JP4823486B2 - Heater mainly composed of MoSi2 having excellent pest resistance and method for producing the same - Google Patents
Heater mainly composed of MoSi2 having excellent pest resistance and method for producing the same Download PDFInfo
- Publication number
- JP4823486B2 JP4823486B2 JP2004095798A JP2004095798A JP4823486B2 JP 4823486 B2 JP4823486 B2 JP 4823486B2 JP 2004095798 A JP2004095798 A JP 2004095798A JP 2004095798 A JP2004095798 A JP 2004095798A JP 4823486 B2 JP4823486 B2 JP 4823486B2
- Authority
- JP
- Japan
- Prior art keywords
- heater
- sintering
- mosi
- oxide film
- surface roughness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Resistance Heating (AREA)
- Ceramic Products (AREA)
Description
本発明は、耐ペスト性に著しく優れたMoSi2を主成分とするヒーター及びその製造方法、特に半導体製造装置用熱処理炉(酸化・拡散炉を含む)に有用である耐ペスト性に優れたMoSi2を主成分とする基材からなるヒーター及びその製造方法に関する。
なお、本明細書で使用するMoSi2を主成分とするヒーターは、MoSi2基材に絶縁性酸化物であるガラス相(SiO2系酸化物)等を含有させるなど、副次的又は付加的に添加する材料に特に制限はなく、MoSi2が主成分であれば、それらの全て含むものである。
INDUSTRIAL APPLICABILITY The present invention relates to a heater having MoSi 2 as a main component that is remarkably excellent in pest resistance and a method for manufacturing the same, and in particular, MoSi excellent in pest resistance that is useful for a heat treatment furnace (including an oxidation / diffusion furnace) for semiconductor manufacturing equipment The present invention relates to a heater comprising a base material mainly comprising 2 and a method for producing the same.
In addition, the heater mainly composed of MoSi 2 used in the present specification is secondary or additional, such as containing a glass phase (SiO 2 oxide) which is an insulating oxide in the MoSi 2 base material. There are no particular restrictions on the material to be added to, if MoSi 2 is the main component, is intended to include all of them.
MoSi2を主成分とするヒーターは、673°K〜873°Kの範囲で、MoとSiの同時酸化が起こり、さらにMo酸化物の蒸発減少が伴うという、ペスト(粉化現象)と言う低温酸化が起こる。これを防止するために、1500°K以上で酸化処理して緻密なシリカ保護被膜を形成する。本発明は、このような緻密なシリカ保護被膜を形成したヒーターを含み、ガラス質成分の添加は、このような緻密なシリカ保護被膜の形成に有効である。 A heater composed mainly of MoSi 2 has a low temperature called pest (powdering phenomenon), in which simultaneous oxidation of Mo and Si occurs in the range of 673 ° K to 873 ° K, and further evaporation of the Mo oxide is accompanied. Oxidation occurs. In order to prevent this, a dense silica protective film is formed by oxidizing at 1500 ° K. or higher. The present invention includes a heater in which such a dense silica protective coating is formed, and the addition of a glassy component is effective for the formation of such a dense silica protective coating.
最近、半導体デバイスの微細化及びデバイス製造時間の短縮化と省エネルギー化のために、従来の金属ヒーターに替えて、CVD装置や拡散炉等の半導体製造装置に、MoSi2を主成分とする高出力性能のヒーターが利用されるようになってきた。
一般に、半導体製造装置に使用される熱処理炉は炉内の温度分布を厳密に制御するなど、非常に高精度な温度特性が要求されるが、MoSi2を主成分とするヒーターは優れた耐熱特性を有し、金属ヒーターの約10倍の表面負荷が可能であり、また急速加熱昇温することができるという大きな特長を有するので、好適な材料と言える。
Recently, in order to miniaturize semiconductor devices, shorten device manufacturing time, and save energy, high output power mainly composed of MoSi 2 is used in semiconductor manufacturing equipment such as CVD equipment and diffusion furnaces instead of conventional metal heaters. Performance heaters have come to be used.
Generally, heat treatment furnaces used in semiconductor manufacturing equipment require very high-precision temperature characteristics such as strictly controlling the temperature distribution in the furnace, but heaters based on MoSi 2 have excellent heat resistance characteristics. Therefore, it can be said to be a suitable material because it has a large feature that it can have a surface load about 10 times that of a metal heater and can be rapidly heated and heated.
MoSi2を主成分とするヒーターは、そのための材料強度(耐熱性)や材料脆化現象を防止するため、あるいはペスト(粉化現象)と呼ばれている低温酸化を防止するために1500°K以上で酸化処理して緻密なシリカ保護被膜を形成する等、ヒーター自体の材料開発が行われている(例えば、特許文献1、特許文献2参照)。
これらのMoSi2を主成分とするヒーターを半導体製造装置の熱処理炉に使用した場合、雰囲気温度で100〜150°C/分の昇温速度を達成することが可能であり、金属ヒーターより格段に優れた特性を出すことができた。この場合のMoSi2製ヒーター自体の表面温度は、およそ1800〜3600°C/分(30〜60°C/秒)の速度で変化する。
In order to prevent the material strength (heat resistance), material embrittlement phenomenon, or low temperature oxidation called pest (powdering phenomenon), the heater mainly composed of MoSi 2 is 1500 ° K. As described above, materials for the heater itself have been developed, such as forming a dense silica protective film by oxidation treatment (see, for example, Patent Document 1 and Patent Document 2).
When these heaters mainly composed of MoSi 2 are used in a heat treatment furnace of a semiconductor manufacturing apparatus, it is possible to achieve a temperature increase rate of 100 to 150 ° C./min at an ambient temperature, which is much higher than a metal heater. Excellent characteristics were achieved. In this case, the surface temperature of the MoSi 2 heater itself changes at a rate of approximately 1800 to 3600 ° C./minute (30 to 60 ° C./second).
最近では、MoSi2を主成分とするヒーターの市場の拡大とともに、長寿命化のニーズが大きくなってきているが、さらに耐ペスト性に優れたヒーターが要求されるようになってきた。
しかし、従来のMoSi2を主成分とするヒーターでは、このような耐ペスト性をさらに向上させる手法を持つに至っていないのが現状である。
However, in the current situation, the conventional heater mainly composed of MoSi 2 does not have such a method for further improving the pest resistance.
本発明は、耐ペスト性に著しく優れたヒーター、特に半導体製造装置用熱処理炉(酸化・拡散炉を含む)等に有用である耐ペスト性に優れ、さらに寿命を向上させることができるMoSi2を主成分とする基材からなるヒーター及びその製造方法を提供する。 The present invention provides MoSi 2 having excellent pest resistance, which is useful for a heater that is remarkably excellent in pest resistance, particularly a heat treatment furnace for semiconductor manufacturing equipment (including an oxidation / diffusion furnace), and that can further improve the life. A heater comprising a base material as a main component and a method for producing the same are provided.
上記の課題を解決するために、本発明者らは、ヒーター製造工程中の一次焼結体の表面粗さに着目し、その表面粗さを向上させることにより、耐ペスト性を向上させ、特に半導体製造装置用熱処理炉(酸化・拡散炉を含む)の急速加熱冷却、その他の炉のヒーターとして有用である長寿命化したMoSi2を主成分とするヒーターを低コストで提供できるとの知見を得た。
本発明はこの知見に基づき、1)ヒーターの原料となる粉末の成形体を不活性雰囲気中で一次焼結し、その後大気中又は酸化性雰囲気中で通電焼結又は外部加熱焼結して酸化膜を形成するMoSi2を主成分とするヒーターであって、酸化膜を形成する前の一次焼結体の平均表面粗さRaが0.8μm以下であることを特徴とする耐ペスト性に優れたMoSi2を主成分とするヒーター、2)酸化膜を形成する前の一次焼結体の平均表面粗さRaが0.3μm以下であることを特徴とする1記載の耐ペスト性に優れたMoSi2を主成分とするヒーター、3)ヒーターの原料となる粉末の成形体を不活性雰囲気中で一次焼結し、その後大気中又は酸化性雰囲気中で通電焼結又は外部加熱焼結して酸化膜を形成するMoSi2を主成分とするヒーターであって、一旦形成された酸化膜を研磨加工して平均表面粗さRaを0.8μm以下に小さくし、再度通電焼結又は外部加熱焼結して酸化膜を形成したことを特徴とする耐ペスト性に優れたMoSi2を主成分とするヒーター、4)一旦形成された酸化膜を研磨加工して平均表面粗さRaを0.3μm以下に小さくすることを特徴とする3記載の耐ペスト性に優れたMoSi2を主成分とするヒーター、5)ヒーターの原料となる粉末の成形体を不活性雰囲気中で一次焼結し、その後大気中又は酸化性雰囲気中で通電焼結又は外部加熱焼結して酸化膜を形成するMoSi2を主成分とするヒーターであって、ヒーターの表面酸化膜除去後の平均表面粗さRaが0.8μm以下であることを特徴とする耐ペスト性に優れたMoSi2を主成分とするヒーター、6)ヒーターの表面酸化膜の除去は、真空中における蒸発除去又は酸洗による除去であることを特徴とする5記載の耐ペスト性に優れたMoSi2を主成分とするヒーター、7)20Pa以下の真空中で、1400°Cに2時間加熱処理した後の平均表面粗さRaが0.8μm以下であることを特徴とする5記載の耐ペスト性に優れたMoSi2を主成分とするヒーター、8)酸化膜除去後の平均表面粗さRaが0.3μm以下であることを特徴とする5〜7のいずれかに記載の耐ペスト性に優れたMoSi2を主成分とするヒーター、9)ヒーターの最終平均表面粗さRaが0.5μm以下であることを特徴とする1〜8のいずれかに記載の耐ペスト性に優れたMoSi2を主成分とするヒーター、10)ヒーターの最終平均表面粗さRaが0.2μm以下であることを特徴とする9記載の耐ペスト性に優れたMoSi2を主成分とするヒーターを提供する。
In order to solve the above problems, the inventors focused on the surface roughness of the primary sintered body during the heater manufacturing process, and improved the pest resistance by improving the surface roughness. Knowledge that rapid heating / cooling of heat treatment furnaces for semiconductor manufacturing equipment (including oxidation / diffusion furnaces), and heaters based on MoSi 2 that are useful as heaters for other furnaces can be provided at low cost. Obtained.
The present invention is based on this knowledge. 1) Primary sintering of a powder compact as a raw material of a heater in an inert atmosphere, followed by electric current sintering or external heating sintering in the air or in an oxidizing atmosphere to oxidize A heater mainly composed of MoSi 2 for forming a film, wherein the average surface roughness Ra of the primary sintered body before forming the oxide film is 0.8 μm or less, and is excellent in pest resistance 2) The heater with MoSi 2 as the main component, 2) The average surface roughness Ra of the primary sintered body before forming the oxide film is 0.3 μm or less, and has excellent pest resistance according to 1. 3) Heater mainly composed of MoSi 2 3) Primary sintering of the powder body as a raw material of the heater in an inert atmosphere, followed by current sintering or external heating sintering in air or in an oxidizing atmosphere composed mainly of MoSi 2 to form an oxide film The oxide film once formed is polished to reduce the average surface roughness Ra to 0.8 μm or less, and is again subjected to current sintering or external heating sintering to form an oxide film. 4. A heater composed mainly of MoSi 2 having excellent pest resistance, and 4) polishing an oxide film once formed to reduce the average surface roughness Ra to 0.3 μm or less. A heater composed mainly of MoSi 2 having excellent pest resistance, 5) primary sintering of a powder compact as a raw material of the heater in an inert atmosphere, and then electric current sintering in air or an oxidizing atmosphere A heater composed mainly of MoSi 2 that forms an oxide film by external heating and sintering, and has an average surface roughness Ra of 0.8 μm or less after removal of the surface oxide film of the heater. the MoSi 2 having excellent sex Heater for the component, 6) Heating removing surface oxide film of the heater, mainly composed of MoSi 2 which is excellent in resistance to pest of 5, wherein it is removed by evaporation removal or pickling in vacuo 7) MoSi 2 excellent in pest resistance according to 5, characterized in that the average surface roughness Ra after heat treatment at 1400 ° C. for 2 hours in a vacuum of 20 Pa or less is 0.8 μm or less. Heater as a main component, 8) MoSi 2 excellent in pest resistance according to any one of 5 to 7 characterized in that the average surface roughness Ra after removal of the oxide film is 0.3 μm or less 9) A heater mainly composed of MoSi 2 having excellent pest resistance according to any one of 1 to 8, wherein the final average surface roughness Ra of the heater is 0.5 μm or less, 10) Heater 9. The heater having MoSi 2 as a main component having excellent pest resistance according to 9, wherein the final average surface roughness Ra is 0.2 μm or less.
本発明は、また11)ヒーターの原料となる粉末の成形体を不活性雰囲気中で一次焼結し、その後大気中又は酸化性雰囲気中で通電焼結又は外部加熱焼結して酸化膜を形成するMoSi2を主成分とするヒーターの製造方法であって、酸化膜を形成する前の一次焼結体を研磨加工して表面粗さを小さくし、その後、該一次焼結体を通電焼結又は外部加熱焼結して酸化膜を形成することを特徴とする耐ペスト性に優れたMoSi2を主成分とするヒーターの製造方法、12)ヒーターの原料となる粉末の成形体を不活性雰囲気中で一次焼結し、その後大気中又は酸化性雰囲気中で通電焼結又は外部加熱焼結して酸化膜を形成するMoSi2を主成分とするヒーターの製造方法であって、酸化膜を形成する前の一次焼結体を研磨加工して表面粗さを小さくし、その後、該一次焼結体を通電焼結又は外部加熱焼結して酸化膜を形成することを特徴とする耐ペスト性に優れたMoSi2を主成分とする1〜10のいずれかに記載のヒーターの製造方法を提供する。 The present invention also includes 11) primary sintering of a powder compact as a raw material of the heater in an inert atmosphere, and then forming an oxide film by conducting current sintering or external heating sintering in air or in an oxidizing atmosphere. A method of manufacturing a heater mainly composed of MoSi 2 , wherein the primary sintered body before the oxide film is formed is polished to reduce the surface roughness, and then the primary sintered body is subjected to current sintering. Alternatively, an oxide film is formed by external heating and sintering, and a method for manufacturing a heater mainly composed of MoSi 2 having excellent pest resistance. 12) An inert atmosphere of a powder compact as a heater raw material. A method of manufacturing a heater mainly composed of MoSi 2 that forms an oxide film by performing primary sintering in the atmosphere and then forming an oxide film by conducting current sintering or external heating sintering in the air or in an oxidizing atmosphere. The primary sintered body before grinding is polished to roughen the surface. The small, then either the MoSi 2 which is excellent in resistance to pest resistance, which comprises forming a current sintering or external heat sintering to the oxide film of the primary sintered body 10 as a main component A method for producing the heater according to claim 1 is provided.
本発明は、ヒーター製造工程中の一次焼結体の表面粗さに着目し、その表面粗さを向上させることにより、耐ペスト性を向上させ、特に半導体製造装置用熱処理炉(酸化・拡散炉を含む)の急速加熱冷却、その他の炉のヒーターとして有用である長寿命化したMoSi2を主成分とするヒーターを提供できる。
ヒーターを長寿命化することにより、ヒーターの交換頻度を低下させて炉の操業効率を上げ、トータルコストを低減できるという優れた効果を有する。
The present invention pays attention to the surface roughness of the primary sintered body during the heater manufacturing process, and improves the pest resistance by improving the surface roughness, in particular, a heat treatment furnace (oxidation / diffusion furnace) for semiconductor manufacturing equipment. In addition, it is possible to provide a heater mainly composed of MoSi 2 having a long life and useful as a heater for other furnaces.
By prolonging the life of the heater, it has an excellent effect of reducing the replacement frequency of the heater, increasing the operation efficiency of the furnace, and reducing the total cost.
本発明のMoSi2を主成分とし、残余ガラス相と不可避的不純物からなるヒーター(以下、特に記載しない限り、「MoSi2製ヒーター」と称する。)は、該ヒーターの基材内部のガラス相を6〜20vol%含有する。但し、該ヒーターの表面に緻密に形成されたSiO2の酸化被膜を除く。この他、Al2O3等の副成分を添加しても良い。本発明は、これらを全て含む。
表面の緻密な酸化膜層の厚みは、ガラス相の種類により、また添加量によって差異があり、およそ0.1μm〜20μmの範囲で形成される。
The heater composed mainly of MoSi 2 of the present invention and composed of a residual glass phase and inevitable impurities (hereinafter referred to as “MoSi 2 heater” unless otherwise specified) is a glass phase inside the substrate of the heater. 6 to 20 vol% is contained. However, the oxide film of SiO 2 densely formed on the surface of the heater is excluded. In addition, it may be added secondary components such as Al 2 O 3. The present invention includes all of these.
The thickness of the dense oxide film layer on the surface varies depending on the type of glass phase and the amount added, and is formed in the range of about 0.1 μm to 20 μm.
通常、MoSi2製ヒーターは、MoSi2原料粉とガラス粉末とを混合粉砕した後、バインダーと混合し、さらに例えば押出しによって棒状又は平板状に成形する。そして、このようにして得た成形体を脱脂、不活性雰囲気中での一次焼結及び大気中又は酸化性雰囲気中で通電焼結又は外部加熱焼結することによって製造する。
酸化膜は、この後段の工程すなわち、大気中又は酸化性雰囲気中で通電焼結又は外部加熱焼結することによって形成される。
本発明は、耐ペスト性を向上させる場合に、酸化膜を形成する前の一次焼結体の表面粗さが極めて重要であることの知見を得た。
Usually, the MoSi 2 heater is mixed and pulverized with MoSi 2 raw material powder and glass powder, then mixed with a binder, and further formed into a rod shape or a flat plate shape by, for example, extrusion. The molded body thus obtained is produced by degreasing, primary sintering in an inert atmosphere, and current sintering or external heating sintering in air or in an oxidizing atmosphere.
The oxide film is formed by this subsequent process, that is, by conducting current sintering or external heating sintering in the air or in an oxidizing atmosphere.
The present invention has obtained the knowledge that the surface roughness of the primary sintered body before forming the oxide film is extremely important in improving the pest resistance.
大気中又は酸化性雰囲気中で通電焼結又は外部加熱焼結することによって形成される酸化膜は、一次焼結体の表面粗さに強く影響される。下地となる一次焼結体の表面粗さが大きい場合、表面積が増大するため、内部への酸素の侵入の可能性が大きくなり、また一次焼結体の凹凸が激しい部分に形成された酸化膜は、角の部分から剥離し易くなる。いずれの場合も、ペスト化を増加させる原因となる。
したがって、一次焼結体の表面粗さは可能な限り小さく、本発明者研究によれば、耐ペスト性を向上させる場合には、平均表面粗さRaが0.8μm以下であることが必要である。より好ましくは、酸化膜を形成する前の一次焼結体の平均表面粗さRaが0.3μm以下である。これによって、緻密な酸化膜の形成が可能となり、酸素の侵入を効果的に抑制することができ、その発熱体材質での耐ペスト性を最大限に向上させることができる。
The oxide film formed by conducting current sintering or external heating sintering in the atmosphere or in an oxidizing atmosphere is strongly influenced by the surface roughness of the primary sintered body. When the surface roughness of the primary sintered body that is the base is large, the surface area increases, so the possibility of oxygen intrusion into the interior increases, and the oxide film formed in the part where the irregularities of the primary sintered body are severe Becomes easy to peel from the corner portion. In either case, it becomes a cause of increasing plasterization.
Therefore, the surface roughness of the primary sintered body is as small as possible. According to the present inventors' research, the average surface roughness Ra must be 0.8 μm or less in order to improve the pest resistance. is there. More preferably, the average surface roughness Ra of the primary sintered body before forming the oxide film is 0.3 μm or less. As a result, a dense oxide film can be formed, oxygen intrusion can be effectively suppressed, and the pest resistance of the heating element material can be maximized.
耐ペスト性を向上させる手段としては、通電焼結又は外部加熱焼結により、一旦形成された酸化膜を研磨加工して平均表面粗さRaを0.8μm以下に小さくし、再び通電加熱又は外部加熱して酸化膜を形成することによっても達成することができる。これは、より緻密な酸化膜を形成する上で有効である。
平均表面粗さRaを0.8μm以下とするには、通常、10μm以上の研磨加工が必要である。これによって表面酸化膜を除去し、下地の表面を平坦にすることができる。
この方法では、最初の通電焼結又は外部加熱焼結により十分に緻密化(密度アップ)しているので、その後の研磨加工により改良された表面粗さは、最終工程を経た製品にそのまま反映され易いメリットがある。従って、この方法はより最終製品に近い側での表面改質と言える。
しかし、再び通電加熱又は外部加熱をする必要があり、工程数が増えるデメリットもある。但し、ヒーターの使用条件が明確で製品時に酸化膜が不要な場合は、通電加熱又は外部加熱を省いても良い。
この場合、好ましくはこの研磨加工により、平均表面粗さRaを0.3μm以下に小さくするのが、さらに有効である。
As means for improving the pest resistance, the oxide film once formed is polished by current sintering or external heating sintering to reduce the average surface roughness Ra to 0.8 μm or less, and then again heated by current heating or external It can also be achieved by heating to form an oxide film. This is effective in forming a denser oxide film.
In order to set the average surface roughness Ra to 0.8 μm or less, a polishing process of 10 μm or more is usually required. As a result, the surface oxide film can be removed and the surface of the base can be flattened.
In this method, since it has been sufficiently densified (density increased) by the first electric current sintering or external heating sintering, the surface roughness improved by the subsequent polishing is directly reflected in the product that has undergone the final process. There is an easy merit. Therefore, this method can be said to be a surface modification on the side closer to the final product.
However, there is a demerit that the number of processes is increased because it is necessary to carry out electric heating or external heating again. However, when the use conditions of the heater are clear and an oxide film is not necessary at the time of the product, current heating or external heating may be omitted.
In this case, it is more effective to reduce the average surface roughness Ra to 0.3 μm or less, preferably by this polishing process.
耐ペスト性を向上させる場合には、健全部の表面粗さを制御することが重要だが、ヒーター表面の傷や欠陥などの特異部を極力低減させることも当然必要になる。研磨加工等による表面改質では、不可避的に生じる傷や欠陥部を完全に除去したり、和らげる効果もある。
一次焼結の段階で研磨加工する場合と、通電焼結又は外部加熱焼結して酸化膜を形成した後研磨加工する場合では、表面の酸化膜がないことでは共通するが、ヒーターの材質そのものは同一ではない。通電焼結又は外部加熱焼結して酸化膜を形成した工程を経たものは、焼結による収縮(粒子同士の結合及びネックの成長)が進んでいるからである。ヒーター材料の要求に応じて、これらを任意に選択することができる。
In order to improve the pest resistance, it is important to control the surface roughness of the healthy part, but naturally it is also necessary to reduce unique parts such as scratches and defects on the heater surface as much as possible. Surface modification by polishing or the like has the effect of completely removing or relieving inevitable scratches and defects.
In the case of polishing at the primary sintering stage and in the case of polishing after forming an oxide film by current sintering or external heating sintering, it is common that there is no surface oxide film, but the heater material itself Are not identical. This is because shrinkage (bonding between particles and growth of necks) is progressing in the case where the oxide film is formed by current sintering or external heating sintering. These can be arbitrarily selected according to the requirements of the heater material.
MoSi2を主成分とするヒーターは、上記の通りヒーターの原料となる粉末の成形体を不活性雰囲気中で一次焼結し、その後大気中又は酸化性雰囲気中で通電焼結又は外部加熱焼結して酸化膜を形成するが、この酸化膜は真空中で蒸発させるか又は酸洗することによって除去可能であり、改めて下地の表面を剥き出しにすることができる。
したがって、酸化膜除去後、すなわち下地の表面粗さを改めて確認することも可能であり、必要な表面粗さが得られていない場合には、この段階で研磨加工することが可能であり、平均表面粗さRaを0.8μm以下、さらには0.3μm以下とすることが可能である。
As described above, the heater mainly composed of MoSi 2 is obtained by first sintering a powder compact as a raw material of the heater in an inert atmosphere, and then conducting current sintering or external heating sintering in the air or in an oxidizing atmosphere. Then, an oxide film is formed. The oxide film can be removed by evaporation in a vacuum or pickling, and the surface of the base can be exposed again.
Therefore, after removal of the oxide film, that is, it is also possible to confirm the surface roughness of the foundation anew. If the required surface roughness is not obtained, polishing can be performed at this stage, and the average The surface roughness Ra can be 0.8 μm or less, and further 0.3 μm or less.
蒸発による酸化膜の除去に際しては、20Pa以下の真空中で、1400°Cで2時間程度加熱処理することにより行うことができる。この条件では、ヒーター素材が新たに焼結や粒成長することがないため、表面酸化膜のみの蒸発除去により、酸化被膜形成前の下地の表面粗さを再現することができる。
最終的に製造されたヒーターの最終平均表面粗さRaは、酸化膜の流動性(リフロー効果)により前工程より滑らかになるが、Raは0.5μm以下、より好ましくはRaが0.2μm以下とするのが望ましい。
本発明の基本は、酸化膜を形成する前の一次焼結体を研磨加工して表面粗さを小さくし、その後、該一次焼結体を通電焼結又は外部加熱焼結して酸化膜を形成することである。これによって、耐ペスト性に優れたMoSi2を主成分とするヒーターを製造することができる。
Removal of the oxide film by evaporation can be performed by heat treatment at 1400 ° C. for about 2 hours in a vacuum of 20 Pa or less. Under this condition, since the heater material does not sinter or grain growth newly, the surface roughness of the base before the formation of the oxide film can be reproduced by removing only the surface oxide film by evaporation.
The final average surface roughness Ra of the finally manufactured heater is smoother than the previous step due to the fluidity (reflow effect) of the oxide film, but Ra is 0.5 μm or less, more preferably Ra is 0.2 μm or less. Is desirable.
The basis of the present invention is that the primary sintered body before forming the oxide film is polished to reduce the surface roughness, and then the primary sintered body is subjected to current sintering or external heating sintering to form an oxide film. Is to form. This makes it possible to manufacture a heater mainly composed of MoSi 2 having excellent pest resistance.
以下に実施例及び比較例を説明するが、本実施例は理解を容易にするためのものであり、本発明を制限するものではない。すなわち、本発明の技術思想の範囲内での他の変形あるいは他の実施例は、当然本発明に含まれる。 EXAMPLES Examples and comparative examples will be described below, but these examples are for ease of understanding and do not limit the present invention. That is, other modifications or other embodiments within the scope of the technical idea of the present invention are naturally included in the present invention.
(実施例1)
ヒーター原料とするMoSi2粉末(平均粒径4μm)と5wt%SiO2粉末を混合後、さらに熱可塑性の有機バインダーと混合し、この混合物を70〜200°Cに加熱した型から押出して棒状の成形体とした(発熱体材料A:MoSi2−5wt%SiO2)。
この棒状の成形体(グリーン)を脱脂し、これを一次焼結した後、研磨加工し、さらに通電焼結してMoSi2製φ3の棒状ヒーターを得た。一次焼結後の平均表面粗さRa、研磨加工後の平均表面粗さRa、通電焼結後の平均表面粗さRa及び耐ペスト試験結果を表1に示す。
一次焼結は不活性雰囲気中1400°Cで実施し、その後の研磨加工により基材全体が均一に所定の表面粗さになるように処理する。また、通電焼結は大気中1650°Cで3分間保持する条件で実施する。
なお、耐ペスト試験は、室温から480°Cまで昇温し480°Cで10時間保持後、室温まで冷却する工程を1サイクルとして、ヒーター表面にMo酸化物である粉状の物質が生じるまでのサイクル数をカウントすることにより耐ペスト性を評価した。以下の実施例、比較例においても同様である。
耐ペスト試験結果、85サイクルまでの耐ペスト性を有した。これは、後述する比較例1の約2.8倍であり、耐ペスト性の著しい向上があった。すなわち、一次焼結後の研磨加工は、耐ペスト性を向上させるために極めて有効であることが分かる。
Example 1
After mixing MoSi 2 powder (average particle size 4 μm) and 5 wt% SiO 2 powder as a heater raw material, it is further mixed with a thermoplastic organic binder, and this mixture is extruded from a mold heated to 70 to 200 ° C. A molded body was obtained (heating element material A: MoSi 2 -5 wt% SiO 2 ).
This rod-shaped molded body (green) was degreased and subjected to primary sintering, followed by polishing, and further subjected to current sintering to obtain a rod-shaped heater made of MoSi 2 φ3. Table 1 shows the average surface roughness Ra after the primary sintering, the average surface roughness Ra after the polishing, the average surface roughness Ra after the current sintering, and the results of the anti-pest test.
The primary sintering is performed at 1400 ° C. in an inert atmosphere, and is then processed so that the entire base material has a predetermined surface roughness uniformly by a subsequent polishing process. In addition, the electric current sintering is performed under the condition of holding at 1650 ° C. in the atmosphere for 3 minutes.
The plague resistance test is a process in which the temperature is raised from room temperature to 480 ° C., held at 480 ° C. for 10 hours, and then cooled to room temperature as one cycle until a powdery substance that is Mo oxide is generated on the heater surface. The pest resistance was evaluated by counting the number of cycles. The same applies to the following examples and comparative examples.
As a result of the pest resistance test, it had a pest resistance of up to 85 cycles. This was about 2.8 times that of Comparative Example 1 to be described later, and there was a significant improvement in the pest resistance. That is, it can be seen that the polishing after the primary sintering is extremely effective for improving the pest resistance.
(比較例1)
実施例1と同一の発熱体材質を用い、一次焼結後に研磨加工することを除き、実施例1と同一の条件で、MoSi2製φ3の棒状ヒーターを得た。一次焼結後の平均表面粗さRa、研磨加工後の平均表面粗さRa、通電焼結後の平均表面粗さRa及び耐ペスト試験結果を表1に示す。
耐ペスト試験結果、30サイクルまでの耐ペスト性を有した。これは、実施例1の約1/3であり、耐ペスト性が不良であることを示している。
(Comparative Example 1)
The same heating element material as in Example 1 was used, and a rod heater of φ3 made of MoSi 2 was obtained under the same conditions as in Example 1 except that polishing was performed after primary sintering. Table 1 shows the average surface roughness Ra after the primary sintering, the average surface roughness Ra after the polishing, the average surface roughness Ra after the current sintering, and the results of the anti-pest test.
As a result of the pest resistance test, the pest resistance was up to 30 cycles. This is about 1/3 that of Example 1 and indicates that the pest resistance is poor.
(実施例2)
ヒーター原料とするMoSi2粉末(平均粒径4μm)と5wt%のコーディエライト(2MgO−2Al2O3−5SiO2)−アノーサイト(CaO−Al2O3−2SiO2)系の複合ガラス粉末を混合後、さらに熱可塑性の有機バインダーと混合し、この混合物を70〜200°Cに加熱した型から押出して棒状の成形体とした(発熱体材料B:MoSi2−5wt%複合ガラス)。
この棒状の成形体(グリーン)を脱脂し、これを一次焼結した後、研磨加工し、さらに通電焼結してMoSi2製φ3の棒状ヒーターを得た。一次焼結後の平均表面粗さRa、研磨加工後の平均表面粗さRa、通電焼結後の平均表面粗さRa及び耐ペスト試験結果を表1に示す。
一次焼結は不活性雰囲気中1400°Cで実施し、その後の研磨加工により基材全体が均一に所定の表面粗さになるように処理する。また、通電焼結は大気中1650°Cで3分間保持する条件で実施する。
耐ペスト試験結果、360サイクルまでの耐ペスト性を有した。これは、後述する比較例2の約3倍であり、耐ペスト性の著しい向上があった。すなわち、一次焼結後の研磨加工は、耐ペスト性を向上させるために極めて有効であることが分かる。
(Example 2)
MoSi 2 powder (average particle size 4 μm) and 5 wt% cordierite (2MgO-2Al 2 O 3 -5SiO 2 ) -anosite (CaO-Al 2 O 3 -2SiO 2 ) based composite glass powder used as a heater raw material After mixing, the mixture was further mixed with a thermoplastic organic binder, and the mixture was extruded from a mold heated to 70 to 200 ° C. to obtain a rod-shaped molded body (heating element material B: MoSi 2 -5 wt% composite glass).
This rod-shaped molded body (green) was degreased and subjected to primary sintering, followed by polishing, and further subjected to current sintering to obtain a rod-shaped heater made of MoSi 2 φ3. Table 1 shows the average surface roughness Ra after the primary sintering, the average surface roughness Ra after the polishing, the average surface roughness Ra after the current sintering, and the results of the anti-pest test.
The primary sintering is performed at 1400 ° C. in an inert atmosphere, and is then processed so that the entire base material has a predetermined surface roughness uniformly by a subsequent polishing process. In addition, the electric current sintering is performed under the condition of holding at 1650 ° C. in the atmosphere for 3 minutes.
As a result of the pest resistance test, it had a pest resistance of up to 360 cycles. This is about 3 times that of Comparative Example 2 described later, and there was a significant improvement in the pest resistance. That is, it can be seen that the polishing after the primary sintering is extremely effective for improving the pest resistance.
(比較例2)
実施例2と同一の発熱体材質を用い、一次焼結後に研磨加工することを除き、実施例2と同一の条件で、MoSi2製φ3の棒状ヒーターを得た。一次焼結後の平均表面粗さRa、研磨加工後の平均表面粗さRa、通電焼結後の平均表面粗さRa及び耐ペスト試験結果を表1に示す。
耐ペスト試験結果、110サイクルまでの耐ペスト性を有した。これは、実施例2の1/3であり、耐ペスト性が不良であることを示している。
(Comparative Example 2)
A rod heater of φ3 made of MoSi 2 was obtained under the same conditions as in Example 2 except that the same heating element material as in Example 2 was used and polishing was performed after primary sintering. Table 1 shows the average surface roughness Ra after the primary sintering, the average surface roughness Ra after the polishing, the average surface roughness Ra after the current sintering, and the results of the anti-pest test.
As a result of the pest resistance test, the pest resistance was up to 110 cycles. This is 1/3 of Example 2 and indicates that the pest resistance is poor.
(実施例3)
ヒーター原料とするMoSi2粉末(平均粒径4μm)と5wt%SiO2粉末を混合後、さらに熱可塑性の有機バインダーと混合し、この混合物を70〜200°Cに加熱した型から押出して棒状の成形体とした(発熱体材料A:MoSi2−5wt%SiO2)。
この棒状の成形体(グリーン)を脱脂し、これを一次焼結した後通電焼結し、これを研磨加工し、さらに通電加熱してMoSi2製φ3の棒状ヒーターを得た。一次焼結後の平均表面粗さRa、通電焼結後の平均表面粗さRa、研磨加工後の平均表面粗さRa、通電加熱後の平均表面粗さRa及び耐ペスト試験結果を表2に示す。
一次焼結は不活性雰囲気中1400°Cで実施し、通電焼結は大気中1650°Cで3分間保持する条件で実施する。その後の研磨加工により基材全体が均一に所定の表面粗さになるように処理する。また、通電加熱の条件は大気中1600°C3分間保持とする。
耐ペスト試験結果、80サイクルまでの耐ペスト性を有した。これは、後述する比較例3の約2.7倍であり、耐ペスト性の著しい向上があった。すなわち、通電焼結後の研磨加工においても、耐ペスト性を向上させるために有効であることが分かる。
(Example 3)
After mixing MoSi 2 powder (average particle size 4 μm) and 5 wt% SiO 2 powder as a heater raw material, it is further mixed with a thermoplastic organic binder, and this mixture is extruded from a mold heated to 70 to 200 ° C. A molded body was obtained (heating element material A: MoSi 2 -5 wt% SiO 2 ).
This rod-shaped molded body (green) was degreased, subjected to primary sintering, then subjected to current sintering, polished, and further heated by current to obtain a rod heater of φ3 made of MoSi 2 . Table 2 shows the average surface roughness Ra after primary sintering, the average surface roughness Ra after current sintering, the average surface roughness Ra after polishing, the average surface roughness Ra after current heating, and the pest resistance test results. Show.
Primary sintering is performed at 1400 ° C in an inert atmosphere, and current sintering is performed at 1650 ° C in air for 3 minutes. Subsequent polishing is performed so that the entire substrate is uniformly given a predetermined surface roughness. In addition, the heating condition is to hold in the atmosphere at 1600 ° C. for 3 minutes.
As a result of the pest resistance test, the pest resistance was up to 80 cycles. This was about 2.7 times that of Comparative Example 3 described later, and the pest resistance was significantly improved. That is, it can be seen that the polishing process after the electric current sintering is effective for improving the pest resistance.
(実施例4)
実施例3とほぼ同条件で通電加熱して、MoSi2製φ3の棒状ヒーターを得た。実施例3と異なるところは、研磨加工後の平均表面粗さRaと通電加熱後の平均表面粗さRaであり、平均表面粗さRaをより小さく制御したものである。
一次焼結後の平均表面粗さRa、通電焼結後の平均表面粗さRa、研磨加工後の平均表面粗さRa、通電加熱後の平均表面粗さRa及び耐ペスト試験結果を表2に示す。
耐ペスト試験結果、100サイクルまでの耐ペスト性を有した。これは、後述する比較例3の約3.3倍であり、耐ペスト性の著しい向上があった。すなわち、実施例3との比較において、通電焼結後の研磨加工及び通電加熱後の平均表面粗さRaをさらに小さくすることにより、さらに耐ペスト性を向上させるために有効であることが分かる。
Example 4
Electric current heating was performed under substantially the same conditions as in Example 3 to obtain a rod-shaped heater of φ3 made of MoSi 2 . The difference from Example 3 is the average surface roughness Ra after polishing and the average surface roughness Ra after current heating, and the average surface roughness Ra is controlled to be smaller.
Table 2 shows the average surface roughness Ra after primary sintering, the average surface roughness Ra after current sintering, the average surface roughness Ra after polishing, the average surface roughness Ra after current heating, and the pest resistance test results. Show.
As a result of the pest resistance test, the pest resistance was up to 100 cycles. This was about 3.3 times that of Comparative Example 3 to be described later, and there was a significant improvement in the pest resistance. That is, in comparison with Example 3, it can be seen that it is effective to further improve the pest resistance by further reducing the average surface roughness Ra after the electric current sintering and the electric current heating.
(比較例3)
本比較例3は、比較例1と同一であるが、実施例3及び実施例4との対比を容易にするために、表2に再掲した。耐ペスト試験結果、30サイクルまでの耐ペスト性を有した。これは、実施例3及び4の約1/3であり、耐ペスト性は不良である。
(Comparative Example 3)
Although this comparative example 3 is the same as the comparative example 1, in order to make contrast with Example 3 and Example 4 easy, it re-displayed in Table 2. As a result of the pest resistance test, the pest resistance was up to 30 cycles. This is about 3 of Examples 3 and 4, and the pest resistance is poor.
(実施例5)
ヒーター原料とするMoSi2粉末(平均粒径4μm)と7wt%ベントナイト粉末を混合後、さらに熱可塑性の有機バインダーと混合し、この混合物を70〜200°Cに加熱した型から押出して棒状の成形体とした(発熱体材料C:MoSi2−7wt%ベントナイト)。
この棒状の成形体(グリーン)を脱脂し、これを一次焼結した後通電焼結し、これを研磨加工し、さらに通電加熱してMoSi2製φ3の棒状ヒーターを得た。一次焼結後の平均表面粗さRa、通電焼結後の平均表面粗さRa、研磨加工後の平均表面粗さRa、通電加熱後の平均表面粗さRa及び耐ペスト試験結果を表3に示す。
一次焼結は不活性雰囲気中1400°Cで実施し、通電焼結は大気中1650°Cで3分間保持する条件で実施する。その後の研磨加工により基材全体が均一に所定の表面粗さになるように処理する。また、通電加熱の条件は大気中1600°C3分間保持とする。
なお、参考として研磨加工後に通電加熱した基材を耐ペスト試験とは別に、15Paの真空中で1400°C2時間加熱処理によりヒーター表面酸化膜を蒸発させた後の平均表面粗さRaを同様に表3に示す。酸化膜除去後の表面粗さは、通電加熱前の研磨加工後の表面粗さに近似しており、酸化膜の蒸発除去は、酸化前(下地)の表面粗さを確認するのに非常に有効な手段である。
耐ペスト試験結果、110サイクルまでの耐ペスト性を有した。これは、後述する比較例4の約2.75倍であり、耐ペスト性の著しい向上があった。すなわち、通電焼結後の研磨加工においても、耐ペスト性を向上させるために有効であることが分かる。
(Example 5)
After mixing MoSi 2 powder (average particle size 4 μm) and 7 wt% bentonite powder as a heater raw material, it is further mixed with a thermoplastic organic binder, and this mixture is extruded from a mold heated to 70 to 200 ° C. to form a rod. (Heating element material C: MoSi 2 -7 wt% bentonite).
This rod-shaped molded body (green) was degreased, subjected to primary sintering, then subjected to current sintering, polished, and further heated by current to obtain a rod heater of φ3 made of MoSi 2 . Table 3 shows the average surface roughness Ra after the primary sintering, the average surface roughness Ra after the electric current sintering, the average surface roughness Ra after the polishing process, the average surface roughness Ra after the electric heating, and the plague resistance test results. Show.
Primary sintering is performed at 1400 ° C in an inert atmosphere, and current sintering is performed at 1650 ° C in air for 3 minutes. Subsequent polishing is performed so that the entire substrate is uniformly given a predetermined surface roughness. In addition, the heating condition is to hold in the atmosphere at 1600 ° C. for 3 minutes.
For reference, the average surface roughness Ra after evaporating the heater surface oxide film by heat treatment at 1400 ° C. for 2 hours in a vacuum of 15 Pa is similarly applied to the substrate heated and energized after polishing. Table 3 shows. The surface roughness after removal of the oxide film approximates the surface roughness after polishing before energization heating, and the evaporation removal of the oxide film is very useful for confirming the surface roughness before oxidation (underlying). It is an effective means.
As a result of the pest resistance test, the pest resistance was up to 110 cycles. This was about 2.75 times that of Comparative Example 4 described later, and the pest resistance was significantly improved. That is, it can be seen that the polishing process after the electric current sintering is effective for improving the pest resistance.
(実施例6)
実施例5とほぼ同条件で通電加熱して、MoSi2製φ3の棒状ヒーターを得た。実施例5と異なるところは、研磨加工後の平均表面粗さRaと通電加熱後の平均表面粗さRaであり、平均表面粗さRaをより小さく制御したものである。
一次焼結後の平均表面粗さRa、通電焼結後の平均表面粗さRa、研磨加工後の平均表面粗さRa、通電加熱後の平均表面粗さRa及び耐ペスト試験結果を表3に示す。
耐ペスト試験結果、130サイクルまでの耐ペスト性を有した。これは、後述する比較例4の約3.3倍であり、耐ペスト性の著しい向上があった。すなわち、実施例5との比較において、通電焼結後の研磨加工及び通電加熱後の平均表面粗さRaをさらに小さくすることにより、さらに耐ペスト性を向上させるために有効であることが分かる。
(Example 6)
Electric current heating was performed under substantially the same conditions as in Example 5 to obtain a MoSi 2 φ3 rod heater. The difference from Example 5 is the average surface roughness Ra after polishing and the average surface roughness Ra after current heating, and the average surface roughness Ra is controlled to be smaller.
Table 3 shows the average surface roughness Ra after the primary sintering, the average surface roughness Ra after the electric current sintering, the average surface roughness Ra after the polishing process, the average surface roughness Ra after the electric heating, and the plague resistance test results. Show.
As a result of the pest resistance test, the pest resistance was up to 130 cycles. This was about 3.3 times that of Comparative Example 4 to be described later, and there was a significant improvement in the pest resistance. That is, in comparison with Example 5, it can be seen that it is effective to further improve the pest resistance by further reducing the average surface roughness Ra after the electric current sintering and the electric current heating.
(比較例4)
実施例5及び6と同一の発熱体材質を用い、実施例5及び6と同一の条件で一次焼結後通電焼結し、MoSi2製φ3の棒状ヒーターを得た。一次焼結後の平均表面粗さRa、通電焼結後の平均表面粗さRa及び耐ペスト試験結果を表3に示す。
この比較例4は、表3に示すとおり、酸化膜蒸発後、すなわち表面の改質がなく、かつ酸化前(下地)の表面粗さRaが1.15μmと大きい場合である。この場合の、耐ペスト試験結果では40サイクルであり、悪い結果となった。
(Comparative Example 4)
Using the same heating element material as in Examples 5 and 6, primary sintering was performed after the primary sintering under the same conditions as in Examples 5 and 6, and a rod heater of φ3 made of MoSi 2 was obtained. Table 3 shows the average surface roughness Ra after the primary sintering, the average surface roughness Ra after the electric current sintering, and the results of the anti-pest test.
In Comparative Example 4, as shown in Table 3, the oxide film is evaporated, that is, there is no surface modification, and the surface roughness Ra before oxidation (underlying) is as large as 1.15 μm. In this case, the result of the plague resistance test was 40 cycles, which was a bad result.
以上の一連の実施例及び比較例の結果から、表面粗さを小さくすることは、その発熱体材質の耐ペスト性を最大限に引き伸ばせることが分かった。 From the results of the series of examples and comparative examples described above, it was found that reducing the surface roughness can maximize the pest resistance of the heating element material.
ヒーター製造工程中の一次焼結体の表面粗さに着目し、その表面粗さを向上させることにより、その後に形成する酸化膜を、より緻密でかつ耐剥離性に優れたものとし、これによってヒーター内部への酸素の侵入を抑制して耐ペスト性を向上させ、特に半導体製造装置用熱処理炉(酸化・拡散炉を含む)、その他の炉のヒーターとして有用である長寿命化したMoSi2を主成分とするヒーターに有用である。
Focusing on the surface roughness of the primary sintered body during the heater manufacturing process, and improving the surface roughness, the oxide film to be formed later is made more dense and excellent in peel resistance. Improves pest resistance by suppressing oxygen intrusion into the heater, and has a long-life MoSi 2 that is particularly useful as a heat treatment furnace for semiconductor manufacturing equipment (including oxidation / diffusion furnaces) and other furnace heaters. Useful for heaters that contain the main component.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004095798A JP4823486B2 (en) | 2004-03-29 | 2004-03-29 | Heater mainly composed of MoSi2 having excellent pest resistance and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004095798A JP4823486B2 (en) | 2004-03-29 | 2004-03-29 | Heater mainly composed of MoSi2 having excellent pest resistance and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005281041A JP2005281041A (en) | 2005-10-13 |
JP4823486B2 true JP4823486B2 (en) | 2011-11-24 |
Family
ID=35179829
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004095798A Expired - Fee Related JP4823486B2 (en) | 2004-03-29 | 2004-03-29 | Heater mainly composed of MoSi2 having excellent pest resistance and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4823486B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4632205B2 (en) * | 2005-11-07 | 2011-02-16 | 株式会社リケン | Molybdenum disilicide ceramic heating element |
KR101293212B1 (en) * | 2012-01-31 | 2013-08-05 | 삼성코닝정밀소재 주식회사 | Manufacturing method for mosi2 heatingelement and furnace comprising mosi2 heatingelement manufactured by the same |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3568543B2 (en) * | 1991-11-18 | 2004-09-22 | 株式会社東芝 | Corona electrode, method of manufacturing the same, and copier, air purifier, and laser printer using the same |
JP3450596B2 (en) * | 1996-05-21 | 2003-09-29 | Hoya株式会社 | Fabrication method of surface flattened substrate |
JPH10324571A (en) * | 1997-05-23 | 1998-12-08 | Riken Corp | Molybdenum disilicide ceramic heat generating body and its production |
JP3273921B2 (en) * | 1997-07-18 | 2002-04-15 | ホーヤ株式会社 | Mold for glass optical element, method for manufacturing glass optical element, and method for reproducing mold |
JP3657800B2 (en) * | 1998-02-20 | 2005-06-08 | 株式会社リケン | Molybdenum disilicide-based composite ceramic heating element and manufacturing method thereof |
JP3070742B1 (en) * | 1999-02-22 | 2000-07-31 | 株式会社ジャパンエナジー | Heating element mainly composed of MoSi2 and method of manufacturing the same |
JP2002260953A (en) * | 2001-02-27 | 2002-09-13 | Kyocera Corp | Laminated electronic component |
JP4794080B2 (en) * | 2001-07-30 | 2011-10-12 | 京セラ株式会社 | Manufacturing method of metal layer transfer film |
JP2003133169A (en) * | 2001-10-29 | 2003-05-09 | Kyocera Corp | Manufacturing method of laminated type electronic parts |
-
2004
- 2004-03-29 JP JP2004095798A patent/JP4823486B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005281041A (en) | 2005-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108495831B (en) | Silicon nitride sintered substrate, silicon nitride sintered substrate sheet, circuit substrate, and method for producing silicon nitride sintered substrate | |
JP5586752B2 (en) | High density refractory metal and alloy sputtering targets | |
JP4987238B2 (en) | Aluminum nitride sintered body, semiconductor manufacturing member, and aluminum nitride sintered body manufacturing method | |
US8178455B2 (en) | Alumina sintered body, method for manufacturing the same, and semiconductor manufacturing apparatus member | |
JP6651628B2 (en) | High thermal conductivity silicon nitride sintered body and method for producing the same | |
CN105980331A (en) | Dielectric material and electrostatic chucking device | |
CN109336643B (en) | Preparation method of silicon carbide ceramic surface laser cladding glass film layer and composite material | |
KR101965895B1 (en) | Electrostatic chuck and method for preparing the same | |
US20080210555A1 (en) | High density ceramic and cermet sputtering targets by microwave sintering | |
JP3433063B2 (en) | Aluminum nitride sintered body, electronic functional material and electrostatic chuck | |
US8022001B2 (en) | Aluminum nitride sintered product, method for producing the same, and electrostatic chuck including the same | |
JP4823486B2 (en) | Heater mainly composed of MoSi2 having excellent pest resistance and method for producing the same | |
JP2022048679A (en) | Composite sintered body, semiconductor manufacturing equipment member, and manufacturing method of composite sintered body | |
TWI812009B (en) | Beryllium oxide pedestals | |
JP4515038B2 (en) | MoSi2 powder, method for producing the powder, heating element using the powder, and method for producing the heating element | |
JP3980262B2 (en) | SiC heat treatment jig | |
JPH07278805A (en) | Production of low oxygen silicon nitride sputtering target | |
JP4065589B2 (en) | Aluminum nitride sintered body and manufacturing method thereof | |
JP2742600B2 (en) | Aluminum nitride sintered body and method for producing the same | |
US20240290583A1 (en) | Electrostatic chuck, electrostatic chuck heater comprising same, and semiconductor holding device | |
JP5122593B2 (en) | MoSi2 powder, method for producing the powder, heating element using the powder, and method for producing the heating element | |
US20240239716A1 (en) | Electrostatic chuck, electrostatic chuck heater comprising same, and semiconductor holding device | |
JP4071691B2 (en) | Manufacturing method of heating element mainly composed of MoSi2 and having excellent thermal shock resistance, and heating element | |
JP4609837B2 (en) | Heater composed mainly of MoSi2 with excellent pest resistance | |
JP2000247732A (en) | Low-resistance ceramic, its production and member for semiconductor producing apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070123 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090915 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100112 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100311 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20100813 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110208 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110407 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110906 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110907 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140916 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees | ||
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |