JP4515038B2 - MoSi2 powder, method for producing the powder, heating element using the powder, and method for producing the heating element - Google Patents

MoSi2 powder, method for producing the powder, heating element using the powder, and method for producing the heating element Download PDF

Info

Publication number
JP4515038B2
JP4515038B2 JP2003101369A JP2003101369A JP4515038B2 JP 4515038 B2 JP4515038 B2 JP 4515038B2 JP 2003101369 A JP2003101369 A JP 2003101369A JP 2003101369 A JP2003101369 A JP 2003101369A JP 4515038 B2 JP4515038 B2 JP 4515038B2
Authority
JP
Japan
Prior art keywords
powder
mosi
heating element
producing
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003101369A
Other languages
Japanese (ja)
Other versions
JP2004307243A (en
Inventor
博 高村
裕一朗 新藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2003101369A priority Critical patent/JP4515038B2/en
Publication of JP2004307243A publication Critical patent/JP2004307243A/en
Application granted granted Critical
Publication of JP4515038B2 publication Critical patent/JP4515038B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)
  • Ceramic Products (AREA)
  • Silicon Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、573°K〜873°Kの範囲で、MoとSiの同時酸化が起こり、さらにMo酸化物の蒸発減少が伴うという、ペスト(粉化現象)防止できるMoSi粉末、同粉末の製造方法、同粉末を用いた発熱体及び発熱体の製造方法に関する。
なお、本明細書で使用するMoSiを主成分として80wt%以上含む基材は、MoSi基材に絶縁性酸化物であるSiOを含有させて電気抵抗を増加させたMoSiを主成分とする発熱体に適用できるものであり、該発熱体に供することのできるMoSi粉末及び方法である。
【0002】
【従来の技術】
最近、半導体デバイスの微細化及びデバイス製造時間の短縮化と省エネルギー化のために、従来の金属発熱体に替えて、CVD装置や拡散炉等の半導体製造装置に、MoSiを主成分とする高出力性能の発熱体が利用されるようになってきた。
一般に、半導体製造装置に使用される熱処理炉は炉内の温度分布を厳密に制御するなど、非常に高精度な温度特性が要求されるが、MoSiを主成分とする発熱体は優れた耐熱特性を有し、金属発熱体の約10倍の表面負荷が可能であり、また急速加熱昇温することができるという大きな特長を有するので、好適な材料と言える。
【0003】
ところが、MoSiを主成分とする発熱体は573°K〜873°Kの範囲で、MoとSiの同時酸化が起こり、さらにMo酸化物の蒸発減少が伴う、ペスト(粉化現象)という低温酸化が起こるという問題がある。
通常、これを防止するために1500°K以上で酸化処理して緻密なシリカ保護被膜を形成する等、発熱体自体の材料開発がなされている。
【0004】
例えば、ペスト(粉化現象)対策として、二珪化モリブデン系セラミックス発熱体において、MoSiで表せる組成を有する発熱体の不純物としてFe、Cu、Au、Ca、Alがそれぞれ0.05mass%以下であり、かつ不純物総量が0.1mass%以下であり、さらに導電性金属をコーティングした給電部を除いた部分で、膜厚が10〜100μmのシリカ保護皮膜がMoSiセラミックス表面を被覆しているという低温加熱寿命が長い二珪化モリブデン系セラミックス発熱体が提案されている(特許文献1参照)。
【0005】
また、同ペスト(粉化現象)対策として、酸化保護皮膜を一旦形成した二珪化モリブデン系発熱値による加熱中に該酸化保護皮膜が破壊した際に、雰囲気の酸素濃度0.1〜7.0容量%、温度850〜1200°Cの条件で二珪化モリブデン系発熱体を熱処理することにより酸化保護皮膜が破壊した発熱体表面に、厚さ0.5μm以上の緻密な酸化保護皮膜を生成させる二珪化モリブデン系発熱体の保護皮膜再生方法が開示されている(特許文献2参照)。
【0006】
また、同ペスト(粉化現象)対策として、二珪化モリブデン系複合セラミックス発熱体において、網目状構造を持つMoSiマトリックス中にMoSiに比べて比較的低融点のシリカ系酸化物相またはガラス相がMoSi結晶粒界に網状に分布している低温加熱寿命が長い二珪化モリブデン系複合セラミックス発熱体が開示されている(特許文献3参照)。
以上のペスト(粉化現象)対策としては、いずれもMoSiセラミックス表面シリカ保護皮膜を形成することが必要であり、そのための特別な熱処理工程が必須となる。しかし、このような保護皮膜を形成しても、ペスト(粉化現象)を十分に防止できないという問題があった。
【0007】
【特許文献1】
特開平10−324571号
【特許文献2】
特開平11−130541号
【特許文献3】
特開平11−317282号
【0008】
【発明が解決しようとする課題】
本発明は、573°K〜873°Kの範囲で、MoとSiの同時酸化が起こり、さらにMo酸化物の蒸発減少が伴うという、ペスト(粉化現象)を効果的に防止できるMoSi粉末、同粉末の製造方法、同粉末を用いた発熱体及び発熱体の製造方法に関する。特に、半導体製造装置用熱処理炉(酸化・拡散炉を含む)に有用である発熱体及びその製造方法を提供する。
【0009】
【課題を解決するための手段】
上記の課題を解決するために、本発明者らは、原料であるMoSi粉末を改善することにより、MoSiを主成分とする発熱体のペスト(粉化現象)を効果的に防止でき、特に半導体製造装置用熱処理炉(酸化・拡散炉を含む)に有用であるMoSiを主成分として80wt%以上含む発熱体を低コストで提供できるとの知見を得た。
本発明はこの知見に基づき、
1.MoSi粉末の比表面積が0.2m/g以上であり、かつ表面に酸化皮膜を備えることを特徴とするMoSi粉末
2.MoSi粉末の酸素含有量が2000ppm以上であることを特徴とする発熱体用MoSi粉末
3.MoSi粉末の酸素含有量が1000ppm以上であることを特徴とする上記1記載の発熱体用MoSi粉末
4.MoSiを主成分として80wt%以上含み、残余SiOと不純物からなることを特徴する上記1〜3のいずれかに記載のMoSi粉末を用いた発熱体
5.MoSi粉末を酸化性の酸又は酸化剤を含む酸で洗浄することを特徴とする発熱体用MoSi粉末の製造方法
6.MoSi粉末の表面に酸化皮膜を備えることを特徴とする上記5記載の発熱体用MoSi粉末の製造方法
7.MoSi粉末の比表面積が0.2m/g以上であることを特徴とする上記5又は6記載の発熱体用MoSi粉末の製造方法
8.MoSi粉末の酸素含有量が2000ppm以上であることを特徴とする上記5〜7のいずれかに記載の発熱体用MoSi粉末の製造方法
9.MoSi原料粉末を酸化性の酸又は酸化剤を含む酸で洗浄し、比表面積を0.2m /g以上とした粉末を乾燥する工程、乾燥後のMoSi 粉末とSiO混合粉砕する工程、バインダーと混合し脱脂する工程、通電焼結する工程からなることを特徴とするMoSiを主成分とする発熱体の製造方法
10.脱脂後一次焼結する工程を含むことを特徴とする上記9記載のMoSiを主成分とする発熱体の製造方法、を提供する。
【0010】
【発明の実施の形態】
本発明の発熱体は、MoSi粉末の比表面積が0.2m/g以上であり、かつ表面に酸化皮膜を有するMoSi粉末を使用する。この酸化皮膜は、硝酸又は過酸化水素等の酸化力が強い酸又は酸化剤を含む酸で洗浄することによって得ることができる。酸化力が強い酸であれば、例えば次亜塩素酸ナトリウム等を使用することもできる。
この酸化膜を形成したMoSi粉末は、そのトータルの酸素含有量を3000ppm以上とするのが望ましい。これによってMoSi粉末に十分な酸化膜を形成することができる。
本発明の発熱体は、MoSiを主成分として80wt%以上、好ましくは90wt%以上含む基材であり、このMoSi基材に絶縁性酸化物であるSiOを含有させて電気抵抗を増加させたMoSiを主成分とする発熱体に適用できる。
さらに、高純度シリカはガラス質形成材料として20wt%以下、好ましくは10wt%以下含有させる。これは、SiOの体積変化を伴う相転移を考慮したもので、SiOの含有量が多くなり過ぎるとその影響が大きくなり、発熱体の強度に支障をきたす可能性があるためである。
【0011】
このMoSi製発熱体は、MoSi原料粉を酸化性の酸又は酸化剤を含む酸で洗浄した後これを乾燥し、次にSiOと混合粉砕した後、バインダーと混合し、さらに例えば押出しによって棒状又は平板状に成形する。
このようにして得た成形体を脱脂、一次焼結及び通電加熱焼結することによって、密度の高いMoSi製発熱体を製造する。
さらに、このようにして作製した棒状又は平板状の発熱体を接合し、例えば円弧状又はU字形状等に製造する。このように、MoSi製発熱体を各種の形状に成形した後、例えば半導体製造装置用熱処理炉に設置する。
上記のMoSi原料粉の酸による洗浄は、さほどの労力や費用を必要としない。それにもかかわらず、発熱体のペスト(粉化現象)を効果的に防止できる。
【0012】
【実施例及び比較例】
以下に実施例及び比較例を説明するが、本実施例は理解を容易にするためのものであり、本発明を制限するものではない。すなわち、本発明の技術思想の範囲内での他の変形あるいは他の実施例は、当然本発明に含まれる。
【0013】
(実施例1)
発熱体原料として純度3NレベルのMoSi粉末を用いた。これを硝酸で洗浄した。原料粉末及び酸による洗浄後の粉末の比表面積(m/g)、酸素含有量(ppm)、酸化膜の有無を表1に示す。表1に示すように、不純物量は酸による洗浄で著しく減少した。一方、酸化膜の形成により、酸素は900ppmから3000ppmに上昇した。また、MoSi粉末の比表面積が0.13m/gから2.5m/gとなった。
【0014】
【表1】

Figure 0004515038
【0015】
上記MoSi粉95wt%とSiO粉末5wt%とをバインダーと混合、(なお、バインダーは混合比率には計算しない。以下、同様とする。)、この混合物を型から押出して棒状の成形体とした。
この棒状の成形体(グリーン)を脱脂、一次焼結及び通電加熱焼結することによって、MoSi製棒状発熱体を得た。
この発熱体について熱サイクル特性試験を実施した。この実施条件は、例えば1サイクル480°Cで10時間保持する条件で行った。この結果、500サイクル後でも粉状化(ペスト)せず、抗折試験でも300MPa以上であった。
【0016】
(実施例2)
発熱体原料として純度3NレベルのMoSi粉末を用いた。この発熱体原料を塩酸と過酸化水素水で洗浄した。酸による洗浄後の粉末の比表面積(m/g)、酸素含有量(ppm)、酸化膜の有無を実施例1と同様に、表1に示す。酸化膜の形成により、酸素は900ppmから4500ppmの上昇し、また、MoSi粉末の比表面積が0.13m/gから3.0m/gとなった。
一方、SiO粉末は市販品を用いた。この市販品から不純物を選別除去した後、さらに1650°C以上の高温で長時間熱処理することにより、含有する金属成分を蒸発させて精製した材料を使用した。なお、SiOの高温熱処理は、実施例1と同様にSiOの結晶構造を石英から高温で安定なクリストバライトに相転移させるために必要である。
【0017】
上記MoSi粉95wt%とSiO粉末5wt%とをバインダーと混合し、この混合物を型から押出して棒状の成形体とした。この棒状の成形体(グリーン)を脱脂、一次焼結及び通電加熱焼結することによって、MoSi製棒状発熱体を得た。
この発熱体について熱サイクル特性試験を実施した。この実施条件は、例えば1サイクル480°Cで10時間保持する条件で行った。この結果、500サイクル後でも粉状化(ペスト)せず、抗折試験でも300MPa以上であった。
【0018】
(実施例3)
発熱体原料として純度3NレベルのMoSi粉末を用いた。この発熱体原料を希硝酸で洗浄した。酸による洗浄後の粉末の比表面積(m/g)、酸素含有量(ppm)、酸化膜の有無を実施例1と同様に、表1に示す。酸化膜の形成により、酸素は900ppmから2100ppmの上昇した。また、MoSi粉末の比表面積が0.13m/gから2.1m/gとなった。
一方、SiO粉末には市販品を用い実施例1と同様に処理した。そして、上記MoSi粉95wt%とSiO粉末5wt%とをバインダーと混合し、この混合物を型から押出して棒状の成形体とした。この棒状の成形体(グリーン)を脱脂、一次焼結及び通電加熱焼結することによって、MoSi製棒状発熱体を得た。
この発熱体について、実施例1と同様に熱サイクル特性試験を実施した。この実施条件は、1サイクル480°Cで10時間保持する条件で行った。この結果、500サイクル後でも粉状化(ペスト)せず、抗折試験でも300MPa以上であった。
【0019】
(比較例1)
一般に高純度と言われている市販品のMoSi粉末95wt%(O:900wtppm)と、同様に市販品であるSiO粉末5wt%とを微粉砕後、バインダーと混合し、この混合物を型から押出して棒状の成形体とした。
この棒状の成形体(グリーン)を脱脂、一次焼結及び通電加熱焼結することによって、MoSi製棒状発熱体を得た。
この発熱体について熱サイクル特性試験を実施した。この実施条件は、例えば1サイクル480°Cで10時間保持する条件で行った。この結果、50サイクル後でも粉状化(ペスト)がいたるところで起き、抗折試験では200MPa以下となり、脆弱な発熱体となった。
以上から、半導体製造装置用熱処理炉と使用する場合、発熱体のペストが生じ、発熱体材としては好ましくない結果が得られた。
【0020】
【発明の効果】
本発明は原料であるMoSi粉末を酸化性の酸で洗浄し、同粉末を酸化膜で覆うことにより、MoSiを主成分とする発熱体のペスト(粉化現象)を効果的に防止できるという優れた効果、すなわち、酸洗浄という比較的簡単な操作により、低コストで発熱体のペスト(粉化現象)を抑制し、発熱体の寿命を大幅に向上させることができるという著しい効果を有する。
また、同時にMoSi粉末内、すなわち同粉末を用いた発熱体内の不純物を低減することが可能であり、特に半導体ウエハの不純物による汚染を防止できるという効果を有する。[0001]
BACKGROUND OF THE INVENTION
The present invention is in the range of 573 ° K~873 ° K, occurs simultaneous oxidation of Mo and Si, that further involves evaporation reduction of Mo oxide, plague (powdering phenomenon) preventing it MoSi 2 powder, the same powder The present invention relates to a manufacturing method, a heating element using the same powder, and a manufacturing method of the heating element.
Incidentally, 80 wt% or more comprises a base material MoSi 2 to be used herein as the main component is composed mainly of a MoSi 2 substrate contain a SiO 2 which is an insulating oxide MoSi 2 having an increased electrical resistance This is a MoSi 2 powder and method that can be applied to the heating element.
[0002]
[Prior art]
Recently, in order to miniaturize semiconductor devices, shorten device manufacturing time, and save energy, instead of conventional metal heating elements, semiconductor manufacturing equipment such as CVD equipment and diffusion furnaces have high MoSi 2 content. Output performance heating elements have come to be used.
Generally, heat treatment furnaces used in semiconductor manufacturing equipment require extremely high-precision temperature characteristics such as strictly controlling the temperature distribution in the furnace, but heating elements based on MoSi 2 have excellent heat resistance. It is a suitable material because it has such characteristics as being capable of surface loading about 10 times that of a metal heating element and capable of rapid heating and heating.
[0003]
However, a heating element mainly composed of MoSi 2 has a low temperature called pest (powdering phenomenon) in which the simultaneous oxidation of Mo and Si occurs in the range of 573 ° K to 873 ° K and evaporation of Mo oxide further decreases. There is a problem that oxidation occurs.
Usually, in order to prevent this, materials for the heating element itself have been developed, such as forming a dense silica protective film by oxidizing at 1500 ° K. or higher.
[0004]
For example, as a countermeasure against pest (powdering phenomenon), in a molybdenum disilicide ceramic heating element, Fe, Cu, Au, Ca and Al are 0.05 mass% or less as impurities of the heating element having a composition expressed by MoSi 2 . And the total amount of impurities is 0.1 mass% or less, and the silica protective film having a film thickness of 10 to 100 μm covers the surface of the MoSi 2 ceramic except the power supply portion coated with the conductive metal. A molybdenum disilicide ceramic heating element having a long heating life has been proposed (see Patent Document 1).
[0005]
Further, as a countermeasure against the plague (powdering phenomenon), when the oxidation protective film is destroyed during heating by the molybdenum disilicide heat generation value once the oxidation protective film is formed, the oxygen concentration of the atmosphere is 0.1 to 7.0. A dense oxidation protective film having a thickness of 0.5 μm or more is formed on the surface of the heating element where the oxidation protection film is destroyed by heat-treating the molybdenum disilicide heating element under the conditions of volume% and temperature of 850 to 1200 ° C. A method for regenerating a protective film of a molybdenum silicide heating element is disclosed (see Patent Document 2).
[0006]
As a countermeasure against the plague (powdering phenomenon), in a molybdenum disilicide-based composite ceramic heating element, a silica-based oxide phase or glass phase having a relatively low melting point compared to MoSi 2 in a MoSi 2 matrix having a network structure. Has disclosed a molybdenum disilicide-based composite ceramic heating element having a low temperature heating life and distributed in a mesh form at the MoSi 2 grain boundaries (see Patent Document 3).
As a countermeasure against the above plague (powdering phenomenon), it is necessary to form a MoSi 2 ceramic surface silica protective film, and a special heat treatment step for that purpose is essential. However, there is a problem that even if such a protective film is formed, the plague (powdering phenomenon) cannot be sufficiently prevented.
[0007]
[Patent Document 1]
JP-A-10-324571 [Patent Document 2]
Japanese Patent Laid-Open No. 11-130541 [Patent Document 3]
JP-A-11-317282
[Problems to be solved by the invention]
The present invention is a MoSi 2 powder that can effectively prevent the pest (powdering phenomenon) that simultaneous oxidation of Mo and Si occurs in the range of 573 ° K to 873 ° K and further evaporation of the Mo oxide is accompanied. The present invention relates to a method for producing the powder, a heating element using the powder, and a method for producing the heating element. In particular, a heating element useful for a heat treatment furnace for semiconductor manufacturing equipment (including an oxidation / diffusion furnace) and a method for manufacturing the same are provided.
[0009]
[Means for Solving the Problems]
In order to solve the above problems, the present inventors can effectively prevent the pest (powdering phenomenon) of a heating element mainly composed of MoSi 2 by improving the MoSi 2 powder as a raw material, In particular, the inventors have found that a heating element containing 80 wt% or more of MoSi 2 as a main component, which is useful for a heat treatment furnace for semiconductor manufacturing equipment (including an oxidation / diffusion furnace), can be provided at low cost.
The present invention is based on this finding,
1. MoSi 2 specific surface area of the powder is not less 0.2 m 2 / g or more, and MoSi 2 powder 2, characterized in that it comprises an oxide film on the surface. Heating element MoSi 2 powder 3 MoSi 2 oxygen content of the powder is characterized in that at 2000ppm or more. Heating element of claim 1, wherein the the MoSi 2 oxygen content of the powder is characterized in that at 1000ppm or more MoSi 2 powder 4. 4. A heating element using the MoSi 2 powder according to any one of the above 1 to 3, which contains 80 wt% or more of MoSi 2 as a main component and is composed of residual SiO 2 and impurities. Heating element MoSi 2 powder production method 6, characterized in that washing the MoSi 2 powder with an acid containing an oxidizing acid or oxidizing agent. Heating element MoSi 2 powder manufacturing method 7 above 5, wherein further comprising an oxide film on the surface of the MoSi 2 powder. 7. The method for producing MoSi 2 powder for a heating element as described in 5 or 6 above, wherein the specific surface area of the MoSi 2 powder is 0.2 m 2 / g or more. 8. The method for producing MoSi 2 powder for a heating element according to any one of 5 to 7 above, wherein the oxygen content of the MoSi 2 powder is 2000 ppm or more. Cleaning the MoSi 2 raw material powder with an oxidizing acid or an acid containing an oxidizing agent , drying the powder with a specific surface area of 0.2 m 2 / g or more , mixing and pulverizing the dried MoSi 2 powder and SiO 2 10. A method for producing a heating element mainly composed of MoSi 2 , comprising a step of mixing, degreasing with a binder, and a step of conducting current sintering. The method for producing a heating element mainly comprising MoSi 2 as described in 9 above, comprising a step of primary sintering after degreasing.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Heating elements of the invention has a specific surface area of the MoSi 2 powder 0.2 m 2 / g or more, and use the MoSi 2 powder having an oxide film on the surface. This oxide film can be obtained by washing with an acid having strong oxidizing power such as nitric acid or hydrogen peroxide or an acid containing an oxidizing agent. For example, sodium hypochlorite may be used as long as it has strong oxidizing power.
The MoSi 2 powder on which this oxide film is formed preferably has a total oxygen content of 3000 ppm or more. As a result, a sufficient oxide film can be formed on the MoSi 2 powder.
The heating element of the present invention is a base material containing MoSi 2 as a main component and containing 80 wt% or more, preferably 90 wt% or more, and the electric resistance is increased by adding SiO 2 as an insulating oxide to the MoSi 2 base material. It can be applied to a heating element mainly composed of MoSi 2 .
Further, high-purity silica is contained as a vitreous forming material in an amount of 20 wt% or less, preferably 10 wt% or less. This is because the phase transition accompanied by the volume change of SiO 2 is taken into account, and when the SiO 2 content is excessively large, the influence becomes large, which may hinder the strength of the heating element.
[0011]
This MoSi 2 heating element is obtained by washing MoSi 2 raw material powder with an oxidizing acid or an acid containing an oxidizing agent, drying it, then mixing and grinding with SiO 2 , mixing with a binder, and further extruding, for example, To form a rod or flat plate.
The molded body thus obtained is degreased, primary sintered, and energized and heated to produce a MoSi 2 heating element having a high density.
Furthermore, the rod-shaped or flat plate-shaped heating elements thus manufactured are joined and manufactured into, for example, an arc shape or a U-shape. Thus, after forming the MoSi 2 made heating element to various shapes, placed for example in a heat treatment furnace for semiconductor manufacturing equipment.
Cleaning of the MoSi 2 raw material powder with an acid does not require much labor and cost. Nevertheless, the plague (powdering phenomenon) of the heating element can be effectively prevented.
[0012]
[Examples and Comparative Examples]
EXAMPLES Examples and comparative examples will be described below, but these examples are for ease of understanding and do not limit the present invention. That is, other modifications or other embodiments within the scope of the technical idea of the present invention are naturally included in the present invention.
[0013]
Example 1
MoSi 2 powder having a purity level of 3N was used as a heating element material. This was washed with nitric acid. Table 1 shows the specific surface area (m 2 / g), oxygen content (ppm), and presence / absence of an oxide film of the raw material powder and the powder after washing with an acid. As shown in Table 1, the amount of impurities was significantly reduced by washing with acid. On the other hand, oxygen rose from 900 ppm to 3000 ppm due to the formation of the oxide film. The specific surface area of the MoSi 2 powder became 2.5 m 2 / g from 0.13 m 2 / g.
[0014]
[Table 1]
Figure 0004515038
[0015]
The above-mentioned MoSi 2 powder 95 wt% and SiO 2 powder 5 wt% are mixed with a binder (note that the binder is not calculated as a mixing ratio. The same shall apply hereinafter), and this mixture is extruded from a mold to form a rod-shaped molded body. did.
This rod-shaped molded body (green) was degreased, primary sintered and energized and heated to obtain a MoSi 2 rod-shaped heating element.
A heat cycle characteristic test was conducted on this heating element. This implementation condition was performed, for example, under the condition of holding one cycle at 480 ° C. for 10 hours. As a result, it was not pulverized (pested) even after 500 cycles, and was 300 MPa or more in the bending test.
[0016]
(Example 2)
MoSi 2 powder having a purity level of 3N was used as a heating element material. The heating element material was washed with hydrochloric acid and hydrogen peroxide. Table 1 shows the specific surface area (m 2 / g), oxygen content (ppm), and presence / absence of an oxide film after washing with acid in the same manner as in Example 1. The formation of the oxide film, oxygen is increased from 900ppm of 4500 ppm, a specific surface area of the MoSi 2 powder became 3.0 m 2 / g from 0.13 m 2 / g.
On the other hand, a commercially available product was used as the SiO 2 powder. After selecting and removing impurities from this commercial product, a material purified by evaporating the metal component contained by further heat treatment at a high temperature of 1650 ° C. or higher was used. Incidentally, the high-temperature heat treatment of SiO 2 is required to phase transition to a stable cristobalite at high temperatures the crystal structure of SiO 2 of silica in the same manner as in Example 1.
[0017]
The above-mentioned MoSi 2 powder 95 wt% and SiO 2 powder 5 wt% were mixed with a binder, and the mixture was extruded from a mold to form a rod-shaped molded body. This rod-shaped molded body (green) was degreased, primary sintered and energized and heated to obtain a MoSi 2 rod-shaped heating element.
A heat cycle characteristic test was conducted on this heating element. This implementation condition was performed, for example, under the condition of holding one cycle at 480 ° C. for 10 hours. As a result, it was not pulverized (pested) even after 500 cycles, and was 300 MPa or more in the bending test.
[0018]
(Example 3)
MoSi 2 powder having a purity level of 3N was used as a heating element material. This heating element material was washed with dilute nitric acid. Table 1 shows the specific surface area (m 2 / g), oxygen content (ppm), and presence / absence of an oxide film after washing with acid in the same manner as in Example 1. Oxygen increased from 900 ppm to 2100 ppm due to the formation of the oxide film. The specific surface area of the MoSi 2 powder became 2.1 m 2 / g from 0.13 m 2 / g.
On the other hand, it was treated in the same manner as in Example 1 using commercially available products the SiO 2 powder. Then, the above-described MoSi 2 powder 95 wt% and SiO 2 powder 5 wt% is mixed with a binder, the mixture was from the mold extruded and molded body of the rod-shaped. This rod-shaped molded body (green) was degreased, primary sintered and energized and heated to obtain a MoSi 2 rod-shaped heating element.
With respect to this heating element, a thermal cycle characteristic test was conducted in the same manner as in Example 1. This execution condition was carried out under the condition of holding for 10 hours at one cycle of 480 ° C. As a result, it was not pulverized (pested) even after 500 cycles, and was 300 MPa or more in the bending test.
[0019]
(Comparative Example 1)
A commercially available MoSi 2 powder of 95 wt% (O: 900 wt ppm), which is generally said to be of high purity, and a commercially available SiO 2 powder of 5 wt% are finely pulverized and mixed with a binder, and this mixture is removed from the mold. Extruded into a rod-shaped molded body.
This rod-shaped molded body (green) was degreased, primary sintered and energized and heated to obtain a MoSi 2 rod-shaped heating element.
A heat cycle characteristic test was conducted on this heating element. This implementation condition was performed, for example, under the condition of holding one cycle at 480 ° C. for 10 hours. As a result, occur where even after 50 cycles pulverization (plague) is everywhere, becomes less 200MPa in flexural test became fragile heating elements.
From the above, when used with a heat treatment furnace for a semiconductor manufacturing apparatus, the heating element was plague, and an undesirable result was obtained as a heating element material.
[0020]
【The invention's effect】
In the present invention, the MoSi 2 powder as a raw material is washed with an oxidizing acid, and the powder is covered with an oxide film, thereby effectively preventing the pest (powdering phenomenon) of the heating element mainly composed of MoSi 2. It has a remarkable effect that it can suppress the pest (powdering phenomenon) of the heating element at a low cost and can greatly improve the life of the heating element by a relatively simple operation such as acid cleaning. .
At the same time, it is possible to reduce impurities in the MoSi 2 powder, that is, the heat generating body using the powder, and in particular, it has an effect of preventing contamination of the semiconductor wafer by impurities.

Claims (2)

表面に酸化皮膜を形成したMoSi粉末であって、酸洗浄によって得られる比表面積が2.1〜3.0m /gの範囲にあり、酸素含有量が2100ppm〜4500ppmであることを特徴とする焼結発熱体用MoSi粉末。MoSi 2 powder having an oxide film formed on the surface, having a specific surface area obtained by acid cleaning in a range of 2.1 to 3.0 m 2 / g, and an oxygen content of 2100 ppm to 4500 ppm MoSi 2 powder for sintered heating element. 表面に酸化皮膜を形成したMoSi粉末であって、酸洗浄によって得られる比表面積が2.1〜3.0m /gの範囲にあり、酸素含有量が2100ppm〜4500ppmである焼結発熱体用MoSi粉末を用いて焼結したことを特徴とするMoSiを主成分として80wt%以上含み、残余SiOと不純物からなる発熱体。A sintered heating element having MoSi 2 powder with an oxide film formed on the surface thereof, a specific surface area obtained by acid cleaning in a range of 2.1 to 3.0 m 2 / g, and an oxygen content of 2100 ppm to 4500 ppm use MoSi comprises more than 80 wt% as a main component MoSi 2, characterized in that the sintering by using a 2 powder, the heating element consisting of the remainder SiO 2 and impurities.
JP2003101369A 2003-04-04 2003-04-04 MoSi2 powder, method for producing the powder, heating element using the powder, and method for producing the heating element Expired - Fee Related JP4515038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003101369A JP4515038B2 (en) 2003-04-04 2003-04-04 MoSi2 powder, method for producing the powder, heating element using the powder, and method for producing the heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003101369A JP4515038B2 (en) 2003-04-04 2003-04-04 MoSi2 powder, method for producing the powder, heating element using the powder, and method for producing the heating element

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010018643A Division JP5122593B2 (en) 2010-01-29 2010-01-29 MoSi2 powder, method for producing the powder, heating element using the powder, and method for producing the heating element

Publications (2)

Publication Number Publication Date
JP2004307243A JP2004307243A (en) 2004-11-04
JP4515038B2 true JP4515038B2 (en) 2010-07-28

Family

ID=33465180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003101369A Expired - Fee Related JP4515038B2 (en) 2003-04-04 2003-04-04 MoSi2 powder, method for producing the powder, heating element using the powder, and method for producing the heating element

Country Status (1)

Country Link
JP (1) JP4515038B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100885719B1 (en) * 2006-11-04 2009-02-26 (주)위너테크놀로지 MoSi2 and the application of the same
JP5357628B2 (en) * 2009-05-26 2013-12-04 日本特殊陶業株式会社 Manufacturing method of ceramic heater
CN106278280B (en) * 2016-08-09 2019-05-17 中原工学院 A kind of preparation method of composite ceramics that resisting PEST
CN111869317B (en) * 2018-03-18 2022-06-14 山特维克知识产权股份有限公司 Heating element comprising chromium alloyed molybdenum disilicide and use thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61141673A (en) * 1984-12-13 1986-06-28 東京タングステン株式会社 Molybdenum silicide alloy sintered body and manufacture
JPS63125604A (en) * 1986-11-15 1988-05-28 Tosoh Corp Production of high-purity metal silicide powder
JPH06349565A (en) * 1993-06-08 1994-12-22 Riken Corp Terminal member used for molybdenum disilicide heating element
JP2001148248A (en) * 1999-11-22 2001-05-29 Sony Corp Manufacturing method of negative electrode material and a manufacturing method of secondary battery
JP2002531373A (en) * 1998-12-04 2002-09-24 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Sintered pin heater
JP2002348174A (en) * 2002-03-20 2002-12-04 Japan Energy Corp HEATER MATERIAL CONTAINING MoSi2 AS ITS MAIN COMPONENT WITH LOW-OXYGEN DIFFUSE VITREOUS COATING FILM
JP2003160380A (en) * 2001-11-22 2003-06-03 Nikko Materials Co Ltd HEAT GENERATOR HAVING MAIN INGREDIENT OF MoSi2

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61141673A (en) * 1984-12-13 1986-06-28 東京タングステン株式会社 Molybdenum silicide alloy sintered body and manufacture
JPS63125604A (en) * 1986-11-15 1988-05-28 Tosoh Corp Production of high-purity metal silicide powder
JPH06349565A (en) * 1993-06-08 1994-12-22 Riken Corp Terminal member used for molybdenum disilicide heating element
JP2002531373A (en) * 1998-12-04 2002-09-24 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Sintered pin heater
JP2001148248A (en) * 1999-11-22 2001-05-29 Sony Corp Manufacturing method of negative electrode material and a manufacturing method of secondary battery
JP2003160380A (en) * 2001-11-22 2003-06-03 Nikko Materials Co Ltd HEAT GENERATOR HAVING MAIN INGREDIENT OF MoSi2
JP2002348174A (en) * 2002-03-20 2002-12-04 Japan Energy Corp HEATER MATERIAL CONTAINING MoSi2 AS ITS MAIN COMPONENT WITH LOW-OXYGEN DIFFUSE VITREOUS COATING FILM

Also Published As

Publication number Publication date
JP2004307243A (en) 2004-11-04

Similar Documents

Publication Publication Date Title
US6444957B1 (en) Heating apparatus
JP4499431B2 (en) Aluminum nitride sintered body, electrostatic chuck, conductive member, member for semiconductor manufacturing apparatus, and method for manufacturing aluminum nitride sintered body
JP4447750B2 (en) Aluminum nitride sintered body and semiconductor manufacturing member
JPH10324571A (en) Molybdenum disilicide ceramic heat generating body and its production
TW201043593A (en) Alumina sintered body, method for manufacturing the same, and semiconductor manufacturing apparatus member
TWI322140B (en) Ceramic member and method for producing the same
JP3433063B2 (en) Aluminum nitride sintered body, electronic functional material and electrostatic chuck
JP5039097B2 (en) Power module
JP4515038B2 (en) MoSi2 powder, method for producing the powder, heating element using the powder, and method for producing the heating element
JP2007277079A (en) Aluminum nitride sintered compact and its manufacturing process
JP2001064080A (en) Silicon nitride sintered body and its production
JP5122593B2 (en) MoSi2 powder, method for producing the powder, heating element using the powder, and method for producing the heating element
JP2011020920A (en) Method for producing molybdenum disilicide type heating element and heating element
JPH11214124A (en) Ceramic heater
JPS6337072B2 (en)
JP4384101B2 (en) Silicon nitride ceramic substrate and silicon nitride ceramic circuit board using the same
JP2004175616A (en) Zinc oxide-type sintered compact and its manufacturing method
JP2003313078A (en) Aluminum nitride sintered compact and electrostatic chuck using the same
JP4458692B2 (en) Composite material
KR100635962B1 (en) Method of making a heating element of the molybdenum silicide type and a heating element
WO2003043952A1 (en) HEATING ELEMENT COMPRISING MoSi2 AS PRIMARY COMPONENT
JP4609837B2 (en) Heater composed mainly of MoSi2 with excellent pest resistance
JP4823486B2 (en) Heater mainly composed of MoSi2 having excellent pest resistance and method for producing the same
JP2537606B2 (en) Ceramic Heater
JP3340644B2 (en) Composite PTC material

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20030522

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100512

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees