JP2691294B2 - Silicon nitride sintered body and method for producing the same - Google Patents

Silicon nitride sintered body and method for producing the same

Info

Publication number
JP2691294B2
JP2691294B2 JP63332411A JP33241188A JP2691294B2 JP 2691294 B2 JP2691294 B2 JP 2691294B2 JP 63332411 A JP63332411 A JP 63332411A JP 33241188 A JP33241188 A JP 33241188A JP 2691294 B2 JP2691294 B2 JP 2691294B2
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
rare earth
mol
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63332411A
Other languages
Japanese (ja)
Other versions
JPH02175661A (en
Inventor
正喜 寺園
祥二 高坂
和憲 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP63332411A priority Critical patent/JP2691294B2/en
Publication of JPH02175661A publication Critical patent/JPH02175661A/en
Application granted granted Critical
Publication of JP2691294B2 publication Critical patent/JP2691294B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高温における抗折強度および耐酸化性に優れ
た窒化珪素質焼結体及びその製造方法に関する。
TECHNICAL FIELD The present invention relates to a silicon nitride sintered body excellent in bending strength and oxidation resistance at high temperatures and a method for producing the same.

(従来技術) 従来から、窒化珪素質焼結体は高温における強度、硬
度、熱的化学的安定性に優れることからエンジニアリン
グセラミックス、特に熱機関用材料として注目されてい
る。
(Prior Art) Conventionally, silicon nitride-based sintered bodies have attracted attention as engineering ceramics, particularly as materials for heat engines, because of their excellent strength, hardness, and thermochemical stability at high temperatures.

窒化珪素はそれ自体共有結合から成るため焼結が難し
いことから、希土類元素酸化物やアルカリ土類金属酸化
物、或いはAl2O3等の各種の焼結助剤を添加して成形
し、常圧焼成、ホットプレス焼成、ガス圧力焼成、熱間
静水圧焼成等の焼成手段によって1600〜2000℃の温度で
焼成することによって得られている。
Since silicon nitride itself is covalently bonded and therefore difficult to sinter, rare earth element oxides, alkaline earth metal oxides, Al 2 O 3 and various other sintering aids are added and molded, and It is obtained by firing at a temperature of 1600 to 2000 ° C. by a firing means such as pressure firing, hot press firing, gas pressure firing, hot isostatic firing.

このような窒化珪素質焼結体によれば、高温特性を決
定する要因として焼結体の粒界相が注目され、粒界相の
強度を向上させようとする試みが成されている。そこ
で、最近に至っては、焼結体に熱処理等を施すことによ
って粒界を窒化珪素(Si3N4)、希土類元素酸化物(RE2
O3)およびSiO2等から成る各種の結晶相、例えばメリラ
イト、アパタイト、YAM、ワラストナイト等を析出させ
ることが行われている。
According to such a silicon nitride sintered body, the grain boundary phase of the sintered body has attracted attention as a factor that determines the high temperature characteristics, and attempts have been made to improve the strength of the grain boundary phase. Therefore, recently, by subjecting the sintered body to a heat treatment or the like, the grain boundaries are changed to silicon nitride (Si 3 N 4 ), rare earth element oxide (RE 2
Various crystal phases such as O 3 ) and SiO 2 such as melilite, apatite, YAM and wollastonite have been deposited.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかし乍ら、粒界を結晶化することによりある程度の
高温強度の向上はあるものの、粒界の組成が各種の条件
により変わるために所望の結晶相を安定して生成させる
ことが難しく、生成される結晶相の種類によって特性が
異なるため、安定性に欠けるもので、しかもすべての粒
界を結晶化させることが困難であるが旨に、結晶相の他
に、低融点のガラス相が生成されるために、所望の高温
特性が得られないという問題を有していた。
However, although there is some improvement in high-temperature strength by crystallizing the grain boundaries, it is difficult to stably generate a desired crystal phase because the composition of the grain boundaries changes depending on various conditions, and thus it is generated. Since the characteristics differ depending on the type of crystal phase, the stability is poor and it is difficult to crystallize all the grain boundaries.In addition to the crystal phase, a glass phase with a low melting point is generated. Therefore, there is a problem that desired high temperature characteristics cannot be obtained.

〔発明の目的〕[Object of the invention]

本発明は上記問題点を解決し、安定性に優れしかも高
温特性に優れた窒化珪素子焼結体及びその製造方法を提
供することを目的とするものである。
It is an object of the present invention to solve the above problems and provide a silicon nitride sintered body having excellent stability and excellent high temperature characteristics, and a method for producing the same.

〔問題点を解決するための手段〕[Means for solving the problem]

本発明は上記の問題点に対し、検討を重ねた結果、添
加成分としてSiO2を過剰に加え、これを低温で焼成し、
急冷することにより粒界を珪素、希土類元素、酸素、窒
素とから構成される高融点ガラス相とすることによって
微細な結晶組織となすと共に粒界相を均一な組織より構
成することができるため、安定性に優れるとともに高温
強度および耐酸化性が改善されることを知見した。
The present invention, with respect to the above problems, as a result of repeated studies, SiO 2 was excessively added as an additive component, and this was baked at a low temperature,
By rapidly cooling the grain boundaries to a high melting point glass phase composed of silicon, a rare earth element, oxygen, and nitrogen, it is possible to form a fine crystal structure and to form the grain boundary phase from a uniform structure. It was found that the high temperature strength and the oxidation resistance are improved while the stability is excellent.

即ち、本発明は窒化珪素(以下、SiN4という)70〜99
モル%希土類元素酸化物0.1〜5モル%と、過剰酸素25
モル%以下から過剰酸素/希土類元素酸化物(モル比)
が2より大きく、25以下の範囲にある組成系の焼結体で
ありそのSi3N4結晶の平均粒子径が7μm以下で且つそ
の粒界相が珪素、希土類元素、酸素、窒素から構成され
る非晶質体となしたものであり、その製法としては上記
の組成となる成形体の表面にガス不透過性のシールを設
け、1400〜1800℃の温度で高圧力下で焼成後、1000゜/h
r以上の速度で急冷することによって得られるものであ
る。
That is, the present invention uses silicon nitride (hereinafter referred to as SiN 4 ) 70 to 99
Mol% rare earth oxide 0.1 to 5 mol% and excess oxygen 25
From mol% or less to excess oxygen / rare earth oxide (molar ratio)
Is a sintered body having a composition range of more than 2 and 25 or less, and the Si 3 N 4 crystal has an average particle size of 7 μm or less and its grain boundary phase is composed of silicon, a rare earth element, oxygen and nitrogen. It is made into an amorphous body, and as its manufacturing method, a gas-impermeable seal is provided on the surface of the molded body having the above composition, and after firing at a temperature of 1400 to 1800 ° C under high pressure, 1000゜ / h
It is obtained by quenching at a rate of r or higher.

以下、本発明を詳述する。 Hereinafter, the present invention will be described in detail.

本発明の大きな趣旨は、従来の結晶化に伴う粒界相の
不均一化を解消するために、粒界を均一な単一相として
形成させるとともに、粒界を非晶質とすることによって
高粘度化させようとするものである。
A major object of the present invention is to form a grain boundary as a uniform single phase in order to eliminate the conventional non-uniformity of the grain boundary phase caused by crystallization, and to improve the grain boundary by making it amorphous. It is intended to increase the viscosity.

そのための基本的組成としてはSi3N4が70〜99モル
%、特に80〜93.5モル%と、希土類元素酸化物0.1〜5
モル%、特に0.5〜4モル%と、過剰酸素25モル%以
下、特に6〜20モル%の割合から成る。なお、過剰酸素
とは系全体に含まれる全酸素量から、希土類元素酸化物
として混入した酸素を除いた酸素量で、具体的にはSi3N
4原料中の不純物酸素、あるいはSiO2として添加された
酸素から構成されるものであり、本発明ではSiO2換算量
を示すものである。本発明における組成上の大きな特徴
は過剰酸素/希土類元素酸化物(モル比)が2より大き
く、25以下、特に3〜20の割合から成るもので、即ち、
過剰酸素が多量であることを意味するもので、粒界を非
晶質と成す上で、重要な要因である。このモル比を上記
範囲に限定した理由は、このモル比が2以下では、粒界
に結晶が析出し易くなり、安定性に欠け本発明の目的が
達成されず、逆に25を超えると低融点のガラスが形成し
易くなり、粒界の融点が低下しすぎて焼結体の高温強度
が低下するためである。また、前記組成範囲において、
Si3N4、希土類元素酸化物のいずれかが前述の範囲を逸
脱しても、強度が低下する。
As a basic composition for this, Si 3 N 4 is 70 to 99 mol%, especially 80 to 93.5 mol%, and a rare earth element oxide 0.1 to 5
Mol%, especially 0.5 to 4 mol%, and a proportion of less than 25 mol% excess oxygen, especially 6 to 20 mol%. It should be noted that the excess oxygen is the amount of oxygen excluding the oxygen mixed in as a rare earth element oxide from the total amount of oxygen contained in the entire system, specifically, Si 3 N
4 oxygen impurity in the raw material, or is intended to be composed of added oxygen as SiO 2, in the present invention shows the SiO 2 equivalent amount. A major feature of the composition of the present invention is that the excess oxygen / rare earth element oxide (molar ratio) is more than 2 and is 25 or less, particularly 3 to 20, that is,
This means that there is a large amount of excess oxygen, which is an important factor in forming the grain boundaries as amorphous. The reason for limiting this molar ratio to the above range is that if the molar ratio is 2 or less, crystals tend to precipitate at the grain boundaries, lacking stability, and the object of the present invention cannot be achieved. This is because the glass having the melting point is easily formed, and the melting point of the grain boundary is lowered too much, so that the high temperature strength of the sintered body is lowered. Further, in the above composition range,
Even if Si 3 N 4 or a rare earth element oxide deviates from the above range, the strength decreases.

本発明の焼結体の粒界には、添加成分である希土類元
素酸素と過剰酸素、およびSi3N4の一部固溶により、実
質的に珪素、希土類元素、酸素、窒素とから構成される
非晶質より成るもので、従来のような非晶質の析出がな
いことから、均一な粒界が構成される。
In the grain boundary of the sintered body of the present invention, the rare earth element oxygen and excess oxygen as additive components, and Si 3 N 4 are partially solid-dissolved, and thus substantially consist of silicon, rare earth element, oxygen, and nitrogen. Since it does not have amorphous precipitation as in the conventional case, a uniform grain boundary is formed.

このような粒界相の非晶質化の具体的な判断の一つと
しては前述した組成系において最も析出し易い結晶相で
あるシリコンオキシナイトライド相(Si2N2O相)の有無
で評価でき、この場合はX線回析チャートにおいてSi2N
2O(020)面ピーク強度/(α−Si3N4(210)面ピーク
強度+β−Si3N4(210)面ピーク強度)×100(%)で
表わされる比率が30%以下のレベルでSi2N2O相の析出が
抑制されたものを粒界が実質的に非晶質化しているとい
う。
One of the specific judgments of such amorphization of the grain boundary phase is whether or not there is a silicon oxynitride phase (Si 2 N 2 O phase), which is the crystal phase most likely to precipitate in the composition system described above. It can be evaluated, and in this case, Si 2 N in the X-ray diffraction chart
2 O (020) plane peak intensity / (α-Si 3 N 4 (210) plane peak intensity + β-Si 3 N 4 (210) plane peak intensity) x 100 (%) at a level of 30% or less It is said that those in which the precipitation of the Si 2 N 2 O phase is suppressed have the grain boundaries substantially amorphized.

本発明によれば、この粒界を高融点化させる上で、希
土類元素として高融点ケイ酸塩を生成し得る元素を用い
ることが望ましく。そのような元素としては、Yb,Er,D
y,Hoが挙げられる。
According to the present invention, in order to raise the melting point of this grain boundary, it is desirable to use an element capable of forming a high melting point silicate as a rare earth element. Such elements include Yb, Er, D
y, Ho can be mentioned.

また、本発明の焼結体によれば、Si3N4結晶粒子の平
均粒径が7μm以下、特に5μm以下であることが重要
であり、このような微細な結晶組織構造を形成すること
によって機械的強度を向上させることができる。
Further, according to the sintered body of the present invention, it is important that the Si 3 N 4 crystal grains have an average grain size of 7 μm or less, and particularly 5 μm or less. By forming such a fine crystal structure structure, The mechanical strength can be improved.

本発明の窒化珪素質焼結体の製造方法によれば、原料
粉末として窒化珪素粉末、希土類元素酸化物粉末、さら
に場合によりSiO2粉末を用いるが、焼結性を促進させる
ため窒化珪素粉末はBET比表面積が3〜20m2/g、α化率
が95%以上であることが望ましい。
According to the method for producing a silicon nitride-based sintered body of the present invention, silicon nitride powder, rare earth element oxide powder, and optionally SiO 2 powder are used as the raw material powder, but silicon nitride powder is used to promote sinterability. It is desirable that the BET specific surface area is 3 to 20 m 2 / g and the α conversion rate is 95% or more.

これらの粉末を用いて窒化珪素70〜99モル%、特に80
〜93.5モル%、希土類元素酸化物0.1〜5モル%、特に
0.5〜4モル%、過剰酸素(SiO2換算量)25モル%以
下、特に6〜20モル%の組成から成り、且つ過剰酸素/
希土類元素酸化物(モル比)が2より大きく25以下、特
に3〜20の範囲になるよう調製、混合する。
70-99 mol% of silicon nitride, especially 80
~ 93.5 mol%, rare earth oxide 0.1 ~ 5 mol%, especially
0.5 to 4 mol%, excess oxygen (equivalent to SiO 2 ) 25 mol% or less, especially 6 to 20 mol% composition and excess oxygen /
The rare earth element oxide (molar ratio) is prepared and mixed so as to be more than 2 and 25 or less, particularly in the range of 3 to 20.

このようにして得られた混合粉末を公知の成形方法、
例えばプレス成形、鋳込み成形、押出し成形、インクジ
ェクション成形等によって所望の形状に成形した後、焼
成に移される。
A known molding method of the mixed powder thus obtained,
For example, it is formed into a desired shape by press molding, cast molding, extrusion molding, ink injection molding, etc., and then transferred to firing.

本発明によれば、上記組成が焼成によって揮散し易い
成分、即ち、過剰酸素を多量に含むため、このような揮
散を十分に抑制し、得る焼成方法を選択する必要があ
る。
According to the present invention, since the above composition contains a large amount of a component that is easily volatilized by firing, that is, excess oxygen, it is necessary to select a firing method that sufficiently suppresses such vaporization.

そこで、本発明によれば、成形体の表面にガラス等か
ら成るガス不透過性シールで完全に密閉した状態で、高
圧力ガス下で焼成を行う。この方法によれば、焼成雰囲
気と成形体との間にシール材が存在することによって成
形体の組成は変動なく、焼結体組成とほぼ同一になるこ
とから、何ら雰囲気制御も必要とせず量産性にも優れて
いるという利点を有する。具体的には、成形体の表面に
所望により、BN等の離型剤を塗布した後、さらにガラス
を塗布する。この成形体を例えば熱間静水圧焼成炉に配
置して昇温し、成形体の表面のガラスのシールが完成し
た後、さらに昇温するとともにN2或いはアルゴン等のガ
スによって圧力を加える。最終的に焼成温度1450〜1800
℃、特に1500〜1750℃の低温で圧力500〜2000atmに保持
する。焼成後、冷却速度を1000℃/hr以上、特に1100℃/
hr以上に設定して粒界を非晶質化する。
Therefore, according to the present invention, firing is performed under a high pressure gas in a state where the surface of the molded body is completely sealed with a gas impermeable seal made of glass or the like. According to this method, the composition of the molded body does not change due to the presence of the sealing material between the firing atmosphere and the molded body, and the composition of the molded body is almost the same as that of the sintered body. It also has the advantage of being excellent in sex. Specifically, if desired, a mold release agent such as BN is applied to the surface of the molded body, and then glass is further applied. The compact is placed in, for example, a hot isostatic firing furnace to raise the temperature, and after the glass seal on the surface of the compact is completed, the temperature is further raised and pressure is applied by a gas such as N 2 or argon. Final firing temperature 1450-1800
Hold at a pressure of 500-2000 atm at a low temperature of ℃, especially 1500-1750 ℃. After firing, cooling rate is 1000 ℃ / hr or more, especially 1100 ℃ /
The grain boundaries are made amorphous by setting the time to be more than hr.

また、他の方法としては離型剤等を塗布した成形体を
ガラス浴中に浸漬し、前述と同様な方法及び圧力、温度
設定で焼成すれば良い。
In addition, as another method, a molded article coated with a release agent or the like may be dipped in a glass bath and fired by the same method, pressure and temperature settings as described above.

本発明によれば、上記条件において、冷却速度が粒界
を非晶質化する上で特に重要で、冷却速度が1000℃/hr
を下回ると粒界に結晶相が析出し易くなり、本発明の目
的を達成できない。
According to the present invention, under the above conditions, the cooling rate is particularly important for making the grain boundaries amorphous, and the cooling rate is 1000 ° C / hr.
If it is below the range, the crystal phase tends to precipitate at the grain boundary, and the object of the present invention cannot be achieved.

なお、上述したような焼成方法を採用した時、一般に
はガラス成分が成形体中に浸入し、焼結体の特性に影響
を及ぼすことが問題とされるが、本発明の組成ではSiO2
を多量に含むことからガラス成分の侵入が起きても焼結
体の特性にほとんど影響がないという特異的性質をも有
する。それによりガラス侵入を防止するための各種の工
夫がほとんどいらない等のメリットを有する。
Incidentally, when employing the sintering method as described above, generally enters the glass component in the green body, it affects the properties of the sintered body in question, the composition of the present invention is SiO 2
Since it contains a large amount of, it also has a peculiar property that the characteristics of the sintered body are hardly affected even if the glass component invades. This has the advantage that almost no various devices for preventing glass intrusion are required.

さらに、本発明の製造方法における特徴は、組成にお
いて過剰酸素を多量に含んでいることに起因して系全体
が易焼結性であることから、焼成時間を短縮することが
できると共に、1450〜1800℃の比較的低温で焼成するこ
とができる点にある。このような低温焼成によれば、α
−Si3N4のβ−Si3N4への転移に伴う粒成長が抑制される
ことから、焼結体組織として微細な構造が得られ、特に
Si3N4の結晶の平均粒子径を7μm以下にすることによ
って高強度化が達成される。また、同時に焼成温度が低
いためにα−Si3N4のβ−Si3N4への転移が生じ難くなる
ために、焼結体中のα−Si3N4の占める割合がα−Si3N4
/α−Si3N4+β−Si3N4の比率で5%以上であることも
大きな特徴で、α−Si3N4が増加することにより室温強
度を高めることができる。
Furthermore, the feature of the production method of the present invention is that since the entire system is easily sinterable due to containing a large amount of excess oxygen in the composition, the firing time can be shortened, and 1450 to The point is that it can be fired at a relatively low temperature of 1800 ° C. According to such low temperature firing, α
Since grain growth accompanying the transition of -Si 3 N 4 to β-Si 3 N 4 is suppressed, a fine structure can be obtained as a sintered body structure,
Strengthening is achieved by setting the average particle size of the Si 3 N 4 crystal to 7 μm or less. At the same time, because the firing temperature is low, the transition of α-Si 3 N 4 to β-Si 3 N 4 is less likely to occur, so that the proportion of α-Si 3 N 4 in the sintered body is α-Si 3 N 4. 3 N 4
It is also a great feature that the ratio of / α-Si 3 N 4 + β-Si 3 N 4 is 5% or more, and the room temperature strength can be increased by increasing α-Si 3 N 4 .

さらに、本発明における窒化珪素質焼結体は、前述し
たような特徴を有するものであるが、この焼結体に対し
靭性を改善する目的で例えば無機質の繊維状構造体(ウ
イスカー)を焼結体中に分散することもできる。
Further, the silicon nitride sintered body according to the present invention has the characteristics as described above. For the purpose of improving the toughness of the sintered body, for example, an inorganic fibrous structure (whisker) is sintered. It can also be dispersed throughout the body.

具体的には長さが20μm以下の炭化珪素ウイスカー或
いは窒化珪素ウイスカーを5〜30体積%の割合で均一に
分散させしめ、ウイスカーの引抜き効果、又はウイスカ
ーによるクラックの偏向により靭性を向上できる。
Specifically, silicon carbide whiskers or silicon nitride whiskers having a length of 20 μm or less are uniformly dispersed at a ratio of 5 to 30% by volume, and the toughness can be improved by the whisker extraction effect or the deflection of cracks by the whiskers.

以下、本発明を次の例で説明する。 Hereinafter, the present invention will be described with reference to the following examples.

〔実施例〕〔Example〕

原料粉末として窒化珪素粉末(BET比表面積5m2/g、α
化率95%、酸素量1.0重量%)と各種希土類酸化物粉末
にあるいはSiO2粉末を用いて、第1表に示す組成になる
ように調合して混合後、1t/cm2でプレス成形し1400℃で
仮焼した。
Silicon nitride powder as raw material powder (BET specific surface area 5 m 2 / g, α
(95% conversion rate, oxygen content 1.0% by weight) and various rare earth oxide powders or SiO 2 powders are mixed and mixed to have a composition shown in Table 1, and then press-molded at 1 t / cm 2. It was calcined at 1400 ° C.

得られた成形体に対し、BN粉末を1〜10mmの厚さで塗
布後、さらにガラスを1〜10mmの厚さで塗布した後に、
減圧下で1350℃で熱処理し、不純物の除去を行った。
After applying the BN powder with a thickness of 1 to 10 mm to the obtained molded body, and further applying the glass with a thickness of 1 to 10 mm,
The impurities were removed by heat treatment at 1350 ° C. under reduced pressure.

このように処理された成形体を熱間静水圧焼成炉に配
置してN2ガス雰囲気1気圧下でガラスの軟化温度まで昇
温し、その後、昇温昇圧し、第1表に示す所定の条件で
熱間静水圧焼成を行った。
The compact thus treated is placed in a hot isostatic firing furnace to raise the temperature up to the softening temperature of the glass under 1 atmosphere of N 2 gas atmosphere, and thereafter, the temperature is raised and raised to a predetermined value shown in Table 1. Hot isostatic firing was performed under the conditions.

その後、表面のガラスを除去して得られた焼結体に対
し、JISR1601に従い室温、1200℃、1400℃における4点
曲げ抗折強度および1000℃×24時間、1400℃欠ける24時
間の酸化重量増を調べた。
After that, the sintered body obtained by removing the glass on the surface was subjected to JIS R1601 at room temperature, 1200 ° C, 1400 ° C, four-point bending bending strength, and 1000 ° C × 24 hours, and 1400 ° C for 24 hours. I checked.

また、焼結体に対し、粒界相の非晶質化をX線回析曲
線において、Si2N2O(020)面ピーク/(α−Si3N4(21
0)面ピーク)×100(%)で表わされる強度比で判断
し、この値が30(%)以下であるものを本発明品と断定
した。さらに、α−Si3N4の含有率とSEM写真によりSi3N
4結晶粒子の平均粒径を測定した。
Further, in the X-ray diffraction curve, the amorphization of the grain boundary phase was observed in the Si 2 N 2 O (020) plane peak / (α-Si 3 N 4 (21
The strength ratio represented by (0) plane peak) × 100 (%) was judged, and those having a value of 30 (%) or less were determined to be the products of the present invention. Furthermore, from the content of α-Si 3 N 4 and the SEM photograph, Si 3 N 4
4 The average particle size of the crystal particles was measured.

第1表から明らかなように、過剰酸素/希土類元素酸
化物比が2以下のNo.10,16ではいずれも室温強度が低
く、1400℃の強度も低い。一方、この比が25を超えるN
o.6はSi2N2O相の析出が多量に認められるとともに、室
温強度は高いものの高温強度が劣るものである。
As is clear from Table 1, in Nos. 10 and 16 having an excess oxygen / rare earth element oxide ratio of 2 or less, the room temperature strength is low and the strength at 1400 ° C. is also low. On the other hand, if this ratio exceeds 25 N
In o.6, a large amount of Si 2 N 2 O phase precipitation is observed, and the room temperature strength is high, but the high temperature strength is poor.

また、HIPの焼成温度が1800℃を超えるNo.12,13,17で
はSi3N4の粒成長により平均粒子径が大きくそのためい
ずれも抗折強度が低いものであった。
Further, in Nos. 12, 13, and 17 where the HIP firing temperature exceeded 1800 ° C, the average grain size was large due to the grain growth of Si 3 N 4 , and therefore, the bending strength was low in all cases.

さらに、冷却速度が1000℃/hrより遅いNo.11,18では
いずれもアパタイト結晶相が析出しており、本発明の目
的は達成されなかった。
Further, in Nos. 11 and 18 in which the cooling rate was slower than 1000 ° C./hr, the apatite crystal phase was precipitated in both cases, and the object of the present invention was not achieved.

これらの比較例に対し、他の本発明品では室温強度10
50MPa以上、1200℃強度800MPa以上、1400℃強度600MPa
以上が達成され、また酸化重量増が1000℃で0.1mg/cm2
以下、1400℃で0.1mg/cm2以下の優れた特性を示した。
また、これらの本発明品に対し、粒界をTEM分析した結
果、いずれも珪素、希土類元素、酸素、窒素が検出され
た。
In contrast to these comparative examples, the other invention products have room temperature strength of 10
50MPa or more, 1200 ℃ strength 800MPa or more, 1400 ℃ strength 600MPa
The above was achieved, and the increase in the weight of oxidation was 0.1 mg / cm 2 at 1000 ° C.
Below, it showed excellent characteristics of 0.1 mg / cm 2 or less at 1400 ° C.
Further, as a result of TEM analysis of grain boundaries for these products of the present invention, silicon, rare earth elements, oxygen, and nitrogen were all detected.

〔発明の効果〕〔The invention's effect〕

以上詳述した通り、本発明の窒化珪素質焼結体は微細
な結晶組織構造から成るとともに粒界が非晶質から成る
ことから粒界が均一なものから形成されるとともに高融
点化され、高温強度に優れ、且つ耐酸化性に優れた焼結
体を得ることができる。
As described in detail above, the silicon nitride sintered body of the present invention has a fine grain structure structure and grain boundaries are amorphous, so that the grain boundaries are formed uniformly and have a high melting point. It is possible to obtain a sintered body that is excellent in high temperature strength and oxidation resistance.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】窒化珪素70〜99モル%と、希土類元素酸化
物0.1〜5モル%と過剰酸素25モル%以下から成り、過
剰酸素/希土類元素酸化物(モル比)が2より大きく、
25以下の範囲にある窒化珪素質焼結体であって、該焼結
体の窒化珪素結晶の平均粒子径が7μm以下でかつ粒界
相が実質的に珪素、希土類元素、酸素、窒素から構成さ
れる非晶質からなることを特徴とする窒化珪素質焼結
体。
1. Silicon nitride 70 to 99 mol%, rare earth element oxide 0.1 to 5 mol% and excess oxygen 25 mol% or less, and excess oxygen / rare earth element oxide (molar ratio) is larger than 2,
A silicon nitride sintered body in the range of 25 or less, wherein the average particle diameter of the silicon nitride crystals of the sintered body is 7 μm or less and the grain boundary phase is substantially composed of silicon, a rare earth element, oxygen and nitrogen. And a silicon nitride sintered body.
【請求項2】窒化珪素70〜99モル%、希土類元素酸化物
0.1〜5モル%と過剰酸素(SiO2)25モル%以下、且つ
過剰酸素/希土類元素酸化物(モル比)が2より大き
く、25以下の範囲にある組成から成る成形体の表面にガ
ス不透過性シールを設け、1450〜1800℃の温度で高圧力
ガス下で焼成後、1000℃/hr以上の速度で冷却し、粒界
を実質的に珪素、希土類元素、酸素、窒素とから構成さ
れる非晶質となしたことを特徴とする窒化珪素質焼結体
の製造方法。
2. 70 to 99 mol% of silicon nitride, a rare earth element oxide
0.1-5 mol% and excess oxygen (SiO 2 ) 25 mol% or less, and excess oxygen / rare earth element oxide (molar ratio) of more than 2, and the composition of the composition within the range of 25 or less does not cause gas on the surface. Providing a permeable seal, firing at a temperature of 1450 to 1800 ℃ under high pressure gas, cooling at a rate of 1000 ℃ / hr or more, the grain boundary is substantially composed of silicon, rare earth elements, oxygen, nitrogen A method of manufacturing a silicon nitride sintered body, which is characterized by being made amorphous.
JP63332411A 1988-12-27 1988-12-27 Silicon nitride sintered body and method for producing the same Expired - Fee Related JP2691294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63332411A JP2691294B2 (en) 1988-12-27 1988-12-27 Silicon nitride sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63332411A JP2691294B2 (en) 1988-12-27 1988-12-27 Silicon nitride sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH02175661A JPH02175661A (en) 1990-07-06
JP2691294B2 true JP2691294B2 (en) 1997-12-17

Family

ID=18254669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63332411A Expired - Fee Related JP2691294B2 (en) 1988-12-27 1988-12-27 Silicon nitride sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP2691294B2 (en)

Also Published As

Publication number Publication date
JPH02175661A (en) 1990-07-06

Similar Documents

Publication Publication Date Title
JP2842723B2 (en) Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same
JP2577899B2 (en) Silicon nitride sintered body and method for producing the same
JP2691294B2 (en) Silicon nitride sintered body and method for producing the same
JP4651144B2 (en) Silicon nitride sintered body
US5114889A (en) Silicon nitride sintered body and process for preparation thereof
JP3152790B2 (en) Method for producing silicon nitride based sintered body
JP2662863B2 (en) Method for producing silicon nitride based sintered body
JPH07330436A (en) Silicon nitride heat resistant member and its production
JP2742619B2 (en) Silicon nitride sintered body
JP2694368B2 (en) Method for producing silicon nitride based sintered body
JP3124863B2 (en) Silicon nitride sintered body and method for producing the same
JP2811493B2 (en) Silicon nitride sintered body
JP2694369B2 (en) Silicon nitride sintered body
JP3124867B2 (en) Silicon nitride sintered body and method for producing the same
JPH01145380A (en) Production of silicon nitride sintered form
JP2783702B2 (en) Silicon nitride sintered body
JPH05139840A (en) Siliceous nitride sintered compact and its production
JPH06116045A (en) Silicon nitride sintered compact and its production
JPH0559073B2 (en)
JP3034099B2 (en) Silicon nitride sintered body and method for producing the same
JP2708136B2 (en) Silicon nitride sintered body and method for producing the same
JP2671539B2 (en) Method for producing silicon nitride sintered body
JP2742622B2 (en) Silicon nitride sintered body and method for producing the same
JP2724768B2 (en) Silicon nitride sintered body and method for producing the same
JPH05117032A (en) Production of silicon nitride sintered compact

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees