JPH02175661A - Calcined silicon nitride-based compact and production thereof - Google Patents

Calcined silicon nitride-based compact and production thereof

Info

Publication number
JPH02175661A
JPH02175661A JP63332411A JP33241188A JPH02175661A JP H02175661 A JPH02175661 A JP H02175661A JP 63332411 A JP63332411 A JP 63332411A JP 33241188 A JP33241188 A JP 33241188A JP H02175661 A JPH02175661 A JP H02175661A
Authority
JP
Japan
Prior art keywords
rare earth
silicon nitride
compact
earth element
calcined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63332411A
Other languages
Japanese (ja)
Other versions
JP2691294B2 (en
Inventor
Masaki Terasono
正喜 寺園
Shoji Kosaka
祥二 高坂
Kazunori Koga
和憲 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP63332411A priority Critical patent/JP2691294B2/en
Publication of JPH02175661A publication Critical patent/JPH02175661A/en
Application granted granted Critical
Publication of JP2691294B2 publication Critical patent/JP2691294B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a calcined compact, having a crystalline structure and grain boundaries consisting of an amorphous substance and excellent in stability, high-temperature strength and oxidation resistance by calcining a mixture of Si3N4 with a rare earth element oxide of a specific composition prepared by excessively adding SiO2 thereto at a low temperature and quenching the calcined mixture. CONSTITUTION:The above-mentioned calcined Si3N4 compact is a calcined compact of a composition system consisting of 77-90mol% Si3N4, 0.1-5mol% rare earth element oxide and <=25mol% excess oxygen at >2 to <=25 molar ratio of excess oxygen/rare earth oxide. The average grain diameter of the Si3N4 crystals is <=7mu and the grain boundary phase thereof is an amorphous substance composed of Si, rare earth element, O and N. The aforementioned calcined compact is produced by providing a gas-impermeable sealing on the surface of the compact consisting of the above-mentioned composition, calcining the compact at 1450-1800 deg.C in a high-pressure gas and then cooling the calcined compact at >=1000 deg.C/hr rate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高温における抗折強度および耐酸化性に優れた
窒化珪素質焼結体及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a silicon nitride sintered body having excellent bending strength and oxidation resistance at high temperatures, and a method for producing the same.

(従来技術) 従来から、窒化珪素質焼結体は高温における強度、硬度
、熱的化学的安定性に優れることからエンジニアリング
セラミックス、特に熱機関用材料として注目されている
(Prior Art) Silicon nitride sintered bodies have traditionally attracted attention as engineering ceramics, particularly as materials for heat engines, because of their excellent strength, hardness, and thermal and chemical stability at high temperatures.

窒化珪素はそれ自体共有結合から成るため焼結が難しい
ことから、希土類元素酸化物やアルカリ土類金属酸化物
、或し料;l:Al2O5等の各種の焼結助剤を添加し
て成形し、常圧焼成、ホットプレス焼成、ガス圧力焼成
、熱間静水圧焼成等の焼成手段によって1600〜20
00℃の温度で焼成することによって得られている。
Silicon nitride itself is difficult to sinter because it consists of covalent bonds, so various sintering aids such as rare earth element oxides, alkaline earth metal oxides, or l:Al2O5 are added to form the silicon nitride. , 1600 to 20 depending on firing means such as normal pressure firing, hot press firing, gas pressure firing, hot isostatic pressure firing, etc.
It is obtained by firing at a temperature of 00°C.

このような窒化珪素質焼結体によれば、高温特性を決定
する要因として焼結体の粒界相が注目され、粒界相の強
度を向上させようとする試みが成されている。そこで、
最近に至っては、焼結体に熱処理等を施すことによって
粒界を窒化珪素(Si3N4)、希土類元素酸化物(R
E2O3)および5iO7等から成る各種の結晶相、例
えばメリライト、アパタイト、YAM 、ワラストナイ
ト等を析出させることが行われている。
In such a silicon nitride sintered body, the grain boundary phase of the sintered body has attracted attention as a factor determining high-temperature characteristics, and attempts have been made to improve the strength of the grain boundary phase. Therefore,
Recently, by applying heat treatment to sintered bodies, grain boundaries have been changed to silicon nitride (Si3N4), rare earth element oxides (R
Various crystal phases consisting of E2O3) and 5iO7, such as melilite, apatite, YAM, and wollastonite, have been precipitated.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし乍ら、粒界を結晶化することによりある程度の高
温強度の向上はあるものの、粒界の組成が各種の条件に
より変わるために所望の結晶相を安定して生成させるこ
とが難しく、生成される結晶相の種類によって特性が異
なるため、安定性に欠けるもので、しかもすべての粒界
を結晶化させることが困難であるが旨に、結晶相の他に
、低融点のガラス相が生成されるために、所望の高温特
性が得られないという問題を有していた。
However, although high-temperature strength can be improved to some extent by crystallizing grain boundaries, it is difficult to stably generate the desired crystalline phase because the composition of the grain boundaries changes depending on various conditions, and Because the properties differ depending on the type of crystalline phase, it lacks stability, and it is difficult to crystallize all grain boundaries. Therefore, there was a problem in that the desired high temperature characteristics could not be obtained.

〔発明の目的〕[Purpose of the invention]

本発明は上記問題点を解決し、安定性に優れしかも高温
特性に優れた窒化珪素子焼結体及びその製造方法を提供
することを目的とするものである。
An object of the present invention is to solve the above-mentioned problems and provide a sintered silicon nitride element having excellent stability and high-temperature properties, and a method for manufacturing the same.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記の問題点に対し、検討を重ねた結果、添加
成分として5iO7を過剰に加え、これを低温で焼成し
、急冷することにより粒界を珪素、希土類元素、酸素、
窒素とから構成される高融点ガラス相とすることによっ
て微細な結晶組織となすと共に粒界相を均一な組織より
構成することができるため、安定性に優れるとともに高
温強度および耐酸化性が改善されることを知見した。
As a result of repeated studies to address the above-mentioned problems, the present invention was developed by adding an excessive amount of 5iO7 as an additive component, firing it at a low temperature, and rapidly cooling it to form grain boundaries with silicon, rare earth elements, oxygen,
By forming a high melting point glass phase composed of nitrogen, a fine crystal structure can be formed and the grain boundary phase can be composed of a uniform structure, resulting in excellent stability and improved high temperature strength and oxidation resistance. I found out that.

即ち、本発明は窒化珪素(以下、SiN4という)70
〜99モル%希土類元素酸化物0.1〜5モル%と、過
剰酸素25モル%以下から過剰酸素/希土類元素酸化物
(モル比)が2より大きく、25以下の範囲にある組成
系の焼結体でありその5iJa結晶の平均粒子径が7μ
「以下で且つその粒界相が珪素、希土類元素、酸素、窒
素から構成される非晶質体となしたものであり、その製
法としては」−記の組成となる成形体の表面にガス不透
過性のシールを設け、1400〜1800℃の温度で高
圧力下で焼成後、1000°/hr以上の速度で急冷す
ることによって得られるものである。
That is, the present invention uses silicon nitride (hereinafter referred to as SiN4) 70
~99 mol% Rare earth element oxide 0.1 to 5 mol% and excess oxygen/Rare earth element oxide (molar ratio) from 25 mol% or less to more than 2 and 25 or less. The average particle size of the 5iJa crystal is 7μ
"It is made into an amorphous body whose grain boundary phase is composed of silicon, rare earth elements, oxygen, and nitrogen, and its manufacturing method is to..." It is obtained by providing a permeable seal, firing under high pressure at a temperature of 1400 to 1800°C, and then rapidly cooling at a rate of 1000°/hr or more.

以下、本発明を詳述する。The present invention will be explained in detail below.

本発明の大きな趣旨゛は、従来の結晶化に伴う粒界相の
不均一化を解消するために、粒界を均一な単一相として
形成させるとともに、粒界を非晶質とすることによって
高粘度化させようとするものである。
The main purpose of the present invention is to form the grain boundaries as a uniform single phase and to make the grain boundaries amorphous in order to eliminate the non-uniformity of the grain boundary phase caused by conventional crystallization. The purpose is to increase the viscosity.

そのための基本的組成としては5iJ4が70〜99モ
ル%、特に80〜93.5モル%と、希土類元素酸化物
0.1〜5モル%、特に0.5〜4モル%と、過剰酸素
25モル%以下、特に6〜20モル%の割合から成る。
The basic composition for this purpose is 70 to 99 mol%, especially 80 to 93.5 mol% of 5iJ4, 0.1 to 5 mol%, especially 0.5 to 4 mol% of rare earth element oxide, and 25% of excess oxygen. It consists of a proportion of less than mol %, especially 6 to 20 mol %.

なお、過剰酸素とは系全体に含まれる全酸素量から、希
土類元素酸化物として混入した酸素を除いた酸素量で、
具体的には5iJa原料中の不純物酸素、あるいはSt
owとして添加された酸素から構成されるものであり、
本発明では5iOz換算量を示すものである。本発明に
おける組成上の大きな特徴は過剰酸素/希土類元素酸化
物(モル比)が2より大きり、25以下、特に3〜20
の割合から成るもので、即ち、過剰酸素が多量であるこ
とを意味するもので、粒界を非晶質と成す上で、重要な
要因である。このモル比を上記範囲に限定した理由は、
このモル比が2以下では、粒界に結晶が析出し易くなり
、安定性に欠は本発明の目的が達成されず、逆に25を
超えると低融点のガラスが形成し易くなり、粒界の融点
が低下しすぎて焼結体の高温強度が低下するためである
。また、前記組成範囲において、Si3N4、希土類元
素酸化物のいずれかが前述の範囲を逸脱しても、強度が
低下する。
Note that excess oxygen is the amount of oxygen excluding oxygen mixed in as rare earth element oxides from the total amount of oxygen contained in the entire system.
Specifically, impurity oxygen in the 5iJa raw material or St
It is composed of oxygen added as ow,
In the present invention, the amount is expressed in terms of 5 iOz. The major compositional feature of the present invention is that the excess oxygen/rare earth element oxide (mole ratio) is greater than 2 and less than 25, especially 3 to 20.
This means that there is a large amount of excess oxygen, which is an important factor in making the grain boundaries amorphous. The reason for limiting this molar ratio to the above range is
If this molar ratio is less than 2, crystals will tend to precipitate at the grain boundaries, resulting in a lack of stability and the object of the present invention will not be achieved.On the other hand, if it exceeds 25, a glass with a low melting point will be easily formed, and the grain boundaries will become unstable. This is because the melting point of the sintered body decreases too much and the high temperature strength of the sintered body decreases. Moreover, in the above composition range, even if either Si3N4 or the rare earth element oxide deviates from the above range, the strength will decrease.

本発明の焼結体の粒界には、添加成分である希土類元素
酸素と過剰酸素、およびSi3N4の一部固溶により、
実質的に珪素、希土類元素、酸素、窒素とから構成され
る非晶質より成るもので、従来のような結晶質の析出が
ないことから、均一な粒界が構成される。
In the grain boundaries of the sintered body of the present invention, due to the rare earth element oxygen and excess oxygen, which are additive components, and some solid solution of Si3N4,
It consists of an amorphous substance consisting essentially of silicon, rare earth elements, oxygen, and nitrogen, and because there is no crystalline precipitation like in the conventional case, uniform grain boundaries are formed.

このような粒界相の非晶質化の具体的な判断の一つとし
ては前述した組成系において最も析出し易い結晶相であ
るシリコンオキシナイトライド相(Si2N20相)の
有無で評価でき、この場合はX線回折チャートにおいて
5iJzO(020)面ビーク強度/(α−3iJt(
210)面ピーク強度子β−5+J4(210)面ピー
ク強度)  X 100(χ)で表わされる比率が30
%以下のレベルで5iJzO相の析出が抑制されたもの
を粒界が実質的に非晶質化しているという。
One of the concrete ways to judge whether the grain boundary phase becomes amorphous is by the presence or absence of the silicon oxynitride phase (Si2N20 phase), which is the crystalline phase that is most likely to precipitate in the above-mentioned composition system. In the case, in the X-ray diffraction chart, 5iJzO(020) plane peak intensity/(α-3iJt(
210) plane peak intensity factor β-5 + J4 (210) plane peak intensity)
If the precipitation of the 5iJzO phase is suppressed at a level of 5iJzO phase or less, it is said that the grain boundaries have become substantially amorphous.

本発明によれば、この粒界を高融点化させる上で、希土
類元素として高融点ケイ酸塩を生成し得る元素を用いる
ことが望ましく。そのような元素としては、Yb、 E
r、 Dy、 Hoが挙げられる。
According to the present invention, in order to increase the melting point of this grain boundary, it is desirable to use an element that can form a high melting point silicate as the rare earth element. Such elements include Yb, E
Examples include r, Dy, and Ho.

また、本発明の焼結体によれば、5iJ4結晶粒子の平
均粒径が7μm以下、特に5μm以下であることが重要
であり、このような微細な結晶組織構造を形成すること
によって機械的強度を向上させることができる。
In addition, according to the sintered body of the present invention, it is important that the average grain size of the 5iJ4 crystal grains is 7 μm or less, particularly 5 μm or less, and by forming such a fine crystal structure, mechanical strength can be improved. can be improved.

本発明の窒化珪素質焼結体の製造方法によれば、原料粉
末として窒化珪素粉末、希土類元素酸化物粉末、さらに
場合により5iO8粉末を用いるが、焼結性を促進させ
るため窒化珪素粉末はBET比表面積が3〜20m27
g、α化率が95%以上であることが望ましい。
According to the method for manufacturing a silicon nitride sintered body of the present invention, silicon nitride powder, rare earth element oxide powder, and in some cases 5iO8 powder are used as raw material powders, but the silicon nitride powder is BET in order to promote sinterability. Specific surface area is 3-20m27
g. It is desirable that the gelatinization rate is 95% or more.

これらの粉末を用いて窒化珪素70〜99モル%、特に
80〜93.5モル%、希土類元素酸化物0.1〜5モ
ル%、特に0.5〜4モル%、過剰酸素(SiOz換算
量)25モル%以下、特に6〜20モル%の組成から成
り、且つ過剰酸素/希土類元素酸化物(モル比)が2よ
り太きく25以下、特に3〜20の範囲になるように調
製、混合する。
Using these powders, silicon nitride 70 to 99 mol%, especially 80 to 93.5 mol%, rare earth element oxides 0.1 to 5 mol%, especially 0.5 to 4 mol%, excess oxygen (SiOz equivalent amount) ) 25 mol% or less, especially 6 to 20 mol%, and prepared and mixed so that the excess oxygen/rare earth element oxide (molar ratio) is greater than 2 and 25 or less, especially in the range of 3 to 20. do.

このようにして得られた混合粉末を公知の成形方法、例
えばプレス成形、鋳込み成形、押出し成形、インフジエ
フシラン成形等によって所望の形状に成形した後、焼成
に移される。
The thus obtained mixed powder is molded into a desired shape by a known molding method, such as press molding, casting molding, extrusion molding, infusi-Fsilane molding, etc., and then transferred to firing.

本発明によれば、上記組成が焼成によって揮散し易い成
分、即ち、過剰酸素を多量に含むため、このような揮散
を十分に抑制し、得る焼成方法を選択する必要がある。
According to the present invention, since the above composition contains a large amount of a component that easily volatilizes during firing, that is, excess oxygen, it is necessary to select a firing method that sufficiently suppresses such volatilization.

そこで、本発明によれば、成形体の表面にガラス等から
成るガス不透過性シールで完全に密閉した状態で、高圧
力ガス下で焼成を行う。この方法によれば、焼成雰囲気
と成形体との間にシール材が存在することによって成形
体の組成は変動なく、焼結体組成とほぼ同一になること
から、何ら雰囲気制御も必要とせず量産性にも優れてい
るという利点を有する。具体的には、成形体の表面に所
望により、BN等の離型剤を塗布した後、さらにガラス
を塗布する。この成形体を例えば熱間静水圧焼成炉に配
置して昇温し、成形体の表面のガラスのシールが完成し
た後、さらに昇温するとともにN2或いはアルゴン等の
ガスによって圧力を加える。
Therefore, according to the present invention, firing is performed under high pressure gas while the surface of the molded body is completely sealed with a gas-impermeable seal made of glass or the like. According to this method, the composition of the molded body does not change due to the presence of a sealing material between the firing atmosphere and the molded body, and is almost the same as the composition of the sintered body, so mass production is possible without the need for any atmosphere control. It also has the advantage of being excellent in properties. Specifically, after applying a mold release agent such as BN to the surface of the molded body, if desired, glass is further applied. This molded body is placed in, for example, a hot isostatic pressure firing furnace and heated, and after sealing of the glass on the surface of the molded body is completed, the temperature is further raised and pressure is applied with a gas such as N2 or argon.

最終的に焼成温度1450〜1800℃、特に1500
〜1750℃の低温で圧力500〜2000a tn+
に保持する。焼成後、冷却速度を1000℃/hr以上
、特に1100°C/hr以上に設定して粒界を非晶質
化する。
The final firing temperature is 1450-1800℃, especially 1500℃.
Pressure 500~2000a tn+ at low temperature ~1750℃
to hold. After firing, the grain boundaries are made amorphous by setting the cooling rate to 1000° C./hr or more, particularly 1100° C./hr or more.

また、他の方法としては離型剤等を塗布した成形体をガ
ラス浴中に浸漬し、前述と同様な方法及び圧力、温度設
定で焼成すれば良い。
Alternatively, a molded body coated with a mold release agent or the like may be immersed in a glass bath, and fired using the same method, pressure, and temperature settings as described above.

本発明によれば、上記条件において、冷却速度が粒界を
非晶質化する上で特に重要で、冷却速度が1000℃/
hrを下回ると粒界に結晶相が析出し易くなり、本発明
の目的を達成できない。
According to the present invention, under the above conditions, the cooling rate is particularly important for making grain boundaries amorphous, and the cooling rate is 1000°C/
If it is less than hr, crystal phases tend to precipitate at grain boundaries, making it impossible to achieve the object of the present invention.

なお、上述したような焼成方法を採用した時、一般には
ガラス成分が成形体中に浸入し、焼結体の特性に影響を
及ぼすことが問題とされるが、本発明の組成ではSiO
□を多量に含むことからガラス成分の侵入が起きても焼
結体の特性にほとんど影響がないという特異的性質をも
有する。それによりガラス侵入を防止するための各種の
工夫がほとんどいらない等のメリットを有する。
Note that when the above-mentioned firing method is adopted, there is generally a problem that glass components infiltrate into the molded body and affect the properties of the sintered body, but in the composition of the present invention, SiO
Since it contains a large amount of □, it also has the unique property that even if glass components enter, it has almost no effect on the properties of the sintered body. This has the advantage that there is almost no need for various measures to prevent glass intrusion.

さらに、本発明の製造方法における特徴は、組成におい
て過剰酸素を多量に含んでいることに起因して系全体が
易焼結性であることから、焼成時間を短縮することがで
きると共に、1450〜1800℃の比較的低温で焼成
することができる点にある。
Furthermore, the manufacturing method of the present invention is characterized by the fact that the entire system is easily sinterable due to the large amount of excess oxygen in the composition. The advantage is that it can be fired at a relatively low temperature of 1800°C.

このような低温焼成によれば、α−3iJ4のβSi3
N4への転移に伴う粒成長が抑制されることから、焼結
体組織として微細な構造が得られ、特に5iJ4の結晶
の平均粒子径を7μm以下にすることによって高強度化
が達成される。また、同時に焼成温度が低いためにα−
5iJaのβ−3i3N、への転移が生じ難くなるため
に、焼結体中のα−3i3N4の占める割合がα−3i
lN4./α−8i+Na +β5iJ4の比率で5%
以上であることも大きな特徴で、α−3iJnが増加す
ることにより室温強度を高めることができる。
According to such low temperature firing, βSi3 of α-3iJ4
Since the grain growth accompanying the transition to N4 is suppressed, a fine structure can be obtained as a sintered body structure, and in particular, high strength can be achieved by setting the average grain size of the 5iJ4 crystals to 7 μm or less. At the same time, because the firing temperature is low, α-
Since the transition of 5iJa to β-3i3N is difficult to occur, the proportion of α-3i3N4 in the sintered body is smaller than α-3i.
lN4. /α-8i+Na +β5iJ4 ratio is 5%
This is also a major feature, and the room temperature strength can be increased by increasing α-3iJn.

さらに、本発明における窒化珪素質焼結体は、前述した
ような特徴を有するものであるが、この焼結体に対し靭
性を改善する目的で例えば無機質の繊維状構造体(ウィ
スカー)を焼結体中に分散することもできる。
Furthermore, although the silicon nitride sintered body of the present invention has the characteristics described above, for example, inorganic fibrous structures (whiskers) are sintered to this sintered body for the purpose of improving toughness. It can also be dispersed throughout the body.

具体的には長さが20μm以下の炭化珪素ウィスカー或
いは窒化珪素ウィスカーを5〜30体積χ体積台で均一
に分散させしめ、ウィスカーの引抜き効果、又はウィス
カーによるクランクの偏向により靭性を向上できる。
Specifically, silicon carbide whiskers or silicon nitride whiskers having a length of 20 μm or less are uniformly dispersed in a volume of 5 to 30 volumes, and the toughness can be improved by the whisker pulling effect or the deflection of the crank by the whiskers.

以下、本発明を次の例で説明する。The invention will now be explained with the following examples.

〔実施例〕〔Example〕

原料粉末として窒化珪素粉末(BET比表面積5m27
g、α化率95χ、酸素量1.0重量%)と各種希土類
酸化物粉末にあるいは5i02粉末を用いて、第1表に
示す組成になるように調合して混合後、1 t/cm”
でプレス成形し1400℃で仮焼した。
Silicon nitride powder (BET specific surface area: 5 m27) was used as the raw material powder.
g, gelatinization rate 95χ, oxygen content 1.0% by weight) and various rare earth oxide powders or 5i02 powder to form the composition shown in Table 1. After mixing, 1 t/cm"
It was press-molded and calcined at 1400°C.

得られた成形体に対し、BN粉末を1〜10mmの厚さ
で塗布後、さらにガラスを1〜10mmの厚さで塗布し
た後に、減圧下で1350’cで熱処理し、不純物の除
去を行った。
After applying BN powder to a thickness of 1 to 10 mm and further applying glass to a thickness of 1 to 10 mm, the obtained molded body was heat treated at 1350'c under reduced pressure to remove impurities. Ta.

このように処理された成形体を熱間静水圧焼成炉に配置
してN2ガス雰囲気1気圧下でガラスの軟化温度まで昇
温し、その後、昇温昇圧し、第1表に示す所定の条件で
熱間静水圧焼成を行った。
The thus-treated molded body was placed in a hot isostatic pressure firing furnace and heated to the softening temperature of glass in a N2 gas atmosphere of 1 atm, and then the temperature and pressure were increased to meet the predetermined conditions shown in Table 1. Hot isostatic pressure firing was performed.

その後、表面のガラスを除去して得られた焼結体に対し
、JISR1601に従い室温、1200℃、1400
°Cにおける4点曲げ抗折強度および1000℃×24
時間、1400℃欠ける24時間の酸化重量増を調べた
After that, the sintered body obtained by removing the glass on the surface was heated at room temperature, 1200°C, 1400°C according to JISR1601.
4-point bending strength at °C and 1000 °C x 24
The oxidation weight gain during 24 hours at 1400°C was investigated.

また、焼結体に対し、粒界相の非晶質化をX線回折曲線
において、5izNzO(020)面ピーク/(α5i
J4(210)面ピーク)’X100(χ)で表わされ
る強度比で判断し、この値が30(χ)以下であるもの
を本発明品と断定した。さらに、α−3iJ4の含有率
とSEM写真によりSi Ja結晶粒子の平均粒径を測
定した。
In addition, for the sintered body, the amorphization of the grain boundary phase was determined by the 5izNzO (020) plane peak/(α5i
J4 (210) plane peak)'X100 (χ) was determined based on the intensity ratio, and those with this value of 30 (χ) or less were determined to be products of the present invention. Furthermore, the content of α-3iJ4 and the average particle diameter of the Si Ja crystal particles were measured using SEM photographs.

〔以下余白〕[Margin below]

第1表から明らかなように、過剰酸素/希土類元素酸化
物比が2以下のmlO,16ではいずれも室温強度が低
く、1400℃の強度も低い。一方、この比が25を超
える階6は5iJ20相の析出が多量に認められるとと
もに、室温強度は高いものの高温強度が劣るものである
As is clear from Table 1, in mlO,16 where the excess oxygen/rare earth element oxide ratio is 2 or less, the room temperature strength is low and the strength at 1400°C is also low. On the other hand, in floor 6 where this ratio exceeds 25, a large amount of 5iJ20 phase is precipitated, and although the room temperature strength is high, the high temperature strength is poor.

また、旧Pの焼成温度が1800℃を超えるN1112
,13.17ではSi:+lLの粒成長により平均粒子
径が大きくそのためいずれも抗折強度が低いものであっ
た。
In addition, N1112 where the firing temperature of old P exceeds 1800℃
, 13.17 had a large average particle size due to the grain growth of Si:+1L, and therefore the bending strength was low in both cases.

さらに、冷却速度が1000℃/hrより遅い11kl
ll、18ではいずれもアパタイト結晶相が析出してお
り、本発明の目的は達成されなかった。
Furthermore, the cooling rate is slower than 1000℃/hr.
In both samples ll and 18, an apatite crystal phase was precipitated, and the object of the present invention was not achieved.

これらの比較例に対し、他の本発明品では室温強度10
50MPa以上、1200℃強度800MPa以上、1
400℃強度600MPa以上が達成され、また酸化重
量増が1000℃で0.1mg/cm”以下、1400
′CでO,1mg/cm2以下の優れた特性を示した。
In contrast to these comparative examples, other products of the present invention had a room temperature strength of 10
50MPa or more, 1200℃ strength 800MPa or more, 1
A strength of 600 MPa or more at 400°C was achieved, and the oxidation weight gain was 0.1 mg/cm” or less at 1000°C, 1400°C.
It exhibited excellent properties with O of 1 mg/cm2 or less.

また、これらの本発明品に対し、粒界をTEM分析した
結果、いずれも珪素、希土類元素、酸素、窒素が検出さ
れた。
Furthermore, as a result of TEM analysis of the grain boundaries of these products of the present invention, silicon, rare earth elements, oxygen, and nitrogen were detected in all of them.

〔発明の効果〕〔Effect of the invention〕

以上詳述した通り、本発明の窒化珪素質焼結体は微細な
結晶組織構造から成るとともに粒界が非晶質から成るこ
とから粒界が均一なものから形成されるとともに高融点
化され、高温強度に優れ、且つ耐酸化性に優れた焼結体
を得ることができる。
As detailed above, the silicon nitride sintered body of the present invention has a fine crystal structure and grain boundaries are amorphous, so that the grain boundaries are uniform and have a high melting point. A sintered body with excellent high-temperature strength and oxidation resistance can be obtained.

Claims (2)

【特許請求の範囲】[Claims] (1)窒化珪素70〜99モル%と、希土類元素酸化物
0.1〜5モル%と過剰酸素25モル%以下から成り、
過剰酸素/希土類元素酸化物(モル比)が2より大きく
、25以下の範囲にある窒化珪素質焼結体であって、該
焼結体の窒化珪素結晶の平均粒子径が7μm以下でかつ
粒界相が実質的に珪素、希土類元素、酸素、窒素から構
成される非晶質からなることを特徴とする窒化珪素質焼
結体。
(1) Consisting of 70 to 99 mol% silicon nitride, 0.1 to 5 mol% of rare earth element oxide, and 25 mol% or less of excess oxygen,
A silicon nitride sintered body in which the excess oxygen/rare earth element oxide (molar ratio) is in the range of more than 2 and less than 25, and the average particle size of silicon nitride crystals in the sintered body is 7 μm or less, and A silicon nitride sintered body characterized in that the interfacial phase consists of an amorphous substance consisting essentially of silicon, rare earth elements, oxygen, and nitrogen.
(2)窒化珪素70〜99モル%、希土類元素酸化物0
.1〜5モル%と過剰酸素(SiO_2)25モル%以
下、且つ過剰酸素/希土類元素酸化物(モル比)が2よ
り大きく、25以下の範囲にある組成から成る成形体の
表面にガス不透過性シールを設け、1450〜1800
℃の温度で高圧力ガス下で焼成後、1000℃/hr以
上の速度で冷却し、粒界を実質的に珪素、希土類元素、
酸素、窒素とから構成される非晶質となしたことを特徴
とする窒化珪素質焼結体の製造方法。
(2) Silicon nitride 70-99 mol%, rare earth element oxide 0
.. Gas impermeability on the surface of a molded body with a composition of 1 to 5 mol%, excess oxygen (SiO_2) 25 mol% or less, and excess oxygen/rare earth element oxide (molar ratio) greater than 2 and 25 or less 1450-1800 with sex stickers
After firing under high pressure gas at a temperature of
A method for producing a silicon nitride sintered body, characterized in that the silicon nitride sintered body is made into an amorphous body composed of oxygen and nitrogen.
JP63332411A 1988-12-27 1988-12-27 Silicon nitride sintered body and method for producing the same Expired - Fee Related JP2691294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63332411A JP2691294B2 (en) 1988-12-27 1988-12-27 Silicon nitride sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63332411A JP2691294B2 (en) 1988-12-27 1988-12-27 Silicon nitride sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH02175661A true JPH02175661A (en) 1990-07-06
JP2691294B2 JP2691294B2 (en) 1997-12-17

Family

ID=18254669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63332411A Expired - Fee Related JP2691294B2 (en) 1988-12-27 1988-12-27 Silicon nitride sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP2691294B2 (en)

Also Published As

Publication number Publication date
JP2691294B2 (en) 1997-12-17

Similar Documents

Publication Publication Date Title
JPH06219840A (en) Silicon nitride sintered compact and its production
JPH02175661A (en) Calcined silicon nitride-based compact and production thereof
JP4651144B2 (en) Silicon nitride sintered body
JP3145519B2 (en) Aluminum nitride sintered body
JP3152790B2 (en) Method for producing silicon nitride based sintered body
JP3145597B2 (en) Alumina sintered body and method for producing the same
JPH0826815A (en) Rare earth compound oxide-based sintered compact and its production
JP2742619B2 (en) Silicon nitride sintered body
JP3124867B2 (en) Silicon nitride sintered body and method for producing the same
JPH06263544A (en) Sialon-based composite sintered compact and its production
JPH0224789B2 (en)
JP2742596B2 (en) Silicon nitride sintered body and method for producing the same
JPH02233560A (en) High-strength calcined sialon-based compact
JPH01145380A (en) Production of silicon nitride sintered form
JPH11322438A (en) High thermal conductive silicon nitride sintered compact and its production
JP2783702B2 (en) Silicon nitride sintered body
JP3034099B2 (en) Silicon nitride sintered body and method for producing the same
JP2811493B2 (en) Silicon nitride sintered body
JP2883248B2 (en) Silicon nitride based sintered body and method for producing the same
JP3106208B2 (en) Silicon nitride sintered body and method for producing the same
JPH06100376A (en) Sintered beta-sialon and its production
JP3207065B2 (en) Silicon nitride sintered body
JP2694368B2 (en) Method for producing silicon nitride based sintered body
JPH10139548A (en) Molybdenum disilicide-base composite material and its production
JP3124862B2 (en) Method for producing silicon nitride based sintered body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees