JP3070742B1 - Heating element mainly composed of MoSi2 and method of manufacturing the same - Google Patents

Heating element mainly composed of MoSi2 and method of manufacturing the same

Info

Publication number
JP3070742B1
JP3070742B1 JP11042780A JP4278099A JP3070742B1 JP 3070742 B1 JP3070742 B1 JP 3070742B1 JP 11042780 A JP11042780 A JP 11042780A JP 4278099 A JP4278099 A JP 4278099A JP 3070742 B1 JP3070742 B1 JP 3070742B1
Authority
JP
Japan
Prior art keywords
heating element
density
sintering
difference
mosi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11042780A
Other languages
Japanese (ja)
Other versions
JP2000243538A (en
Inventor
大輔 高垣
博 高村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP11042780A priority Critical patent/JP3070742B1/en
Priority to EP20000300768 priority patent/EP1026920B1/en
Priority to PCT/JP2000/000895 priority patent/WO2000051399A1/en
Priority to CNB008001928A priority patent/CN1162045C/en
Application granted granted Critical
Publication of JP3070742B1 publication Critical patent/JP3070742B1/en
Publication of JP2000243538A publication Critical patent/JP2000243538A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/148Silicon, e.g. silicon carbide, magnesium silicide, heating transistors or diodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/018Heaters using heating elements comprising mosi2

Abstract

【要約】 【課題】 MoSi2 を主成分とする発熱体の耐久性を
向上させること、及び製造工程時の欠陥発生を抑制する
ことを課題をする。 【解決手段】 MoSi2 を70%以上含有する発熱体
において、発熱体の全体の平均密度と発熱体の径の1/
5に相当する中心部との密度差(真密度比)が5%以
下、好ましくは3%以下であるMoSi2 を主成分とす
る発熱体及び仮焼結の工程において昇温速度を適宜調節
した温度パターンで焼結する同発熱体の製造方法。
An object of the present invention is to improve the durability of a heating element containing MoSi 2 as a main component and to suppress the occurrence of defects during a manufacturing process. SOLUTION: In the heating element containing 70% or more of MoSi 2 , the average density of the entire heating element and 1/1/1 of the diameter of the heating element.
A heating element having MoSi 2 as a main component having a density difference (true density ratio) of 5% or less, and preferably 3% or less from a central portion corresponding to 5 and a heating rate were appropriately adjusted in a pre-sintering process. A method for manufacturing the heating element that is sintered in a temperature pattern.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、MoSi2 (モリ
ブデンシリサイド)を70%以上含有する発熱体(発熱
体及びその材料となる全成分がMoSi2 であるものを
含む。本明細書の中で、「発熱体」及び「発熱体材料」
は全てこの意味で使用する。)及びその製造方法に関す
るものであり、特に発熱体及び発熱体材料(基材)の全
体の平均密度と発熱体の径の1/5に相当する中心部
(以下の記載中、「中心部」は特に明記する以外、発熱
体の径の1/5に相当する中心部分を意味する。)との
密度差(真密度比)が小さく、基材全体が均一に焼結し
た発熱体及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heating element containing 70% or more of MoSi 2 (molybdenum silicide) (including a heating element and a material in which all components constituting the heating element are MoSi 2.) , "Heating element" and "heating element material"
Are used in this sense. ) And a method for producing the same, particularly, a central portion corresponding to 1 / of the average density of the entire heating element and the heating element material (base material) and 1/5 of the diameter of the heating element (“central section” in the following description). Means a central portion corresponding to 1/5 of the diameter of the heating element, unless otherwise specified.) And a heating element in which the entire substrate is uniformly sintered, and the production thereof. About the method.

【0002】[0002]

【従来の技術】MoSi2 を主成分とする発熱体の製造
では、まず所定の粒径に調整した原料(MoSi2 )粉
を粘土鉱物(ベントナイト等)や水、有機バインダ−等
の成形助剤と混合して、押し出し成形により所定の形
状、例えば棒状に成形する。次に、成形後に不要となる
水や有機バインダ−等を乾燥もしくは脱脂工程により成
形体から除去する。この時の成形体の真密度比は通常5
0〜70%である。この成形体の酸化を防止するために
中性および還元性雰囲気で仮焼結(一次焼結ともいう)
を行ない、該成形体の真密度比を70〜95%まで上げ
る。このようにして得られた仮焼結体を酸化雰囲気(大
気を含む)で、該仮焼結体自身に電流を流し抵抗加熱す
る(通電焼結)。この通電焼結により、通常は焼結体の
表面に酸化皮膜が形成されるとともに真密度比を90〜
100%まで上げられ、最終的に発熱体を構成する部材
に仕上げられる。この後、通常は同材料よりなる発熱部
と端子部とを通電溶接によって接続し、実用に供せられ
る。
2. Description of the Related Art In the production of a heating element containing MoSi 2 as a main component, a raw material (MoSi 2 ) powder adjusted to a predetermined particle size is first formed with a molding aid such as clay mineral (bentonite, etc.), water and an organic binder. And extruded into a predetermined shape, for example, a rod. Next, water, organic binders, etc., which become unnecessary after molding, are removed from the molded body by a drying or degreasing process. The true density ratio of the compact at this time is usually 5
0 to 70%. Temporary sintering (also called primary sintering) in neutral and reducing atmospheres to prevent oxidation of this compact
To increase the true density ratio of the molded body to 70 to 95%. The temporary sintered body thus obtained is heated in a oxidizing atmosphere (including the atmosphere) by applying a current to the temporary sintered body itself (electrical sintering). By this electric current sintering, an oxide film is usually formed on the surface of the sintered body and the true density ratio is 90 to 90.
It is raised to 100%, and is finally finished into a member constituting a heating element. Thereafter, the heat-generating portion and the terminal portion, which are usually made of the same material, are connected by current welding to be put to practical use.

【0003】ここで従来の技術においては、通常棒状の
発熱材料の密度の内外差と発熱材料の性能との関係につ
いては充分明らかにされておらず、また上記の仮焼結と
通電焼結を連続して行なう工程において焼結体の密度を
均一にするための方法についても明らかにされていな
い。本発明者らは鋭意研究の結果、以下の知見を得た。
一般に棒状体の径が9φ未満であればその影響(密度
差)は少ないが、9φ以上の大径の発熱材料では均一な
焼結が進まず次第に密度差が大きくなり始め、15φ以
上になると後述する問題が極めて顕著になる。発熱体の
大きな径では24φのものもあるが、大径になるほどこ
の密度差の増加が大きくなる傾向にある。このようにし
て仮焼結で一旦密度差のついた基材は、通電焼結工程で
さらに焼結を進行させても密度差は縮まらず、そのため
発熱体となる最終製品にに密度差が残留するという結果
になった。仮焼結体(一次焼結体)の中心部と周辺部で
密度に差がある発熱材料は、通電焼結の際に、中心部に
「巣」と呼ばれるポーラス部を生じたり、発熱材料の膨
張差による歪みで割れが生じたりする問題が発生した。
また、同径の基材を溶接する場合には、中心部と周辺部
での硬さに差があるために、溶接部で割れが発生するな
どの問題があった。また、密度の低い中心部は耐低温酸
化が不十分なため、一旦酸素が混入すると容易に酸化
し、粉状化が進み、発熱体のグリップ部に使用した場合
に破断の一因となっていた。
[0003] In the prior art, the relationship between the internal / external difference in the density of the rod-shaped heat generating material and the performance of the heat generating material is not sufficiently clarified. A method for making the density of the sintered body uniform in a process performed continuously is not disclosed. The present inventors have obtained the following findings as a result of earnest studies.
In general, the influence (density difference) is small if the diameter of the rod-shaped body is less than 9φ, but the uniformity of sintering does not proceed with a large-diameter heat generating material of 9φ or more, and the density difference starts to increase gradually. Problem becomes extremely prominent. Although the heating element has a large diameter of 24φ, the increase in the density difference tends to increase as the diameter increases. In this way, the base material that once had a density difference due to temporary sintering does not shrink even if sintering is further advanced in the electric sintering process, so that the density difference remains in the final product that is a heating element. The result was to do. A heat-generating material having a difference in density between the central portion and the peripheral portion of the temporary sintered body (primary sintered body) may generate a porous portion called a "nest" at the center portion during electric sintering, There was a problem that cracks were caused by distortion due to expansion difference.
In addition, when base materials having the same diameter are welded, there is a problem that cracks occur at a welded portion due to a difference in hardness between a central portion and a peripheral portion. In addition, since the low-density central portion is not sufficiently resistant to low-temperature oxidation, once mixed with oxygen, it is easily oxidized and powdered, which is a cause of breakage when used in the grip portion of the heating element. Was.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記の欠点
を解決したもので、発熱体の中心部と周辺部で密度差が
極めて小さい耐久性に優れたMoSi2 を主成分とする
発熱体及びその製造方法を提供し、発熱体材料の仮焼結
及び通電焼結により発熱体とする一連の製造工程におい
て、中心部に「巣」と呼ばれるポーラス部を生じたり、
発熱材料の膨張差による歪みで割れが生じたりする問題
を減少させる。また、発熱体の溶接の際の亀裂の発生を
抑制し、さらに中心部が低温酸化して生じる発熱体の崩
壊を防止することである。
SUMMARY OF THE INVENTION It is an object of the present invention is to solve the above drawbacks, heating element density difference at the central portion and the peripheral portion of the heating element is composed mainly of MoSi 2 with excellent very small durability And a method for producing the same, and in a series of manufacturing steps of forming a heating element by provisional sintering and current sintering of a heating element material, a porous portion called a “nest” is generated at the center,
The problem that cracks occur due to distortion due to the difference in expansion of the heat generating material is reduced. Another object of the present invention is to suppress the occurrence of cracks during welding of the heating element and to prevent the heating element from collapsing due to low-temperature oxidation at the center.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記の課
題を解決するために鋭意研究を行なった結果、発熱材料
の密度を以下のように制御することにより、発熱体の使
用時の耐久性を向上させることができることをあきらか
にした。またその制御方法を明らかにした。 1 MoSi2 を70%以上含有する発熱体において、
発熱体の全体の平均密度と発熱体の径の1/5に相当す
る中心部との密度差(真密度比)が5%以下であること
を特徴とするMoSi2 を主成分とする発熱体 2 発熱体の全体の平均密度と中心部との前記密度差
(真密度比)が3%以下であることを特徴とする上記1
記載のMoSi2 を主成分とする発熱体 3 MoSi2 を70%以上含有する発熱体材料を少な
くとも1350°Cから1650°Cの範囲まで5〜1
5時間かけて徐々に昇温し、発熱体材料の全体の平均密
度と同発熱体材料の径の1/5に相当する中心部との密
度差(真密度比)が5%以下となるように仮焼結し、次
いで通電焼結することを特徴とする発熱体の全体の平均
密度と発熱体の径の1/5に相当する中心部との密度差
(真密度比)が5%以下であることを特徴とするMoS
2 を主成分とする発熱体の製造方法 4 仮焼結後の発熱体材料及び通電焼結後の発熱体の全
体の平均密度と中心部との前記密度差(真密度比)が3
%以下であることを特徴とする上記3記載のMoSi2
を主成分とする発熱体の製造方法
Means for Solving the Problems The inventors of the present invention have made intensive studies to solve the above-mentioned problems, and as a result, by controlling the density of the heat-generating material as follows, It is clear that durability can be improved. The control method was clarified. 1 In a heating element containing 70% or more of MoSi 2 ,
A heating element containing MoSi 2 as a main component, wherein a density difference (true density ratio) between an average density of the entire heating element and a central portion corresponding to 1/5 of a diameter of the heating element is 5% or less. (2) The difference in density (true density ratio) between the average density of the entire heating element and the central portion thereof is 3% or less.
Heating element containing MoSi 2 as a main component 3 Heating element material containing 70% or more of MoSi 2 at least in the range of 1350 ° C. to 1650 ° C.
The temperature is gradually raised over 5 hours so that the density difference (true density ratio) between the average density of the entire heating element material and the center corresponding to 1/5 of the diameter of the heating element material is 5% or less. The density difference (true density ratio) between the average density of the entire heating element and the central portion corresponding to 1/5 of the diameter of the heating element is characterized by 5% or less. MoS characterized by being
Method for Manufacturing Heating Element Mainly Containing i 2 4 The average density of the heating element material after provisional sintering and the average density of the heating element after electric sintering and the density difference (true density ratio) between the center and 3 are 3
% Or less, MoSi 2 according to 3 above,
For producing a heating element containing as a main component

【0006】[0006]

【発明に実施の形態】MoSi2 を主成分とする発熱体
材料は1400〜1650°Cにまで加熱して仮焼結
(一次焼結)が行なわれるが、この仮焼結工程で仮焼結
体の中心部と周辺部で密度差が生じる原因は、熱が伝わ
り易い発熱体材料の周辺部が中心部より先に焼結を開始
することに端を発する。仮焼結工程で周辺部だけが先行
して焼結すると、仮焼結体の断面においてド−ナツ状に
硬い層が形成され、そのためブリッジング現象が生じ中
心部への焼結収縮が困難となる。その結果、基材の中心
部が周辺部ほど密度が上がらなくなり密度差が生じてし
まう。上記にも説明した通り、仮焼結で一旦密度差のつ
いた仮焼結体は、加熱方式の異なる通電焼結(抵抗加
熱)により焼結を促進させても密度差は縮まらない。そ
のためこれを解決するには、仮焼結でブリッジングが生
じないように焼結させることである。
BEST MODE FOR CARRYING OUT THE INVENTION A heating element material mainly composed of MoSi 2 is heated to 1400 to 1650 ° C. to perform temporary sintering (primary sintering). The cause of the density difference between the central portion and the peripheral portion of the body originates from the fact that the peripheral portion of the heating element material to which heat is easily transmitted starts sintering before the central portion. If only the peripheral portion precedes and sinters in the preliminary sintering process, a donut-shaped hard layer is formed in the cross section of the preliminary sintered body, which causes a bridging phenomenon and makes it difficult to shrink the sintering to the central portion. Become. As a result, the density does not increase as the center portion of the base material becomes closer to the peripheral portion, resulting in a difference in density. As described above, in the temporary sintered body once having the density difference due to the temporary sintering, the density difference does not shrink even if the sintering is promoted by electric current sintering (resistance heating) having different heating methods. Therefore, in order to solve this, sintering is performed so that bridging does not occur in temporary sintering.

【0007】一般に粉末の焼結では、ネックの形成(収
縮:小)→ネックの成長(収縮:大)→ポアの外部への
拡散という順に収縮を伴いながら緻密化が進む。しか
し、大径の焼結体になるほど周辺部(表面近傍)と中心
部で伝熱の影響で温度差が生じ、結果的に収縮速度が変
化する。例えば、仮焼結体の中心部でネックの形成がよ
うやく始まった頃に、周辺部ではすでにネックの成長が
進行しているようなことである。そのため従来の単純な
温度パタ−ン(定速昇温、定温保持等)の仮焼結では、
特に大径の焼結体においてこの傾向が強く現れ、ブリッ
ジングが生じ易くなっていた。この現象を抑制するため
には、望ましくない物質の移動(周辺部のみが著しく収
縮する等)が生じないように、焼結の進捗具合に合わせ
て最低限必要なエネルギ−のみを随時供給することにし
た。すなわち、MoSi2 を70%以上含有する発熱体
材料を1000〜1300°Cまで比較的短時間で加熱
昇温した後、次に少なくとも1350°Cから1650
°Cの範囲まで5〜15時間かけて徐々に昇温し、発熱
体材料の断面の中心部と周辺部の密度差(真密度比)が
5%以下となるように仮焼結した。
Generally, in powder sintering, densification progresses with shrinkage in the order of neck formation (shrinkage: small) → neck growth (shrinkage: large) → diffusion to the outside. However, as the diameter of the sintered body increases, a temperature difference occurs between the peripheral portion (near the surface) and the central portion due to the effect of heat transfer, and as a result, the shrinkage speed changes. For example, when the formation of the neck has finally started at the center of the temporary sintered body, the growth of the neck has already progressed at the periphery. Therefore, in the conventional temporary sintering of a simple temperature pattern (constant speed heating, constant temperature holding, etc.),
This tendency was particularly pronounced in a large-diameter sintered body, and bridging was likely to occur. In order to suppress this phenomenon, it is necessary to supply only the minimum necessary energy in accordance with the progress of sintering as needed so as not to cause an undesirable substance transfer (only the peripheral portion is significantly shrunk). I made it. That is, a heating element material containing 70% or more of MoSi 2 is heated to 1000 to 1300 ° C. in a relatively short time, and then heated from 1350 ° C. to 1650 ° C.
The temperature was gradually raised to the range of ° C over 5 to 15 hours, and the material of the heating element was pre-sintered so that the density difference (true density ratio) between the center and the periphery of the cross section was 5% or less.

【0008】以上の結果、基材の全面で焼結の足並みが
揃い、中心方向に均一に焼結収縮が生じると考えられ
る。そこで本発明者らは仮焼結において昇温速度を適宜
調整した温度パタ−ンで焼結させることにより、大径の
仮焼結体においても該仮焼結体の中心部と周辺部で密度
差が極めて小さい焼結体を得ることができた。すなわ
ち、仮焼結体断面の中心部と周辺部の密度差(真密度
比)が5%以下、さらにはこの密度差(真密度比)が3
%以下である仮焼結体が得られた。なお、中心部は上記
の通り、発熱体の径の1/5に相当する中心部分を意味
するが、この中心部の密度を測定するには、中心部を固
定し周辺部を旋盤で削っていき、元のサイズの1/5
(元の径がφ9ならφ1.8となる)になった時の平均
密度をその中心部の密度(真密度)とする。また、密度
の測定は通常のアルキメデス法による。このようにして
得た仮焼結体を1700°C程度に通電焼結すると焼結
体全体が均一に密度アップし、耐久性に優れた発熱体に
なることが判明した。このようにして得られた発熱体
は、製造工程で巣や亀裂が発生することなく、棒状の発
熱体の溶接に際しても、中心部と周辺部との密度差に起
因するクラックが発生することがない。また、発熱体の
使用中に内部(特に巣が発生した場合に)が選択的に酸
化され、粉化が進行して、発熱体の内部から崩壊すると
いう問題もなくなった。
[0008] As a result, it is considered that the steps of sintering are uniform on the entire surface of the base material, and sintering shrinkage occurs uniformly in the center direction. Therefore, the present inventors performed sintering in a temperature pattern in which the temperature raising rate was appropriately adjusted in the preliminary sintering, so that even in a large-diameter temporary sintered body, the density was reduced at the center and the peripheral portion of the temporary sintered body. A sintered body with a very small difference was obtained. That is, the density difference (true density ratio) between the central portion and the peripheral portion of the temporary sintered body cross section is 5% or less, and the density difference (true density ratio) is 3%.
% Or less was obtained. As described above, the central portion means the central portion corresponding to 1/5 of the diameter of the heating element. To measure the density of the central portion, fix the central portion and grind the peripheral portion with a lathe. Iki, 1/5 of the original size
(If the original diameter is φ9, φ1.8 becomes the average density) is defined as the density at the center (true density). The density is measured by the ordinary Archimedes method. It was found that when the temporary sintered body thus obtained was electrically sintered at about 1700 ° C., the density of the entire sintered body was uniformly increased, and the resulting heating element was excellent in durability. In the heating element thus obtained, cracks due to the density difference between the central part and the peripheral part may occur even when welding the rod-shaped heating element without generating nests and cracks in the manufacturing process. Absent. In addition, the inside of the heating element (especially when nests are generated) is selectively oxidized during use, and powdering progresses, and the problem of collapse from the inside of the heating element is eliminated.

【0009】[0009]

【実施例及び比較例】MoSi2 を70%以上含有する
発熱体材料を成形・脱脂後の径がφ11の棒状体となる
成形体を、図1のa〜dに示した加熱昇温パタ−ンで仮
焼結した。図1のa〜bは比較例1及び2、図1のc〜
dは本発明の実施例1及び2を示す。表1にa〜dの各
加熱昇温パタ−ンで仮焼結した時の平均密度と中心部の
それぞれの密度および平均密度と中心部の密度差を示
す。なお、ここで図1のa〜dは表1のa〜dに対応す
る。単純な加熱昇温パタ−ンで焼結した表1の加熱昇温
パターンa〜bの比較例1及び2では、仮焼結体の全体
の平均密度と中心部の密度で5.7%〜10.3%の密
度差が生じた。これに対し、焼結の進捗具合に合わせて
最低限必要なエネルギ−のみを随時供給した本発明の実
施例1及び2の加熱昇温パターンc〜dでは、密度差が
0.3%〜2.8%の極めて小さい仮焼結体が得られ
た。
[Examples and Comparative Examples] The diameter after heating materials forming and degreased containing MoSi 2 70% or more molded article comprising a rod-like body of .phi.11, Atsushi Nobori pattern shown in a~d in Figure 1 - Was temporarily sintered. FIGS. 1A and 1B show Comparative Examples 1 and 2, and FIGS.
d shows Examples 1 and 2 of the present invention. Table 1 shows the average density and the respective densities of the central portion and the density difference between the average density and the central portion when pre-sintering was performed with each of the heating and heating patterns of a to d. Here, a to d in FIG. 1 correspond to a to d in Table 1. In Comparative Examples 1 and 2 of the heating patterns a and b in Table 1 sintered with a simple heating pattern, the average density of the entire pre-sintered body and the density at the center were 5.7% or more. There was a 10.3% density difference. On the other hand, in the heating and heating patterns c to d of Examples 1 and 2 of the present invention in which only the minimum necessary energy was supplied at any time according to the progress of sintering, the density difference was 0.3% to 2%. An extremely small temporary sintered body of 0.8% was obtained.

【0010】[0010]

【表1】 [Table 1]

【0011】(試験1)次に、焼結密度が低い仮焼結体
を通電焼結した場合の、欠陥の発生状況を調べた。全体
が均一に焼結した真密度比88%の仮焼結体(実施例
3)と、中心部と周辺部で密度差のある加熱昇温パター
ンaである比較例1の仮焼結体を用いて、1700℃で
2分間の通電焼結を行なった。仮焼結で均一に焼結して
いた実施例3は通電焼結でも均一に焼結し、真密度が9
9%まで達した。一方、密度差のある比較例1の仮焼結
体は通電焼結の際に密度の低い中心部の物質が周辺部に
引き寄せられるように焼結し、図2に示すように中心部
に、巣1が発生した。符号2は仮焼結棒状体の周辺部の
断面、符号3は中心部の断面を示す。なお、表1から明
らかなように、図2における平均仮焼結密度は86.0
%であり、中心部3の密度は75.7%である。
(Test 1) Next, the state of occurrence of defects when a temporary sintered body having a low sintered density was electrically sintered was examined. A temporary sintered body having a true density ratio of 88% (Example 3) in which the entire body is uniformly sintered, and a temporary sintered body of Comparative Example 1 in which a heating and heating pattern a having a density difference between a central portion and a peripheral portion are obtained. Sintering at 1700 ° C. for 2 minutes. In Example 3 which was uniformly sintered by the preliminary sintering, the sintered body was uniformly sintered by the electric current sintering, and the true density was 9%.
Up to 9%. On the other hand, the temporary sintered body of Comparative Example 1 having a difference in density is sintered so that the material in the central part having a low density is attracted to the peripheral part during electric sintering, and as shown in FIG. Nest 1 has developed. Reference numeral 2 indicates a cross section of the peripheral portion of the pre-sintered rod, and reference numeral 3 indicates a cross section of the central portion. In addition, as is clear from Table 1, the average preliminary sintered density in FIG.
%, And the density of the central portion 3 is 75.7%.

【0012】(試験2)次に、焼結密度が高い仮焼結体
を通電焼結した場合の、欠陥の発生状況を調べた。全体
が均一に焼結した真密度比92%の仮焼結体(実施例
4)と、中心部と周辺部で密度差のある加熱昇温パター
ンbの比較例2の仮焼結体を用いて、1700℃で2分
間の通電焼結を行った。仮焼結で均一に焼結していた実
施例4は、通電焼結後も健全であったが、密度差のある
比較例2の仮焼結体は通電焼結の際に、中心部と周辺部
の熱膨張の違いから図3に示すように降温時にクラック
4が発生した。符号5は仮焼結棒状体の周辺部の断面、
符号6は中心部の断面を示す。なお、表1から明らかな
ように、図3における平均仮焼結密度は93.5%であ
り、中心部6の密度は87.8%である。
(Test 2) Next, the state of occurrence of defects was examined when a temporary sintered body having a high sintered density was electrically sintered. A temporary sintered body having a true density ratio of 92% (Example 4) in which the entire body is uniformly sintered and a temporary sintered body of Comparative Example 2 in which a heating and heating pattern b having a density difference between a central portion and a peripheral portion are used. Then, current sintering was performed at 1700 ° C. for 2 minutes. Example 4 in which the pre-sintering was uniformly performed was sound even after the electric sintering, but the pre-sintered body of the comparative example 2 having the density difference was different from the central part during the electric sintering. Cracks 4 occurred at the time of temperature decrease as shown in FIG. 3 due to the difference in thermal expansion in the peripheral portion. Reference numeral 5 is a cross section of the periphery of the temporarily sintered rod-shaped body,
Reference numeral 6 indicates a cross section at the center. As is clear from Table 1, the average preliminary sintering density in FIG. 3 is 93.5%, and the density of the central portion 6 is 87.8%.

【0013】(試験3)次に、通電溶接した場合の欠陥
の発生状況を調べた。密度差が比較的小さい表1のcで
ある実施例1(平均の仮焼結密度が91.2%、中心部
の密度が88.4%、密度差2.8%)の仮焼結体を2
本を通電焼結した。通電焼結では上記の「巣」やクラッ
クが発生することはなかった。そこで図4に示すよう
に、この2本の棒8、9を用いて長物の発熱体を製造す
るため、両方の端面10を接触後通電しながら加圧する
通電溶接を行なった。通電溶接では溶接面が押しつぶさ
れ変形が生じるが、この時に密度差のある棒状の仮焼結
体は中心部と周辺部で硬さが異なるために図4に示すよ
うなクラック7が発生した。一方、さらに密度差が極め
て小さい通電焼結後の焼結体(密度差0.3%以下であ
る実施例2に相当)を用いて溶接した場合は、溶接面に
全くクラックが生じることなく溶接できた。このことか
ら分かるように、強い変形を受けるような場合には、比
較的周辺部と中心部の密度差が小さい2.8%でも不十
分であり、さらに密度差が小さい2.0%、好ましくは
1%以下であることが望ましいと言える。
(Test 3) Next, the state of occurrence of defects when current welding was performed was examined. Temporary sintered body of Example 1 (average preliminary sintered density is 91.2%, center density is 88.4%, and density difference is 2.8%) in which the density difference is relatively small in Table 1c. 2
The book was electrically sintered. In the electric sintering, the above-mentioned “cavities” and cracks did not occur. Therefore, as shown in FIG. 4, in order to manufacture a long heating element using these two rods 8, 9, electric current welding was performed in which both end faces 10 were contacted and pressurized while energizing. In the electric welding, the welding surface was crushed and deformed. At this time, the rod-shaped presintered body having a difference in density had cracks 7 as shown in FIG. On the other hand, when welding was performed using a sintered body after current sintering with a very small density difference (corresponding to Example 2 having a density difference of 0.3% or less), welding was performed without any cracks on the weld surface. did it. As can be seen from the above, in the case of undergoing strong deformation, a relatively small density difference of 2.8% between the peripheral portion and the central portion is insufficient, and the density difference is further small, preferably 2.0%. Is preferably 1% or less.

【0014】(試験4)全体が均一に焼結した真密度比
95.0%のφ18の通電焼結材(実施例5)と平均の
通電焼結密度が95.2%、中心部の密度が83.0%
の通電焼結材(比較例3)を用いて、低温耐酸化試験を
行った。各基材は100mmの長さに切断し、大気中で
図5に示す温度サイクル(200℃〜480℃)を繰り
返した。この温度域では、耐酸化性に優れSiO2 被膜
が形成されることがないため、MoとSiの同時酸化が
起こり粉状化する。100サイクル後に両方の基材を比
較すると、密度差のある基材(比較例3)は、中心部が
低密度で酸素との接触面積が大きくなるため酸化がかな
り進み、内部から粉状化が進み原形をとどめなくなって
いた。一方、密度差がない高密度基材は、表層部で僅か
に粉状化が生じたものの内部は全く酸化されず健全であ
った。従って、仮に発熱体として通電していたと想定す
ると、従来の中心部と周辺部で密度差のある基材は破断
しているが、本発明品は破断することがなく耐久性に優
れていることが分かる。
(Test 4) An electrically conductive sintered material of φ18 having a true density ratio of 95.0% (Example 5) in which the whole was uniformly sintered, the average electrically conductive sintered density was 95.2%, and the density of the central part. 83.0%
A low-temperature oxidation resistance test was performed using the current-carrying sintered material (Comparative Example 3). Each substrate was cut to a length of 100 mm, and the temperature cycle (200 ° C. to 480 ° C.) shown in FIG. 5 was repeated in the atmosphere. In this temperature range, since excellent oxidation resistance is not formed and a SiO 2 film is not formed, simultaneous oxidation of Mo and Si occurs to form a powder. Comparing both base materials after 100 cycles, the base material having a difference in density (Comparative Example 3) has a low density at the center and a large contact area with oxygen, so that oxidation is considerably advanced, and powdering from the inside occurs. It was no longer able to keep its original form. On the other hand, in the high-density base material having no difference in density, although the powdering slightly occurred in the surface layer portion, the inside was healthy without any oxidation. Therefore, assuming that electricity is supplied as a heating element, the conventional base material having a density difference between the central portion and the peripheral portion is broken, but the product of the present invention is not broken and has excellent durability. I understand.

【0015】[0015]

【発明の効果】本発明の昇温速度を適宜調整した温度パ
タ−ンで仮焼結することにより、基材の全面で仮焼結の
足並みが揃い、中心方向に均一に焼結による収縮が生じ
て、大径の仮焼結体においても中心部と周辺部で密度差
が極めて小さい焼結体を得ることができる。すなわち、
仮焼結体断面の中心部と平均の密度差(真密度比)が5
%以下、さらにはこの密度差が3%以下である仮焼結体
が得られる。この仮焼結体は約1700°Cで通電焼結
による最終焼結を行なうが、この通電焼結により焼結体
全体が均一に密度アップし、耐久性に優れた発熱体製品
が得られる。このようにして得られた発熱体製品は、一
連の製造工程において巣や亀裂が発生することなく、ま
た棒状の発熱体の溶接に際しても中心部と周辺部との密
度差に起因するクラックが発生することがない。さら
に、該発熱体の使用中に内部(特に巣が発生した場合の
ように)が選択的に酸化され、粉化が進行して、発熱体
の内部から崩壊するという問題もないという優れた特徴
を有している。
According to the present invention, by temporarily sintering at a temperature pattern in which the temperature raising rate is appropriately adjusted, the steps of temporary sintering are uniform over the entire surface of the base material, and shrinkage due to sintering is uniform in the center direction. As a result, even in a large-diameter provisional sintered body, a sintered body having a very small density difference between the central portion and the peripheral portion can be obtained. That is,
The average density difference (true density ratio) from the center of the pre-sintered body section is 5
% Or less, and further a temporary sintered body having this density difference of 3% or less is obtained. This pre-sintered body is subjected to final sintering by electric sintering at about 1700 ° C., and by this electric sintering, the density of the entire sintered body is uniformly increased and a heating element product having excellent durability is obtained. The heating element product obtained in this way has no nests or cracks in a series of manufacturing processes, and cracks due to the difference in density between the center and the periphery when welding a rod-shaped heating element Never do. Furthermore, an excellent feature that the inside of the heating element is selectively oxidized during use (especially when nests are generated), powdering proceeds, and there is no problem of collapse from the inside of the heating element. have.

【図面の簡単な説明】[Brief description of the drawings]

【図1】比較例及び実施例の仮焼結の加熱昇温パタ−ン
を示す図(グラフ)である。
FIG. 1 is a diagram (graph) showing heating and heating patterns of pre-sintering in Comparative Examples and Examples.

【図2】焼結密度が低い仮焼結体を通電焼結した場合の
欠陥「巣」の発生を示す説明図である。
FIG. 2 is an explanatory diagram showing the occurrence of defects “cavities” when a temporarily sintered body having a low sintering density is electrically sintered.

【図3】焼結密度が高い仮焼結体を通電焼結した場合の
欠陥「クラック」の発生を示す説明図である。
FIG. 3 is an explanatory view showing the occurrence of defects “cracks” when a temporary sintered body having a high sintered density is electrically sintered.

【図4】2本の棒状焼結体を通電溶接した場合の欠陥
「クラック」の発生を示す説明図である。
FIG. 4 is an explanatory diagram showing generation of a defect “crack” when two rod-shaped sintered bodies are electrically welded.

【図5】焼結発熱体の低温耐酸化試験における加熱温度
サイクル(200℃〜480℃)を示す説明図である。
FIG. 5 is an explanatory diagram showing a heating temperature cycle (200 ° C. to 480 ° C.) in a low-temperature oxidation resistance test of a sintered heating element.

【符号の説明】[Explanation of symbols]

1 巣 2,5 周辺部 3,6 中心部 4,7 クラック 8,9 通電溶接する2本の棒 10 端面 1 Nest 2,5 Peripheral part 3,6 Central part 4,7 Crack 8,9 Two rods to be welded by electric current 10 End face

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H05B 3/14 B22F 3/14 101 C04B 35/58 106 C04B 35/64 H05B 3/20 H01L 7/02 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H05B 3/14 B22F 3/14 101 C04B 35/58 106 C04B 35/64 H05B 3/20 H01L 7/02

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 MoSi2 を70%以上含有する発熱体
において、発熱体の全体の平均密度と発熱体の径の1/
5に相当する中心部との密度差(真密度比)が5%以下
であることを特徴とするMoSi2 を主成分とする発熱
体。
1. A heating element containing 70% or more of MoSi 2 , wherein the average density of the entire heating element and 1/1 of the diameter of the heating element.
A heating element comprising MoSi 2 as a main component, wherein a density difference (true density ratio) from a central portion corresponding to 5 is 5% or less.
【請求項2】 発熱体の全体の平均密度と中心部との前
記密度差(真密度比)が3%以下であることを特徴とす
る請求項1記載のMoSi2 を主成分とする発熱体。
2. A heating element as a main component MoSi 2 according to claim 1, wherein the density difference between the average density of the whole and the central portion (true density ratio) is 3% or less of the heating element .
【請求項3】 MoSi2 を70%以上含有する発熱体
材料を少なくとも1350°Cから1650°Cの範囲
まで5〜15時間かけて徐々に昇温し、発熱体材料の全
体の平均密度と同発熱体材料の径の1/5に相当する中
心部との密度差(真密度比)が5%以下となるように仮
焼結し、次いで通電焼結することを特徴とする発熱体の
全体の平均密度と発熱体の径の1/5に相当する中心部
との密度差(真密度比)が5%以下であることを特徴と
するMoSi2 を主成分とする発熱体の製造方法。
3. A heating element material containing 70% or more of MoSi 2 is gradually heated from at least 1350 ° C. to 1650 ° C. over 5 to 15 hours, and the same as the average density of the entire heating element material. The entire heating element, which is pre-sintered so that the density difference (true density ratio) from the center corresponding to 1/5 of the diameter of the heating element material is 5% or less, and then is electrically sintered. method for manufacturing a heating element as a main component MoSi 2, wherein the difference in density between the central portion corresponding to 1/5 of the diameter of the average density and the heating element (true density ratio) is 5% or less.
【請求項4】 仮焼結後の発熱体材料及び通電焼結後の
発熱体の全体の平均密度と中心部との前記密度差(真密
度比)が3%以下であることを特徴とする請求項3記載
のMoSi2 を主成分とする発熱体の製造方法。
4. The density difference (true density ratio) between the central portion and the average density of the entire heating element material after provisional sintering and the heating element after electric sintering is 3% or less. A method for producing a heating element comprising MoSi 2 as a main component according to claim 3.
JP11042780A 1999-02-22 1999-02-22 Heating element mainly composed of MoSi2 and method of manufacturing the same Expired - Fee Related JP3070742B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP11042780A JP3070742B1 (en) 1999-02-22 1999-02-22 Heating element mainly composed of MoSi2 and method of manufacturing the same
EP20000300768 EP1026920B1 (en) 1999-02-22 2000-02-01 MoSi2-based heating element and method for manufacturing the same
PCT/JP2000/000895 WO2000051399A1 (en) 1999-02-22 2000-02-17 HEATER WITH MoSi2 BASE AND METHOD OF MANUFACTURE THEREOF
CNB008001928A CN1162045C (en) 1999-02-22 2000-02-17 Heater with MoSi2 base and method of manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11042780A JP3070742B1 (en) 1999-02-22 1999-02-22 Heating element mainly composed of MoSi2 and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP3070742B1 true JP3070742B1 (en) 2000-07-31
JP2000243538A JP2000243538A (en) 2000-09-08

Family

ID=12645496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11042780A Expired - Fee Related JP3070742B1 (en) 1999-02-22 1999-02-22 Heating element mainly composed of MoSi2 and method of manufacturing the same

Country Status (4)

Country Link
EP (1) EP1026920B1 (en)
JP (1) JP3070742B1 (en)
CN (1) CN1162045C (en)
WO (1) WO2000051399A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004214075A (en) * 2003-01-07 2004-07-29 Nikko Materials Co Ltd HEATING ELEMENT CONTAINING MoSi2 AS MAIN CONSTITUENT
JP4823486B2 (en) * 2004-03-29 2011-11-24 Jx日鉱日石金属株式会社 Heater mainly composed of MoSi2 having excellent pest resistance and method for producing the same
US9340982B2 (en) 2013-03-13 2016-05-17 Columbia Insurance Company Patterned tiles and floor coverings comprising same
WO2023161197A1 (en) 2022-02-23 2023-08-31 Universita' Degli Studi Di Roma "La Sapienza" Method for the characterization of short peptides from industrial hemp

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE7513997L (en) * 1975-12-11 1977-06-12 Bulten Kanthal Ab PROCEDURE FOR THE MANUFACTURE OF SILICOR CARBID MOLDINGS
JPH03141162A (en) * 1989-10-26 1991-06-17 Riken Corp Production of molybdenum disilicide heater
EP0862191A4 (en) * 1996-09-13 2000-01-19 Tdk Corp Ptc thermistor material

Also Published As

Publication number Publication date
CN1162045C (en) 2004-08-11
EP1026920A3 (en) 2002-04-10
WO2000051399A1 (en) 2000-08-31
EP1026920B1 (en) 2007-08-22
EP1026920A2 (en) 2000-08-09
JP2000243538A (en) 2000-09-08
CN1294833A (en) 2001-05-09

Similar Documents

Publication Publication Date Title
JPH11283728A (en) Ceramic heater and its manufacture
JP3070742B1 (en) Heating element mainly composed of MoSi2 and method of manufacturing the same
KR20190142384A (en) Wafer support
DE50104307D1 (en) METHOD FOR PRODUCING AN ELECTRODE WITH TEMPERATURE-RESISTANT CONDUCTIVITY
JPH11171649A (en) Porous composite ceramic and its production
US2993111A (en) Manufacture of electric resistance elements
US3027331A (en) Electric resistance heating elements and their manufacture
US6146550A (en) Electrical resistance heating element for an electric furnace and process for manufacturing such a resistance element
JP2602802B2 (en) Terminal member used for molybdenum disilicide heating element
JP2009266396A (en) Molybdenum disilicide based ceramic heating element
JPH03141162A (en) Production of molybdenum disilicide heater
JP3588240B2 (en) Ceramic heater
JP3981482B2 (en) Method for producing silicon nitride sintered body and method for producing ceramic heater
JP3306586B2 (en) Porous material electrode parts
JP5857476B2 (en) Aluminum nitride sintered body and wafer holder for semiconductor manufacturing apparatus or inspection apparatus using the same
JP4555641B2 (en) Glow plug
JP4823486B2 (en) Heater mainly composed of MoSi2 having excellent pest resistance and method for producing the same
JP2662360B2 (en) Manufacturing method of ceramic heater and ceramic heater
JP2004273866A (en) Wafer holding body for semiconductor manufacturing device and semiconductor manufacturing device mounted with it
SU1525951A1 (en) Method of producing lanthanum chromite electric heater
JPH11273959A (en) Inductor and its manufacture
JPH11322431A (en) Pyrogenous material composed of molybdenum disilicide as major part having low oxygen diffusible vitreous coating layer
JP2001158667A (en) Sintered ceramic composite
JP2017216044A (en) Ceramic heater and glow plug
JP2004253665A (en) Wafer holder for semiconductor manufacturing apparatus and semiconductor manufacturing apparatus mounting it

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000509

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080526

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080526

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371