温において10〜1011Ωcmかつアルミナ粒子の粒界に酸化チタンが偏析した構造の静電チャック用誘電体を備え、さらに前記アルミナ粒子の粒内および粒界にチタン酸アルミニウム(AlTiO)が存在しない静電チャックを開示した。その結果静電チャック誘電体の耐プラズマ性の向上と静電チャックの基本機能の高度な両立を可能とするとともに、安価に製造できるようにした。 In order to achieve the above object, in the present invention, when the weight percentage of alumina is X and the weight percentage of titanium oxide is (100-X), X is 99.4 wt% or more , and more than 99.8 wt%. A dielectric for electrostatic chuck having a small volume resistivity of 10 8 to 10 11 Ωcm at room temperature and segregation of titanium oxide at the grain boundaries of alumina particles; and titanic acid inside and at the grain boundaries of the alumina particles. An electrostatic chuck free of aluminum (Al 2 TiO 5 ) has been disclosed. As a result, it is possible to improve the plasma resistance of the electrostatic chuck dielectric and the basic functions of the electrostatic chuck at a high level, and to manufacture it at low cost.

体積抵抗率を10〜1011Ωcmにする必要があるのは、静電チャックの吸着力としてジョンセン・ラーベック効果を用いるためである。ジョンセン・ラーベック効果を用いることにより非常に大きな吸着力が発生しその結果として静電チャックの表面に凸部を設けることにより被吸着物との接触面積を吸着面の面積に対して1〜10%と少なくすることができる。 The reason why the volume resistivity needs to be 10 8 to 10 11 Ωcm is that the Johnsen-Rahbek effect is used as the attractive force of the electrostatic chuck. By using the Johnsen-Rahbek effect, a very large attracting force is generated. As a result, by providing a convex portion on the surface of the electrostatic chuck, the contact area with the object to be attracted is 1 to 10% of the area of the attracting surface. And can be reduced.

更に、表面に設けた凸部の高さを5〜15μmにすることによって被接触部でも吸着力がはたらかせることができる。その結果凸部の面積を吸着面の面積に対して0.001%以上0.5%未満にすることができる。被吸着物の温度は凸部の接触面積が小さくなるにつれ接触部を介して伝熱がなされるため、例え凸部の組織がプラズマによる侵食を受けてもその影響は小さくなる。従って、プラズマ耐性をあげることと、被吸着物との接触を極力少なくすることで結果的に経時変化の少ない静電チャックが実現できる。   Further, by making the height of the convex portion provided on the surface 5 to 15 μm, the attracting force can be exerted even in the contacted portion. As a result, the area of the convex portion can be made 0.001% or more and less than 0.5% with respect to the area of the suction surface. Since the temperature of the object to be adsorbed is transferred through the contact portion as the contact area of the convex portion becomes small, even if the structure of the convex portion is eroded by plasma, the influence is small. Therefore, an electrostatic chuck with little change with time can be realized as a result of increasing plasma resistance and minimizing contact with the object to be adsorbed.

また、上記の吸着力の応答特性をよくするためには以下の式の値を小さくする必要がある。
ts=1.731×10-11×ρ(εr+d/h) (秒)
ここで、tsは初期の吸着力を100%としてそれが2%まで崩壊するまでの時間(秒)、ρは誘電層の体積抵抗率(Ωm)、εrは誘電層の比誘電率、dは誘電層の厚み(m)、hは凸部の高さ(m)である。この式の値が0.001から0.6でかつ凸部の高さが5〜15μmであれば凸部の面積を吸着面に対して0.001〜0.5%にまですることができかつ吸着力の電圧印加、除荷に対する応答性の良い静電チャックとすることができる。
上記の式は図1の等価回路より解析的に計算し〔数1〕から〔数4〕を導出して得られるものである。ここでq1は電荷密度、Sは電極面積、Cは静電容量、Gはコンダクタンス、Vは印加電圧、tは時間(変数)、Tは電圧印加時間である。
Further, in order to improve the response characteristic of the above-described adsorption force, it is necessary to reduce the value of the following expression.
ts = 1.731 × 10 −11 × ρ (εr + d / h) (second)
Here, ts is the time (seconds) until the initial attractive force becomes 100% and collapses to 2%, ρ is the volume resistivity (Ωm) of the dielectric layer, εr is the relative dielectric constant of the dielectric layer, and d is The thickness (m) and h of the dielectric layer are the height (m) of the protrusions. If the value of this formula is 0.001 to 0.6 and the height of the convex portion is 5 to 15 μm, the area of the convex portion can be 0.001 to 0.5% with respect to the adsorption surface. In addition, it is possible to provide an electrostatic chuck with good response to voltage application and unloading of attracting force.
The above equation is obtained analytically from the equivalent circuit of FIG. 1 and derived from [Equation 1] to [Equation 4]. Here, q1 is the charge density, S is the electrode area, C is the capacitance, G is the conductance, V is the applied voltage, t is the time (variable), and T is the voltage application time.

Figure 0004623159
Figure 0004623159

Figure 0004623159
Figure 0004623159

Figure 0004623159
Figure 0004623159

Figure 0004623159
Figure 0004623159

本発明によれば、プラズマにさらされた後も平滑な面が維持できその結果、シリコンウェハ等の被吸着物に対するパーティクル汚染を抑制でき、かつ被吸着体の吸着、離脱特性の優れ、低温焼成で作製することが容易な静電チャックを製作できるという効果がある。   According to the present invention, a smooth surface can be maintained even after being exposed to plasma. As a result, particle contamination of the adsorbent such as a silicon wafer can be suppressed, and the adsorption and desorption characteristics of the adsorbent are excellent. There is an effect that an electrostatic chuck that can be easily manufactured can be manufactured.

原料としてアルミナ、酸化チタン、その他遷移金属酸化物を表1に示す配合比で造粒した。アルミナは平均粒子径0.1μm、純度99.99%以上のものを準備した。酸化チタンは、純度98%以上のものを用いた。   Alumina, titanium oxide, and other transition metal oxides were granulated at the mixing ratio shown in Table 1 as raw materials. Alumina having an average particle diameter of 0.1 μm and a purity of 99.99% or more was prepared. Titanium oxide having a purity of 98% or more was used.

(スラリー調整、造粒、生加工)
上記原料を表1に示す配合比で混合粉砕し、アクリル系バインダーを添加、調整後スプレードライヤーで造粒し顆粒粉を作製した。顆粒粉はゴム型に詰めた後CIP(圧力1ton/cm)を実施してインゴットを作製し、その後所定の形状に加工し生成形体を作製した。混合にはイオン交換水等を用いなるべく不純物が混入しないようにした。
(焼成)
上記生加工体を窒素、水素ガス還元雰囲気下で焼成した。焼成温度は1150〜1350℃、焼成時間は1〜8時間とし、もっともかさ密度が高い条件を選択した。このとき脱脂のために加湿ガスを使用している。還元焼成を行うのは酸化チタンの非化学量論組成化をねらい、体積抵抗率の調節をねらうためである。
(HIP処理)
さらにHIP処理をおこなった。HIP条件はArガス1500気圧とし、温度は焼成温度と同一または30℃下げた温度とした。
(物性測定)
上記HIP処理により得られたものは焼成かさ密度、焼成体組織SEM観察による平均粒子径測定、体積抵抗率測定、真空中での摩擦力測定、残留時間測定を行った。摩擦力測定および残留時間測定にはセラミックス誘電層の厚みを1mmとした。吸着電圧は200V印加とし、さらに残留時間測定には1分間電圧印可後に電源をオフし、残留する摩擦力の減衰を測定した。被吸着物はシリコンウェハミラー面とした。残留時間は電源オフ後摩擦力が2%にまで減衰する時間を残留時間とした。
また、実際にプラズマを照射しセラミックスの表面粗さ(中心線平均粗さRa)変化を測定した。初期状態では表面粗さはRa0.05μm以下にした。プラズマはリアクティブイオンエッチング装置、エッチングガスはCF4+O2で1000W、5時間プラズマ放電させた。
また、サンプルの一部につき静電チャックの実用的な吸着力の評価として吸着している被吸着体との間にHeガスの圧力を負荷して被吸着体がはがれるときの圧力(POPOFF吸着力)を記録した。このときの吸着電圧は1000Vである。
(比較品)
また比較のため従来の製法によるアルミナセラミックスを例示した。その配合は比較品1が平均粒子径0.5μmのアルミナ98wt%、酸化チタン2wt%、比較品2がアルミナ99wt%、酸化チタン1wt%で、焼成温度は1580℃である。尚、比較品1の表面粗さは初期状態でRa0.23μmであった。比較品2の表面粗さは初期状態でRa0.2μmであった。比較品はHIP処理はしていない。
(Slurry adjustment, granulation, raw processing)
The above raw materials were mixed and pulverized at a blending ratio shown in Table 1, an acrylic binder was added, and after adjustment, granulated with a spray dryer to prepare granule powder. The granular powder was packed into a rubber mold, and then CIP (pressure 1 ton / cm 2 ) was performed to produce an ingot, which was then processed into a predetermined shape to produce a formed shape. Ion exchange water or the like was used for mixing so that impurities were not mixed as much as possible.
(Baking)
The raw processed body was fired in a nitrogen and hydrogen gas reducing atmosphere. The firing temperature was 1150 to 1350 ° C., the firing time was 1 to 8 hours, and the conditions with the highest bulk density were selected. At this time, humidified gas is used for degreasing. The reduction firing is performed for the purpose of adjusting the volume resistivity with the aim of non-stoichiometric composition of titanium oxide.
(HIP processing)
Further HIP processing was performed. The HIP condition was Ar gas 1500 atm, and the temperature was the same as the firing temperature or a temperature lowered by 30 ° C.
(Physical property measurement)
What was obtained by the HIP treatment was subjected to firing bulk density, average particle diameter measurement by firing body structure SEM observation, volume resistivity measurement, friction force measurement in vacuum, and residual time measurement. For the friction force measurement and the residual time measurement, the thickness of the ceramic dielectric layer was 1 mm. The adsorption voltage was 200 V, and the remaining time was measured by turning off the power after applying the voltage for 1 minute and measuring the attenuation of the remaining frictional force. The object to be adsorbed was a silicon wafer mirror surface. The remaining time was defined as the time for the frictional force to decay to 2% after the power was turned off.
Moreover, plasma was actually irradiated and the change in the surface roughness (centerline average roughness Ra) of the ceramic was measured. In the initial state, the surface roughness was Ra 0.05 μm or less. Plasma was a reactive ion etching apparatus, and etching gas was CF4 + O2 at 1000 W for 5 hours for plasma discharge.
In addition, as an evaluation of the practical adsorption force of the electrostatic chuck for a part of the sample, the pressure when the adsorption object is peeled off by applying the He gas pressure between the adsorption object and the adsorption object (POPOFF adsorption force) ) Was recorded. The adsorption voltage at this time is 1000V.
(Comparative product)
For comparison, alumina ceramics produced by a conventional manufacturing method is illustrated. The compound 1 is 98 wt% alumina and 2 wt% titanium oxide with an average particle size of 0.5 μm, the comparative product 2 is 99 wt% alumina and 1 wt% titanium oxide, and the firing temperature is 1580 ° C. Incidentally, the surface roughness of the comparative product 1 was Ra 0.23 μm in the initial state. The surface roughness of the comparative product 2 was Ra 0.2 μm in the initial state. The comparative product is not HIPed.

上記試験の結果を表1、表2に示す。焼成温度をコントロールすれば酸化チタン0.2wt%より大きく、0.6wt%以下の添加量で、かさ密度が3.97g/cm以上で静電チャックとして機能する体積抵抗率が得られることがわかった。従来、粒子径が50μm以上ある場合に添加していた量に比べ非常に少ない添加量で同等の効果が得られることがわかった。従来の製法では焼成温度が1580℃と高いために添加した酸化チタンはアルミナと反応してチタン酸アルミニウム(Al2TiO5)等の化合物になっているのに対して、本発明では平均粒子径0.2μm未満、純度99.9%以上の高純度で微粒のアルミナ原料を用いることにより焼成温度が1300℃以下と低くなっているために、添加した酸化チタンはアルミナと反応せずに酸化チタンのまま存在していることがX線回折より確認された。チタン酸アルミニウムは体積抵抗率が比較的高いことが知られており、アルミナの体積抵抗率を下げるためには酸化チタンよりも効率が悪く、より多くの添加量が必要になるものと考えられる。次に、本発明の静電チャック用誘電体の微構造として、焼成温度に対して80〜150℃程度低い温度でサーマルエッチングを行なったサンプルのSEM写真を図4に示す。平均粒子径2μm以下のアルミナ粒子(写真の黒い部分)の粒界に酸化チタン(写真の白い部分)が偏析し連続的につながった構造になっていることがわかった。この酸化チタンが形成するネットワークにより効率的に体積抵抗率を下げることができたものと考えられる。以上の結果より、本発明の静電チャック用誘電体が従来のものと比較して微量の酸化チタンの添加により体積抵抗率を下げることができたのは、添加した酸化チタンがアルミナと反応せずに酸化チタンのまま存在していること、および酸化チタンがアルミナ粒子の粒界に偏析し、連続的につながった構造を形成することによるものである。なお、酸化チタンは還元焼成により非化学量論組成になることで、さらに導電性が良くなっているものと考えられる。このように微量の酸化チタンにより体積抵抗率の制御が可能になり、シリコンウェハ等に対するケミカル汚染も従来に比べ格段に抑制することができたと考えられた。 The results of the above test are shown in Tables 1 and 2. By controlling the firing temperature, it is possible to obtain a volume resistivity that functions as an electrostatic chuck when the bulk density is 3.97 g / cm 3 or more with an addition amount of titanium oxide of 0.2 wt% or more and 0.6 wt% or less. all right. Conventionally, it has been found that the same effect can be obtained with a very small amount of addition compared to the amount added conventionally when the particle diameter is 50 μm or more. In the conventional manufacturing method, since the firing temperature is as high as 1580 ° C., the added titanium oxide reacts with alumina to become a compound such as aluminum titanate (Al 2 TiO 5), whereas in the present invention, the average particle size is 0.2 μm. Since the firing temperature is as low as 1300 ° C. or less by using a high-purity alumina raw material with a purity of 99.9% or more, the added titanium oxide does not react with alumina and remains as titanium oxide This was confirmed by X-ray diffraction. Aluminum titanate is known to have a relatively high volume resistivity, and in order to reduce the volume resistivity of alumina, it is considered that the efficiency is lower than that of titanium oxide, and a larger amount of addition is required. Next, FIG. 4 shows an SEM photograph of a sample subjected to thermal etching at a temperature lower by about 80 to 150 ° C. than the firing temperature as the microstructure of the dielectric for electrostatic chuck of the present invention. It was found that titanium oxide (white portion in the photograph) segregated and continuously connected to the grain boundaries of alumina particles (black portion in the photograph) having an average particle diameter of 2 μm or less. It is considered that the volume resistivity can be efficiently lowered by the network formed by the titanium oxide. From the above results, the dielectric constant for the electrostatic chuck of the present invention was able to lower the volume resistivity by adding a small amount of titanium oxide compared to the conventional one. The added titanium oxide reacted with alumina. This is because the titanium oxide remains as it is, and the titanium oxide segregates at the grain boundaries of the alumina particles to form a continuously connected structure. In addition, it is thought that titanium oxide is further improved in conductivity by becoming non-stoichiometric composition by reduction firing. Thus, it was considered that the volume resistivity could be controlled by a small amount of titanium oxide, and chemical contamination on silicon wafers and the like could be remarkably suppressed as compared with the conventional case.

Figure 0004623159
Figure 0004623159

Figure 0004623159
電気特性の評価の結果、酸化チタン単独または酸化チタン+遷移金属酸化物の添加割合によって10〜1016Ωcmの広範囲で制御できることがわかった。
Figure 0004623159
As a result of the evaluation of electrical characteristics, it was found that control was possible over a wide range of 10 8 to 10 16 Ωcm depending on the addition ratio of titanium oxide alone or titanium oxide + transition metal oxide.

レジストを使用する場合には、その耐熱温度を考えると、静電チャックは100℃以下で使用されるのが望ましい。
静電チャック用の誘電体に要求される電気特性は、静電チャックを使用する温度において体積抵抗率が10〜1011Ωcmが望ましい。下限値の10Ωcm未満ではウェハへ流れ込む電流が過大になりすぎデバイスの損傷のおそれがあり、上限値の1011Ωcmより大きいと、ウェハの吸着、脱離の電圧印加に対するレスポンスが低下する。
例えば100℃以下のプロセスエッチングのようなプロセスでは下限値が10〜1011Ωcm程度であることが望ましい。
In the case of using a resist, it is desirable that the electrostatic chuck is used at 100 ° C. or lower in view of its heat resistant temperature.
The electrical characteristics required for the dielectric material for the electrostatic chuck are desirably 10 8 to 10 11 Ωcm in volume resistivity at the temperature at which the electrostatic chuck is used. If the lower limit value is less than 10 8 Ωcm, the current flowing into the wafer becomes excessively large, and the device may be damaged. If the upper limit value is 10 11 Ωcm, the response to the wafer adsorption / desorption voltage application decreases.
For example, in a process such as process etching at 100 ° C. or lower, the lower limit value is desirably about 10 9 to 10 11 Ωcm.

酸化チタンが0.6wt%より多いと体積抵抗率が10Ωcm未満となり、ウェハへ流れ込む電流が過大になりすぎデバイスの損傷のおそれがある。また、0.2wt%以下だと酸化チタン添加による体積抵抗率の低下の効果が小さくなる。 If the amount of titanium oxide is more than 0.6 wt%, the volume resistivity becomes less than 10 8 Ωcm, the current flowing into the wafer becomes excessive, and the device may be damaged. On the other hand, if it is 0.2 wt% or less, the effect of lowering the volume resistivity by adding titanium oxide becomes small.

耐プラズマ性はプラズマ中のイオンのエネルギーが過大であればどのような物質であってもエッチングされてしまうため表面粗さの変化で評価した。
その結果、本発明によるセラミック誘電体は表面粗さの変化が従来のものに比べ顕著に小さかった。このことは発塵するパーティクルの大きさが小さいことと推定された。
Plasma resistance was evaluated by the change in surface roughness because any material is etched if the energy of ions in the plasma is excessive.
As a result, the change in surface roughness of the ceramic dielectric according to the present invention was significantly smaller than that of the conventional one. This is presumed that the size of particles that generate dust is small.

複数の凸部が形成され被吸着体を該凸部上面に載置する平滑な表面を有し、体積抵抗率が109.3Ωcmである静電チャック用誘電体を含む静電チャックの凸部上面の合計の面積と前記誘電体表面の面積との比率が0.089%である静電チャックを作製した。このとき表面にはφ0.25mmの凸部を一辺が8mmの正三角形の各頂点に連続して配置している。凸部の高さは10μmである。 Convex of an electrostatic chuck having a smooth surface on which a plurality of convex portions are formed and an object to be adsorbed is placed on the upper surface of the convex portion, and including a dielectric for electrostatic chuck having a volume resistivity of 109.3 Ωcm An electrostatic chuck was produced in which the ratio of the total area of the upper surface of the part and the area of the dielectric surface was 0.089%. At this time, convex portions having a diameter of 0.25 mm are continuously arranged on the surface of each apex of a regular triangle having a side of 8 mm. The height of the convex portion is 10 μm.

その結果、プラズマ照射後の表面粗さの変化が少なかったことおよび、被吸着物との接触面積が非常に少ないことが重畳し、被吸着物であるシリコンウェハのプロセス時の温度変化の経時変化がきわめて少なくすることができた。   As a result, the change in temperature during processing of the silicon wafer that is the object to be adsorbed overlaps with the fact that the change in surface roughness after plasma irradiation is small and the contact area with the object to be adsorbed is very small. Could be very little.

POPOFF吸着力は全てのサンプルにおいて100torr以上を記録した。すなわちシリコンウェハ等の被吸着体を吸着するには十分に実用的な力が得られていることがわかった。
The POPOFF adsorption force was recorded at 100 torr or more in all samples. That is, it has been found that a practical force sufficient for adsorbing an adsorbent such as a silicon wafer is obtained.

本発明の静電チャックを表す図である。It is a figure showing the electrostatic chuck of this invention. 本発明の静電チャックの等価回路を表す図である。It is a figure showing the equivalent circuit of the electrostatic chuck of this invention. 本発明の静電チャックの表面パターンの拡大図である。It is an enlarged view of the surface pattern of the electrostatic chuck of this invention. 本発明の静電チャック用誘電体の構造を示す電子顕微鏡写真である。It is an electron micrograph which shows the structure of the dielectric material for electrostatic chucks of this invention.

符号の説明Explanation of symbols

1…凸部
2…凸部底面
3…ガス供給孔
4…リング状凸部(シールリング)
5…凹部(ガス拡散用溝)
6…電極
7…誘電層
8…被吸着体
9…電気的接続手段
10…基盤
11…電源
DESCRIPTION OF SYMBOLS 1 ... Convex part 2 ... Convex part bottom face 3 ... Gas supply hole 4 ... Ring-shaped convex part (seal ring)
5. Recessed part (gas diffusion groove)
6 ... Electrode 7 ... Dielectric layer 8 ... Adsorbed body 9 ... Electrical connection means 10 ... Base 11 ... Power source

Claims (1)

アルミナの重量パーセントをX、酸化チタンの重量パーセントを(100−X)としたときに、Xが99.4wt%以上であり99.8wt%よりも小さく
体積抵抗率が室温において10〜1011Ωcm、かつ
アルミナ粒子の粒界に酸化チタンが偏析した構造の静電チャック用誘電体を備え、
さらに前記アルミナ粒子の粒内および粒界にチタン酸アルミニウム(AlTiO)が存在しないことを特徴とする静電チャック。
When the weight percentage of alumina is X and the weight percentage of titanium oxide is (100-X), X is 99.4 wt% or more and smaller than 99.8 wt% ,
A dielectric for electrostatic chuck having a volume resistivity of 10 8 to 10 11 Ωcm at room temperature and a structure in which titanium oxide is segregated at grain boundaries of alumina particles;
Further, the electrostatic chuck characterized in that aluminum titanate (Al 2 TiO 5 ) does not exist in the grains and grain boundaries of the alumina particles.
JP2008201771A 2008-08-05 2008-08-05 Electrostatic chuck Active JP4623159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008201771A JP4623159B2 (en) 2008-08-05 2008-08-05 Electrostatic chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008201771A JP4623159B2 (en) 2008-08-05 2008-08-05 Electrostatic chuck

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006031545A Division JP4244229B2 (en) 2005-11-15 2006-02-08 Electrostatic chuck

Publications (2)

Publication Number Publication Date
JP2009010399A JP2009010399A (en) 2009-01-15
JP4623159B2 true JP4623159B2 (en) 2011-02-02

Family

ID=40325101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008201771A Active JP4623159B2 (en) 2008-08-05 2008-08-05 Electrostatic chuck

Country Status (1)

Country Link
JP (1) JP4623159B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130121032A (en) * 2012-04-26 2013-11-05 니혼도꾸슈도교 가부시키가이샤 Alumina sintered body, member including the same, and semiconductor manufacturing apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6608750B2 (en) * 2016-03-30 2019-11-20 京セラ株式会社 Mounting member
JP6976799B2 (en) * 2017-10-02 2021-12-08 京セラ株式会社 Mounting member

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6294953A (en) * 1985-10-21 1987-05-01 Toto Ltd Manufacture of electrostatic chucking substrate
JP2002203893A (en) * 2000-10-23 2002-07-19 National Institute Of Advanced Industrial & Technology Electrostatic chuck

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6294953A (en) * 1985-10-21 1987-05-01 Toto Ltd Manufacture of electrostatic chucking substrate
JP2002203893A (en) * 2000-10-23 2002-07-19 National Institute Of Advanced Industrial & Technology Electrostatic chuck

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130121032A (en) * 2012-04-26 2013-11-05 니혼도꾸슈도교 가부시키가이샤 Alumina sintered body, member including the same, and semiconductor manufacturing apparatus
JP2013241322A (en) * 2012-04-26 2013-12-05 Ngk Spark Plug Co Ltd Alumina sintered body, member including the same, and semiconductor manufacturing apparatus
US9136031B2 (en) 2012-04-26 2015-09-15 Ngk Spark Plug Co., Ltd. Alumina sintered body, member including the same, and semiconductor manufacturing apparatus
KR101689054B1 (en) * 2012-04-26 2016-12-22 니혼도꾸슈도교 가부시키가이샤 Alumina sintered body, member including the same, and semiconductor manufacturing apparatus

Also Published As

Publication number Publication date
JP2009010399A (en) 2009-01-15

Similar Documents

Publication Publication Date Title
JP5872998B2 (en) Alumina sintered body, member comprising the same, and semiconductor manufacturing apparatus
KR101933508B1 (en) the electro-conductive, porous ceramic-board and the manufacturing method thereof
US6641939B1 (en) Transition metal oxide doped alumina and methods of making and using
TW201630109A (en) Electrostatic chuck
JP4244229B2 (en) Electrostatic chuck
US7915189B2 (en) Yttrium oxide material, member for semiconductor-manufacturing apparatus, and method for producing yttrium oxide material
JP4623159B2 (en) Electrostatic chuck
JP5159625B2 (en) Aluminum nitride sintered body and method for producing the same
JP2006049356A (en) Electrostatic chuck
KR102126872B1 (en) Electrostatic chuck dielectric layer and electrostatic chuck
JP2010208871A (en) Aluminum oxide sintered compact, method for producing the same and member for semiconductor producing apparatus
KR101692219B1 (en) Composite for vacuum-chuck and manufacturing method of the same
JP4722463B2 (en) Dielectric ceramics for electrostatic chuck and manufacturing method thereof
JP2009302518A (en) Electrostatic chuck
JP2010018853A (en) Thermally sprayed ceramic film and corrosion-resistant member using the same
JP2008288428A (en) Electrostatic chuck
WO2010024354A1 (en) Electrostatic chuck and method for producing same
WO2007055006A1 (en) Electrostatic zipper
JP2007326744A (en) Plasma resistant ceramic member
US7907383B2 (en) Electrostatic chuck
JP2009004752A (en) Electrostatic chuck
JP4585129B2 (en) Electrostatic chuck
JP3667077B2 (en) Electrostatic chuck
KR20000067819A (en) Electrically conductive ceramics, a process of producing same, and an electrostatic chuck
JP2010080951A (en) Electrostatic chuck and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101018

R150 Certificate of patent or registration of utility model

Ref document number: 4623159

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3