JP4071691B2 - Manufacturing method of heating element mainly composed of MoSi2 and having excellent thermal shock resistance, and heating element - Google Patents

Manufacturing method of heating element mainly composed of MoSi2 and having excellent thermal shock resistance, and heating element Download PDF

Info

Publication number
JP4071691B2
JP4071691B2 JP2003315109A JP2003315109A JP4071691B2 JP 4071691 B2 JP4071691 B2 JP 4071691B2 JP 2003315109 A JP2003315109 A JP 2003315109A JP 2003315109 A JP2003315109 A JP 2003315109A JP 4071691 B2 JP4071691 B2 JP 4071691B2
Authority
JP
Japan
Prior art keywords
heating element
mosi
glass phase
shock resistance
thermal shock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003315109A
Other languages
Japanese (ja)
Other versions
JP2005085564A5 (en
JP2005085564A (en
Inventor
博 高村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2003315109A priority Critical patent/JP4071691B2/en
Publication of JP2005085564A publication Critical patent/JP2005085564A/en
Publication of JP2005085564A5 publication Critical patent/JP2005085564A5/ja
Application granted granted Critical
Publication of JP4071691B2 publication Critical patent/JP4071691B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Resistance Heating (AREA)
  • Ceramic Products (AREA)

Description

本発明は、耐熱衝撃性に著しく優れたMoSiを主成分とする発熱体の製造方法及び発熱体、特に半導体製造装置用熱処理炉(酸化・拡散炉を含む)に有用である耐熱衝撃性に優れたMoSiを主成分とする基材からなる発熱体の製造方法及び発熱体に関する。
なお、本明細書で使用するMoSiを主成分とする基材は、MoSi基材に絶縁性酸化物であるガラス相(SiO系酸化物)を含有させて電気抵抗を増加させた耐熱衝撃性に優れたMoSiを主成分とする基材を意味する。
INDUSTRIAL APPLICABILITY The present invention has a heat shock resistance which is useful for a method of manufacturing a heating element mainly composed of MoSi 2 and having a remarkable thermal shock resistance and a heating element, particularly a heat treatment furnace (including an oxidation / diffusion furnace) for semiconductor manufacturing equipment. The present invention relates to a method for producing a heating element comprising a base material mainly composed of excellent MoSi 2 and a heating element.
Incidentally, the substrate of the MoSi 2 to be used herein as a main component, a glass phase is an insulating oxide MoSi 2 substrate contain a (SiO 2 based oxide) increases the electric resistance heat It means a base material mainly composed of MoSi 2 having excellent impact properties.

MoSiを主成分とする発熱体は、673°K〜873°Kの範囲で、MoとSiの同時酸化が起こり、さらにMo酸化物の蒸発減少が伴うという、ペスト(粉化現象)と言う低温酸化が起こるが、これを防止するために1500°K以上で酸化処理して緻密なシリカ保護被膜を形成する。本発明は、このような緻密なシリカ保護被膜を形成した発熱体を含み、ガラス質成分の添加は、このような緻密なシリカ保護被膜の形成に有効である。 A heating element mainly composed of MoSi 2 is called pest (powdering phenomenon) in which simultaneous oxidation of Mo and Si occurs in the range of 673 ° K to 873 ° K, and further evaporation of Mo oxide is accompanied. Although low-temperature oxidation occurs, in order to prevent this, oxidation treatment is performed at 1500 ° K. or higher to form a dense silica protective film. The present invention includes a heating element on which such a dense silica protective coating is formed, and the addition of a vitreous component is effective in forming such a dense silica protective coating.

最近、半導体デバイスの微細化及びデバイス製造時間の短縮化と省エネルギー化のために、従来の金属発熱体に替えて、CVD装置や拡散炉等の半導体製造装置に、MoSiを主成分とする高出力性能の発熱体が利用されるようになってきた。
一般に、半導体製造装置に使用される熱処理炉は炉内の温度分布を厳密に制御するなど、非常に高精度な温度特性が要求されるが、MoSiを主成分とする発熱体は優れた耐熱特性を有し、金属発熱体の約10倍の表面負荷が可能であり、また急速加熱昇温することができるという大きな特長を有するので、好適な材料と言える。
Recently, in order to miniaturize semiconductor devices, shorten device manufacturing time, and save energy, instead of conventional metal heating elements, semiconductor manufacturing equipment such as CVD equipment and diffusion furnaces have high MoSi 2 content. Output performance heating elements have come to be used.
Generally, heat treatment furnaces used in semiconductor manufacturing equipment require extremely high-precision temperature characteristics such as strictly controlling the temperature distribution in the furnace, but heating elements based on MoSi 2 have excellent heat resistance. It is a suitable material because it has such characteristics as being capable of surface loading about 10 times that of a metal heating element and capable of rapid heating and heating.

MoSiを主成分とする発熱体は、そのための材料強度(耐熱性)や材料脆化現象を防止するため、あるいはペスト(粉化現象)と呼ばれている低温酸化を防止するために1500°K以上で酸化処理して緻密なシリカ保護被膜を形成する等、発熱体自体の材料開発が行われている(例えば、特許文献1、特許文献2参照)。
これらのMoSiを主成分とする発熱体を半導体製造装置の熱処理炉に使用した場合、雰囲気温度で100〜150°C/分の昇温速度を達成することが可能であり、金属発熱体より格段に優れた特性を出すことができた。この場合のMoSi製発熱体自体の表面温度は、およそ1800〜3600°C/分(30〜60°C/秒)の速度で変化する。
The heating element mainly composed of MoSi 2 is 1500 ° in order to prevent the material strength (heat resistance), the material embrittlement phenomenon, or the low-temperature oxidation called pest (powdering phenomenon). Development of materials for the heating element itself has been performed, such as forming a dense silica protective film by oxidation treatment at K or higher (see, for example, Patent Document 1 and Patent Document 2).
When these heating elements mainly composed of MoSi 2 are used in a heat treatment furnace of a semiconductor manufacturing apparatus, it is possible to achieve a temperature increase rate of 100 to 150 ° C./min at an ambient temperature. It was possible to obtain outstanding characteristics. In this case, the surface temperature of the MoSi 2 heating element itself changes at a rate of approximately 1800 to 3600 ° C./minute (30 to 60 ° C./second).

最近では、さらに100〜300°C/秒の超高速昇温のニーズが生じており、その急激な温度変化に耐え得る耐熱衝撃性に優れた発熱体が要求されるようになってきた。しかし、従来のMoSiを主成分とする発熱体では、このような耐熱衝撃性(強度)を持つに至っていないのが現状である。
一方、半導体製造装置においては、不純物の混入が大きな問題であるが、処理炉の加熱体から発生する不純物については、特に従来問題視されていなかった。また、そのようなことがあったとしても、止む得ないものとして、無視されてきたのが現状である。
特開平11−317282号公報 特公昭35−1235号公報
Recently, there has been a further need for an ultra-high temperature increase of 100 to 300 ° C./second, and a heating element excellent in thermal shock resistance that can withstand the rapid temperature change has been demanded. However, in the present situation, the conventional heating element mainly composed of MoSi 2 does not have such thermal shock resistance (strength).
On the other hand, in a semiconductor manufacturing apparatus, mixing of impurities is a big problem, but impurities generated from a heating body of a processing furnace have not been particularly regarded as a problem. Even if such a situation occurs, it has been ignored as an unavoidable situation.
JP 11-317282 A Japanese Patent Publication No.35-1235

本発明は、耐熱衝撃性に著しく優れた発熱体、特に半導体製造装置用熱処理炉(酸化・拡散炉を含む)に有用である耐熱衝撃性に優れ、かつ熱処理炉の汚染を防止できるMoSiを主成分とする基材からなる発熱体を提供する。 The present invention provides a heating element that is remarkably excellent in thermal shock resistance, in particular, MoSi 2 that is useful in a heat treatment furnace for semiconductor manufacturing equipment (including an oxidation / diffusion furnace) and that can prevent contamination of the heat treatment furnace. A heating element comprising a base material as a main component is provided.

上記の課題を解決するために、本発明者らは、発熱体中のガラス相(SiO系酸化物)、特にシリカ(SiO)相を低減することにより、耐熱衝撃性を向上させ、かつガラス相中の不純物を低減した、特に半導体製造装置用熱処理炉(酸化・拡散炉を含む)の急速加熱冷却が可能であるMoSiを主成分とする発熱体を低コストで提供できるとの知見を得た。
本発明はこの知見に基づき、
1)MoSi粉末とSiO に酸化物を固溶させて熱膨張率を0.5〜8.0×10 −6 /°Cの範囲に調整したガラス粉末とを発熱体原料とし、この発熱体原料を混合後、有機バインダーと混合し、この混合物を成形体とした後、焼結して発熱体を製造する方法であって、発熱体の基材内部に存在するガラス相が6〜16vol%(表面酸化被膜を除く)で、発熱体に存在するガラス相の熱膨張率が0.5〜8.0×10 −6 /°C、最大粒径が30μm以下、発熱体中に含まれる不純物のFe、Na、Kがそれぞれ200wtppm以下であることを特徴とする耐熱衝撃性に優れたMoSiを主成分とする発熱体の製造方法
2)SiO に固溶させる酸化物がAl 、MgO、CaO、Ba 、ZnOから選択したいずれか一種以上であることを特徴とする上記1記載の耐熱衝撃性に優れたMoSiを主成分とする発熱体の製造方法
3)混合物を70〜200°Cに加熱した型から押出して棒状の成形体とすることを特徴とする上記1又は2記載の耐熱衝撃性に優れたMoSiを主成分とする発熱体の製造方法
4)棒状の成形体(グリーン)を脱脂、一次焼結及び通電加熱焼結することを特徴とする請求項3記載の耐熱衝撃性に優れたMoSiを主成分とする発熱体の製造方法。
5)発熱体の基材内部における発熱体断面に存在するガラス相の平均面積率が6〜16%(表面酸化被膜を除く)であることを特徴とする上記1〜4のいずれかに記載の耐熱衝撃性に優れたMoSiを主成分とする発熱体の製造方法、を提供する。
In order to solve the above problems, the inventors have improved the thermal shock resistance by reducing the glass phase (SiO 2 oxide), particularly the silica (SiO 2 ) phase in the heating element, and Knowledge that heating elements based on MoSi 2 that can reduce the impurities in the glass phase, especially heat treatment furnaces for semiconductor manufacturing equipment (including oxidation / diffusion furnaces) and that can be rapidly heated and cooled, can be provided at low cost. Got.
The present invention is based on this finding,
1) The heat generation material is made of MoSi 2 powder and glass powder in which an oxide is dissolved in SiO 2 and the coefficient of thermal expansion is adjusted to the range of 0.5 to 8.0 × 10 −6 / ° C. After mixing the body material, it is mixed with an organic binder, and this mixture is made into a molded body, and then sintered to produce a heating element, in which the glass phase present in the base material of the heating element is 6 to 16 vol. % (Excluding the surface oxide film), the thermal expansion coefficient of the glass phase present in the heating element is 0.5 to 8.0 × 10 −6 / ° C., the maximum particle size is 30 μm or less, and is contained in the heating element A method for producing a heating element mainly composed of MoSi 2 having excellent thermal shock resistance, characterized in that impurities Fe, Na, and K are each 200 wtppm or less 2) An oxide that is dissolved in SiO 2 is Al 2 O 3, MgO, CaO, was selected from Ba 2 O 3, ZnO Rod-like manufacturing process 3) a mixture of the heating element to the MoSi 2 having excellent thermal shock resistance of the 1, wherein a is shifted one or more as a main component from the mold heated to 70 to 200 ° C and extruded 4. A method for producing a heating element mainly composed of MoSi 2 having excellent thermal shock resistance as described in 1 or 2 above , characterized in that it is a molded body of 4) Degreasing, primary sintering, and rod-shaped molded body (green) method for producing a heating element that the MoSi 2 having excellent thermal shock resistance according to claim 3, wherein the energizing heat sintering mainly.
5) average area ratio of the glass phase existing in the heating element cross section in the base material inside the heating element according to any one of the above 1 to 4, characterized in that a 6-16% (excluding the surface oxide coating) Provided is a method for producing a heating element mainly composed of MoSi 2 having excellent thermal shock resistance.

本発明は、また、
6)MoSiを主成分とし、残余ガラス相と不純物からなる発熱体において、該発熱体の基材内部に存在するガラス相はSiO に酸化物を固溶させて熱膨張率を0.5〜8.0×10 −6 /°Cの範囲に調整したガラス相であり、ガラス相の割合が6〜16vol%(表面酸化被膜を除く)で、最大粒径が30μm以下であり、前記発熱体の不純物のFe、Na、Kがそれぞれ200wtppm以下であることを特徴とする耐熱衝撃性に優れたMoSiを主成分とする発熱体
7)MoSiを主成分とし、残余ガラス相と不純物からなる発熱体において、該発熱体の基材内部における発熱体断面に存在するガラス相の平均面積率が6〜16%(表面酸化被膜を除く)であることを特徴とする上記6記載の耐熱衝撃性に優れたMoSiを主成分とする発熱体
8)半導体製造装置用熱処理炉に使用することを特徴とする上記6又は7記載の耐熱衝撃性に優れたMoSiを主成分とする発熱体、を提供する。
The present invention also provides
6) In a heating element composed mainly of MoSi 2 and composed of a residual glass phase and impurities, the glass phase present inside the base material of the heating element has a thermal expansion coefficient of 0.5 by dissolving an oxide in SiO 2. A glass phase adjusted to a range of ˜8.0 × 10 −6 / ° C. , a glass phase ratio of 6 to 16 vol% (excluding a surface oxide film), a maximum particle size of 30 μm or less, and the heat generation Heating element mainly composed of MoSi 2 having excellent thermal shock resistance, characterized in that Fe, Na, and K of impurities in the body are each 200 wtppm or less 7) From MoSi 2 as a main component and from the remaining glass phase and impurities The heat-resistant shock as described in 6 above, wherein the average area ratio of the glass phase present in the cross-section of the heat generator inside the base material of the heat generator is 6 to 16% (excluding the surface oxide film). MoSi with excellent properties The heating element comprising 2 as a main component 8) The heating element having MoSi 2 as a main component having excellent thermal shock resistance as described in 6 or 7 above, which is used in a heat treatment furnace for a semiconductor manufacturing apparatus.

MoSiを主成分とし、残余ガラス相と不純物からなる発熱体において、該発熱体の基材内部に存在するガラス相を6〜16vol%とし、かつ不純物のFe、Na、Kがそれぞれ200wtppm以下とすることによって、耐熱衝撃性に著しく優れかつ加熱処理炉の汚染の少ない、特に半導体製造装置用熱処理炉(酸化・拡散炉を含む)に有用であるMoSiを主成分とする基材からなる発熱体を提供できるという優れた効果を有する。 In the heating element composed mainly of MoSi 2 and composed of the remaining glass phase and impurities, the glass phase present in the base material of the heating element is 6 to 16 vol%, and impurities Fe, Na, and K are each 200 wtppm or less. Heat generated from a base material mainly composed of MoSi 2 which is extremely excellent in thermal shock resistance and has little contamination of the heat treatment furnace, and is particularly useful for heat treatment furnaces for semiconductor manufacturing equipment (including oxidation and diffusion furnaces). It has an excellent effect of providing a body.

本発明のMoSiを主成分とし、残余ガラス相と不可避的不純物からなる発熱体(以下、特に記載しない限り、「MoSi製発熱体」と称する。)は、該発熱体の基材内部のガラス相を6〜16vol%とする。但し、該発熱体の表面に緻密に形成されたSiOの酸化被膜を除く。
また、このガラス相の比率(量)は、発熱体の基材内部の任意断面におけるガラス相の平均断面積に近似するので、発熱体断面に存在するガラス相の平均面積率6〜16%(表面酸化被膜を除く)により特定することができる。これによって、耐熱衝撃性に優れたMoSiを主成分とする発熱体を得ることができる。
表面の緻密な酸化膜層の厚みは、ガラス相の種類により、また添加量によって差異があり、およそ5μm〜100μmの範囲で形成される。
A heating element (hereinafter, referred to as “MoSi 2 heating element” unless otherwise specified) which is mainly composed of MoSi 2 of the present invention and includes a residual glass phase and unavoidable impurities is provided inside the base material of the heating element. The glass phase is 6-16 vol%. However, the oxide film of SiO 2 densely formed on the surface of the heating element is excluded.
Moreover, since the ratio (amount) of the glass phase approximates the average cross-sectional area of the glass phase in an arbitrary cross section inside the base material of the heating element, the average area ratio 6 to 16% of the glass phase existing in the cross section of the heating element ( (Excluding surface oxide film). As a result, a heating element mainly composed of MoSi 2 having excellent thermal shock resistance can be obtained.
The thickness of the dense oxide film layer on the surface varies depending on the type of glass phase and the amount added, and is formed in the range of about 5 μm to 100 μm.

この耐熱衝撃性を向上させるために上記の通りガラス相を含有させるのであるが、ここで重要なことは、ベントナイト等の通常のガラスを添加すると必然的に不純物が混入することである。このような不純物の混入は加熱処理炉の発熱体の中では、着目されておらず、何らの対策も講じられていなかった。しかし、発熱体からの不純物は、昨今の微小回路又は各種機能材を形成する半導体装置において問題となるものである。
本発明は、この点に着目し、特に原料として添加されるガラス粉末から混入する不純物のFe、Na、Kをそれぞれ0.1wt%以下とするものである。
これによって、耐熱衝撃性に著しく優れると共に、加熱処理炉の汚染の少ない、特に半導体製造装置用熱処理炉(酸化・拡散炉を含む)に有用であるMoSiを主成分とする基材からなる発熱体を提供できるという優れた効果が得られるようになった。
In order to improve the thermal shock resistance, a glass phase is contained as described above, but what is important here is that impurities are inevitably mixed when ordinary glass such as bentonite is added. Such impurity contamination has not been noticed in the heating element of the heat treatment furnace, and no measures have been taken. However, the impurities from the heating element become a problem in a semiconductor device that forms a recent microcircuit or various functional materials.
The present invention pays attention to this point, and in particular, impurities Fe, Na, and K mixed from glass powder added as a raw material are each 0.1 wt% or less.
As a result, the heat generated from the base material mainly composed of MoSi 2 which is remarkably excellent in thermal shock resistance and has little contamination of the heat treatment furnace, and is particularly useful for heat treatment furnaces for semiconductor manufacturing equipment (including oxidation and diffusion furnaces). The excellent effect of being able to provide a body has come to be obtained.

現在、市販されているMoSi製発熱体は、SiOを主としたシリカ系酸化物相のガラス相からなる。しかし、MoSiとSiOとの熱膨張係数は、それぞれ8.0×10−6/°C、0.5×10−6/°Cで両者の差が非常に大きい。
また、熱伝導率においてもMoSiは30W/m・K及びSiOは1.5W/m・Kであり、両者の差が大きい。
以上の物性から、超高速昇温におけるMoSi発熱体内部の挙動を考察すると、ガラス相は熱伝導率が低く、MoSiに比べ昇温されにくい。また、ガラス相はMoSi相より熱膨張係数が小さいので、さらに膨張差が広がり、これによって発生する歪から基材が破損し、あるいは劣化して寿命が短くなる問題がある。
Currently, a commercially available heating element made of MoSi 2 consists of a glass phase of a silica-based oxide phase mainly composed of SiO 2 . However, the thermal expansion coefficients of the MoSi 2 and SiO 2, the difference between them is very large, respectively 8.0 × 10 -6 /°C,0.5×10 -6 / ° C.
Further, in terms of thermal conductivity, MoSi 2 is 30 W / m · K and SiO 2 is 1.5 W / m · K, and the difference between the two is large.
Considering the behavior inside the MoSi 2 heating element at an ultra-high temperature rise from the above physical properties, the glass phase has a low thermal conductivity and is harder to be heated than MoSi 2 . Further, since the glass phase has a smaller thermal expansion coefficient than the MoSi 2 phase, there is a problem that the expansion difference is further widened, and the base material is damaged or deteriorated due to the strain generated thereby, resulting in a short life.

本発明は、上記の通りガラス相を極力少なくすることによって耐熱衝撃性を改善することができる。さらに、発熱体の製造工程において熱膨張率がMoSiに近似する2〜13×10−6/°Cのガラス質材料を選択し、発熱体の内部の熱膨張差による歪を小さくすることが可能であり、これを併用することにより一層耐熱衝撃性を改良することができる。熱膨張率は、AlやMgO等を含むガラス相にすることにより、効果的に大きくすることができる。
しかし、本発明においては、熱膨張率がMoSiに近似する2〜13×10−6/°Cのガラス質材料を選択することが望ましいが、この範囲をややはずれる範囲であっても、本発明に含まれるものである。上記熱膨張率は、本発明の発熱体を製造する上において、より望ましい範囲を示すものである。
The present invention can improve the thermal shock resistance by reducing the glass phase as much as possible as described above. Further, in the manufacturing process of the heating element, a glassy material having a thermal expansion coefficient of 2 to 13 × 10 −6 / ° C. that approximates to MoSi 2 is selected, and distortion due to the thermal expansion difference inside the heating element can be reduced. The thermal shock resistance can be further improved by using this together. The thermal expansion coefficient can be effectively increased by using a glass phase containing Al 2 O 3 or MgO.
However, in the present invention, it is desirable to select a vitreous material having a thermal expansion coefficient of 2 to 13 × 10 −6 / ° C. that is close to that of MoSi 2. It is included in the invention. The coefficient of thermal expansion indicates a more desirable range in producing the heating element of the present invention.

また、本発明は基材内部に含まれるガラス相の最大粒径を30μm以下とし均一に分散させ、歪が局所的に発生させないようにすることが望ましい。しかし、この範囲をややはずれる範囲であっても、本発明に含まれるものである。上記最大粒径は、本発明の発熱体を製造する上において、あくまでより好ましい範囲を示すものである。
ガラス相が16vol%を超えると耐熱衝撃性が不十分であり、6vol%未満では基材の緻密化が困難となり、高温での柔軟性が低下し、U字形曲げ等の加工が困難となる。
上記のMoSiを主成分とする発熱体は、急速加熱・冷却を行う半導体製造装置用熱処理炉に有用である。
Further, in the present invention, it is desirable that the maximum particle size of the glass phase contained in the base material is 30 μm or less to be uniformly dispersed so that no strain is locally generated. However, even a range slightly deviating from this range is included in the present invention. The maximum particle size is a more preferable range in producing the heating element of the present invention.
If the glass phase exceeds 16 vol%, the thermal shock resistance is insufficient, and if it is less than 6 vol%, it becomes difficult to densify the base material, the flexibility at high temperature decreases, and processing such as U-shaped bending becomes difficult.
The heating element mainly composed of MoSi 2 is useful for a heat treatment furnace for a semiconductor manufacturing apparatus that performs rapid heating and cooling.

このMoSi製発熱体は、MoSi原料粉とガラス粉末とを混合粉砕した後、バインダーと混合し、さらに例えば押出しによって棒状又は平板状に成形する。このようにして得た成形体を脱脂、一次焼結及び通電加熱焼結することによって、密度の高い耐熱衝撃性に優れたMoSi製発熱体を製造する。
さらに、このようにして作製した棒状又は平板状の発熱体を接合し、例えば円弧状又はU字形状等に製造する。このように、MoSi製発熱体を各種の形状に成形した後、半導体製造装置用熱処理炉に設置する。
This MoSi 2 heating element is obtained by mixing and pulverizing MoSi 2 raw material powder and glass powder, then mixing with a binder, and further forming into a rod shape or a flat plate shape by extrusion, for example. The molded body thus obtained is degreased, primary sintered, and energized and heated to produce a MoSi 2 heating element having a high density and excellent thermal shock resistance.
Furthermore, the rod-shaped or flat plate-shaped heating elements thus manufactured are joined and manufactured into, for example, an arc shape or a U-shape. As described above, after the MoSi 2 heating element is formed into various shapes, it is installed in a heat treatment furnace for a semiconductor manufacturing apparatus.

以下に実施例及び比較例を説明するが、本実施例は理解を容易にするためのものであり、本発明を制限するものではない。すなわち、本発明の技術思想の範囲内での他の変形あるいは他の実施例は、当然本発明に含まれる。   EXAMPLES Examples and comparative examples will be described below, but these examples are for ease of understanding and do not limit the present invention. That is, other modifications or other embodiments within the scope of the technical idea of the present invention are naturally included in the present invention.

参考例1、実施例2、参考例3、実施例4
発熱体原料とするMoSi粉末(平均粒径4μm)とガラス粉末を混合後、さらに熱可塑性の有機バインダーと混合し、この混合物を70〜200°Cに加熱した型から押出して棒状の成形体とした。また、ガラス粉末の不純物を制限し、発熱体中のFe、Na、Kの不純物の量を200wtppm以下とした。
この棒状の成形体(グリーン)を脱脂、一次焼結及び通電加熱焼結することによって、MoSi製φ3の棒状発熱体を得た。
( Reference Example 1, Example 2, Reference Example 3, Example 4 )
After mixing MoSi 2 powder (average particle size 4 μm) as a heating element raw material and glass powder, it is further mixed with a thermoplastic organic binder, and this mixture is extruded from a mold heated to 70 to 200 ° C. to form a rod-shaped molded body. It was. Moreover, the impurity of glass powder was restrict | limited and the quantity of the impurity of Fe, Na, and K in a heat generating body was 200 wtppm or less.
This rod-shaped molded body (green) was degreased, primary sintered and energized and heated to obtain a rod-shaped heating element of MoSi 2 φ3.

作製した発熱体は、発熱体断面のSEM像(二次電子像)をもとに、以下の方法でガラス相の最大粒径、平均面積率を算出した。
基材内部に含まれるガラス相の最大粒径の測定は、発熱体断面をSEM観察することにより行うことができる。SEM像では、ガラス相は周辺(MoSi相)より暗部になるため、散在している暗部の中で最大の粒径を測定することにより、本来は3次元的に存在するガラス相の最大粒径と近似させることができる。
The produced heating element was calculated based on the SEM image (secondary electron image) of the section of the heating element by the following method to calculate the maximum particle size and average area ratio of the glass phase.
The maximum particle size of the glass phase contained in the substrate can be measured by SEM observation of the cross section of the heating element. In the SEM image, since the glass phase becomes darker than the surrounding (MoSi 2 phase), the maximum particle size of the glass phase originally existing three-dimensionally is measured by measuring the maximum particle size in the scattered dark portion. It can be approximated with a diameter.

一方、ガラス相の平均面積率の測定は、発熱体断面のSEM像をPCで画像処理することにより行うことができる。SEM像では、ガラス相は周辺(MoSi相)より暗部になるため、この画像の濃淡の違いを利用し、画像処理ソフトでガラス相のみを識別することができる。
識別したガラス相は、その面積を累積する処理を行い、画像全体の面積に対する割合を計算することにより、ガラス相の平均面積率とすることができる。
上記によって得られる発熱体断面に存在するガラス相の平均面積率、ガラス相の最大粒径、添加ガラスの熱膨張係数(×10−6/°C)、添加ガラスの不純物量を変化させた場合の、参考例1、実施例2、参考例3、実施例4を表1に示す。
On the other hand, the average area ratio of the glass phase can be measured by subjecting the SEM image of the cross section of the heating element to image processing with a PC. In the SEM image, since the glass phase is darker than the surrounding (MoSi 2 phase), only the glass phase can be identified by image processing software using the difference in light and shade of this image.
The identified glass phase is subjected to a process of accumulating its area, and the ratio to the total area of the image is calculated to obtain the average area ratio of the glass phase.
When the average area ratio of the glass phase present in the cross section of the heating element obtained as described above, the maximum particle size of the glass phase, the thermal expansion coefficient of the added glass (× 10 −6 / ° C.), and the amount of impurities in the added glass are changed. Table 1 shows Reference Example 1, Example 2, Reference Example 3, and Example 4 .

因みに、添加ガラス量はMoSi粉末と混合する時の秤量で調整した。また、添加ガラスの粒径はMoSi粉末と混合する以前のガラス粉末の粉砕工程を調整し、篩により篩別した。
添加ガラスの熱膨張係数は、純SiO(0.5×10−6/°C)から、Al、MgO、CaO、Ba、ZnO等を任意に固溶させたガラスを作製することにより、0.5〜8.0×10−6/°Cの範囲で調整した。
Incidentally, the amount of added glass was adjusted by weighing when mixed with MoSi 2 powder. Moreover, the particle size of the added glass was adjusted by a pulverization step of the glass powder before mixing with the MoSi 2 powder, and sieved with a sieve.
The thermal expansion coefficient of the additive glass is a glass in which Al 2 O 3 , MgO, CaO, Ba 2 O 3 , ZnO or the like is arbitrarily dissolved in pure SiO 2 (0.5 × 10 −6 / ° C.). By preparing, it adjusted in the range of 0.5-8.0 * 10 < -6 > / (degreeC).

耐熱衝撃性の評価は、各発熱体基材を急速昇温および急速冷却処理した後、JIS規格に基づく3点曲げ試験を室温中で行ない抗折強度の値から行った。
急速昇温処理は、通電加熱により発熱体基材を室温から1400°Cまで5秒間で昇温(平均昇温速度:約280°C/秒)し、1400°Cで20秒保持する加熱パターンを100回繰り返して行った。
また、急速冷却処理は通電加熱により600°Cで保持中の発熱体基材を、通電停止後、直ちに十分な量のある水(約20°C)の中に漬けて行った。
それぞれの発熱体基材の急速加熱処理後及び急速冷却後の抗折強度結果を、同様に表1に示す。
The thermal shock resistance was evaluated by subjecting each heating element base material to rapid heating and cooling, and then performing a three-point bending test based on JIS standards at room temperature from the value of bending strength.
The rapid heating process is a heating pattern in which the heating element base material is heated from room temperature to 1400 ° C for 5 seconds by heating (average heating rate: about 280 ° C / second) and held at 1400 ° C for 20 seconds. Was repeated 100 times.
The rapid cooling treatment was performed by immersing the heating element base material held at 600 ° C. by energization heating in a sufficient amount of water (about 20 ° C.) immediately after the energization was stopped.
Table 1 similarly shows the bending strength results after rapid heating treatment and rapid cooling of each heating element base material.

Figure 0004071691
Figure 0004071691

(比較例1−2)
実施例と同様の製造方法により、発熱体断面に存在するガラス相の平均面積率、ガラス相の最大粒径、添加ガラスの熱膨張係数(×10−6/°C)、添加ガラスの不純物量を変化させた場合の比較例1−2を、同様に表1に示す。
(Comparative Example 1-2)
By the same production method as in the examples, the average area ratio of the glass phase present in the cross section of the heating element, the maximum particle size of the glass phase, the thermal expansion coefficient of the added glass (× 10 −6 / ° C.), and the impurity amount of the added glass Table 1 similarly shows Comparative Example 1-2 in the case where V is changed.

参考例1、実施例2、参考例3、実施例4はいずれも、発熱体の基材内部に存在するガラス相が16vol%以下であり、急速加熱処理後及び急速冷却後の抗折強度は良好な特性値を示した。但し、表1に示す通り、実施例2と実施例4は、ガラス相の最大粒径が、それぞれ10μm、15μmであったが、参考例1と参考例3は、ガラス相の最大粒径が、それぞれ35μm、50μmとなった。
実施例4は発熱体の基材内部に存在するガラス相が16vol%以下であり、添加ガラスの最大粒径が小さく、またガラスの熱膨張係数が大きくMoSiの熱膨張係数(8.0×10−6/°C)に近似しているので、急速加熱処理後及び急速冷却後の抗折強度は最も良好な特性値を示した。
実施例2の発熱体組織の走査型電子顕微鏡(SEM)写真を図1に示す。最大粒径は10μm以下(平均の粒径は8〜10μm)の微細なガラス相(黒い部分)が均一に分散した組織を示していた。
In all of Reference Example 1, Example 2, Reference Example 3, and Example 4 , the glass phase present in the base material of the heating element is 16 vol% or less, and the bending strength after rapid heating treatment and after rapid cooling is Good characteristic values were shown. However, as shown in Table 1, in Examples 2 and 4, the maximum particle size of the glass phase was 10 μm and 15 μm, respectively, but in Reference Example 1 and Reference Example 3, the maximum particle size of the glass phase was And 35 μm and 50 μm, respectively.
In Example 4, the glass phase present in the base material of the heating element is 16 vol% or less, the maximum particle size of the added glass is small, the thermal expansion coefficient of the glass is large, and the thermal expansion coefficient of MoSi 2 (8.0 × 10 −6 / ° C.), the bending strength after rapid heating treatment and after rapid cooling showed the best characteristic value.
A scanning electron microscope (SEM) photograph of the heating element structure of Example 2 is shown in FIG. It showed a structure in which a fine glass phase (black portion) having a maximum particle size of 10 μm or less (average particle size of 8 to 10 μm) was uniformly dispersed.

これらに対し、基材内部に存在するガラス相が19vol%、添加ガラスの熱膨張係数が1.0×10−6/°CとMoSiの熱膨張係数から大きく離れ、さらに添加ガラスの最大粒径が50μmである比較例1は急速加熱処理後及び急速冷却後の抗折強度が低い値を示した。
比較例1の発熱体組織の走査型電子顕微鏡(SEM)を図2に示す。この組織のガラス相(黒い部分)は不均一に分散しており、50μmの巨大ガラス相がところどころに観察された。また、ガラス相が40.0vol%である比較例2は水冷時に破損するという結果になった。
以上から、急速加熱処理後及び急速冷却後の抗折強度改善に、基材内部に存在するガラス相の存在量を低減させること及び添加ガラスの熱膨張係数をMoSiの熱膨張係数(8.0×10−6/°C)に近似させることが、極めて有効であることが分かる。
These contrast, glass phase 19Vol% present inside the base material, the thermal expansion coefficient of the doped glass is far from the thermal expansion coefficient of 1.0 × 10 -6 / ° C and MoSi 2, further added the maximum particle of glass Comparative Example 1 having a diameter of 50 μm showed a low value of bending strength after the rapid heating treatment and after rapid cooling.
A scanning electron microscope (SEM) of the heating element structure of Comparative Example 1 is shown in FIG. The glass phase (black part) of this structure was disperse | distributed nonuniformly, and the 50-micrometer giant glass phase was observed in some places. Moreover, the comparative example 2 whose glass phase is 40.0 vol% resulted in being damaged at the time of water cooling.
From the above, in order to improve the bending strength after the rapid heat treatment and rapid cooling, the amount of glass phase present in the substrate is reduced, and the thermal expansion coefficient of the added glass is set to the thermal expansion coefficient of MoSi 2 (8. It can be seen that approximation to 0 × 10 −6 / ° C. is extremely effective.

発熱体中のガラス相(SiO系酸化物)、特にシリカ(SiO)相を低減することにより、耐熱衝撃性を向上させ、かつガラス相中の不純物を低減したものであり、特に急速加熱冷却する半導体製造装置用熱処理炉(酸化・拡散炉を含む)用MoSiを主成分とする発熱体として有用である。 By reducing the glass phase (SiO 2 -based oxide) in the heating element, especially the silica (SiO 2 ) phase, the thermal shock resistance is improved and the impurities in the glass phase are reduced, especially rapid heating. It is useful as a heating element mainly composed of MoSi 2 for a heat treatment furnace (including an oxidation / diffusion furnace) for semiconductor manufacturing equipment to be cooled.

実施例2の発熱体組織の走査型電子顕微鏡写真(均一ガラス相)である。4 is a scanning electron micrograph (uniform glass phase) of the heating element structure of Example 2. 比較例1の発熱体組織の走査型電子顕微鏡写真(不均一ガラス相)である。4 is a scanning electron micrograph (non-uniform glass phase) of the heating element structure of Comparative Example 1.

Claims (8)

MoSi粉末とSiO に酸化物を固溶させて熱膨張率を0.5〜8.0×10 −6 /°Cの範囲に調整したガラス粉末とを発熱体原料とし、この発熱体原料を混合後、有機バインダーと混合し、この混合物を成形体とした後、焼結して発熱体を製造する方法であって、発熱体の基材内部に存在するガラス相が6〜16vol%(表面酸化被膜を除く)、発熱体に存在するガラス相の熱膨張率が0.5〜8.0×10 −6 /°C、最大粒径が30μm以下、発熱体中に含まれる不純物のFe、Na、Kがそれぞれ200wtppm以下であることを特徴とする耐熱衝撃性に優れたMoSiを主成分とする発熱体の製造方法。 The heating element raw material is made of MoSi 2 powder and glass powder in which an oxide is dissolved in SiO 2 and the coefficient of thermal expansion is adjusted to the range of 0.5 to 8.0 × 10 −6 / ° C. Is mixed with an organic binder, and the mixture is made into a molded body and then sintered to produce a heating element, in which the glass phase present in the base material of the heating element is 6 to 16 vol% ( Excluding the surface oxide film), the thermal expansion coefficient of the glass phase present in the heating element is 0.5 to 8.0 × 10 −6 / ° C., the maximum particle size is 30 μm or less, and the impurity Fe contained in the heating element , Na and K are each 200 wtppm or less, A method for producing a heating element mainly composed of MoSi 2 having excellent thermal shock resistance. SiO に固溶させる酸化物がAl 、MgO、CaO、Ba 、ZnOから選択したいずれか一種以上であることを特徴とする請求項1記載の耐熱衝撃性に優れたMoSiを主成分とする発熱体の製造方法。 The MoSi excellent in thermal shock resistance according to claim 1, wherein the oxide to be dissolved in SiO 2 is at least one selected from Al 2 O 3 , MgO, CaO, Ba 2 O 3 , and ZnO. A method for producing a heating element comprising 2 as a main component. 混合物を70〜200°Cに加熱した型から押出して棒状の成形体とすることを特徴とする請求項1又は2記載の耐熱衝撃性に優れたMoSiを主成分とする発熱体の製造方法。 3. The method for producing a heating element mainly composed of MoSi 2 having excellent thermal shock resistance according to claim 1 , wherein the mixture is extruded from a mold heated to 70 to 200 ° C. to form a rod-shaped molded body. . 棒状の成形体(グリーン)を脱脂、一次焼結及び通電加熱焼結することを特徴とする請求項3記載の耐熱衝撃性に優れたMoSiを主成分とする発熱体の製造方法。 Degreasing the molded body of rod shape (green), the manufacturing method of the heating element mainly composed of excellent MoSi 2 thermal shock resistance according to claim 3, characterized in that the primary sintering and electric heating sintering. 発熱体の基材内部における発熱体断面に存在するガラス相の平均面積率が6〜16%(表面酸化被膜を除く)であることを特徴とする請求項1〜4のいずれかに記載の耐熱衝撃性に優れたMoSiを主成分とする発熱体の製造方法。 The heat resistance according to any one of claims 1 to 4 , wherein the average area ratio of the glass phase present in the cross section of the heating element in the substrate of the heating element is 6 to 16% (excluding the surface oxide film). A method for producing a heating element mainly composed of MoSi 2 having excellent impact properties. MoSiを主成分とし、残余ガラス相と不純物からなる発熱体において、該発熱体の基材内部に存在するガラス相はSiO に酸化物を固溶させて熱膨張率を0.5〜8.0×10 −6 /°Cの範囲に調整したガラス相であり、ガラス相の割合が6〜16vol%(表面酸化被膜を除く)で、最大粒径が30μm以下であり、前記発熱体の不純物のFe、Na、Kがそれぞれ200wtppm以下であることを特徴とする耐熱衝撃性に優れたMoSiを主成分とする発熱体。 In a heating element composed mainly of MoSi 2 and composed of a residual glass phase and impurities, the glass phase present inside the base material of the heating element has a thermal expansion coefficient of 0.5 to 8 by dissolving an oxide in SiO 2. A glass phase adjusted to a range of 0.0 × 10 −6 / ° C. , a glass phase ratio of 6 to 16 vol% (excluding surface oxide film), a maximum particle size of 30 μm or less, A heating element mainly composed of MoSi 2 having excellent thermal shock resistance, wherein impurities Fe, Na, and K are each 200 wtppm or less. MoSiを主成分とし、残余ガラス相と不純物からなる発熱体において、該発熱体の基材内部における発熱体断面に存在するガラス相の平均面積率が6〜16%(表面酸化被膜を除く)であることを特徴とする請求項6記載の耐熱衝撃性に優れたMoSiを主成分とする発熱体。 In the heating element composed mainly of MoSi 2 and composed of the remaining glass phase and impurities, the average area ratio of the glass phase present in the section of the heating element inside the base material of the heating element is 6 to 16% (excluding the surface oxide film) The heating element comprising MoSi 2 having excellent thermal shock resistance as a main component according to claim 6 . 半導体製造装置用熱処理炉に使用することを特徴とする請求項6又は7記載の耐熱衝撃性に優れたMoSiを主成分とする発熱体。 The heating element having MoSi 2 having excellent thermal shock resistance as a main component according to claim 6 or 7 , wherein the heating element is used in a heat treatment furnace for a semiconductor manufacturing apparatus.
JP2003315109A 2003-09-08 2003-09-08 Manufacturing method of heating element mainly composed of MoSi2 and having excellent thermal shock resistance, and heating element Expired - Lifetime JP4071691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003315109A JP4071691B2 (en) 2003-09-08 2003-09-08 Manufacturing method of heating element mainly composed of MoSi2 and having excellent thermal shock resistance, and heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003315109A JP4071691B2 (en) 2003-09-08 2003-09-08 Manufacturing method of heating element mainly composed of MoSi2 and having excellent thermal shock resistance, and heating element

Publications (3)

Publication Number Publication Date
JP2005085564A JP2005085564A (en) 2005-03-31
JP2005085564A5 JP2005085564A5 (en) 2005-12-22
JP4071691B2 true JP4071691B2 (en) 2008-04-02

Family

ID=34415473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003315109A Expired - Lifetime JP4071691B2 (en) 2003-09-08 2003-09-08 Manufacturing method of heating element mainly composed of MoSi2 and having excellent thermal shock resistance, and heating element

Country Status (1)

Country Link
JP (1) JP4071691B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014197094A2 (en) * 2013-03-15 2014-12-11 Schott Corporation Glass-metal composites and method of manufacture

Also Published As

Publication number Publication date
JP2005085564A (en) 2005-03-31

Similar Documents

Publication Publication Date Title
KR100617342B1 (en) Aluminum nitride sintered body containing carbon fibers and method of manufacturing the same
US20190214172A1 (en) Powder for magnetic core, method of producing dust core, dust core, and method of producing powder for magnetic core
JP4146333B2 (en) Tungsten-copper alloy having uniform structure and method for producing the same
KR20200002435A (en) METHOD FOR MANUFACTURING Bi-Sb-Te BASED THERMOELECTRIC MATERIAL WITH CONTROLLED GRAIN SIZE AND THERMOELECTRIC MATERIAL MANUFACTURED THEREBY
JP4071691B2 (en) Manufacturing method of heating element mainly composed of MoSi2 and having excellent thermal shock resistance, and heating element
JP6222620B2 (en) Electrical resistance material and manufacturing method thereof
CN109133938A (en) A kind of regulation method of preparation and its negative expansion behavior of negative thermal expansion material
JP4515038B2 (en) MoSi2 powder, method for producing the powder, heating element using the powder, and method for producing the heating element
JP2002223013A (en) Thermoelectric conversion element and manufacturing method of it
JP5122593B2 (en) MoSi2 powder, method for producing the powder, heating element using the powder, and method for producing the heating element
JP3243214B2 (en) Aluminum nitride member with built-in metal member and method of manufacturing the same
KR20200052841A (en) MoCu HEAT DISSIPATION MATERIAL WITH CARBON PARTICLES AND PREPARING METHOD THEREOF
JP4823486B2 (en) Heater mainly composed of MoSi2 having excellent pest resistance and method for producing the same
JP2007277067A (en) Conductive corrosion resistant member and its manufacturing method
JP4318403B2 (en) Manufacturing method of ceramic plate
JP4609837B2 (en) Heater composed mainly of MoSi2 with excellent pest resistance
KR102535856B1 (en) Ceramic heater for semiconductor manufacturing apparatus
KR102326570B1 (en) Manufacturing Method Of Zinc Oxide With A High Specific Surface Area
JP6766101B2 (en) A heater made of a MoSi2 heating element and a method for manufacturing the heater.
JP2742599B2 (en) Aluminum nitride sintered body and method for producing the same
JP2002068849A (en) Production method of ceramic sintered compact
KR20210126825A (en) Manufacturing method for aluminiym nitride susceptor, and aluminiym nitride susceptor manufactured thereby
JP2000247732A (en) Low-resistance ceramic, its production and member for semiconductor producing apparatus
JPH11185936A (en) Ceramic heater
JP2005085873A (en) Method of manufacturing thermoelectric semiconductor composition

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051108

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4071691

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term