JP2002068849A - Production method of ceramic sintered compact - Google Patents

Production method of ceramic sintered compact

Info

Publication number
JP2002068849A
JP2002068849A JP2000258317A JP2000258317A JP2002068849A JP 2002068849 A JP2002068849 A JP 2002068849A JP 2000258317 A JP2000258317 A JP 2000258317A JP 2000258317 A JP2000258317 A JP 2000258317A JP 2002068849 A JP2002068849 A JP 2002068849A
Authority
JP
Japan
Prior art keywords
sintered body
ceramic sintered
sintering
ceramic
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000258317A
Other languages
Japanese (ja)
Inventor
Masuhiro Natsuhara
益宏 夏原
Hirohiko Nakada
博彦 仲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2000258317A priority Critical patent/JP2002068849A/en
Publication of JP2002068849A publication Critical patent/JP2002068849A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce ceramic sintered compacts without generation of deflection changing by extremely small external forces in the ceramic sintered compacts used as substrates for elecronic parts, etc., and having large areas and thin thickness. SOLUTION: When producing the ceramic sintered compacts having areas of >=100 cm2 and thickness of <=2.0 mm, cooling rate is controlled <=20 deg.C/min in temperature range of >=1000 deg.C in the time of sintering. It is preferable to be >=1.5 mm thickness of sintering tools used at the time of ceramic sintering.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、セラミックス燒結
体の製造方法に関し、特に厚みが薄く且つ面積の大きな
セラミックス燒結体の燒結方法に関する。
The present invention relates to a method for manufacturing a ceramic sintered body, and more particularly to a method for sintering a ceramic sintered body having a small thickness and a large area.

【0002】[0002]

【従来の技術】従来から、セラミックスを焼結する際に
は、所定の温度まで所定の昇温速度を保ちながら昇温さ
せ、その温度を所定時間保持させた後、室温近くまで冷
却させていた。この焼結時における冷却速度は、一般的
には、セラミックスやそれを保持するための焼結治具が
冷却による熱衝撃で破壊されない程度で、且つできるだ
け速い速度で冷却しているのが実態であった。
2. Description of the Related Art Conventionally, when sintering ceramics, the temperature is raised to a predetermined temperature while maintaining a predetermined heating rate, the temperature is maintained for a predetermined time, and then cooled to near room temperature. . In general, the cooling rate at the time of sintering is such that the ceramics and the sintering jig for holding the ceramics are not destroyed by the thermal shock caused by cooling, and the actual cooling rate is as fast as possible. there were.

【0003】このような冷却速度を採用するのは、燒結
後の冷却速度が速ければ速いほど燒結の処理時間も短く
なるため、相対的にセラミックス燒結体のコストを低減
することができるからである。このため、セラミックス
の燒結時における冷却に関しては、報告が極めて少ない
現状である。
[0003] The reason for employing such a cooling rate is that the higher the cooling rate after sintering, the shorter the sintering processing time, so that the cost of the ceramic sintered body can be relatively reduced. . For this reason, there are few reports on cooling during sintering of ceramics.

【0004】[0004]

【発明が解決しようとする課題】セラミックス燒結体の
燒結時において、上記したように所定の焼結温度からほ
ぼ室温近くまで冷却して炉内から取り出すと、燒結され
たセラミックス燒結体に撓みが生じることがある。通常
の厚みの厚いセラミックス焼結体の場合、撓みによるセ
ラミックス燒結体の反りの向きは相当な外力をかけない
限り容易に変化するものではなく、また向きが変化して
も外力を開放すると反りの向きは元の外力を加える前の
状態に戻る。
In the sintering of a ceramic sintered body, when the ceramic sintered body is cooled from a predetermined sintering temperature to almost room temperature and taken out of the furnace as described above, the sintered ceramic sintered body is bent. Sometimes. In the case of a normal thick ceramic sintered body, the direction of warpage of the ceramic sintered body due to bending is not easily changed unless a considerable external force is applied. The direction returns to the state before applying the external force.

【0005】しかし、面積が大きく且つ厚みが薄いセラ
ミックス焼結体の場合には、撓みは外部からの極めて小
さな外力で変化する。例えば、セラミックス燒結体の向
きを変えるだけで反りの向きが容易に変化したり、若し
くは向きを変えた後反りの凸面に少し外力を加えるだけ
で向きの方向が変わり、外力を開放した後もその反りの
方向を維持し続ける。
However, in the case of a ceramic sintered body having a large area and a small thickness, the bending is changed by an extremely small external force from the outside. For example, the direction of the warp can be easily changed only by changing the direction of the ceramic sintered body, or the direction changes by simply applying a small external force to the convex surface of the warp after changing the direction, and the direction changes even after the external force is released. Keep maintaining the warping direction.

【0006】上記のような焼みが生じているセラミック
スは、使用する用途や条件にもよるが、基板自体が少し
の振動で変形するなどの不都合を生じる恐れがあり、変
形しにくいことを前提とする電子部品用基板などには使
用することができない。
[0006] The ceramics which have undergone burning as described above may cause inconveniences such as the substrate itself being deformed by a slight vibration, depending on the use and conditions to be used, and it is assumed that the ceramics are not easily deformed. It cannot be used for electronic component substrates.

【0007】本発明は、このような従来の事情に鑑み、
面積が大きく且つ厚みが薄い場合であっても、外部から
の極めて小さな外力で変化する撓みのないセラミックス
燒結体を簡単に製造する方法を提供することを目的とす
る。
The present invention has been made in view of such a conventional situation,
It is an object of the present invention to provide a method for easily manufacturing a ceramic sintered body having a large area and a small thickness, which does not change with an extremely small external force even if the thickness is small.

【0008】[0008]

【課題を解決するための手段】本発明においては、所定
の面積以上で且つ所定の厚み以下のセラミックス燒結体
について、セラミックスの燒結時における冷却速度を適
正化することにより、撓みをなくすことができる。
In the present invention, deflection of a ceramic sintered body having a predetermined area or more and a predetermined thickness or less can be eliminated by optimizing a cooling rate during sintering of ceramics. .

【0009】即ち、本発明が提供するセラミックス焼結
体の製造方法は、面積が100cm 以上で且つ厚みが
2.0mm以下のセラミックス燒結体の製造方法であっ
て、セラミックス燒結時における冷却速度を20℃/分
以下とすることを特徴とするものである。
That is, ceramic sintering provided by the present invention
The method of manufacturing the body has an area of 100 cm 2Above and thickness
This is a method for producing a ceramic sintered body of 2.0 mm or less.
And the cooling rate during ceramic sintering is 20 ° C / min.
It is characterized by the following.

【0010】上記本発明のセラミックス燒結体の製造方
法において、前記冷却速度を20℃/分以下とする温度
範囲が1000℃以上である。また、セラミックス燒結
体の厚みが1.0mm以下である場合には、前記冷却速
度を20℃/分以下とする温度範囲が1200℃以上で
あることが好ましい。
In the method for producing a ceramic sintered body of the present invention, the temperature range in which the cooling rate is set to 20 ° C./min or less is 1000 ° C. or more. When the thickness of the ceramic sintered body is 1.0 mm or less, it is preferable that the temperature range in which the cooling rate is 20 ° C./min or less is 1200 ° C. or more.

【0011】また、本発明のセラミックス燒結体の製造
方法においては、セラミックス燒結時に用いる焼結治具
の厚さが1.5mm以上であることが好ましい。
In the method for manufacturing a ceramic sintered body of the present invention, the thickness of a sintering jig used for sintering the ceramic is preferably 1.5 mm or more.

【0012】[0012]

【発明の実施の形態】本発明によれば、セラミックス燒
結体の面積が100cm以上且つ厚みが2.0mm以
下のとき、燒結後の冷却速度を20℃/分以下とするこ
とにより、得られるセラミックス焼結体の撓みをなくす
ことができる。セラミックス燒結時の冷却速度がこれ以
上の場合は、セラミックス燒結体に撓みが生じる。
According to the present invention, when the area of the ceramic sintered body is 100 cm 2 or more and the thickness is 2.0 mm or less, it can be obtained by setting the cooling rate after sintering to 20 ° C./min or less. The deflection of the ceramic sintered body can be eliminated. If the cooling rate during ceramic sintering is higher than this, the ceramic sintered body will bend.

【0013】その原因については明らかではないが、セ
ラミックス燒結時における冷却の際に、燒結体の中心部
と端部との温度差によるものと推定される。即ち、冷却
開始直前までは炉内温度は一般にはほぼ均一であると考
えられるが、冷却の際には一般的に燒結体の端の方から
冷却されるため、燒結体の中央部と端部では必然的に温
度差が生じる。また、燒結温度付近では、セラミックス
自身は若干の変形能を有すると考えられる。このためセ
ラミックス燒結体の冷却が開始されると、まず端部には
冷却による体積収縮が発生するが、この時中心部では端
部に比較して温度が高いために体積収縮量は相対的に小
さくなる。その結果、端部と中心部における体積収縮量
の差が応力となり、燒結体中心部の変形能によって撓み
が生じるものと推定される。
Although the cause is not clear, it is presumed that the temperature difference between the center and the end of the sintered body during cooling during sintering of the ceramic is caused. That is, the furnace temperature is generally considered to be almost uniform until immediately before the start of cooling. However, during cooling, the temperature is generally cooled from the end of the sintered body. Inevitably, a temperature difference occurs. In the vicinity of the sintering temperature, the ceramic itself is considered to have some deformability. For this reason, when the cooling of the ceramic sintered body is started, first, volume shrinkage due to cooling occurs at the end, but at this time, the volume shrinkage is relatively high at the center portion because the temperature is higher than at the end portion. Become smaller. As a result, it is presumed that the difference in the volume shrinkage between the end portion and the center portion becomes a stress, and that bending occurs due to the deformability of the center portion of the sintered body.

【0014】このように、撓みの大きな原因はセラミッ
クス燒結体の冷却時に端部と中心部との間で発生する温
度差であるため、燒結体の形状が大きく影響する。燒結
体形状による影響として、先ず第一にセラミックス燒結
体の面積が挙げられる。即ち、面積の大きな燒結体は、
必然的に冷却時における温度分布が大きくなるため撓み
が生じやすい。具体的には、セラミックス燒結体の面積
が100cmを越えるような大面積では、燒結体に撓
みが生じやすいことが分った。
As described above, the major cause of the bending is the temperature difference generated between the end portion and the center portion when the ceramic sintered body is cooled, so that the shape of the sintered body has a great influence. The influence of the shape of the sintered body is, first of all, the area of the ceramic sintered body. That is, a sintered body with a large area
Inevitably, the temperature distribution at the time of cooling becomes large, so that bending tends to occur. Specifically, it was found that the sintered body was liable to be bent in a large area where the area of the ceramic sintered body exceeded 100 cm 2 .

【0015】また、撓みは焼結体の厚みの影響も受け
る。厚みが2.0mmを越える燒結体では、冷却過程に
おいて燒結体内の熱の移動が比較的容易であるために、
上記のような撓みは発生しずらくなる。それに対して厚
みが2.0mm以下になると燒結体内での熱の移動量が
減少するため、冷却時における温度分布が発生しやすく
なり、これによって撓みが発生しやすくなる。また、厚
みが薄いと高温におけるセラミックスの強度も相対的に
低く、変形しやすくなる。
The deflection is also affected by the thickness of the sintered body. In a sintered body having a thickness of more than 2.0 mm, since heat transfer in the sintered body is relatively easy during the cooling process,
The bending as described above hardly occurs. On the other hand, when the thickness is 2.0 mm or less, the amount of heat transfer in the sintered body is reduced, so that a temperature distribution during cooling is likely to be generated, whereby bending is likely to be generated. Further, when the thickness is small, the strength of the ceramic at a high temperature is relatively low, and the ceramic is easily deformed.

【0016】以上のことから、燒結体の中心部と端部の
温度差を小さくしながら冷却することによって、燒結体
に発生する撓みを低減することができる。即ち、冷却速
度を遅くすることによって、燒結体の中心部と端部にお
ける温度差を小さくすることが可能となり、これにより
中心部と端部との体積収縮量の差が小さくなり、燒結体
内部に発生する応力を小さくして撓みをなくすことがで
きる。
From the above, it is possible to reduce the bending generated in the sintered body by cooling while reducing the temperature difference between the center and the end of the sintered body. That is, by lowering the cooling rate, it is possible to reduce the temperature difference between the center and the end of the sintered body, thereby reducing the difference in the volume shrinkage between the center and the end, thereby reducing the internal temperature of the sintered body. Can be reduced to reduce bending.

【0017】具体的には、燒結後の冷却速度を20℃/
分以下とする。冷却速度が20℃/分を超えると、燒結
体内の中心部と端部との温度差が大きくなり、冷却中の
燒結体の各部分における収縮差が生じ、撓みが発生しや
すくなる。
Specifically, the cooling rate after sintering is set to 20 ° C. /
Minutes or less. When the cooling rate exceeds 20 ° C./min, the temperature difference between the central portion and the end portion in the sintered body becomes large, and a difference in shrinkage occurs in each portion of the sintered body during cooling, so that bending tends to occur.

【0018】また、冷却速度を20℃/分以下とする焼
結体の温度範囲は1000℃以上であることが好まし
い。即ち、焼結体が少なくとも1000℃に冷却させる
までは、20℃/分以下の冷却速度で冷却させることが
好ましい。1000℃以上の温度範囲においては、セラ
ミックスはある程度の変形能を有することが考えられる
ために、変形能を有すると考えられる1000℃以上の
温度範囲で冷却速度を遅くし、燒結体内の温度分布を小
さくすることで、撓みの発生を抑制することができる。
The temperature range of the sintered body at a cooling rate of 20 ° C./min or less is preferably 1000 ° C. or more. That is, it is preferable to cool at a cooling rate of 20 ° C./min or less until the sintered body is cooled to at least 1000 ° C. In the temperature range of 1000 ° C. or higher, since the ceramics are considered to have a certain degree of deformability, the cooling rate is reduced in the temperature range of 1000 ° C. or higher, which is considered to have the deformability, and the temperature distribution in the sintered body is reduced. By reducing the size, the occurrence of bending can be suppressed.

【0019】また、セラミックス燒結体の面積が100
cm以上であり、厚みが1.0mm以下のセラミック
ス燒結体においては、冷却速度を20℃/分以下とする
温度範囲を1200℃以上にすることが可能である。使
用する治具にもよるが、一般に使用されている窒化ホウ
素製治具においては、治具自体の熱伝導率はセラミック
ス焼結体よりも低い。よって、2mm以上の厚みの窒化
ホウ素製治具を使用する場合においては、セラミックス
焼結体の厚みが薄くなれば、窒化ホウ素製治具の熱容量
の影響が大きくなるため、冷却速度を20℃/分以下と
する温度範囲を1200℃以上とすることが可能とな
る。
The area of the ceramic sintered body is 100
In a ceramic sintered body having a thickness of not less than 2 cm and a thickness of not more than 1.0 mm, the temperature range in which the cooling rate is not more than 20 ° C./min can be made not less than 1200 ° C. Although it depends on the jig to be used, in a commonly used boron nitride jig, the heat conductivity of the jig itself is lower than that of the ceramic sintered body. Therefore, when a boron nitride jig having a thickness of 2 mm or more is used, the effect of the heat capacity of the boron nitride jig increases when the thickness of the ceramic sintered body is reduced. It is possible to set the temperature range of not more than 1,200 ° C. or more.

【0020】また、本発明に係わる大面積で且つ薄いセ
ラミックス燒結体においては、その熱伝導率が50W/
m・K以上、比熱が0.75J/g・K以下である場合に
おいて、特に撓みの発生が顕著である。その原因として
は、燒結体の熱伝導率が高い場合には、焼結後の冷却時
において、燒結体外周部は冷却された雰囲気の影響によ
って外部への熱放散が激しくなるのに対して、燒結体自
体の面積が大きく且つ厚みが薄いという形状の影響によ
り、燒結体内部における熱の移動が阻害されることが考
えられる。
In the large-area and thin ceramic sintered body according to the present invention, the thermal conductivity is 50 W /
When the specific heat is not less than m · K and not more than 0.75 J / g · K, the occurrence of bending is particularly remarkable. The reason for this is that when the thermal conductivity of the sintered body is high, during the cooling after sintering, the heat dissipation to the outside becomes intense due to the influence of the cooled atmosphere at the outer periphery of the sintered body, It is considered that the heat transfer inside the sintered body is hindered by the influence of the shape of the sintered body itself having a large area and a small thickness.

【0021】また、熱伝導率が高くなることによって、
燒結体内部の熱の移動は比較的容易になるはずである。
しかしながら、本発明における実験結果から推測する
と、燒結体の熱伝導率が高くなれば、燒結体内部の熱の
移動よりも、外部への放散の方が勝り、燒結体端部の温
度が内部に比べて低くなるために、撓みの発生が促進さ
れるのではないかと推測される。また、燒結体の熱伝導
率は温度が低くなれば相対的に低くなる傾向があるた
め、燒結時の冷却過程においては熱伝導率の燒結体温度
分布に及ぼす影響は小さくなるのではないかとも推測さ
れる。
[0021] In addition, by increasing the thermal conductivity,
The transfer of heat inside the sintered body should be relatively easy.
However, it can be inferred from the experimental results in the present invention that when the thermal conductivity of the sintered body increases, the heat dissipated to the outside is more effective than the heat transfer inside the sintered body, and the temperature of the end of the sintered body becomes higher. It is presumed that the occurrence of bending is promoted because the temperature is lower than the above. Also, since the thermal conductivity of the sintered body tends to be relatively low as the temperature decreases, the effect of the thermal conductivity on the temperature distribution of the sintered body may be reduced during the cooling process during sintering. Guessed.

【0022】比熱に関しては、比熱が小さければ小さい
ほど相対的に燒結体の熱容量が小さくなるために、燒結
体の端部から外部への熱放散に対する冷却効果が大きく
なり、燒結体の中心部と端部での温度差が生じやすくな
る。その結果、比熱の小さいものほど撓みは発生しやす
い。以上のことから、比熱が0.75J/g・K以下であ
る焼結体では撓みが発生しやすい。
With respect to the specific heat, the smaller the specific heat, the smaller the heat capacity of the sintered body becomes. Therefore, the effect of cooling the heat from the end of the sintered body to the outside becomes large, and the specific heat becomes smaller. A temperature difference is likely to occur at the ends. As a result, the smaller the specific heat, the more easily the deflection occurs. From the above, in a sintered body having a specific heat of 0.75 J / g · K or less, bending tends to occur.

【0023】しかし、本発明方法によれば、このような
熱伝導率が50W/m・K以上、比熱が0.75J/g・
K以下であるセラミックス焼結体の場合に於いても、冷
却速度の制御によって撓みの発生をなくすことができ
る。
However, according to the method of the present invention, such a thermal conductivity is 50 W / m · K or more and the specific heat is 0.75 J / g · K.
Even in the case of a ceramic sintered body having a temperature of K or less, generation of bending can be eliminated by controlling the cooling rate.

【0024】更に、セラミックスの主成分が窒化アルミ
ニウム、窒化珪素、炭化珪素である焼結体に関しては、
熱伝導率も比較的高く、比熱も小さいために、燒結体に
撓みが発生しやすい。しかるに、これらを主成分とする
セラミックス焼結体についても、本発明方法により冷却
速度を制御することにより、撓みの発生をなくすことが
できる。
Further, regarding a sintered body in which the main component of the ceramic is aluminum nitride, silicon nitride, or silicon carbide,
Since the thermal conductivity is relatively high and the specific heat is small, the sintered body is likely to be bent. However, even for a ceramic sintered body containing these as a main component, generation of bending can be eliminated by controlling the cooling rate by the method of the present invention.

【0025】また、撓みは冷却時の冷却速度の影響によ
るものであるため、冷却速度に間接的に影響する燒結治
具の影響も受ける。即ち、燒結治具の厚みが厚い場合に
おいては、相対的に治具内での熱の移動がスムースに行
われるために、撓みの発生は緩和される方向に働く。具
体的には、使用する治具の種類にもよるが、一般的に厚
みが1.5mm程度以上の焼結治具を使用すれば、焼結
体の撓みを緩和する効果がある。
Further, since the bending is due to the effect of the cooling rate during cooling, it is also affected by the sintering jig which indirectly affects the cooling rate. That is, when the thickness of the sintering jig is large, the movement of heat in the jig is relatively smoothly performed, so that the occurrence of bending works in a direction to be reduced. Specifically, although it depends on the type of jig to be used, generally, when a sintering jig having a thickness of about 1.5 mm or more is used, there is an effect of reducing the bending of the sintered body.

【0026】[0026]

【実施例】主原料である酸化アルミニウム、窒化アルミ
ニウム、窒化珪素、炭化珪素の各粉末に対して、所定量
の燒結助剤、有機バインダー、溶剤を加え、ボールミル
混合を行なった後、ドクターブレード法にて所定の厚み
になるようにシート成形した。この時の各粉末の組成を
以下表1に示す。
EXAMPLE A predetermined amount of a sintering aid, an organic binder, and a solvent were added to powders of aluminum oxide, aluminum nitride, silicon nitride, and silicon carbide, which are main raw materials, and ball mill mixing was performed. To form a sheet to a predetermined thickness. The composition of each powder at this time is shown in Table 1 below.

【0027】[0027]

【表1】 [Table 1]

【0028】上記のごとく成形した各シートを、燒結体
の大きさが8×8×0.25cmになるように切断し
た。次に、これらのシートをそれぞれ窒素中にて800
℃で脱脂し、更に下記表2に示す条件で追加脱脂した
後、同じく表2に示す条件で燒結した。得られた各セラ
ミックス燒結体について熱伝導率と比熱の測定を行な
い、その結果を以下表2に併せて示した。尚、熱伝導率
と比熱の測定は、ともにレーザーフラッシュ法にて行な
った。また、全ての焼結には、厚さ2mmの窒化ホウ素
の焼結治具を使用した。
Each sheet formed as described above was cut so that the size of the sintered body was 8 × 8 × 0.25 cm. Next, each of these sheets was 800
After degreased at ℃, and further degreased under the conditions shown in Table 2 below, sintering was also performed under the conditions shown in Table 2. The thermal conductivity and specific heat of each of the obtained ceramic sintered bodies were measured, and the results are shown in Table 2 below. The measurement of the thermal conductivity and the specific heat were both performed by the laser flash method. In addition, a 2 mm-thick boron nitride sintering jig was used for all sintering.

【0029】[0029]

【表2】 [Table 2]

【0030】次に、上記の各追加脱脂及び燒結の条件に
おいて種々の形状の燒結体を作製し、その燒結条件にお
ける冷却速度を変化させて、得られたセラミックス焼結
体の撓みについて評価した結果を、焼結体ごとに表3〜
6に示した。尚、冷却の際には、表3の徐冷温度範囲に
示す温度以上において表示の冷却速度で冷却し、徐冷温
度範囲に示す温度以下では炉冷した。
Next, sintered bodies of various shapes were produced under the above conditions of the additional degreasing and sintering, and the cooling rate under the sintering conditions was changed to evaluate the deflection of the obtained ceramic sintered body. Table 3 ~
6 is shown. In addition, at the time of cooling, cooling was performed at the indicated cooling rate above the temperature shown in the annealing temperature range in Table 3, and furnace cooling was performed below the temperature shown in the annealing temperature range.

【0031】得られた各セラミックス焼結体の撓みの評
価は、燒結体の両端を手で持ち、反りの方向が変化する
ときに要する力加減で評価した。即ち ◎:セラミックスに撓みの発生がないもの。 ○:外力を加えることで若干撓むもの。 △:外力を加えると撓みの方向が容易に変わるもの。 ×:水平に保持したセラミックスの向きを上下逆にする
だけで撓み(反り)の向きが変化するもの。
The evaluation of the bending of each of the obtained ceramic sintered bodies was performed by holding both ends of the sintered body by hand and evaluating the amount of force required when the direction of warpage was changed. That is, ◎: Ceramics having no bending. ○: Slightly bent when an external force is applied. Δ: The direction of bending easily changes when an external force is applied. ×: The direction of bending (warping) changes only by reversing the direction of the ceramic held horizontally.

【0032】[0032]

【表3】 [Table 3]

【0033】[0033]

【表4】 [Table 4]

【0034】[0034]

【表5】 [Table 5]

【0035】[0035]

【表6】 [Table 6]

【0036】上記の結果から分るように、大面積で且厚
みの薄い焼結体については、冷却速度を遅くすること
で、焼結の冷却時に発生する撓みの程度を改善すること
ができる。特に、熱伝導率が高く、比熱が小さいセラミ
ックスに対して、徐冷による撓み防止の効果が顕著であ
ることが分る。
As can be seen from the above results, for a sintered body having a large area and a small thickness, the degree of bending generated during cooling of sintering can be improved by slowing down the cooling rate. In particular, it can be seen that the effect of preventing bending due to slow cooling is remarkable for ceramics having high thermal conductivity and low specific heat.

【0037】更に、焼結治具の厚みによる効果を確認す
るために、上記表2の−2の焼結体について、窒化ホ
ウ素からなる焼結治具の厚みを変えて焼結し、下記表7
に示す条件で徐冷した。得られた各焼結体の撓みを前記
と同様に評価し、その結果を表7に併せて示した。
Further, in order to confirm the effect of the thickness of the sintering jig, the sintered body of -2 in Table 2 was sintered while changing the thickness of the sintering jig made of boron nitride. 7
Was slowly cooled under the conditions shown in Table 1. The bending of each of the obtained sintered bodies was evaluated in the same manner as described above, and the results are shown in Table 7.

【0038】[0038]

【表7】 [Table 7]

【0039】上記の結果から、使用する焼結治具の厚み
によって、得られる焼結体の撓みの程度が変化すること
が分る。また、焼結治具の厚みが0.1cm以下になる
と、焼結体に生じる撓みの程度のバラツキが大きくなる
傾向がある。
From the above results, it can be seen that the degree of deflection of the obtained sintered body changes depending on the thickness of the sintering jig used. Further, when the thickness of the sintering jig is 0.1 cm or less, there is a tendency that variation in the degree of bending generated in the sintered body increases.

【0040】[0040]

【発明の効果】本発明によれば、電子部品用基板などと
して利用される面積が大きく且つ厚みが薄いセラミック
ス焼結体について、外部からの極めて小さな外力で変化
する撓みを、焼結時の冷却速度を制御することで簡単に
なくすことができる。
According to the present invention, for a ceramic sintered body having a large area and a small thickness used as a substrate for electronic parts, etc., the bending that changes with an extremely small external force from the outside can be suppressed by cooling during sintering. You can easily get rid of it by controlling the speed.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 面積が100cm以上で且つ厚みが
2.0mm以下のセラミックス燒結体の製造方法であっ
て、セラミックス燒結時における冷却速度を20℃/分
以下とすることを特徴とするセラミックス燒結体の製造
方法。
1. A method for producing a ceramic sintered body having an area of not less than 100 cm 2 and a thickness of not more than 2.0 mm, wherein a cooling rate during the sintering of the ceramic is not more than 20 ° C./min. How to make the body.
【請求項2】 前記冷却速度を20℃/分以下とする温
度範囲が1000℃以上であることを特徴とする、請求
項1に記載のセラミックス燒結体の製造方法。
2. The method for producing a ceramic sintered body according to claim 1, wherein the temperature range in which the cooling rate is 20 ° C./min or less is 1000 ° C. or more.
【請求項3】 セラミックス燒結体の厚みが1.0mm
以下であり、前記冷却速度を20℃/分以下とする温度
範囲が1200℃以上であることを特徴とする、請求項
1又は2に記載のセラミックス燒結体の製造方法。
3. The thickness of the ceramic sintered body is 1.0 mm.
3. The method for producing a ceramic sintered body according to claim 1, wherein the temperature range in which the cooling rate is 20 ° C./min or less is 1200 ° C. or more. 4.
【請求項4】 セラミックス燒結時に用いる焼結治具の
厚さが1.5mm以上であることを特徴とする、請求項
1〜3のいずれかに記載のセラミックス燒結体の製造方
法。
4. The method for producing a ceramic sintered body according to claim 1, wherein the thickness of the sintering jig used for sintering the ceramic is 1.5 mm or more.
【請求項5】 セラミックス燒結体の熱伝導率が50W
/m・K以上、比熱が0.75J/g・K以下であること
を特徴とする、請求項1〜4のいずれかに記載のセラミ
ックス燒結体の製造方法。
5. A ceramic sintered body having a thermal conductivity of 50 W
The method for producing a ceramic sintered body according to any one of claims 1 to 4, wherein the specific heat is not less than 0.75 J / gK and not less than 0.75 J / gK.
【請求項6】 セラミックス燒結体の主成分が窒化アル
ミニウム、窒化珪素、炭化珪素から選択されるいずれか
であることを特徴とする、請求項1〜5のいずれかに記
載のセラミックス燒結体の製造方法。
6. The production of a ceramic sintered body according to claim 1, wherein the main component of the ceramic sintered body is any one selected from aluminum nitride, silicon nitride, and silicon carbide. Method.
JP2000258317A 2000-08-29 2000-08-29 Production method of ceramic sintered compact Pending JP2002068849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000258317A JP2002068849A (en) 2000-08-29 2000-08-29 Production method of ceramic sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000258317A JP2002068849A (en) 2000-08-29 2000-08-29 Production method of ceramic sintered compact

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006264131A Division JP2006342057A (en) 2006-09-28 2006-09-28 Method of manufacturing ceramic sintered compact

Publications (1)

Publication Number Publication Date
JP2002068849A true JP2002068849A (en) 2002-03-08

Family

ID=18746649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000258317A Pending JP2002068849A (en) 2000-08-29 2000-08-29 Production method of ceramic sintered compact

Country Status (1)

Country Link
JP (1) JP2002068849A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004016567A1 (en) 2002-08-13 2004-02-26 Sumitomo Electric Industries, Ltd. Aluminum nitride sintered compact, metallized substrate, heater,jig and method for producing aluminum nitride sintered compact
JP2018020929A (en) * 2016-08-03 2018-02-08 日立金属株式会社 Silicon nitride sintered substrate and production method thereof
JP2020093978A (en) * 2016-08-03 2020-06-18 日立金属株式会社 Method for manufacturing sintered silicon nitride substrate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004016567A1 (en) 2002-08-13 2004-02-26 Sumitomo Electric Industries, Ltd. Aluminum nitride sintered compact, metallized substrate, heater,jig and method for producing aluminum nitride sintered compact
US7622203B2 (en) 2002-08-13 2009-11-24 Sumitomo Electric Industries, Ltd. Aluminum nitride sintered compact
JP2018020929A (en) * 2016-08-03 2018-02-08 日立金属株式会社 Silicon nitride sintered substrate and production method thereof
JP2020093978A (en) * 2016-08-03 2020-06-18 日立金属株式会社 Method for manufacturing sintered silicon nitride substrate

Similar Documents

Publication Publication Date Title
JP2000034172A (en) Highly thermoconductive silicon nitride sintered compact and its production
JPH1084059A (en) Silicon nitride circuit board
US5508240A (en) Aluminum nitride sintered body and method for manufacturing the same
JP6891991B2 (en) Manufacturing method of silicon nitride sintered substrate
JP7468769B2 (en) Manufacturing method of silicon nitride sintered substrate
JP2009218322A (en) Silicon nitride substrate and method of manufacturing the same, and silicon nitride circuit substrate using the same, and semiconductor module
JP5677638B1 (en) Cutting tools
JP2002068849A (en) Production method of ceramic sintered compact
JP4755754B2 (en) Silicon nitride substrate, silicon nitride circuit substrate using the same, and manufacturing method thereof
KR101937961B1 (en) Silicon nitride substrate without planarization and method of manufacturing the same
JP3469513B2 (en) Exposure apparatus and support member used therein
JP5130533B2 (en) Semiconductor substrate heat sink having protrusions and method for manufacturing the same
JP2006342057A (en) Method of manufacturing ceramic sintered compact
JP4773744B2 (en) Method for producing aluminum nitride sintered body
JP3980262B2 (en) SiC heat treatment jig
JPH09157030A (en) Production of silicon nitride sintered compact
JP2007063124A (en) Ceramic substrate
JP2003137644A (en) Low thermal expansion ceramic, members for ultra- precise machine structure, measuring instrument and semiconductor manufacturing equipment using the same, and method of producing low thermal expansion ceramic
US7354652B2 (en) Corrosion-resistant member and producing method thereof
JP4823486B2 (en) Heater mainly composed of MoSi2 having excellent pest resistance and method for producing the same
KR20220151559A (en) Method for manufacturing silicon nitride substrate and silicon nitride substrate therefrom
JP2003201179A (en) Aluminum nitride sintered compact and production method therefor
JP2003192445A (en) Silicon nitride substrate, method of producing the same and silicon nitride substrate having thin film obtained by using the substrate
JPH08157264A (en) Aluminum nitride sintered compact and its production
JP4071691B2 (en) Manufacturing method of heating element mainly composed of MoSi2 and having excellent thermal shock resistance, and heating element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060928

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061101

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20061208