JP2009259891A - Device having electrostatic attraction function - Google Patents

Device having electrostatic attraction function Download PDF

Info

Publication number
JP2009259891A
JP2009259891A JP2008104494A JP2008104494A JP2009259891A JP 2009259891 A JP2009259891 A JP 2009259891A JP 2008104494 A JP2008104494 A JP 2008104494A JP 2008104494 A JP2008104494 A JP 2008104494A JP 2009259891 A JP2009259891 A JP 2009259891A
Authority
JP
Japan
Prior art keywords
leakage current
wafer
electrostatic adsorption
insulating layer
electrostatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008104494A
Other languages
Japanese (ja)
Inventor
Masaki Kano
正樹 狩野
Kazuichi Yamamura
和市 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2008104494A priority Critical patent/JP2009259891A/en
Publication of JP2009259891A publication Critical patent/JP2009259891A/en
Pending legal-status Critical Current

Links

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device having an electrostatic attraction function of: reducing device breakage failure induced by leakage current; and preventing the occurrence of troubles such as deviation and cracking of a wafer by residual attraction force. <P>SOLUTION: The device is designed such that the leakage current flowing in an attracted sample when an electrostatic attraction voltage is applied is reduced to 0.1-15 μA/cm2 in unit area of the attracted sample and more preferably is designed such that the ratio of leakage current between electrostatic attraction electrodes flowing in an insulating layer to the leakage current flowing in the attracted sample when the electrostatic attraction voltage is applied is 0.1 or more. By designing the device, there can be provided the device having the electrostatic attraction function of: reducing the device breakage failure induced by the leakage current; and preventing the occurrence of troubles such as deviation and cracking of the wafer by the residual attraction force. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、静電吸着機能を有する装置に関し、より詳細には、昇温工程を含む半導体デバイスの製造工程や検査工程における、半導体ウエハの加熱プロセスに好適に使用される静電吸着機能を有する装置に関する。   The present invention relates to an apparatus having an electrostatic attraction function, and more specifically, has an electrostatic attraction function suitably used for a semiconductor wafer heating process in a semiconductor device manufacturing process or inspection process including a temperature raising process. Relates to the device.

かつて、半導体デバイスの製造工程における半導体ウエハの加熱には、金属線を巻いたヒータが使用されていた。しかし、このようなヒータを使用した場合には、半導体ウエハヘの金属汚染の問題があったため、近年では、セラミックス薄膜を発熱体として使用したセラミックス一体型のウエハ加熱装置の使用が提案されている(例えば、特開平4−124076号公報(特許文献1)参照)。   In the past, a heater wound with a metal wire has been used for heating a semiconductor wafer in a semiconductor device manufacturing process. However, when such a heater is used, there has been a problem of metal contamination on the semiconductor wafer, and in recent years, the use of a ceramic integrated wafer heating apparatus using a ceramic thin film as a heating element has been proposed ( For example, refer to JP-A-4-124076 (Patent Document 1).

中でも、分子線エピタキシやCVD或いはスパッタリング等におけるウエハの加熱方法としては、基体内からのアウトガスが無く、高純度、耐熱衝撃性に優れた熱分解窒化硼素(PBN)と熱分解黒鉛(PG)の複合セラミックヒータを用いることが有効とされており(特開昭63−241921号公報(特許文献2)参照)、このようなヒータを用いると、従来のタンタルワイヤヒータに比べて装着が容易で、熱変形、断線、ショート等のトラブルを起さないために使い易く、しかも面上ヒータであるために均熱性を比較的得易いという利点もある。   Among them, as a method of heating a wafer in molecular beam epitaxy, CVD, sputtering, or the like, there is no outgas from the inside of the substrate, and high-purity and thermal shock-resistant pyrolytic boron nitride (PBN) and pyrolytic graphite (PG) are used. It is effective to use a composite ceramic heater (see Japanese Patent Laid-Open No. 63-241922 (Patent Document 2)), and using such a heater is easier to install than conventional tantalum wire heaters, There is also an advantage that it is easy to use because it does not cause troubles such as thermal deformation, disconnection, and short circuit, and that it is relatively easy to obtain heat uniformity because it is a surface heater.

半導体ウエハの加熱に際してはヒータ上に半導体ウエハを固定するため、減圧雰囲気中では静電吸着装置が使用されており、プロセスの高温化に伴ってその材質は樹脂からセラミックスに移行している(特開昭52−67353号公報(特許文献3)、特開昭59−124140号公報(特許文献4)参照)。   In order to fix the semiconductor wafer on the heater during the heating of the semiconductor wafer, an electrostatic adsorption device is used in a reduced-pressure atmosphere, and the material has shifted from resin to ceramics as the temperature of the process increases. (See Kaisho 52-67353 (Patent Document 3) and JP-A-59-124140 (Patent Document 4)).

また、最近では、これらのセラミックス一体型ウエハ加熱装置と静電吸着装置とを合体した「静電吸着機能を有する装置」が提案されており、例えば、エッチング工程などの低温域で使用されるものとしては静電吸着装置の絶縁層にアルミナを用いたもの(ニューセラミックス(7)、p49〜53、1994年(非特許文献1)参照)、CVD工程などの高温域で使用されるものとしては静電吸着装置の絶縁層に熱分解窒化硼素を用いたもの(特開平4−358074号公報(特許文献5)、特開平5−109876号公報(特許文献6)、特開平5−129210号公報(特許文献7)、特開平7−10665号公報(特許文献8)参照)などが報告されている。   In recent years, an "apparatus having an electrostatic adsorption function" in which these ceramic-integrated wafer heating apparatus and an electrostatic adsorption apparatus are combined has been proposed. For example, it is used in a low temperature region such as an etching process. As a material using alumina in the insulating layer of an electrostatic adsorption device (see New Ceramics (7), p49-53, 1994 (Non-Patent Document 1)) Those using pyrolytic boron nitride as the insulating layer of the electrostatic adsorption device (Japanese Patent Laid-Open No. 4-358074 (Patent Document 5), Japanese Patent Laid-Open No. 5-109876 (Patent Document 6), Japanese Patent Laid-Open No. 5-129210 (See Patent Document 7) and Japanese Patent Laid-Open No. 7-10665 (Patent Document 8)) have been reported.

ところで、近年、分子線エピタキシ装置やCVD装置或いはスパッタリング装置にはセラミックス製の静電吸着装置が搭載されるようになってきたが、上記非特許文献1に記載されているように、静電吸着力は当該静電吸着装置に備えられた絶縁層の体積抵抗率が低くなるほど強くなる反面、低過ぎる場合にはリーク電流によるデバイスの破損が生じる可能性がある。   By the way, in recent years, electrostatic adsorption devices made of ceramics have been mounted on molecular beam epitaxy devices, CVD devices, or sputtering devices. However, as described in Non-Patent Document 1, electrostatic adsorption devices are used. The force becomes stronger as the volume resistivity of the insulating layer provided in the electrostatic adsorption device becomes lower. On the other hand, if it is too low, the device may be damaged by a leakage current.

また、ウエハを吸着して処理した後に、残留吸着力によってウエハが静電チャック表面に吸着した状態となってしまうという現象も知られている。このような現象が生じると、ウエハをリフトピン等で持ち上げる際にウエハがずれたり、ウエハが割れてしまうというトラブルが生じてしまう。特に、ウエハの表面に酸化膜が形成されている場合にはかかる現象が顕著に生じ易くなるが、近年では、ウエハ上に設けられる酸化膜の厚みが厚くなっている為、上述のトラブルが頻繁に発生している。
特開平4−124076号公報 特開昭63−241921号公報 特開昭52−67353号公報 特開昭59−124140号公報 特開平4−358074号公報 特開平5−109876号公報 特開平5−129210号公報 特開平7−10665号公報 ニューセラミックス(7)、p49〜53、1994年
There is also known a phenomenon in which after the wafer is sucked and processed, the wafer is attracted to the surface of the electrostatic chuck by the residual attracting force. When such a phenomenon occurs, when the wafer is lifted with lift pins or the like, a trouble occurs that the wafer is displaced or the wafer is cracked. In particular, when an oxide film is formed on the surface of the wafer, such a phenomenon tends to occur remarkably. However, in recent years, since the thickness of the oxide film provided on the wafer has increased, the above-mentioned trouble is frequently caused. Has occurred.
JP-A-4-124076 Japanese Unexamined Patent Publication No. 63-241922 JP 52-67353 A JP 59-124140 A Japanese Patent Laid-Open No. 4-358074 JP-A-5-109876 JP-A-5-129210 Japanese Patent Laid-Open No. 7-10665 New Ceramics (7), p49-53, 1994

本発明は、このような問題に鑑みてなされたものであり、その目的とするところは、リーク電流によるデバイス破損不良を低減し、また、残留吸着力によるウエハのずれや割れといったトラブルの発生を防止可能な静電吸着機能を有する装置を提供することにある。   The present invention has been made in view of such problems, and the object of the present invention is to reduce the failure of the device due to the leakage current, and to prevent the occurrence of troubles such as wafer misalignment and cracking due to the residual adsorption force. An object of the present invention is to provide an apparatus having an electrostatic adsorption function that can be prevented.

このような課題を解決するために、本発明は、静電吸着用電極と、発熱体と、絶縁層を有する静電吸着機能を有する装置であって、静電吸着電圧を印加した際に被吸着試料側に流れるリーク電流が被吸着試料の単位面積当たり換算で0.1〜15μA/cmであることを特徴とする。 In order to solve such a problem, the present invention is an apparatus having an electrostatic attraction function having an electrostatic attraction electrode, a heating element, and an insulating layer, which is covered when an electrostatic attraction voltage is applied. The leakage current flowing to the adsorption sample side is 0.1 to 15 μA / cm 2 in terms of unit area of the sample to be adsorbed.

好ましくは、前記絶縁層内を流れる前記静電吸着用電極間のリーク電流と、静電吸着電圧を印加した際に被吸着試料側に流れるリーク電流との比が、0.1以上である。   Preferably, a ratio of a leakage current between the electrodes for electrostatic adsorption flowing in the insulating layer and a leakage current flowing to the sample to be adsorbed when an electrostatic adsorption voltage is applied is 0.1 or more.

また、好ましくは、前記絶縁層は、窒化珪素、窒化硼素と窒化アルミニウムの混合体、アルミナ、窒化アルミニウム、熱分解窒化硼素の群のうちの何れか1つの材料からなり、0.001〜20wt%の範囲の不純物を含有させて体積抵抗率が10〜1014Ωcmの範囲に調整されている。 Preferably, the insulating layer is made of any one material selected from the group consisting of silicon nitride, a mixture of boron nitride and aluminum nitride, alumina, aluminum nitride, and pyrolytic boron nitride, and has a content of 0.001 to 20 wt%. The volume resistivity is adjusted to be in the range of 10 8 to 10 14 Ωcm by containing impurities in the range of 1 to 10.

本発明では、静電吸着電圧を印加した際に被吸着試料側に流れるリーク電流が被吸着試料の単位面積当たり換算で0.1〜15μA/cmとなるように装置設計し、更に好ましくは、絶縁層内を流れる静電吸着用電極間のリーク電流と、静電吸着電圧を印加した際に被吸着試料側に流れるリーク電流との比が0.1以上となるように装置設計することとしたので、リーク電流によるデバイス破損不良を低減し、また、残留吸着力によるウエハのずれや割れといったトラブルの発生を防止可能な静電吸着機能を有する装置を提供することが可能となる。 In the present invention, the apparatus is designed so that the leakage current flowing to the sample to be adsorbed when applying the electrostatic adsorption voltage is 0.1 to 15 μA / cm 2 in terms of unit area of the sample to be adsorbed, more preferably The device should be designed so that the ratio of the leakage current between the electrodes for electrostatic adsorption flowing in the insulating layer and the leakage current flowing to the sample to be adsorbed when an electrostatic adsorption voltage is applied is 0.1 or more. Therefore, it is possible to provide an apparatus having an electrostatic attraction function that can reduce the failure of the device due to the leak current and can prevent the occurrence of troubles such as wafer displacement and cracking due to the residual attraction force.

以下に、図面を参照して本発明の装置の構造について説明するが、本発明は、上述した従来の問題点(リーク電流によるデバイス破損不良や残留吸着力によるウエハのずれや割れの発生といった問題)の解決手法について本発明者が検討した結果得られた知見、すなわち、静電吸着電圧を印加した際にウエハ側(被吸着試料側)に流がれるリーク電流を適正な範囲とすること、更に、絶縁層内を流れるチャック端子間(静電吸着用電極間)のリーク電流を上記ウエハ側(被吸着試料側)へのリーク電流に対して適正化することにより、十分なウエハ吸着を確保した上で、リーク電流によるデバイス破損不良を低減し、残留吸着力により生じる不都合が抑制できることの知見に基づいてなされたものである。   The structure of the apparatus of the present invention will be described below with reference to the drawings. However, the present invention relates to the above-described conventional problems (problems such as device breakage failure due to leakage current and occurrence of wafer displacement and cracking due to residual adsorption force). ) The knowledge obtained as a result of the examination of the present inventors about the solution method, that is, the leakage current flowing to the wafer side (adsorbed sample side) when an electrostatic adsorption voltage is applied is within an appropriate range, Furthermore, sufficient wafer adsorption is ensured by optimizing the leakage current between the chuck terminals (between the electrodes for electrostatic adsorption) flowing in the insulating layer with respect to the leakage current to the wafer side (sample to be adsorbed). In addition, this is based on the knowledge that the device breakage failure due to the leakage current can be reduced and the inconvenience caused by the residual adsorption force can be suppressed.

具体的には、本発明の装置は、静電吸着電圧を印加した際に被吸着試料側に流れるリーク電流が、被吸着試料の単位面積当たり換算で0.1〜15μA/cmとなるように設計される。このようなリーク電流範囲であれば、ジョンソンラーベック力による十分な静電吸着力を発生させることが担保され、かつ、デバイスの絶縁不良の発生を防止できる。 Specifically, in the apparatus of the present invention, when an electrostatic adsorption voltage is applied, the leakage current flowing to the sample to be adsorbed is 0.1 to 15 μA / cm 2 in terms of unit area of the sample to be adsorbed. Designed to. Within such a leakage current range, it is ensured that a sufficient electrostatic attraction force due to the Johnson Rabeck force is generated, and it is possible to prevent the occurrence of device insulation failure.

なお、上記リーク電流が0.1μA/cm未満の場合には十分な静電吸着力を得ることができない。また、上記リーク電流が15μA/cmを超える場合にはデバイスの絶縁不良の発生が顕著となる。なお、より好ましい上記リーク電流は0.5〜10μA/cmである。 In addition, when the leak current is less than 0.1 μA / cm 2 , a sufficient electrostatic adsorption force cannot be obtained. Further, when the leakage current exceeds 15 μA / cm 2 , the occurrence of defective insulation of the device becomes remarkable. The more preferable leakage current is 0.5 to 10 μA / cm 2 .

また、本発明の装置は、絶縁層内を流れる静電吸着用電極間のリーク電流と、静電吸着電圧を印加した際に被吸着試料側に流れるリーク電流との比が、0.1以上となるように設計される。両者がこのような関係にある場合には、静電吸着用電極間(チャック端子間)に電流が流れ易くなるためにチャック端子間の絶縁体中に電荷が残らず残留吸着が生じない。その結果、被吸着試料(ウエハ)の吸着処理が終了し、印加電圧をゼロにした後にウエハをリフトピン等で持ち上げる際にウエハを素早くリリースすることができると理解される。   In the apparatus of the present invention, the ratio between the leakage current between the electrodes for electrostatic adsorption flowing in the insulating layer and the leakage current flowing to the sample to be adsorbed when an electrostatic adsorption voltage is applied is 0.1 or more. Designed to be When the two are in such a relationship, a current easily flows between the electrostatic chucking electrodes (between the chuck terminals), so that no charge remains in the insulator between the chuck terminals and no residual chucking occurs. As a result, it is understood that the wafer can be quickly released when the adsorption process of the sample to be adsorbed (wafer) is completed and the wafer is lifted by lift pins after the applied voltage is reduced to zero.

なお、上述のリーク電流比が0.1未満であると、チャック端子間に電流が流れ難くなってチャック端子間近傍に電荷が残ってしまい、当該残存電荷に起因する残留吸着力によってウエハリリース時にウエハずれが生じたり、最悪の場合にはウエハ割れが生じてしまう。なお、より好ましい上記リーク電流比は0.5以上である。   If the above leakage current ratio is less than 0.1, it is difficult for current to flow between the chuck terminals, and charges remain in the vicinity of the chuck terminals, and when the wafer is released due to the residual adsorption force caused by the remaining charges. Wafer displacement occurs, or in the worst case, wafer cracking occurs. The more preferable leakage current ratio is 0.5 or more.

ここで、被吸着試料側(ウエハ側)に流れる電流とは、静電吸着用電極間(チャック端子間)に電圧を印加して被吸着試料(ウエハ)を吸着した際に、チャック端子間に流れる電流を測定した値から、ウエハを載せない状態で同一電圧をかけたときに流れる電流を測定して差し引いたものを意味する。また、絶縁層内を流れる電流とは後者(ウエハを載せない状態で同一電圧をかけたときに流れる電流)を意味する。   Here, the current that flows to the sample to be adsorbed (wafer side) is the voltage between the chuck terminals when the sample to be adsorbed (wafer) is adsorbed by applying a voltage between the electrodes for electrostatic adsorption (between the chuck terminals). It means the value obtained by measuring and subtracting the current that flows when the same voltage is applied with no wafer placed, from the value of the measured current. Further, the current flowing in the insulating layer means the latter (current flowing when the same voltage is applied with no wafer mounted).

被吸着試料(ウエハ)は、例えば、直径300mm(12インチ径)のシリコンウエハであり、主面に100〜300μmの厚みの酸化膜がコートされている酸化膜付シリコンウエハであり、後述の実施例でもかかるウエハを用いている。   The sample to be adsorbed (wafer) is, for example, a silicon wafer having a diameter of 300 mm (12 inches), and a silicon wafer with an oxide film in which an oxide film having a thickness of 100 to 300 μm is coated on the main surface. In the example, such a wafer is used.

絶縁層内を流れる静電吸着用電極間のリーク電流は、絶縁層の製造条件によって制御できる。本発明では、上述のリーク電流比を得るために、窒化珪素、窒化硼素と窒化アルミニウムの混合体、アルミナ、窒化アルミニウム、熱分解窒化硼素の群のうちの何れか1つの材料からなり、0.001〜20wt%の範囲の不純物を含有させて体積抵抗率が10〜1014Ωcmの範囲に調整されている絶縁層を用いる。 The leakage current between the electrostatic adsorption electrodes flowing in the insulating layer can be controlled by the manufacturing conditions of the insulating layer. In the present invention, in order to obtain the above leakage current ratio, it is made of any one material selected from the group consisting of silicon nitride, a mixture of boron nitride and aluminum nitride, alumina, aluminum nitride, and pyrolytic boron nitride. An insulating layer that contains impurities in the range of 001 to 20 wt% and has a volume resistivity adjusted to a range of 10 8 to 10 14 Ωcm is used.

このような絶縁層を化学気相成長法(CVD法)で作製する場合は、原料ガスの種類や、反応温度、圧力等の製造条件を変えることにより、ウエハ側に流れるリーク電流と絶縁層内を流れるチャック端子間のリーク電流との比を制御することができる。例えば、反応温度を上げることにより、不純物含有量が増加し、さらには絶縁層の膜配向性が向上する。逆に、反応温度を下げることにより、不純物含有量が減少し、さらには絶縁層の膜配向性が低くなる。スパッタ法により絶縁層を作製する場合も同様に、製造条件の調整によりウエハ側に流れるリーク電流と絶縁層内を流れるチャック端子間のリーク電流との比を制御することができる。   When manufacturing such an insulating layer by chemical vapor deposition (CVD), the leakage current flowing in the wafer and the insulating layer are changed by changing the production conditions such as the type of source gas, reaction temperature, and pressure. It is possible to control the ratio of the leakage current between the chuck terminals flowing through. For example, increasing the reaction temperature increases the impurity content and further improves the film orientation of the insulating layer. Conversely, by lowering the reaction temperature, the impurity content is reduced and the film orientation of the insulating layer is lowered. Similarly, when an insulating layer is formed by sputtering, the ratio between the leakage current flowing on the wafer side and the leakage current between chuck terminals flowing in the insulating layer can be controlled by adjusting the manufacturing conditions.

以下、実施例(および比較例)により本発明の装置を具体的に説明するが、本発明はこれら実施例に限定されるものではない。   Hereinafter, the device of the present invention will be specifically described with reference to Examples (and Comparative Examples), but the present invention is not limited to these Examples.

図1は、本発明の装置の作製プロセス例を説明するための概略図で、先ず、アンモニアと三塩化硼素の混合気を1800℃、100Torrの条件下で反応させて、直径300mm、厚さ20mmのグラファイト基材(2a)の上に熱分解窒化硼素(2b)を生成させて熱分解窒化硼素コートグラファイト基材とし、次いで、この熱分解窒化硼素コートグラファイト基材上でメタンガスを1800℃、5Torrの条件下で熱分解して厚さ100μmの熱分解グラファイト層(2c)を形成して支持基材(2)とした(図1(A))。   FIG. 1 is a schematic diagram for explaining an example of a manufacturing process of an apparatus according to the present invention. First, a mixture of ammonia and boron trichloride is reacted under the conditions of 1800 ° C. and 100 Torr to obtain a diameter of 300 mm and a thickness of 20 mm. Then, pyrolytic boron nitride (2b) is produced on the graphite base (2a) to form a pyrolytic boron nitride-coated graphite base, and then methane gas is supplied at 1800 ° C., 5 Torr on the pyrolytic boron nitride-coated graphite base. A pyrolytic graphite layer (2c) having a thickness of 100 μm was formed under the above conditions to obtain a supporting substrate (2) (FIG. 1 (A)).

更に、その熱分解グラファイト層(2c)の表面および裏面に熱分解グラファイト層(3、4)を形成し(図1(B))、これら熱分解グラファイト層(3、4)をパターン加工して、双極型の静電吸着用電極(3a、3b)および発熱体(4)とした(図1(C))。   Further, pyrolytic graphite layers (3, 4) are formed on the front and back surfaces of the pyrolytic graphite layer (2c) (FIG. 1 (B)), and these pyrolytic graphite layers (3, 4) are patterned. A bipolar electrode for electrostatic adsorption (3a, 3b) and a heating element (4) were obtained (FIG. 1C).

続いて、支持基材(2)の両面上に、厚さ200μmの炭化硼素含有熱分解窒化硼素からなる絶縁層(5)を形成した後、ウエハ吸着面となる絶縁層(5)を鏡面研磨して、本発明の静電吸着機能を有する装置(1)を作製した(図1(D))。   Subsequently, an insulating layer (5) made of pyrolytic boron nitride containing boron carbide having a thickness of 200 μm is formed on both surfaces of the support substrate (2), and then the insulating layer (5) serving as the wafer adsorption surface is mirror polished. Thus, an apparatus (1) having an electrostatic attraction function according to the present invention was produced (FIG. 1D).

なお、上述の炭化硼素含有熱分解窒化硼素からなる絶縁層(5)を形成するに際しては、アンモニアと三塩化硼素とメタンと三塩化硼素の混合気を、メタン流量をアンモニアとの比で10%〜50%の範囲で変化させて複数のサンプルを作製した。また、反応温度も1700〜1850℃の範囲で変化させている。なお、反応圧力は5Torr一定の条件下で反応を行なった。   In forming the insulating layer (5) made of pyrolytic boron nitride containing boron carbide, a mixture of ammonia, boron trichloride, methane, and boron trichloride is used, and the methane flow rate is 10% in terms of the ratio of ammonia. A plurality of samples were prepared by changing the range of ˜50%. The reaction temperature is also changed in the range of 1700 to 1850 ° C. The reaction was carried out under a condition where the reaction pressure was constant at 5 Torr.

上述の反応条件で形成された絶縁層を備える静電吸着機能を有する装置について、酸化膜(膜厚300μm)付の300mm径シリコンウエハを±300Vの静電吸着電圧を印加させて静電吸着させ、200℃に加熱した場合のウエハ側に流れるリーク電流(ウエハの単位面積当たり換算)と絶縁層内を流れるチャック端子間のリーク電流を測定し、さらに、デバイス絶縁性とウエハリリース時のウエハ位置ずれについて調べた。それらの結果を、表1および表2に纏めた。   For an apparatus having an electrostatic adsorption function including an insulating layer formed under the above reaction conditions, a 300 mm diameter silicon wafer with an oxide film (film thickness 300 μm) is electrostatically adsorbed by applying an electrostatic adsorption voltage of ± 300V. , The leakage current flowing on the wafer side when heated to 200 ° C. (converted per unit area of the wafer) and the leakage current between the chuck terminals flowing in the insulating layer are measured, and the device insulation and the wafer position when the wafer is released I investigated the gap. The results are summarized in Tables 1 and 2.

表1に示した結果からは、静電吸着電圧を印加した際に被吸着試料側に流れるリーク電流がウエハの単位面積当たり換算で0.1〜15μA/cmであるサンプル(サンプル2乃至6)は、吸着性およびデバイス絶縁性に問題がないことが分かる。 From the results shown in Table 1, the samples (samples 2 to 6) in which the leakage current flowing to the sample to be adsorbed when applying the electrostatic adsorption voltage is 0.1 to 15 μA / cm 2 in terms of the unit area of the wafer. ) Shows that there is no problem in adsorptivity and device insulation.

また、表2に示した結果からは、上述したリーク電流比(絶縁層内を流れる静電吸着用電極間のリーク電流と、静電吸着電圧を印加した際にウエハ側に流れるリーク電流との比)が、0.1以上であると、ウエハリリース時のウエハ位置ずれが生じていないことが理解される。   Further, from the results shown in Table 2, the leakage current ratio described above (the leakage current between the electrostatic adsorption electrodes flowing in the insulating layer and the leakage current flowing on the wafer side when the electrostatic adsorption voltage is applied) If the ratio is 0.1 or more, it is understood that there is no wafer position shift at the time of wafer release.

従って、静電吸着電圧を印加した際に被吸着試料側に流れるリーク電流が被吸着試料の単位面積当たり換算で0.1〜15μA/cmとなるように装置設計し、更に好ましくは、絶縁層内を流れる静電吸着用電極間のリーク電流と、静電吸着電圧を印加した際に被吸着試料側に流れるリーク電流との比が0.1以上となるように装置設計することにより、リーク電流によるデバイス破損不良を低減し、また、残留吸着力によるウエハのずれや割れといったトラブルの発生を防止可能な静電吸着機能を有する装置が提供される。 Therefore, the apparatus is designed so that the leakage current flowing to the sample to be adsorbed when applied with the electrostatic adsorption voltage is 0.1 to 15 μA / cm 2 in terms of the unit area of the sample to be adsorbed, and more preferably the insulation By designing the apparatus so that the ratio of the leakage current between the electrodes for electrostatic adsorption flowing in the layer and the leakage current flowing to the sample to be adsorbed when an electrostatic adsorption voltage is applied is 0.1 or more, There is provided an apparatus having an electrostatic attraction function that can reduce device breakage failure due to leakage current and can prevent occurrence of trouble such as wafer displacement and cracking due to residual attraction force.

本発明により、リーク電流によるデバイス破損不良を低減し、また、残留吸着力によるウエハのずれや割れといったトラブルの発生を防止可能な静電吸着機能を有する装置が提供される。   According to the present invention, there is provided an apparatus having an electrostatic attraction function capable of reducing device damage failure due to leakage current and preventing troubles such as wafer displacement and cracking due to residual attraction force.

本発明の装置の作製プロセス例を説明するための概略図である。It is the schematic for demonstrating the example of a manufacturing process of the apparatus of this invention.

符号の説明Explanation of symbols

1 静電吸着装置支持基材
2 支持基材
3a、3b 双極型静電吸着用電極
4 発熱体
5 絶縁層
DESCRIPTION OF SYMBOLS 1 Electrostatic adsorption apparatus support base material 2 Support base material 3a, 3b Electrode for bipolar electrostatic adsorption 4 Heating element 5 Insulating layer

Claims (3)

静電吸着用電極と、発熱体と、絶縁層を有する静電吸着機能を有する装置であって、静電吸着電圧を印加した際に被吸着試料側に流れるリーク電流が被吸着試料の単位面積当たり換算で0.1〜15μA/cmであることを特徴とする静電吸着機能を有する装置。 An apparatus having an electrostatic adsorption function having an electrostatic adsorption electrode, a heating element, and an insulating layer, and a leak current flowing to the adsorbed sample side when an electrostatic adsorption voltage is applied is a unit area of the adsorbed sample An apparatus having an electrostatic adsorption function, characterized in that it is 0.1 to 15 μA / cm 2 in terms of hit. 前記絶縁層内を流れる前記静電吸着用電極間のリーク電流と、静電吸着電圧を印加した際に被吸着試料側に流れるリーク電流との比が、0.1以上であることを特徴とする請求項1に記載の静電吸着機能を有する装置。   The ratio between the leakage current between the electrodes for electrostatic adsorption flowing in the insulating layer and the leakage current flowing to the sample to be adsorbed when an electrostatic adsorption voltage is applied is 0.1 or more, An apparatus having an electrostatic attraction function according to claim 1. 前記絶縁層は、窒化珪素、窒化硼素と窒化アルミニウムの混合体、アルミナ、窒化アルミニウム、熱分解窒化硼素の群のうちの何れか1つの材料からなり、0.001〜20wt%の範囲の不純物を含有させて体積抵抗率が10〜1014Ωcmの範囲に調整されていることを特徴とする請求項1または2に記載の静電吸着機能を有する装置。 The insulating layer is made of any one material selected from the group consisting of silicon nitride, a mixture of boron nitride and aluminum nitride, alumina, aluminum nitride, and pyrolytic boron nitride, and has an impurity in the range of 0.001 to 20 wt%. The apparatus having an electrostatic attraction function according to claim 1, wherein the volume resistivity is adjusted to be in a range of 10 8 to 10 14 Ωcm.
JP2008104494A 2008-04-14 2008-04-14 Device having electrostatic attraction function Pending JP2009259891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008104494A JP2009259891A (en) 2008-04-14 2008-04-14 Device having electrostatic attraction function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008104494A JP2009259891A (en) 2008-04-14 2008-04-14 Device having electrostatic attraction function

Publications (1)

Publication Number Publication Date
JP2009259891A true JP2009259891A (en) 2009-11-05

Family

ID=41386980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008104494A Pending JP2009259891A (en) 2008-04-14 2008-04-14 Device having electrostatic attraction function

Country Status (1)

Country Link
JP (1) JP2009259891A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09321128A (en) * 1996-05-31 1997-12-12 Ulvac Japan Ltd Electrostatic chuck device
JPH10326824A (en) * 1997-05-26 1998-12-08 Chichibu Onoda Cement Corp Manufacture of electrostatic chuck
JP2004022585A (en) * 2002-06-12 2004-01-22 Ngk Spark Plug Co Ltd Electrostatic chuck
JP2005252170A (en) * 2004-03-08 2005-09-15 Sumitomo Metal Ind Ltd Electrostatic chuck
JP2006165107A (en) * 2004-12-03 2006-06-22 Nippon Steel Corp Dielectric ceramics for electrostatic chuck, and its manufacturing method
WO2007043519A1 (en) * 2005-10-12 2007-04-19 Shin-Etsu Chemical Co., Ltd. Wafer heating apparatus having electrostatic attraction function

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09321128A (en) * 1996-05-31 1997-12-12 Ulvac Japan Ltd Electrostatic chuck device
JPH10326824A (en) * 1997-05-26 1998-12-08 Chichibu Onoda Cement Corp Manufacture of electrostatic chuck
JP2004022585A (en) * 2002-06-12 2004-01-22 Ngk Spark Plug Co Ltd Electrostatic chuck
JP2005252170A (en) * 2004-03-08 2005-09-15 Sumitomo Metal Ind Ltd Electrostatic chuck
JP2006165107A (en) * 2004-12-03 2006-06-22 Nippon Steel Corp Dielectric ceramics for electrostatic chuck, and its manufacturing method
WO2007043519A1 (en) * 2005-10-12 2007-04-19 Shin-Etsu Chemical Co., Ltd. Wafer heating apparatus having electrostatic attraction function

Similar Documents

Publication Publication Date Title
JP5524213B2 (en) Wafer processing apparatus with adjustable electrical resistivity
JP4744855B2 (en) Electrostatic chuck
TWI702685B (en) Extreme uniformity heated substrate support assembly
US9466518B2 (en) Electrostatic chuck device
US8498093B2 (en) Electrostatic chuck and method for producing the same
JP4811608B2 (en) Wafer heating apparatus having electrostatic adsorption function
US20070146961A1 (en) Electrostatic chuck
JP4739039B2 (en) Electrostatic chuck device
JPH08227933A (en) Wafer heater with electrostatic attracting function
JP2000174106A (en) Device for retaining workpiece
JP4082985B2 (en) Heating device having electrostatic adsorption function and method of manufacturing the same
JP2007201068A (en) Electrostatic chuck
US20070274021A1 (en) Electrostatic chuck apparatus
JP2975205B2 (en) Electrostatic chuck and method of manufacturing the same
JP2008159900A (en) Ceramic heater with electrostatic chuck
KR20100090559A (en) Electrostatic chuck having aerosol coating layer and fabrication method thereof
JP2009259891A (en) Device having electrostatic attraction function
JP2024507802A (en) Electrostatic chuck using different ceramics
JP2006120847A (en) Bipolar electrostatic chuck and its manufacturing method
JP4302428B2 (en) Wafer heating device having electrostatic adsorption function
KR20200004499A (en) Electrostatic chuck having heater and method of manufacturing the same
KR20180120588A (en) Electrostatic chuck and substrate fixing device
JPH0897272A (en) Wafer support member
JP4021254B2 (en) Heating device having electrostatic adsorption function and method of manufacturing the same
JP2005116686A (en) Bipolar electrostatic chuck

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110531

A131 Notification of reasons for refusal

Effective date: 20110607

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110804

A131 Notification of reasons for refusal

Effective date: 20120207

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120605